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Chapter 1

Lattice Cohomology

Lectures by András Némethi, notes by Tamás Ágoston

This note is a gentle introduction to the lattice cohomology of isolated

complex analytic germs. The analytic version is sensitive to the analytic type

of the germs. It can be defined in any positive dimension, in particular for

reduced curve singularities as well. Here we will treat mostly the curve case.

The topological version is defined for the topological type of an isolated sur-

face singularity with a rational homology sphere link.

These cohomology theories are categorifications of famous numerical in-

variants. E.g., the Euler characteristic of the lattice cohomology of a reduced

curve singularity is its delta invariant.

In section 1 we review some notations and elementary properties of singular

analytic germs. In the case of isolated plane curve singularities we compare

numerical invariants read from the embedded topological type with invariants

read from the abstract analytic type.

In section 2 we treat the lattice cohomology. We provide some combina-

torial statements and also several examples both in the curve and surface

cases.

1.1 Isolated singular germs

1.1.1 Preliminary

Definition 1.1.1 Let fi : (Cn, 0) → (C, 0) be holomorphic germs (1 ≤ i ≤ k),

and set f = (f1, . . . , fk) : (Cn, 0) → (Ck, 0). Then if (V (f), 0) is defined as

(V (f), 0) := {x ∈ (Cn, 0) | f(x) = 0} ⊂ (Cn, 0)
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4 1 Lattice Cohomology

we call (V (f), 0) the germ of an analytic set. If k = 1 then we call (V (f), 0)

a hypersurface germ.

At each point x ∈ V (f), we can consider the Jacobian

df(x) =

(
dfi
dxj

)
i,j

∈ Ck×n.

The dimension of (V (f), 0) is defined as

dim(V (f), 0) = n− max
x∈V (f)

rk df(x) = n− rk df(xgen),

where the second equality also shows that for a generic choice of x, the rank

of the Jacobian will be maximal. By definition, points where the rank is not

maximal form the singular locus of (V (f), 0):

Sing(V (f), 0) = {x ∈ (V (f), 0) | rk df(x) < n− dim(V (f), 0)}.

Remark 1.1.2 In the above setting, codim
(
(V (f), 0) ⊂ (Cn, 0)

)
= n −

dimV (f) ≤ k. In particular, for the hypersurface case — i.e. when k = 1

and f ̸= 0 — the codimension is 1.

Remark 1.1.3 Sing(V (f), 0) is also the germ of an analytic set: it is described

by the simultaneous vanishing of f and the determinants of all (codimV )×
(codimV ) minors of df .

For hypersurfaces, i.e. f : (Cn, 0) → (C, 0), the point x ∈ (V (f), 0) is

singular if and only if df(x) = 0.

Example 1.1.4 If f = (xy, xz, yz) : C3 → C3, then V (f) ⊂ C3 is the union

of the coordinate axes. The Jacobian is

df =

y x 0

z 0 x

0 z y

 ,

and one can verify that the rank of df is 2 for all (x, y, z) ∈ V (f) except 0

(det(df) = −2xyz ≡ 0).

Definition 1.1.5 The analytic germ (f, 0) is said to define an isolated sin-

gularity when 0 is an isolated point in Sing(V (f), 0).

Example 1.1.6

� If f = x2
1 + · · ·+ x2

n then Sing(V (f), 0) = {0}, hence (f, 0) is an isolated

singularity;
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� if f = x2
1(x

2
1 + x3

2) then Sing(V (f), 0) = {x1 = 0}, hence (f, 0) is not an

isolated singularity.

For a given germ (V (f), 0) ⊂ (Cn, 0) with f = (f1, . . . , fk), we can consider

its topological and analytic types. The analytic type is characterized by the C-
algebra isomorphism type of its coordinate ring OV,0 = OCn,0 / (f1, . . . , fk),

where OCn,0 = C{z1, . . . , zn} is the (local) ring of holomorphic functions

defined near 0 (its unique maximal ideal consists of those germs which vanish

at 0) and (f1, . . . , fk) denotes the ideal generated by f1, . . . , fk.

Example 1.1.7 Let f = x2 − y3, f ′ = (x2 − y3, z − x100) and consider

them at the point 0. Then the two local algebras, C{x, y}/(x2 − y3) and

C{x, y, z}/(x2−y3, z−x100) are isomorphic, hence f and f ′ define analytically

equivalent curve singularities at 0.

Regarding the topological type, we will distinguish two notions. The ab-

stract topological type is the topology of V (f) in some sufficiently small

neighborhood of 0, while the embedded topology is the topology of the pair

of V (f) ⊂ Cn within some sufficiently small neighborhood of 0. In order to

formulate these statements more precisely, the following facts are crucial:

Theorem 1.1.8 (see [16, 23] and the references therein.) Let (f, 0) be

an analytic germ and assume that (V, 0) = (V (f), 0) ⊂ (Cn, 0) defines an

isolated singularity. Let also S2n−1
r and B2n

r denote the sphere and ball in Cn

centered at 0 with radius r. Then for some sufficiently small ε0:

(1) S2n−1
ε ⋔V for every 0 < ε ≤ ε0.

(2) There is a homeomorphism Φ : (B2n
ε0 , V ∩ B2n

ε0 ) →
(
C(S2n−1

ε0 ), C(V ∩
S2n−1
ε0 )

)
where C(X) denotes the real cone over X. This map is a diffeo-

morphism away from 0, and takes the sections V ∩ S2n−1
ε to sections of

the cone C(V ∩ S2n−1
ε0 ) parallel to the base.

Definition 1.1.9 In the above setting, the intersections V ∩ S2n−1
ε are all

diffeomorphic for sufficiently small ε. We call this the (abstract) link LV of

(V, 0).

Likewise, the diffeomorphism type of the pair (S2n−1
ε , V ∩ S2n−1

ε ) is con-

stant for sufficiently small ε. We call this the embedded link of (V, 0) into

S2n−1
ε .

Remark 1.1.10 Because of the cone structure, the local topological type of

(V, 0) is given by the homeomorphism type of the abstract link, while the
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embedded topological type of (Cn, V, 0) is equivalent to the topological type

of the embedded link respectively. In particular, when talking about the (ab-

stract) topological and embedded topological types, in fact we might consider

the respective links.

The analytic type (or the embedded topological type) determines the ab-

stract topological type.

Remark 1.1.11 If dim(V (f), 0) = d, then V has dimension is dimR(V (f), 0) =

2d over R. Hence, by the transversality property from Theorem 1.1.8, the

link LV is a compact, oriented, smooth real manifold of dimension 2d − 1,

embedded in the sphere S2n−1.

Example 1.1.12 Let (V, 0) be a plane curve singularity: (V, 0) ⊂ (C2, 0) and

dim(V, 0) = 1. Then the abstract link LV is a compact real 1-manifold, i.e. a

disjoint union of circles. The number of such circles agrees with the number of

irreducible components of the curve germ (V, 0) (for more details see below),

and we obtain the embedded link as well:

LV =

r⊔
i=1

S1 ↪→ S3.

Example 1.1.13 If dim(V, 0) = 2 then (V, 0) is called a surface singularity.

Then LV is a compact, oriented real 3-manifold. In fact, it is a plumbed

3-manifold associated with a plumbing graph whose intersection form is neg-

ative definite. If (V, 0) is irreducible then the graph is connected.

Theorem 1.1.14 (Grauert [14]) Every oriented plumbed 3-manifold with

a negative definite intersection form is the link of a surface singularity.

Example 1.1.15 For the following singularities, the plumbing graphs are the

following:

�

{
x2 + y2 + z2 = 0

}
−→ −2

�

{
x2 + y2 + zn+1 = 0

}
−→ · · ·

n times

−2 −2 −2 −2

�

{
x2 + y3 + z5 = 0

}
−→ −2 −2 −2 −2 −2 −2 −2

−2
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1.1.2 Curves in (C2, 0)

In this section, we assume f : (C2, 0) → (C, 0). For such an f ∈ OC2,0 =

C{x, y}, we have a decomposition fα1
1 · · · fαr

r , where each fi is an irreducible

germ and fi ̸= fj (i ̸= j) up to invertible elements of C{x, y}. This induces

the irreducible decomposition (V (f), 0) =
r⋃

i=1

(V (fi), 0). Correspondingly, we

get the embedded link

Lf =

r⊔
i=1

Lfi ≈
r⊔

i=1

S1 ↪→ S3

where Lf and Lfi denote the links of (V (f), 0) and (V (fi), 0) respectively.

The germ defines an isolated singularity if and only if αi = 1 for all i. Such

isolated singularities are also called plane curve singularities. fact env

Fact 1.1.16 ([35]) The embedded topological type of an isolated plane curve

singularity is completely classified by the following data:

� The embedded topological types of each component Lfi of the link. This

is an iterative torus knot, encoded by the Puiseux pairs of fi.

� The linking numbers between the components Lfi and Lfj (i ̸= j). Al-

gebraically, the linking number of Lfi and Lfj (i ̸= j) equals the (local)

intersection multiplicity at the origin of fi and fj.

A notable property of the embedded topological type is the following:

Theorem 1.1.17 (Milnor [16]) For a sufficiently small ε > 0, the map

Φ : S3
ε \ V (f) → S1, Φ(z) = f(z)

|f(z)| (z = (x, y)) defines a C∞ locally trivial

fibration (called the Milnor fibration):

F S3
ε \ Lf

S1

Φ

In particular, each Lf ⊂ S3
ε is a fibered link. The Milnor fiber F is homo-

topically equivalent to a bouquet of S1’s, and its first Betti number is equal

to the Milnor number µ(f) = µ(f, 0):

F ∼=
µ(f,0)∨
i=1

S1 where µ(f, 0) = dimC
OC2,0(
df
dx ,

df
dy

) .
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Remark 1.1.18 A similar statement holds for isolated hypersurface singulari-

ties in any dimension (F = ∨Sn−1, bn−1(F ) = µ(f, 0) = dimC(OCn,0/(df))),

see [16].

As for understanding certain numerical invariants of the analytic type of

a plane curve singularity, consider first the irreducible case.

1.1.2.1 Irreducible plane curve singularities

Proposition 1.1.19 (see e.g. [7, 34].) Let f define an irreducible plane

curve singularity (V (f), 0) ↪→ (C2, 0). Then there exists an analytic home-

omorphism n : (C, 0) → (V (f), 0), also called the Puiseux parametriza-

tion, or the normalization of
(
V (f), 0

)
. Furthermore, this parametrization

n : t 7→
(
x(t), y(t)

)
can be written in the form

x(t) = tm,

y(t) = ant
n + an+1t

n+1 + · · · , (ai ∈ C, an ̸= 0)

such that f
(
x(t), y(t)

)
≡ 0.

Example 1.1.20 For f = xa − yb with a, b coprime (which implies that f is

irreducible), we have

t 7→

(
x(t) = tb

y(t) = ta

)
.

For any analytic map g ∈ OC2,0, we can then take the pullback n∗g ∈
OC,0 = C{t}: the bijection n induces n∗ : OV,0 ↪→ OC,0 = C{t}, and we can

apply that to g|V . Using diagrams:

(C, 0)
(
V (f), 0

)
(C2, 0)

(C, 0)

n

n∗g

g|V
g

Definition 1.1.21 Define the δ-invariant of (f, 0) as

dimC OC,0/Imn∗ = dimC C{t}/OV,0 < ∞,

and its semigroup (or monoid) of values as

S = {ordt n∗g | g ∈ OV,0} ⊂ Z≥0.
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Note that this satisfies

δ = dim
C{t}
OV,0

= |Z≥0 \ S | < ∞.

In particular, there exists a smallest element c ∈ Z≥0 such that c+Z≥0 ⊂ S ,

which is called the conductor element of the semigroup S .

Example 1.1.22 Let f = x3 − y4. Then, via 1.1.20, we get

n∗g(t) = g
(
x(t), y(t)

)
= g(t4, t3)

for any g ∈ C{x, y}. In particular, for g = xkyℓ, we get n∗g(t) = t4k+3ℓ, so

S ⊇ ⟨3, 4⟩. One can also verify that this is in fact an equality.

Example 1.1.23 More generally, for f = xa − yb with a, b coprime, we get

S = ⟨a, b⟩, δ =
(a− 1)(b− 1)

2
, c = (a− 1)(b− 1).

As for the topological type, in this case the abstract link is S1 (since f is

irreducible), and it is embedded in S3 as the torus knot Ta,b. The Milnor

number is µ = (a− 1)(b− 1) too.

Example 1.1.24 Consider the singularity parametrised as n : t 7→ (t4, t6 +

t7). Then n∗g(t) = g(t4, t6 + t7), and one can show that

S = ⟨4, 6, 13⟩, δ = 8, c = 16.

Exercise 1.1.25 Find a polynomial f that corresponds to this parametriza-

tion, and compute the Milnor number as well.

One can observe that in all these examples, we always have c = 2δ = µ.

This is indeed the case when f is an irreducible plane curve germ. For the

general statement see Theorem 1.1.39.

It is a notable fact that the semigroup can be computed from the embedded

topological type. In fact, the semigroup is a complete embedded topological

invariant, i.e. it always distinguishes singularities with different embedded

topological types (i.e. different embedded algebraic links).

Another complete invariant of irreducible isolated plane curve singulari-

ties is the Alexander polynomial ∆(t) of the embedded link S1 ⊂ S3
ε . The

connection between the two can be expressed as follows:
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Proposition 1.1.26 (Campillo, Delgado, Gusein-Zade [8]) For an irre-

ducible plane curve singularity (V, 0) ⊂ (C2, 0) with an associated semigroup

S , we have ∑
s∈S

ts =
∆(t)

1− t
.

Remark 1.1.27 The Alexander polynomial is not a complete invariant of knots

in S3 in general (for not necessarily algebraic knots). It does, however distin-

guish between all links of irreducible plane curve singularities.

It can be immediately seen then that S and ∆ can indeed be computed

from each other. Another complete invariant is the Hilbert series H(t). Its

equivalence with the semigroup can be seen from its very definition.

Definition 1.1.28 For an irreducible plane curve singularity (V, 0) with

semigroup S , we can define its Hilbert function ℓ 7→ h(ℓ) and Hilbert se-

ries H(t) respectively as

h(ℓ) = |{s ∈ S | s < ℓ}| (ℓ ∈ Z≥0) and H(t) =
∑
ℓ≥0

h(ℓ)tℓ.

Proposition 1.1.29 With the above notations,

H(t) =
t

1− t

∑
s∈S

ts =
t∆(t)

(1− t)2
.

Remark 1.1.30 The function h is actually the Hilbert function of a filtration.

We will talk about that in detail later in this section.

Example 1.1.31 Consider the plane curve singularity defined by f = x2−y3.

Recall from Example 1.1.23 that its embedded link is the torus knot T2,3 (the

trefoil), and the semigroup is S = ⟨2, 3⟩ = Z≥0 \ {1} (with δ = 1 and c = 2).

Then ∑
s∈S

ts = 1 + t2 + t3 + t4 + · · · = 1 +
t2

1− t
=

1− t+ t2

1− t
,

and 1− t+ t2 is indeed the Alexander polynomial of the knot T2,3. Also, we

get

H(t) =
∑
ℓ≥0

h(ℓ)tℓ = t+t2+2t3+3t4+· · · = t+
t2

(1− t)2
=

t− t2 + t3

(1− t)2
=

t∆(t)

(1− t)2
.
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1.1.2.2 General curves

Next, we define the delta invariant and the Hilbert function for non-irreducible

curve germs as well. In fact, in this subsection we will consider an arbitrary

isolated curve singularity (which is not necessarily embedded in (C2, 0)). In

particular the next definition will not use any embedded data. (On the con-

trary, for the definition of the Milnor number µ one needs an embedding in

(C2, 0)), or at least a smoothing.)

Now, write (V, 0) =
r⋃

i=1

(Vi, 0), where (Vi, 0) ⊂ (Cn, 0) are irreducible curve

germs.

Consider the normalizations ni : (Cti , 0) → (Vi, 0) to get the mapping

OCn,0 ∋ g 7→ n∗
i g ∈ C{ti} induced via the diagram

(Cti , 0) (Vi, 0) (V, 0) (Cn, 0)

(C, 0)

ni

n∗
i g

g|V
g

and the valuations (ordt1 n
∗
1g, . . . , ordtr n

∗
rg) on OCn,0. Since here n∗

i g only

depends on g|V , we might as well equivalently define n∗
i g on OV,0 via the left

part of the diagram. Group the valuations as

v(g) = (ordt1 n
∗
1g, . . . , ordtr n

∗
rg) (g ∈ OV,0).

This induces a (Z≥0)
r-filtration on OV,0, which in turn gives rise to a Hilbert

function (and series):

F (ℓ) = {g ∈ OV,0 | ∀i : ordti n∗
i g ≥ ℓi} ⊂ OV,0, (ℓ = (ℓ1, . . . , ℓr)),

h(ℓ) = dimOV,0/F (ℓ),

H(t) =
∑
ℓ≥0

h(ℓ)tℓ (tℓ = tℓ11 · · · tℓrr ),

and provides an embedding n∗ : OV,0 ↪→
r⊕

i=1

C{ti}.

Remark 1.1.32 Observe also that the definition of ℓ 7→ h(ℓ) does not depend

at all on the embedding (realization) of (V, 0) in some (Cn, 0), it depends

only the local algebra OV,0.

Definition 1.1.33 We define the δ-invariant of (V, 0) as

dimC

r⊕
i=1

C{ti}/Imn∗ < ∞,
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and its semigroup of values as

S = {v(g) | g ∈ OV,0} = {(ordt1 n∗
1g, . . . , ordtr n

∗
rg) | g ∈ OV,0} ⊂ (Z≥0)

r.

There exists a unique smallest element c ∈ (Z≥0)
r such that c+(Z≥0)

r ⊂ S ,

which is called the conductor element of S .

Example 1.1.34 Let (V, 0) = {xy = 0} ⊂ (C2, 0). Then n1(t1) = (t1, 0) and

n2(t2) = (0, t2), so for some g(x, y), we get

n∗
1g = g(t1, 0) ∈ C{t1}, n∗

2g = g(0, t2) ∈ C{t2}.

One can then verify that δ = 1, µ = 1, c = (1, 1), and S = (0, 0) ∪ ((1, 1) +

(Z≥0)
2).

Example 1.1.35 Let (V, 0) = {xy = yz = zx = 0} ⊂ (C3, 0), i.e. the union

of the 3 coordinate axes. Then we get the maps n1(t1) = (t1, 0, 0), n2(t2) =

(0, t2, 0), n3(t3) = (0, 0, t3). We can then compute δ = 2.

Example 1.1.36 Let (V, 0) = {xy(x− y) = 0} ⊂ (C2, 0). We leave as an

exercise to the reader to show that δ = 3 in this case.

Note however, that while this singularity has the same abstract topologi-

cally type as the germ from the previous example (the link is S1 ⊔ S1 ⊔ S1)

and even ‘geometrically’ they are very similar (3 lines, each pair of them in-

tersecting in the same point), the δ-invariants differs. Indeed the two are not

analytically isomorphic. E.g., {xy = yz = zx = 0} cannot be embedded into

(C2, 0).

Example 1.1.37 Let (V, 0) =
{
x2 + y4 = 0

}
⊂ (C2, 0). Again, we leave as

an exercise to check that µ = 3 and δ = 2 and r = 2.

The semigroup S and the Hilbert function determine each other:

Lemma 1.1.38 (see e.g. [13].) The semigroup can be deduced from the

Hilbert function as follows:

S = {ℓ ∈ (Z≥0)
r | h(ℓ+ Ei) > h(ℓ) for every i = 1, . . . , r}.

On the other hand, h(ℓ+Ei)− h(ℓ) ∈ {0, 1} for any ℓ ≥ 0 and i ∈ {1, . . . , r}.
Moreover, h(ℓ+Ei) = h(ℓ)+1 if there is an element s ∈ S such that si = ℓi

and sj ≥ ℓj for j ̸= i. Otherwise h(ℓ+Ei) = h(ℓ). (Here {Ei}ri=1 denotes the

standard basis of Zr.)
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1.1.2.3 The case of plane curve singularities revisited

We have the following two statements valid specifically for plane curve sin-

gularities (V (f), 0) ⊂ (C2, 0). The first one relates the delta invariant with

the Milnor number.

Theorem 1.1.39 (Jung, Milnor, see [16].) For a plane curve singularity

(f, 0), we have µ(f) = 2δ(f) − (r − 1) where r is the number of irreducible

components of (V (f), 0).

The second group of statements relates the Hilbert function (or, equiva-

lently, the semigroup) with the multivariable Alexander polynomial ∆(t) of

the link (here (t = (t1, . . . , tr))).

The key intermediate bridge is the multivariable Poincaré series. First

define the extended Hilbert series as

Hext(t) =
∑
ℓ∈Zr

h(ℓ)tℓ ∈ Z[[t1, t−1
1 , . . . , tr, t

−1
r ]],

where for an arbitrary ℓ ∈ Zr we set h(l) = h(max{l, 0}). Note that

Hext|(Z≥0)r = H.

Then we define the multivariable Poincaré series P (t) as follows. If r = 1,

then the Poincaré series of the graded ring ⊕lF (l)/F (l + E1) is P (t) =

−H(t)(1− t−1). For general r, one defines the Poincaré series by

P (t1, . . . , tr) := −H(t1, . . . , tr) ·
∏
i

(1− t−1
i ).

This means that the coefficient p(ℓ) of P (t) =
∑

ℓ p(ℓ) · t
ℓ1
1 . . . tℓrr satisfies

p(ℓ) =
∑

I⊂{1,...,r}

(−1)|I|−1h(l + EI), (EI =
∑
i∈I

Ei).

Z[[t1, t−1
1 , . . . , tr, t

−1
r ]] is a module over the ring of Laurent power series,

hence the multiplication by
∏

i(1− t−1
i ) is well-defined. One can check (using

the property h(l) = h(max{l, 0})) that P (t) is a power series involving only

nonnegative powers of ti. In fact, the support of P (t) is included in S , that

is, p(ℓ) = 0 whenever ℓ ̸∈ S .

If r = 1, then by Lemma 1.1.38 P (t) =
∑

s∈S ts = −
∑

s̸∈S ts + 1/(1− t),

where −
∑

s̸∈S ts is a polynomial. Furthermore, P (t) is a polynomial for r > 1

(see Theorem 1.1.40 below).
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The following result motivated the introduction of P (t), it creates the

bridge between the abstract analytic invariant H(t) and the embedded topo-

logical invariant ∆(t).

Theorem 1.1.40 (Campillo, Delgado, Gusein-Zade, see [9, 10, 11].)

The following identity holds:

P (t) =

∆(t), if r > 1,

∆(t)/(1− t), if r = 1.

Multiplication by
∏

i(1− t−1
i ) of series with h(0) = 0 is injective if r = 1,

however it is not if r > 1. In particular, in such cases it can happen that

for two different series H(t) we obtain the very same P (t). (This really can

happen for concrete isolated curve singularities, which have higher embedded

dimensions, that is for non-plane curve singularities, see [11]). Nevertheless,

for plane curve singularities even for r > 1 one can recover H(t) as follows.

Using this, we write the multivariate analogue of 1.1.29:

Theorem 1.1.41 (Gorsky–Némethi [13]) For a plane curve singularity

(V, 0) =
r⋃

i=1

(Vi, 0), with the above notations we have

H(t) =
1

r∏
i=1

(1− ti)

( ∑
∅̸=I⊆{1,...,r}

(−1)|I|+1
(∏
i∈I

ti

)
PVI

(tI)

)

where t = (t1, . . . , tr) and for ∅ ̸= I = {i1, . . . , is} ⊆ {1, . . . , r}, we denote

(VI , 0) =
⋃

i∈I(Vi, 0), tI = (ti1 , . . . , tis), and PVI
is the Poincaré series of

(VI , 0) in the variables ti1 , . . . , tis .

The multivariable Alexander polynomials (hence the multivariable Poincaré

series/polynomials) can be directly computed from the splice diagrams of the

pair LV ⊂ S3 (or from the embedded resolution graph of V, 0) ⊂ (C2, 0)), see

[12]. In this way we can compute H(t) as well.

We emphasize again:

Proposition 1.1.42 For any isolated plane curve isolated singularity (V, 0),

its semigroup, Hilbert and Poincaré series, as well as the multivariate Alexan-

der polynomial of the link are all complete embedded topological invariants.
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1.2 Lattice cohomology

1.2.1 Combinatorial setup

The lattice cohomology was originally introduced as a way to construct a par-

ticular topological invariant for normal surface singularities. In recent years,

however, the method was generalized and used to study the analytic structure

of singularities in any dimension as well.

Let us take a look at the general, abstract setup first. We follow [20, 23],

see also [1].

Goal 1.2.1 Given some sort of combinatorial data — that will, ultimately,

come from some topological or analytic information — we aim to construct

a bigraded Z[U ]-module H∗ =
⊕
q≥0

Hq where

� Hq is a Z-graded Z[U ]-module,

� for every x ∈ Hq, there is some n(x) ∈ Z≥0 such that Un(x) · x = 0.

Here Z[U ] is the polynomial ring, with U denoting the free variable.

Example 1.2.2 Some particular Z-graded Z[U ]-modules:

� T +
0 = Z[U,U−1] / UZ[U ] = Z

〈
1, U−1, U−2, . . .

〉
with degU−k = 2k,

� T +
2n = Z[U,U−1] / U−n+1Z[U ] = Z

〈
U−n, U−n−1, U−n−2, . . .

〉
(with the

same grading),

� T +
2n(m) = U−n−m+1Z[U ] / U−n+1Z[U ] = Z

〈
U−n, U−n−1, . . . , U−n−m+1

〉
(with the same grading and with Z-rank m).

In each of these cases, multiplication with U is a degree-(−2) morphism,

which together with the grading being bounded from below implies in par-

ticular that the second condition above is satisfied.

We should also introduce some further notations that we will use exten-

sively. Assume that {Ei}ri=1 is a basis of Rr.

Definition 1.2.3 (a) For a set I ⊆ {1, . . . , r}, let EI =
∑
i∈I

Ei.

(b) For a, b ∈ Rr with a ≤ b, let R(a, b) = {x ∈ Rr | a ≤ x ≤ b} denote the

(hyper)rectangle spanned by a and b with edges parallel to the coordinate

axes. We will also allow a, b ∈ (R ∪ {±∞})r.

Next, we present the construction.
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Definition 1.2.4 Consider the lattice L = Zr = Z⟨Ei⟩ri=1 ↪→ Zr ⊗Z R = Rr,

which induces a cubical cellular decomposition of Rr:

� 0-cubes: ℓ ∈ L lattice points (technically the singleton sets {ℓ}, but for

convenience we identify these with the lattice points themselves when it

causes no confusion),

� 1-cubes: R(ℓ, ℓ+ Ei) segments, where ℓ ∈ L and i ∈ {1, . . . , r},
� q-cubes: R(ℓ, ℓ+ EI) cubes, where l ∈ L and I ⊂ {1, . . . , r}, |I| = q.

We denote the set of q-cubes by Qq.

On this cubical complex we introduce a set of compatible weight functions:

� w0 : Q0 = Zr → Z such that ∀n :
∣∣w−1

0

(
(−∞, n)

)∣∣ < ∞ (in particular

there exists some mw = minw0 ∈ Z),
� wq : Qq → Z for any q-cell □, where wq(□) = max

ℓ∈L∩□
w0(ℓ),

� w =
⋃
q≥0

wq.

(We could allow more general configurations here, but this will suffice for

now; the interested reader is invited to check e.g. [23].)

For every n ∈ Z, consider the ‘level set’

Sn =
⋃

w(□)≤n

□,

which gives us a chain of inclusions of finite cubical spaces

∅ ↪→ Smw
↪→ Smw+1 ↪→ · · · .

Due to the way the weights were defined, we can view the weights as a

Z-filtration on the cubical complex: cubes □ with w(□) ≤ n form the sub-

complex Sn.

Definition 1.2.5 Given the above setup, we define the graded Z-module

Hq(L,w) =
⊕

n≥mw

Hq(Sn,Z),

where Hq(L,w) is Z-garded in such a way that Hq(Sn,Z) is the homogeneous

component of degree 2n. Together with a U -action

0 Hq(Smw
,Z) Hq(Smw+1,Z) · · · ,·U ·U ·U

induced by the inclusion maps, we get a graded Z[U ]-module structure as

well, just as we wanted. Finally, set H∗(L,w) =
⊕
q≥0

Hq(L,w). It is called
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the lattice cohomology associated with the pair (L,w). (We will often simply

write Hq and H∗ if the meaning is clear from the context.)

Definition 1.2.6 We define the reduced lattice cohomology as well. For q = 0

we set ⊕
n≥mw

H0(Sn,Z) =
⊕

n≥mw

(
Z⊕ H̃0(Sn,Z)

)
with its natural Z-graded Z[U ]-module structure. This gives us a splitting of

graded Z[U ]-modules

H0 = T +
2mw

⊕H0
red, where H0

red :=
⊕

n≥mw

H̃0(Sn,Z).

We then set H∗
red = H0

red ⊕
⊕
q>0

Hq.

Remark 1.2.7 For all q ≥ r, we have Hq = 0.

Definition 1.2.8 The same construction can be done for just a smaller

part of the lattice, indeed, for any subcomplex of the cubical complex. The

most oft-occurring cases are the restrictions to a (possibly infinite) rectangle

R(a, b), in particular to (R≥0)
r.

If we restrict an already given weight function w to a smaller subcomplex

R, we will use the notation H∗(L,w)|R = H∗(L ∩R,w|R). In fact, there also

always exists a graded Z[U ]-module morphism H∗(L,w) → H∗(L,w)|R.

Example 1.2.9 Let r = 1, and consider just L≥0 = Z≥0 ⊂ R≥0. If

w0 : Z≥0 → Z is an increasing function then all Sn are of the form R(0, a), in

particular contractible. Hence, H∗
red = 0.

Example 1.2.10 Again, let L≥0 = Z≥0 ⊂ R≥0. Now consider a monoid S ⊂
Z≥0 (a semigroup with 0 ∈ S ) such that δ = |Z≥0 \ S | < ∞ (cf. 1.1.21),

and define

h(ℓ) = |{a ∈ S | a < ℓ}|,

h(ℓ) = |{a ∈ Z≥0 \ S | a < ℓ}| = ℓ− h(ℓ),

w0(ℓ) = h(ℓ)− h(ℓ) = 2h(ℓ)− ℓ.

Note that for every ℓ, we have w0(ℓ+1)−w0(ℓ) = ±1 depending on whether

ℓ ∈ S or not, and due to |Z≥0 \ S | < ∞, the weight function w0 becomes

strictly increasing after a point. Hence in particular w0 satisfies the conditions

from 1.2.4, and it indues a lattice cohomology H∗ = H0.
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Now, set S = ⟨3, 4⟩ as in Example 1.1.22. We have δ = |Z≥0 \ S | = 3,

and c = 6 is the conductor, the element above which every integer is in S :

this is the point where w0 becomes increasing. Computing the functions in

question (filled dots in the top row denote elements of S ):

· · ·
c

ℓ 0 1 2 3 4 5 6 7 8

h(ℓ) 0 1 1 1 2 3 3 4 5

h(ℓ) 0 0 1 2 2 2 3 3 3

w0(ℓ) 0 1 0 −1 0 1 0 1 2

2

1

0

−1

w0

We see that in the induced H0, there is one generator at level −1, three at

level 0, and for all n > 0, the set Sn is contractible. (The part of the lattice

above c = 6 does not matter since there w0 is increasing, so for any such n

the subset Sn ∩ R(0, 6) is a strong deformation retract of Sn.) Drawing the

so-called graded root which encodes this information:

2

1

0

−1

Here the integers on the left are the w0-weights, the black dots at weight/level

k correspond to the connected components of Sk, with the edges denoting

the inclusion relations. Algebraically, we can write H0 = T +
−2⊕T0(1)⊕T0(1),

and H≥1 = 0.

Example 1.2.11 For S = ⟨2, 7⟩ we get δ = 3, c = 6, and
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· · ·
c

ℓ 0 1 2 3 4 5 6 7 8

h(ℓ) 0 1 1 2 2 3 3 4 5

h(ℓ) 0 0 1 1 2 2 3 3 3

w0(ℓ) 0 1 0 1 0 1 0 1 2

2

1

0

w0

2

1

0

Before we proceed further, we introduce one more general concept for

lattice cohomology:

Definition 1.2.12 Assume that rankZH∗
red < ∞. Then let the Euler char-

acteristic of H∗ be

eu(H∗) = −mw +
∑
q≥0

(−1)q rankZHq
red.

For a finite rectangle we can also write this in another way:

Proposition 1.2.13 In the case of R = R(a, b) for finite a, b ∈ Zr:

eu(H∗)(R(a, b), w) =
∑
q≥0

∑
□∈Qq∩R

(−1)q+1w(□).

Looking back on the previous examples, we notice that the Euler charac-

teristic is always equal to δ. This is not a coincidence, though it does rely on

some conditions being satisfied:

Theorem 1.2.14 (Ágoston–Némethi [1]) Consider the finite rectangle

R(0, c) for some c ∈ (Z>0)
r, and let the weight function w0 be obtained in

the following way:
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� h : L → Z is increasing (with respect to the partial ordering) and h(0) = 0,

� h◦ : L → Z is decreasing (with respect to the partial ordering),

� h satisfies the following ‘matroid inequality’ (MAT):

h(ℓ1) + h(ℓ2) ≥ h
(
max(ℓ1, ℓ2)

)
+ h
(
min(ℓ1, ℓ2)

)
,

� the pair (h, h◦) satisfies the following ‘combinatorial duality property’

(CDP):

h(ℓ+ Ei)− h(ℓ) and h◦(ℓ+ Ei)− h◦(ℓ) cannot be simultaneously ̸= 0,

� w0(ℓ) = h(ℓ) + h◦(ℓ)− h◦(0).

Then for the induced lattice cohomology H∗(R(0, c), w), we have euH∗ =

h◦(0)− h◦(c).

One can easily verify that for the examples before (when r = 1), setting

h◦(ℓ) = h(ℓ) − ℓ gives us the weight function we were computing, and also

that h and h◦ then satisfy both the MAT and CDP properties.

This is the method we will use to construct the weight function for H∗ in

various contexts (but in some cases the weight function can be more compli-

cated).

Remark 1.2.15 The MAT property is automatically satisfied whenever h is

obtained as the Hilbert function of a filtration induced by a valuation: given a

decreasing Zr-filtration F of a vector space M where F (0) = M and F (c) =

0 for some c ∈ (Z≥0)
r, we get an increasing function h(ℓ) = dimM/F (ℓ).

If F is obtained from some valuation v : M → (Z≥0 ∪ {∞})r via F (ℓ) =

{f ∈ M | v(f) ≥ ℓ} then MAT holds.

As a result, there is a plethora of situations in which the above theorem

may be applicable. The CDP condition is more particular, but certain duality

properties can often be used to ensure it being satisfied, like it was in the

previous examples — and the general construction for curve singularities, to

be discussed later.

1.2.2 Overview and motivation

The introduction and study of lattice cohomology associated with various

situations of singularity theory is motivated by two packages of results and
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principles. Firstly, by the appearances of different (co)homology theories in

low-dimensional topology (Heegaard Floer, Khovanov, contact, etc.), see e.g.

[28, 29, 32, 33]. The other motivation is based on several results of surface

singularities, which aims to understand certain analytic invariants in terms of

the topology of the link, and in this way compares invariants of singularities

— both topological and analytical — and studies their connections to each

other. While going over a part of this larger picture, we will also give a bit

of a historical overview on the topic of lattice cohomologies.

As mentioned at the beginning of section 1.2, lattice cohomology was first

introduced in [20] as a topological invariant of normal surface singularities.

We will talk about it in detail in section 1.2.4. The construction of a bi-

graded Z[U ]-module is a cohomology paralleled of the Heegaard–Floer ho-

mology HF− of the link (a smooth, compact 3-manifold) — and in fact they

were proved to be equivalent by Zemke in 2021 [36]. This cohomology H∗
top

also has connections to other notable topological properties, e.g. its Euler

characteristic is the Seiberg–Witten invariant of the link corresponding to

the canonical spinc-structure. (This means that H∗
top is a categorification of

the Seiberg–Witten invariant.) Its weight function is constructed from the

Riemann-Roch expression χ.

Analogously, it seemed natural to try and construct an analytic version:

one whose Euler characteristic is the so-called geometric genus of a sur-

face singularity (V, 0), which can be considered an analytic analogue to the

Seiberg–Witten invariant (though we will not go into details now). For de-

tailed discussions and parallel statements between the topological and an-

alytical invariants (in particular, between the Seiberg-Witten invariant and

the geometric genus) see [23]. In this sense, H∗
an(V, 0) appears as a ‘categori-

fication’ of the geometric genus.

Such an invariant was constructed by Ágoston and Némethi in [2] (see also

[3] for the equivariant case which covers the cohomology modules correspond-

ing to all the spinc-structures of the link). The construction (and the weigth

function) relies an the divisorial filtration associated with a good resolution.

The analytic lattice cohomology H∗
an(V, 0) also has a direct connection to

H∗
top in the form of graded Z[U ]-module morphism H∗

an(V, 0) → H∗
top(V, 0).

This particular construction valid for surfaces inspired the more general

combinatorial setup described e.g. in Theorem 1.2.14 and used to construct

other lattice cohomologies: not just for surfaces, but for isolated singularities

of any dimension n ≥ 2 [4] (using again the divisorial filtration of a reso-

lution), as well as for curves [1] (using the Hilbert function associated with
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the valuative filtration of the normalization). The curve case — which covers

the case of all reduced curves, with arbitrary embedded dimension, i.e. not

necessarily plane curves — will be discussed in the next section 1.2.3.

Unfortunately, at this moment, no direct topological analogue is known

in the cases n > 2 yet. (Conjecturally we have to find connection with some

version of Embedded Contact Homology.) The construction of H∗
top for sur-

faces does not easily lend itself to generalizations in the same manner. In

fact, for n > 2, the abstract link itself holds too little information to be suf-

ficient. (This is why we need to introduce some additional information, e.g.

the contact structure.) The same is true in the case n = 1, in that case too

the abstract link has very little information (it gives only the number of lo-

cal irreducible components). However, in the case of plane curve singularities

(V, 0) specifically, the knot/link Floer homology HFL− of the embedded link

(and other equivalent embedded invariants like the multivariate Alexander

polynomial ∆, or the motivic multivariable Poincaré series) can be related

with a filtered version of the analytic lattice (co)homology, see [24]. (For the

filtered version in the surface case see also [25].)

Some of these cohomology theories are summarized in the table below:
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dim topological analytic

dimC(V, 0) = 2 HF− = H∗
top (from χ of a resolution) H∗

an (div. filtration of a resolution)

dimR LV = 3 eu(H∗
top) =Seiberg-Witten invariant eu(H∗

an) =geometric genus

dimC(V, 0) = d > 2 ? H∗
an (div. filtration of a resolution)

dimR LV = 2d− 1 eu(H∗
an) =geometric genus

dimC(V, 0) = 1 ? H∗
an (val. filtration of normalization)

LV = ⊔r
i=1S

1 eu(H∗
an) =delta invariant

....................... ....................... .......................

(V, 0) ⊂ (C2, 0) (embedded topological) (filtered version)

LV = ⊔S1 ⊂ S3 HFL− spectral sequence ⇒ GrF∗ H∗,an

1.2.3 The case of isolated curve singularities [1]

Fix an isolated curve singularity (V, 0) with irreducible decomposition
r⋃

i=1

(Vi, 0)

(which is not necessarily a plane curve singularity). We consider the lattice

Zr and the first quadrant of Zr⊗ZR, namely (R≥0)
r, together with its cubical

decomposition. Additionally we define the weight function as follows.

Definition 1.2.16

w0(ℓ) = h(ℓ) + h◦(ℓ)− h◦(0) = 2h(ℓ)− |ℓ|

where

|ℓ| =
r∑

i=1

ℓi, h◦(ℓ) = h(ℓ)− |ℓ|.

This then induces the lattice cohomology H∗((R≥0)
r, w).

Proposition 1.2.17 (1) For any c′ ≥ c (where c is the conductor), one has

a graded Z[U ]-module isomorphism H∗((R≥0)
r, w) = H∗(R(0, c′), w).
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(2) For any c′ ≥ c the pair (h, h◦) satisfies the conditions in 1.2.14. In

particular,

euH∗((R(0, c), w) = h(c)− |c| = δ.

The graded Z[U ]-module H∗((R≥0)
r, w) = H∗(R(0, c′), w) is called the lattice

cohomology of (V, 0), and it is denoted by H∗(V, 0). It is a categorification of

the delta invariant of (V, 0).

H∗
red(C, 0) = 0 if and only if (C, 0) is smooth. Examples 1.2.10 and 1.2.11

provide the lattice cohomology for irreducible plane curves {x3+y4 = 0} and

{x2 + y7 = 0} respectively. The next examples has two irreducible compo-

nents.

Example 1.2.18 Let (V, 0) =
{
x2 − y4 = 0

}
. Here x2−y4 = (x−y2)(x+y2),

so (V, 0) has two components (two isomorphic components, in fact, so we can

expect the Hilbert function etc. to have an additional symmetry).

Both components (V1, 0) and (V2, 0) are regular, so their respective links

are the unknots; hence, their individual Alexander polynomials are trivial.

Their linking number is the intersection multiplicity (cf. Fact 1.1.16), which

is 2. From this, one can get the Poincaré series (cf. Theorems 1.1.40 and

1.1.41) for all VI where ∅ ≠ I ⊂ {1, 2}:

PV1
(t1) =

1

1− t1
, PV2

(t2) =
1

1− t2
, PV1,2

= 1 + t1t2.

Finally, using Theorem 1.1.41, we get

H(t1, t2) =
1

(1− t1)(1− t2)

( t1
1− t1

+
t2

1− t2
− t1t2(1 + t1t2)

)
.

Computing the coefficients h(ℓ) and the weight function:

h

4 4 4 5 6

3 3 3 4 5

2 2 2 3 4

1 1 2 3 4

0 1 2 3 4

w

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

1 0 1 2 3

0 1 2 3 4

1

0

Note that, compatibly with the theory, euH∗(V, 0) = δ = 2.
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1.2.4 Surface singularities: the topological cohomology

[20, 23]

Moving on to another context in which we can apply the lattice cohomol-

ogy construction, consider a normal surface singularity (V, 0) ↪→ (Cn, 0). We

will aim to understand the topological lattice cohomology: the one that was

originally defined, in 2000.

1.2.4.1 Plumbed 3-manifolds and topological lattice cohomology

Now we will want to rely on solely (abstract) topological invariants for ob-

taining a suitable weight function on some lattice. As it so happens, both a

lattice and some combinatorial data on that lattice naturally arises from the

topology.

Fact 1.2.19

1) For a normal (in particular, isolated) surface singularity (V, 0), the link

LV is a connected, smooth, oriented real 3-manifold.

2) LV is plumbed 3-manifold associated with a connected negative definite

plumbing graph Γ .

Assuming the plumbing construction as known, let us just quickly recall

the basic notations and concepts and how they apply in our current context:

� A plumbing graph is a graph Γ =
(
V, E , {ev}v∈V , {gv}v∈V

)
where the

decorations ev and gv are integers assigned to each vertex v ∈ V. We will

not allow loops now (edges from a vertex to itself), but multiple edges

are possible. For simplicity we will assume that Γ is connected, cf. Fact

1.2.19(2).

� Through the plumbing construction, we get the plumbed 4-manifold P =

P (Γ ), with its boundary being the plumbed 3-manifold M = M(Γ ). Here

we have H2(P,Z) ≃ Z⟨Ev⟩v∈V : to each vertex corresponds a compact

oriented submanifold Ev of real dimension two, all of which together

freely generate H2(P,Z). Then the genus of Ev is the decoration gv ≥ 0.

� The intersection form (·,·) on Z⟨Ev⟩v∈V is also given by the plumbing

graph:

(Eu, Ev) =

ev, if u = v,

#{edges between u and v}, if u ̸= v.
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(Hence, ev is the Euler numbers for the normal bundles of Ev ⊂ P (Γ ).)

A plumbing graph being negative definite means that this intersection

form is such.

In particular, we indeed have a lattice L = Z⟨Ev⟩v∈V = H2(P,Z) and the

intersection form— both of which are topological. Well, almost: the plumbing

graph Γ of a 3-manifold is not unique, so if we rely on it to construct a lattice

cohomology, we will need to show that different choices of Γ result in the same

H∗. The set of plumbing graphs for the link is a topological invariant, so if

the previous statement is true then H∗ would indeed be topological as well.

We will further restrict our attention to singularities (V, 0) whose link is a

QHS3 (rational homology sphere), i.e. all homologies over Q are isomorphic

to that of S3. This means that the Betti numbers satisfy b0(LV ) = b3(LV ) = 1

and b1(LV ) = b2(LV ) = 0. In terms of the plumbing graph Γ , this means:

Proposition 1.2.20 A connected plumbed 3-manifold with plumbing graph

Γ =
(
V, E , {ev}, {gv}

)
is a QHS3 if and only if all gv = 0, and Γ is a tree.

As a result, we will omit the genus decorations altogether from now on

and just assume gv = 0, and also no multiple edges (and circles in the graph)

will be present.

Aside from these restrictions though, it is not immediately obvious what

the graph being negative definite (ND) means, how we can identify such a

graph.

Example 1.2.21 Some examples and non-examples of negative definite graphs.

−2 −2

ND

−1 −2 −1

not ND

−2 −2 −2

−2

−2

not ND

In the following graph

−3

−3

−3
...

−3
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if the number of (−3) vertices on the right (i.e. the number of end vertices)

is < 9 then the graph is negative definite, otherwise it is not.

In general, negative definiteness can be tested by Sylvester’s Criterion.

Another criterion is the following:

Proposition 1.2.22 Assume that some D =
∑
v∈V

dvEv satisfies:

� ∀v : dv > 0,

� ∀u : (D,Eu) ≤ 0,

� ∃u : (D,Eu) < 0.

Then (·,·) is negative definite.

Example 1.2.23 Let us test the above property for the effective cycle D =∑
v∈V

Ev. Let let κv denote the degree of the vertex v ∈ V. Then D =
∑
v∈V

Ev

satisfies the properties from Proposition 1.2.22 if and only if

� ∀v : ev + κv ≤ 0,

� ∃v : ev + κv < 0.

In particular, these two conditions imply negative definiteness. Graphs with

such properties are very special, they are called minimal rational.

Example 1.2.24 The graph −2 e −7

−3

isminimal rational (hence neg-

ative definite) for e ≤ −3 as per the above condition. However, this is not

a necessary condition: both e = −2 and e = −1 result in negative definite

graphs as well.

Also important to note:

Proposition 1.2.25

� If Γ is negative definite and Γ ′ ⊆ Γ is a (full) subgraph then Γ ′ is negative

definite too.

� If Γ =
(
V, E , {ev}

)
is negative definite and e′v ≤ ev for all v then Γ ′ =(

V, E , {e′v}
)
is negative definite too.

Getting back to constructing the lattice cohomology H∗
top(V, 0), the ques-

tion is what the weight function w should be on the lattice L = Z⟨Ev⟩v∈V .

Definition 1.2.26 Let ZK ∈ L⊗Q denote the anticanonical cycle.
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Remark 1.2.27 The adjunction formula implies (ZK , Ei) = (Ei, Ei)+2 for all

i, so ZK can be computed from the intersection form (which is nondegener-

ate). In particular, ZK is topological.

Definition 1.2.28 Let us define

χ : L → Z, χ(ℓ) =
1

2
(ℓ, ZK − ℓ).

From the adjunction formula, we get that indeed χ(ℓ) ∈ Z, in particular

χ(0) = 0 and χ(Ev) = 1 for all v ∈ V.

Remark 1.2.29 Note that

χ(ℓ) =
1

8
(ZK , ZK)− 1

2
(ℓ− ZK/2, ℓ− ZK/2).

Given that (·,·) is negative definite, this implies that χ is bounded from

below, and even more, for any k ∈ Z, the set χ−1
(
(−∞, k])

)
is finite. (Also,

χ is symmetric with respect to the involution ℓ 7→ ZK − ℓ if ZK ∈ L.)

As per the above observation, we can set χ as the weight function:

Definition 1.2.30 For a negative definite plumbing graph Γ (when Γ is a

tree and with vanishing gv’s), define the weight function

w0 : L = Z⟨Ev⟩v∈V → Z, w0(ℓ) = χ(ℓ)

on the lattice L. We denote the resulting cohomology by H∗(Γ ).

The following statement shows that it is independent of the choice of the

plumbing graph of the (fixed) link.

Proposition 1.2.31 If two connected negative definite plumbing graphs Γ

and Γ ′ give rise to diffeomorphic 3-manifolds M(Γ ) and M(Γ ′) through the

plumbing construction then H∗(Γ ) ≃ H∗(Γ ′).

Definition 1.2.32 Let (V, 0) be a normal surface singularity with QHS3

link. We can define H∗
top(V, 0) = H∗(LV ) as H∗(Γ ) for a connected nega-

tive definite plumbing graph of the link LV , and the resulting object is a

topological invariant of (V, 0).

As for the Euler characteristic, one can show that
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Proposition 1.2.33 (1) If the plumbing graph Γ gives rise to a QHS3 link,

then rankZH∗
red(Γ ) < ∞. Hence in this case the Euler characteristic is well-

defined.

(2) For a negative definite plumbed QHS3 M , we have euH∗(M) =

swcan(M), the Seiberg–Witten invariant for the canonical spinc-structure of

M .

It has also been recently proved that:

Theorem 1.2.34 (Zemke [36]) The topological invariant H∗(M) is equiv-

alent to the Heegaard–Floer homology HF−(M).

1.2.4.2 The topological lattice cohomology and other singularity

invariants

Now, we want to relate H∗
top(V, 0) to some other properties of the normal

surface singularity (V, 0).

Definition 1.2.35 The geometric genus of a germ (V, 0) is

pg = dimC
{holomorphic 2-forms on V \ {0}}

{holomorphic 2-forms on V \ {0} “that can be extended to 0”}
.

Technically this means the following. Let π : Ṽ → V be a resolution of the

singularity of (V, 0), that is, Ṽ is smooth, π is proper and surjective. Set

E := π−1(0) ⊂ Ṽ , the exceptional set of π. Then

pg = dimC

{
holomorphic 2-forms on Ṽ \ E

}
{
holomorphic 2-forms on Ṽ \ E that can be extended to Ṽ

} .
(The right hand side of the identity is independent of the choice of the reso-

lution π.)

Definition 1.2.36 The germ (V, 0) is called rational if pg(V, 0) = 0.

It turns out that rationality is expressible in terms of the plumbing graph

of the link. (Below all the plumbing graphs are considered connected and

negative definite.)

Theorem 1.2.37 (Artin [5, 6]) A normal surface singularity (V, 0) has

pg = 0 if and only if the plumbing graph Γ of the link satisfies χ(ℓ) > 0 for

all nonzero integral effective cycles ℓ ≩ 0.
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In particular, Artin’s Criterion replaces the a priori analytic property of

the vanishing of the geometric genus pg with a combinatorial property of the

plumbing graph Γ of the link. This motivated to formulate this property for

plumbing graphs as well.

Definition 1.2.38 The plumbing graph Γ is rational if χ(ℓ) > 0 for all

nonzero integral effective cycles ℓ ≩ 0.

Proposition 1.2.39

(1) if Γ is rational then any full connected subgraph Γ ′ ⊂ Γ is rational,

(2) if Γ is rational and M(Γ ) = M(Γ ′) then Γ ′ is rational too,

(3) if Γ = (V, E , {ev}) is rational, and e′v ≤ ev, then Γ ′ = (V, E , {e′v}) is

rational too,

(4) if Γ is negative definite and E =
∑
i∈V

Ei satisfies (E,Ei) ≤ 0 for all i ∈ V

=⇒ then Γ is rational (that is, minimal rational graphs are rational),

(5) for fixed (V, E), the plumbing graph Γ = (V, E , {ei}i) is always rational if
all (ei) are sufficiently small.

Example 1.2.40 The graph −2 e −7

−3

is negative definite for all e ≤

−1 but rational only for e ≤ −2.

The condition in Theorem 1.2.37 translates directly to the lattice coho-

mology of the graph:

Theorem 1.2.41 ([18, 20, 23] ) Γ is rational if and only if for the associ-

ated lattice cohomology H∗,

� H0 = T +
0 and Hq = 0 for q > 1, i.e. H∗

red = 0;

� or equivalently: Sn = ∅ for all n < 0 and Sn is contractible for all n ≥ 0.

To prove this statement, first we observe that when computing H∗, one

can restrict the lattice to (R≥0)
|V| and not lose anything:

Theorem 1.2.42 Let Sn be the level sets corresponding to H∗(Γ ) = H∗(R|V|, w).

Then Sn has the same homotopy type as Sn∩ (R≥0)
|V|. In fact, Sn∩ (R≥0)

|V|

is a strong deformation retract of Sn.

Proof (sketch) First we can verify directly that

Lemma 1.2.43 χ(A+B) = χ(A) + χ(B)− (A,B) for all A,B ∈ L. □
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Then, let us fix some x =
∑
i

niEi ≤ 0, x ̸= 0. We intend to show that there

is an i ∈ {1, . . . , r} with ni > 0 such that χ(x + Ei) ≤ χ(x). This would

essentially mean that the ‘negative quadrant’ can be retracted to the origin

using several inductive steps by a χ-nonincreasing combinatorial flow.

Note that for any y ≥ 0, y ̸= 0, it must exists some Ei in the support of

y with (y,Ei) < 0, because otherwise we would get (y, y) ≥ 0, which would

contradict the negative definiteness. Multiplying y with −1, we get that for

the above x, a vertex i ∈ V exists with (x,Ei) > 0. Then, by the above

lemma,

χ(x+ Ei) = χ(x) + χ(Ei)− (x,Ei) = χ(x) + 1− (x,Ei) ≤ χ(x).

Next, if x ≱ 0, then we write x as x1−x2, where x1 ≥ 0, x2 > 0 and they have

different supports. Then we can repeat the above argument for x2: we find Ei

in the support of x2 such that χ(x+ Ei) ≤ χ(x). This allows us to contract

the parts of Sn outside the positive quadrant back inside it. (Technically, one

would need to check that the choice of i can be made consistently to give

us a retraction on the entire Sn, but we omit that now. For details see e.g.

[23].) □

Corollary 1.2.44 For a plumbing graph Γ , we have an isomorphism H∗(Γ ) ≃
H∗((R≥0)

|V|, w).

In this way we are a little bit closer to Artin’s Criterion, Theorem 1.2.37,

since both are tests in the first quadrant. Hence, let us return back to the

rationality of Γ :

Proof (of Theorem 1.2.41) By the above discussion it is enough to con-

sider the cubical decomposition of (R≥0)
|V|. On the other hand, By Artin’s

Criterion 1.2.37 we can replace rationality with the positivity condition on χ

for the lattice points in the positive quadrant (aside from 0).

Assume then that χ(ℓ) > 0 for ℓ ≩ 0. We of course automatically get

Sn = ∅ for n < 0, so we need to check that Sn is contractible for n ≥ 0. We

apply the same method as when proving Theorem 1.2.42: we intend to show

that

for any x ≩ 0 there exists Ei in the support of x such that χ(x− Ei) ≤ χ(x).

Assume by contradiction that this is not the case, i.e. χ(x−Ei) ≥ χ(x)+1

for all Ei in the support of x. Then
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χ(x− Ei)− 1 ≥ χ(x) = χ(x− Ei + Ei) = χ(x− Ei) + χ(Ei)− (x− Ei, Ei) =

= χ(x− Ev) + 1− (x− Ei, Ei),

(x− Ei, Ei) ≥ 2,

(x,Ei) ≥ (Ei, Ei) + 2 = (ZK , Ei)

for all Ei in the support of x. Summing up we obtain that for all x ≥ 0, we

have (x, x) ≥ (ZK , x), i.e.

χ(x) =
1

2
(x, ZK − x) ≤ 0,

which contradicts Artin’s Criterion of rationality.

Now once again, we can use this to retract Sn ∩ (R≥0)
|V| by a χ-

nonincreasing flow this time down to a single lattice point 0.

Conversely, assume Sn is contractible for n ≥ 0; in particular, S0 is con-

nected. Since χ(0) = 0 and χ(Ei) = 1 for all i, this means S0 can not contain

any point x ∈ (Z≥0)
|V| other than 0 as otherwise we would have at least 2

connected components in S0. This finishes the proof. □

Example 1.2.45 [23] Though pg = 0 is determined by the link, pg itself is

not topological. Indeed, e.g. for the link defined by the graph

−2 −1 −7 −2

−3

one can find an analytic structure with pg = 2 (let V =
{
x2 + y3 + z13 = 0

}
),

while the generic analytic structure has pg = 1.

In general, for any Γ we have

Proposition 1.2.46 ([18, 23]) Sn is connected for n ≥ 1.

Also, we can analyze a slightly weaker condition than Artin’s Rationality

Criterion:

Definition 1.2.47 ([18, 23]) The graph Γ is elliptic if χ(ℓ) ≥ 0 for all ℓ ≥ 0,

but Γ is not rational.

Proposition 1.2.48 Γ is elliptic if and only if H0
red(Γ ) = T0(1)k for some

integer k > 0. For elliptic graphs H>0 = 0.
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Example 1.2.49 In case of an elliptic graph Γ , the graded root looks like

this:

· · ·

2

1

0

Note that if ZK ∈ L then χ is symmetric (cf. Remark 1.2.29), and in partic-

ular χ(ZK) = 0, so 0 and ZK correspond to two different “legs” of the above

graded root.

Example 1.2.50 Let (V, 0) =
{
x5 + y5 + z6 = 0

}
⊂ (C3, 0). Then the

graded root is

1

0

−1

−2

−3

−4

−5

Problem 1.2.51 Characterize the graded Z[U ]-modules H0 (or the graded

roots) that can be realized analytically, i.e. as the H0
top of some surface sin-

gularity (V, 0).

1.2.4.3 Bad vertices and the reduction theorem

As a closing note, one can observe that in regards to H∗(Γ ), some vertices

of Γ ‘matter more than others’. We can identify a set of ‘bad vertices’ in a

graph, and focus only on those in a sense. More concretely,

Definition 1.2.52 ([18, 23]) Assume (V, E , {ei}i) is a fixed plumbing graph

Γ with Euler numbers {ei}i. We say that {i1, . . . , ik} ⊆ V is a set of bad

vertices of Γ if there exist e′ij ≤ eij such that by replacing all eij with e′ij ,

we get a rational graph Γ ′ = (V, E , {e′i}i).

Remark 1.2.53 By Proposition 1.2.39, we know that at least V itself is such

a set — usually a much smaller set also suffices though.
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Example 1.2.54 WhenM(Γ ) is a QHS3 then the set of vertices with degree

> 2 (the ‘nodes’) is a suitable set of bad vertices.

Example 1.2.55 In particular, given a ‘star-shaped’ graph Γ , i.e. a tree with

a single node (and M(Γ ) a QHS3), then the singleton set containing that

node is a set of bad vertices.

Definition 1.2.56 A graph Γ with M(Γ ) a QHS3 is called almost rational

if admits a set of bad vertices of cardinality one.

As for how to use these ‘bad vertices’ exactly:

Theorem 1.2.57 (Reduction Theorem; László–Némethi [15]) Let Γ

be a plumbing graph for a QHS3, with a set of bad vertices V = {i1, . . . , ik}.
Then

H∗(Γ ) ≃ H∗((R≥0)
|V|, w)

for a suitable choice of weight function w : (Z≥0)
|V| = (Z≥0)

k → Z (which we

will not explicitly construct here).

This means that with a modification of the weight function (that is combi-

natorially and algorithmically computable from χ), we can often drastically

reduce the dimension of the lattice we need to consider. This is, of course,

very important for any kind of computation, but also, as an immediate con-

sequence we obtain:

Corollary 1.2.58 If V is a set of bad vertices in Γ then Hq
red(Γ ) = 0 for

all q ≥
∣∣V∣∣. (In particular, H∗ = H0 for almost rational graphs.)

Example 1.2.59 Consider the following graph:

−2 −1 −7 −3 −3 −7 −1 −2

−3 −3

Here we have 2 nodes so Hq = 0 for all q ≥ 2. By a computation rankZH1 =

1 (supported in degree zero), and the graded root is the following (which

provides H0 as well):

1

0

−1
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Remark 1.2.60 For any particular q > 0 one can also construct examples for

graphs with non-vanishing Hq. (Of course, such a graph needs to have at least

q + 1 nodes.)
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15. László, T. and Némethi, A.: Reduction theorem for lattice cohomology, Int. Math.

Research Notices 2015 (1) (2015), 2938–2985.

16. Milnor, J.: Singular Points of Complex Hypersurfaces, Annals of Math. Studies 61,

1969, Princeton Univ. Press.
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21. Némethi, A.: Poincaré series associated with surface singularities, in Singularities I:

Algebraic and Analytic Aspects, Contemp. Math. 474, AMS 271–297 (2008).

22. Némethi, A.: The Seiberg–Witten invariants of negative definite plumbed 3-manifolds,

J. Eur. Math. Soc. 13(4), 959–974 (2011).

23. Némethi, A.: Normal surface singularities, Ergebnisse der Math. und ihrer Grenzge-

biete, Springer 2022.

24. Némethi, A.: Filtered lattice homology of curve singularities, arXiv:2306.13889 .

25. Némethi, A.: Filtered lattice homology of surface singularities, arXiv:2307.16581.
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