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Abstract
Consider a complex normal surface singularity and its three plurigenera, the m-th L2–
plurigenus of Watanabe, the m-th plurigenus of Knöller and the m-th log-plurigenus of
Morales. For any of these invariants we construct a double graded Z[U ]–module, whose
Euler characteristic is the chosen plurigenus. The three outputs are compared with the ana-
lytic lattice cohomology of the germ, whose Euler characteristic is the classical geometric
genus.
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1 Introduction

1.1 In mathematical classification procedures we use invariants. If a certain invariant is not
sufficiently ‘strong’, thenwe try to endow itwith some additional structure.A categorification
of an invariant is a (co)homology theorywhoseEuler characteristic is the invariant considered.

In the last decades several famous categorifications were introduced. E.g., in knot theory,
the Khovanov invariant was introduced as the categorification of the Jones polynomial [10],
the Link Heegaard Floer homology as the categorification of the Alexander polynomial [26].
Or, in the 3–manifold theory, the Heegaard Floer homology of Ozsváth and Szabó is the
categorification of the Seiberg–Witten invariant [24, 25].
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4 BCAM - Basque Center for Applied Mathematics, Mazarredo 14, 48009 Bilbao, Basque Country, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-024-03530-8&domain=pdf


68 Page 2 of 25 A. Némethi, G. Schefler

Motivated by the theory of complex normal surface singularities, in [18] an another cate-
gorification was introduced for the Seiberg–Witten invariant, namely the (topological) lattice
cohomology H

∗
top associated with links of such singularities, or equivalently, with negative

definite graph 3–manifolds [19]. Later, in [1, 2] its analytic version H
∗
an was also introduced,

in this way we obtain for any analytic type of normal surface singularity a categorification
of the geometric genus.

Once we have such a construction for the geometric genus of a complex normal surface
singularity, it is natural to ask: is there any analogous construction for the plurigenera? In
this note we provide a positive answer.

Recall that in the literarure there are different versions of the plurigenera: the m-th L2–
plurigenus ofWatanabe [29], them-th plurigenus of Knöller [11] and them-th log-plurigenus
of Morales [14] (see 2.1.2). In this note we construct categorifications for all these numerical
invariants in the case when the singularity is Gorenstein and the link is a rational homology
sphere (see Sect. 7 for δm and γm and Sect. 8 for λm).

The corresponding cohomologies H
∗ have the following structure: H∗ decomposes into a

direct sum (of graded Z[U ]–modules) ⊕q≥0 H
q , and each H

q is a Z–graded Z[U ]–module.
(They have the same structure as the Heegaard Floer homology HF+ with an additional
q–grading, or the topological/analytical lattice cohomologies mentioned above.)

In fact, we succeed to compare our new Z[U ]–modules with the analytic lattice cohomol-
ogy H

∗
an (categorification of the classical geometric genus), see Corollary 6.3.3, Theorems

7.1.1, 7.2.1, 8.1.1 and 8.5.3 . In this way their concrete computations are strongly linked with
the modules H

∗
an . We find out that the weight tables (hence the cohomologies themselves)

differ only by translations or only by well-understoodmodifications. This will be exemplified
in Sect. 9 as well. On the other hand, for several concrete computations of H

∗
an see e.g. [1,

2], or [20].
1.2 In the body of the paper we always assume that the normal surface singularity in hand
is Gorenstein and has rational homology sphere link. For technical simplicity we always use
the minimal good resolution.

We also exclude the cases when the singularity is of type A, D or E . Indeed, in these
cases all the plurigenera (including the geometric genus) are 0, and even the weight function
wan and the Z[U ]–module H

∗
an of the analytic lattice cohomology is the simplest possible:

H
∗
an,red = 0. Since in these cases we do not get any extra information we prefer to completely

omit them.
1.3 The structure of the article is the following. In Sect. 2 we introduce several notations
and facts regarding complex normal surface singularities and their resolutions. In Sect. 3 we
discuss the general definition and first properties of the lattice cohomology associated with
a system of weights. In order to define a lattice cohomology we need a lattice Z

s (with fixed
basis) and a weight function w : Z

s → Z. Sect. 4 treats properties of lattice cohomology
associated with special weight functions of type w(l) = h(l) + h◦(l) − h◦(0) sometimes
written also as w(l) = h(l) − h′(l), where h′(l) := h◦(0) − h◦(l). If the pair (h, h◦) (or,
equivalently (h, h′)) satisfies certain combinatorial properties (‘stability’ and ‘combinatorial
duality property’), then the Euler characteristic of the lattice cohomology can be computed
from h◦ (respectively h′) .

In Sect. 5 we recall the definitions and some needed properties of the ‘analytic lattice
cohomology of the singularity’ H

∗
an . Its weight function is defined via a pair (h, h◦) deter-

mined via dimensions of sheaf theoretical cohomology vector spaces. Its Euler characteristic
is the geometric genus.
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Then in Sect. 6 we consider a common generalization πm,n of all three versions of the
plurigenera and provide a categorification of it for all m and n (satisfying some inequal-
ity). The model is the construction of H

∗
an . We also prove some properties of these lattice

cohomologies at this level of generality.
Finally, in Sect. 7 we collect all the results specified for the δm , γm cases and in Sect. 8

we discuss λm . In all the cases we link the respective lattice cohomologies to H
∗
an . The last

Sect. 9 contains some concrete examples of plurigenera computations.

2 Notations

2.1 The combinatorics of the resolutions [15–17, 20]

2.1.1. Let (X , o) be the germ of a complex analytic normal surface singularity. We call a
proper analytic map φ : ˜X → X a resolution of (X , o) if ˜X is smooth and

φ
∣

∣

φ−1(X\o) : φ−1 (X \ o) → X \ o

is an isomorphism. Let ∪v∈V Ev be the irreducible decomposition of the exceptional curve
E := φ−1(o) (with reduced structure). A famous theorem of Hironaka claims that such a
resolution always exists [8].

A resolution is called minimal if it does not dominate any other resolution. Through
Castelnuovo’s Contractibility Criterion this is equivalent to the fact that there is no irreducible
exceptional component Ev such that Ev = P

1 with self-intersection E2
v = −1.

A resolution is called good if the exceptional curve E is a normal crossing divisor and all
the irreducible components Ev are smooth. A resolution is calledminimal good if it does not
dominate any other good resolution. For every normal surface singularity (X , o) there exists
a unique minimal good resolution (cf. Sect. 2.4 in [20]).

Let � denote the dual resolution graph of φ.
2.1.2. The lattice L := H2(˜X , Z) is endowed with the natural negative definite intersection
form ( , ). It is a free Z–module generated by the fundamental classes of {Ev}v∈V . The dual
lattice is L ′ = HomZ(L, Z) 
 {l ′ ∈ L ⊗ Q : (l ′, L) ∈ Z}. L is embedded in L ′ with
L ′/L 
 Tors(H1(M, Z)), where M denotes the link of the singularity (cf. 2.1.3).

There is a natural partial ordering of L ′ and L: we write l ′1 ≥ l ′2 if l ′1 − l ′2 = ∑

v rvEv

with every rv ≥ 0. We set L≥0 = {l ∈ L : l ≥ 0} and L>0 = L≥0 \ {0}. The elements
of L≥0 are called effective cycles. We define the minima and the maxima of two cycles
l1 = ∑

v l1,vEv and l2 = ∑

v l2,vEv asmin{l1, l2} = ∑

v min{l1,v, l2,v}Ev andmax{l1, l2} =
∑

v max{l1,v, l2,v}Ev . The support of a cycle l = ∑

lvEv is defined as |l| = ∪lv �=0Ev .
We define the Lipman cone as S ′ := {l ′ ∈ L ′ : (l ′, Ev) ≤ 0 for all v}, and we also

set S := S ′ ∩ L . If s′ ∈ S ′ \ {0}, then all its Ev–coordinates are strictly positive. Thus, if
s ∈ S \ {0}, then s ≥ E .
2.1.3.Assume that (X , o) is embedded in some (CN , 0). The link of (X , o) is the intersection
of X with a sphere S2N−1

ε centered at the origin of small enough radius. It is a smooth,
oriented, closed 3-manifold independent of the concrete embedding and ε. It is a rational
homology sphere (i.e. its first Betti number is zero) if and only if each Ev is rational and the
dual graph of the (any) resolution is a tree.
2.1.4. For a good resolution φ : ˜X → X the (anti)canonical cycle ZK ∈ L ′ is defined by
the adjunction formulae (ZK , Ev) = (Ev, Ev) + 2 − 2gv for all v ∈ V , where gv denotes
the genus of Ev . In particular, if the link is a rational homology sphere, then gv = 0 for all
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v ∈ V . In fact, the cycle −ZK is the first Chern class of the line bundle 	2
˜X
(the sheaf of

holomorphic 2–forms).
The singularity (or, its topological type) is called numerically Gorenstein if ZK ∈ L .

(Since ZK ∈ L if and only if the line bundle 	2
X\{o} of holomorphic 2–forms on X \ {o}

is topologically trivial, see e.g. [6], the ZK ∈ L property is independent of the resolution).
(X , o) is called Gorenstein if ZK ∈ L and 	2

˜X
is isomorphic toO

˜X (−ZK ) (or, equivalently,

if the line bundle 	2
X\{o} is holomorphically trivial).

As usual, the canonical divisor K
˜X in Div(˜X) is defined (up to linear equivalence) via the

identity 	2
˜X

∼= O
˜X (K

˜X ), hence, in the Gorenstein case:

O
˜X (−ZK ) ∼= 	2

˜X
∼= O

˜X (K
˜X ),

and K
˜X can be chosen as −ZK .

2.1.5. If ˜X is a minimal resolution then (by the adjunction formulae) ZK ∈ S ′, and thus
ZK ≥ 0. Note that if the resolution graph is of type A, D or E , then ZK = 0. For any other
Gorenstein singularity with minimal resolution ZK ≥ E . Even more, by Example 6.3.4 of
[20], ZK ≥ E is also true for the minimal good resolution of any non–ADE Gorenstein
singularity.

This paper only deals with the case of (X , o) being a non–ADE Gorenstein singularity
with rational homology sphere link and φ : ˜X → X the minimal good resolution.

2.2 The geometric genus and other plurigenera [20, 23]

2.2.1 Let φ : ˜X → X be a good resolution of a normal surface singularity (X , o), when
X is a small Stein representative of the singularity germ (X , o), e.g. for any embedding
(X , o) ↪→ (CN , 0) one can choose X as the intersection of the analytic set with a small
enough ball Bε . The geometric genus pg = pg(X , o) is defined by

pg(X , o) = dim(R1φ∗O˜X )o = dim H1(˜X ,O
˜X ) =: h1(˜X ,O

˜X ).

The singularity (X , o) is rational if pg = 0. Though the geometric genus is not topological
(usually it cannot be determined from the graph), its vanishing (i.e. rationality) is topological
[5].

The plurigenera of a normal surface singularity are defined for each m ∈ Z>0 as follows:

• them-th L2-plurigenus (Watanabe [29]): δm(X , o)=dim
H0(˜X \ E,O

˜X (mK
˜X ))

H0(˜X ,O
˜X (mK

˜X+(m − 1)E))
;

• the m-th plurigenus (Knöller [11]): γm(X , o) = dim
H0(˜X \ E,O

˜X (mK
˜X ))

H0(˜X ,O
˜X (mK

˜X ))
;

• the m-th log-plurigenus (Morales [14]): λm(X , o) = dim
H0(˜X \ E,O

˜X (mK
˜X ))

H0(˜X ,O
˜X (mK

˜X + mE))
.

By the ramification formula and the log-ramification formula (cf. [9, Lemma 1.6]) these
definitions are independent of resolutions.

Remark 2.2.2 By the definitions, for each m ∈ Z>0, we have λm(X , o) ≤ δm(X , o) ≤
γm(X , o). Following Laufer ([12], 2.3.10):

pg(X , o) = δ1(X , o) = γ1(X , o).

In our case (Gorenstein singularity with QHS3 link) these also agree with λ1(X , o) (cf.
Corollary 8.3.4).
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2.3 Review of some analytic properties

2.3.1 Let (X , o) be a normal surface singularity and we fix any (not necessarily good) reso-
lution φ : ˜X → X . In this subsection we present some statements that will help in the later
discussion and proofs. First we state two versions of Serre duality (see Theorem 1.40 and
2.2 in [23] and references therein, or [20]):

Theorem 2.3.2 Serre duality for surfaces. For a locally free O
˜X–module G the following

duality homomorphism is an isomorphism:

H1
c (˜X ,G) → H1(˜X ,G∨ ⊗ 	2

˜X
)∗,

where G∨ denotes the dual sheaf HomO
˜X
(G,O

˜X ) and H1
c denotes cohomology with compact

support.

Theorem 2.3.3 Serreduality for effective cycles.Let l ∈ L beanonzero effective cycle on ˜X.
Then for a locally freeOl–moduleG the following duality homomorphism is an isomoprhism:

H0(l,G) → H1(l,G∨ ⊗ Ol(K˜X + l))∗,

where G∨ denotes the dual sheaf HomOl (G,Ol).

Theorem 2.3.4 h0-vanishing Theorem. [20, Theorem 6.4.2] Let l ∈ L>0 be a positive
cycle and ˜L ∈ Pic(˜X) a line bundle such that (c1(˜L), Ev) ≤ 0 for all Ev ⊂ |l|. Then
h0(l,Ol(l) ⊗ ˜L) = dim H0(l,Ol(l) ⊗ ˜L) = 0.

Corollary 2.3.5 For any effective cycle l ≥ 0 one has H0(O
˜X (l)) ∼= H0(O

˜X ).

Proof In the cohomological exact sequence associated with 0 → O
˜X → O

˜X (l) → Ol(l) →
0, we have the vanishing H0(Ol(l)) ∼= 0 by applying the h0–vanishing Theorem to ˜L = O

˜X .��
By Serre duality for cycles the h0–vanishing Theorem is equivalent with the following:

Theorem 2.3.6 Grauert–Riemenschneider Vanishing Theorem. [7, 12, 27] [20, Theorem
6.4.3] Consider a line bundle L ∈ Pic(˜X) such that c1(L(ZK )) ∈ −S ′. Then h1(l,L|l) = 0
for any l ∈ L>0. In particular, h1(˜X ,L) = 0 too.

Corollary 2.3.7 If L ∈ Pic(˜X) and l ∈ L>0 satisfies l ∈ c1(L) + ZK +S ′, then H1(˜X ,L) =
H1(l,L|l).
Proof Theorem 2.3.6 applied to L(−l) gives h1(˜X ,L(−l)) = 0, then use the cohomological
exact sequence associated with the sheaf exact sequence 0 → L(−l) → L → L|l → 0. ��
Corollary 2.3.8 Let (X , o) be a singularity andφ theminimal good resolution. Then the above
statements imply the following:

• if ZK = 0, then pg = 0;
• if ZK > 0, then for any Z ≥ ZK , Z ∈ L, pg = h1(Z ,OZ ).

Remark 2.3.9 [28, 4.8] [20, Remark 6.4.21] Let l1, l2 ∈ L>0 be effective cycles, set l =
min{l1, l2} and l = max{l1, l2}. Then

h1(Ol) + h1(Ol) ≥ h1(Ol1) + h1(Ol2).

We will refer to this inequality as the ‘opposite’ matroid rank inequality of h1.
In particular, in the numerically Gorenstein case for any l ∈ L>0 we have h1(Ol) =

h1(Omin{l,ZK }).
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2.3.10 [12], [13, p. 1281] Following Laufer we can identify the dual space H1(˜X ,O
˜X )∗ with

the space of global holomorphic 2-forms on ˜X \E up to the subspace of those formswhich can
be extended holomorphically over ˜X . That is, H1(˜X ,O

˜X )∗ ∼= H0(˜X\E,	2
˜X
)/H0(˜X ,	2

˜X
).

Here H0(˜X \ E,	2
˜X
) can be replaced by H0(˜X ,	2

˜X
(Z)) for any Z > 0 with h1(OZ ) = pg .

Indeed, for any Z > 0, from the exact sequence of sheaves 0 → 	2
˜X

→ 	2
˜X
(Z) → OZ (Z +

K
˜X ) → 0 (where 	2

˜X
∼= O

˜X (K
˜X )), the Grauert–Riemenschneider vanishing h1(	2

˜X
) = 0

and Serre duality

H0(	2
˜X
(Z))/H0(	2

˜X
) ∼= H0(OZ (Z + K

˜X )) ∼= H1(OZ )∗. (2.3.11)

Therefore, if H1(OZ ) ∼= H1(O
˜X ), the inclusion H0(	2

˜X
(Z))/H0(	2

˜X
) ↪→

H0(˜X\E,	2
˜X
)/H0(	2

˜X
) is an isomorphism. In particular, in the Gorenstein case

pg = dim H0(O
˜X )/H0(O

˜X (−ZK )). (2.3.12)

3 The lattice cohomology associated with a system of weights

In this section we follow [18, 20].

3.1 General construction

3.1.1 We consider a free Z–module, with a fixed basis {Ev}v∈V , denoted by Z
s . It is also

convenient to fix a total ordering of the index set V , which in the sequel will be denoted by
{1, . . . , s}. The next construction associates a graded Z[U ]–module to the pair (Zs, {Ev}v)
and a set of weights.

We will use the following notation. Consider the graded Z[U ]–module Z[U ,U−1] and
denote by T +

0 its quotient by the submodule U · Z[U ]. This has a grading in such a way
that deg(U−d) = 2d (d ≥ 0). More generally, for any graded Z[U ]–module P with d-
homogeneous elements Pd and for any k ∈ Z we denote by P[k] the same module graded
in such a way that P[k]d+k = Pd . Then set T +

k := T +
0 [k]. Hence, for m ∈ Z, T +

2m =
Z〈U−m,U−m−1, . . .〉 as a Z–module.
3.1.2 The cochain complex. Z

s ⊗ R has a natural decomposition into cubes. The set of
zero-dimensional cubes consists of the lattice points Z

s . Any l ∈ Z
s and subset I ⊂ V

of cardinality q defines a q-dimensional cube, which has its vertices in the lattice points
(l + ∑

v∈I ′ Ev)I ′⊂I . On each such cube we fix an orientation. This can be determined, e.g.,
by the order (Ev1 , . . . , Evq ), where the indices of the involved base elements {Ev}v∈I fulfill
v1 < · · · < vq . This orientation remains fixed throughout the constructions. The set of
oriented q-dimensional cubes defined in this way is denoted by Qq (0 ≤ q ≤ s).

Let Cq be the freeZ–module generated by oriented cubes�q ∈ Qq . Clearly, for each�q ∈
Qq , the oriented boundary ∂�q (of ‘classical’ cubical homology) has the form

∑

k εk �k
q−1

for some εk ∈ {−1,+1}. These �k
q−1-s appearing in the boundary are the faces of �q .

Clearly, the homology of the chain complex (C∗, ∂) is trivial: it is the homology ofR
s . The

(co)homology what we will consider is constructed via a set of compatible weight functions
{wq}q .
Definition 3.1.3 A set of functions wq : Qq → Z (0 ≤ q ≤ s) is called a set of compatible
weight functions if the following hold:
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(a) For any integer k ∈ Z the set w−1
0 ( (−∞, k] ) is finite;

(b) wq(�q) ≥ wq−1(�q−1) for any �q ∈ Qq and any of its faces �q−1 ∈ Qq−1.

Example 3.1.4 Once a function w0 : L → Z (with property (a)) is fixed, one can define wq

as:
wq(�q) := max{w0(l) : l is a vertex of �q}. (3.1.5)

The set {wq}q≥0 obtained this way clearly satisfies property (b) of Definition 3.1.3 too.

3.1.6 In the presence of any fixed set of compatible weight functions {wq}q we define Fq as
the set of morphisms HomZ(Cq , T +

0 ) with finite support on Qq .
Then Fq is a Z[U ]–module by (p ∗ φ)(�q) := p(φ(�q)) (p ∈ Z[U ]). Moreover, Fq

has the following Z-grading: φ ∈ Fq is homogeneous of degree deg(φ) = d ∈ Z if for each
�q ∈ Qq with φ(�q) �= 0, φ(�q) is a homogeneous element of T +

0 of degree d−2 ·w(�q).
(Hence, in fact, we obtain a 2Z-grading; this is motivated by the fact that we wish to keep a
certain similarity with the Heegaard Floer homology of the link.)

Next, we define the differential δw : Fq → Fq+1. For this, fix φ ∈ Fq and we indicate
how δwφ acts on a cube �q+1 ∈ Qq+1. First write ∂�q+1 = ∑

k εk�k
q , then set

(δwφ)(�q+1) :=
∑

k

εk U
w(�q+1)−w(�k

q ) φ(�k
q).

One verifies that δw ◦ δw = 0, hence (F∗, δw) is a cochain complex.
3.1.7 The complex (F∗, δw) has a natural augmentation. Indeed, set mw := minl∈Zs w0(l)
and define the Z[U ]-linear map

εw : T +
2mw

−→ F0

such that εw(U−mw−s)(l) is the class ofU−mw+w0(l)−s in T +
0 for any l ∈ L and s ≥ 0. Then

εw is injective and δw ◦ εw = 0. Furthermore, εw and δw are morphisms of Z[U ]–modules,
and are homogeneous of degree zero.

Definition 3.1.8 The homology of the cochain complex (F∗, δw) is called the lattice coho-
mology of the pair (Rs, w), and it is denoted by H

∗(Rs, w). The homology of the augmented
cochain complex

0 −→ T +
2mw

εw−→ F0 δw−→ F1 δw−→ · · ·
is called the reduced lattice cohomology of the pair (Rs, w), and it is denoted byH

∗
red(R

s, w).

For any q ≥ 0 fixed, theZ-grading ofFq induces aZ-grading onH
q andH

q
red . Moreover,

bothH
q andH

q
red admit an induced gradedZ[U ]–module structure andH

q ∼= H
q
red forq > 0.

Furthermore, one has a graded Z[U ]–module isomorphism H
0 ∼= T +

2mw
⊕ H

0
red .

Remark 3.1.9 The condition 3.1.3(a) guarantees that the U–action is nilpotent on the lattice
cohomology modules H

∗ and H
∗
red defined above. On the other hand, the U–action is not

(necessarily) nilpontent on the lattice homology modules H∗ and H∗,red (these are defined
for example in [21, 22]). In this sense, lattice cohomology is analogous to HF+, while lattice
homology is analogous to HF−.
3.1.10 Restrictions. Assume that T ⊂ R

s is a subspace of R
s consisting of a union of some

closed cubes (fromQ∗). Let Cq(T ) be the free Z–module generated by q-cubes of T , Fq(T )

be the restriction of Fq to Cq(T ). Then (F∗(T ), δw) is a complex, whose homology will be
denoted by H

∗(T , w). It has a natural graded Z[U ]–module structure. Again, H
0(T , w) ∼=

T +
2min{w|T } ⊕ H

0
red(T , w).

123



68 Page 8 of 25 A. Némethi, G. Schefler

Remark 3.1.11 Though H
∗
red(R

s, w) has finite Z-rank in any fixed homogeneous degree, in
general, it is not finitely generated over Z, in fact, not even over Z[U ].
Definition 3.1.12 Fix T ⊂ R

s as above, and assume thatH∗
red(T , w) has finiteZ–rank. Then

we define the Euler characteristic of H
∗(T , w) as

eu(H∗(T , w)) := −min{w0|T } +
∑

q

(−1)q rankZ H
q
red(T , w).

In this article we will use the following sets T : either T = (R≥0)
s or it is a rectangle

R = R(0, c) := {l ∈ R
s : 0 ≤ l ≤ c} for a certain c ∈ L≥0. Furthermore, in all

cases considered in this note the weight system will be determined by w0 by wq(�q) =
max{w0(l), l is a vertex of �q} for all 1 ≤ q ≤ s and �q ∈ Qq .

3.2 Example: topological lattice cohomology of a normal surface singularity [16, 18,
20]

We consider a good resolution φ : ˜X → X and we assume that the link M is a rational
homology sphere. We write s := |V|. Then we automatically have a free Z-module L =
H2(˜X , Z) = Z

s with a fixed bases {Ev}v . The Riemann–Roch expression χ : l �→ −(l, l −
ZK )/2 defines a weight function wtop,0(l) = χ(l) on the lattice points, hence a set of
compatible weight functions by wtop,q(�q) = max{χ(l) : l is a vertex of �q}.

The Z[U ]-modules H
∗(Rs, wtop) and H

∗
red(R

s, wtop) obtained in this way are called the
topological lattice cohomologies associated with the canonical spinc–structure. They are
denoted by H

∗(�,−ZK ), respectively H
∗
red(�,−ZK ), where � denotes the dual resolution

graph. One can prove, that the graded Z[U ]–module H
∗(�,−ZK ) depends only on the

(diffeomorphism type of the) link M and thus it is independent of the choice of the resolution
φ (see Proposition 3.4.2 in [18] or Proposition 11.1.24 in [20]).

As H
∗
red(�,−ZK ) is finitely generated over Z, its Euler characteristic is well defined.

By [19], eu(H∗(�,−ZK )) = swσcan (M) − (Z2
K + |V|)/8, where sw denotes the Seiberg–

Witten invariant Spinc(M) → Q, which associates a rational number swσ (M) to each spinc–
structure σ of the link. In other words, H

∗(�,−ZK ) is the categorification of swσcan (M)

(normalized by (Z2
K + |V|)/8).

As the name in the definition suggests, there are more variants of the topological lattice
cohomology according to different spinc–structures. These correspond to different choices
of the characteristic cohomology cycle k ∈ Char used in the weight function: χk(l) :=
−(l, l − k)/2; and they provide invariant Z[U ]–modules with similar properties.

4 Combinatorial lattice cohomology with special weight functions

In this and the next section we follow [1, 20].

4.1 The combinatorial setup

4.1.1 FixZ
s with a fixed basis {Ev}v∈V , |V| = s. Fix also an element c ∈ Z

s , c ≥ 0. Consider
the real rectangle R = R(0, c) := {l ∈ R

s : 0 ≤ l ≤ c}. Here we can consider the case
c = ∞ too, in such a case R = (R≥0)

s . Furthermore, assume that to each l ∈ R ∩ Z
s we

assign
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(i) an integer h(l) such that h(0) = 0 and h(l+Ev) ≥ h(l) for any v ∈ V , l, l+Ev ∈ R∩Z
s ,

(ii) an integer h◦(l) such that h◦(l + Ev) ≤ h◦(l) for any v ∈ V and l, l + Ev ∈ R ∩ Z
s .

Once h and c are fixed with (i), a possible choice for h◦ is hsym , where hsym(l) := h(c − l).
Clearly h◦ = hsym defined in this way depends on c.

We consider the set of cubes {Qq}q≥0 of R as in 3.1.2 and the weight function

w0 : Q0 → Z by w0(l) := h(l) + h◦(l) − h◦(0). (4.1.2)

Clearly w0(0) = 0. Moreover, we define the other wq : Qq → Z by Eq. (3.1.5):
wq(�q) = max{w0(l) : l is a vertex of �q}. We will use the symbol w for the system
{wq}q . These compatible weight functions define the lattice cohomology H

∗(R, w). In par-
ticular, if H

∗
red(R, w) has finite rank (which in the c < ∞ case is automatic), we obtain the

Euler characteristic eu(H∗(R, w)) as well.
4.1.3 Notice that if we replace h◦ by one of its translations (that is, l �→ h◦(l) + m for a
constant m) then the weight function w0 stays stable.

In geometric applications sometimes it is more natural to replace h◦ by another function
(which together with h reflects better certain dualities). That is, we pair the function h (with
property (i)) in 4.1.1 with another function h′ assigning to each l ∈ R ∩ Z

s

(ii)’ an integer h′(l) such that h′(0) = 0 and h′(l + Ev) ≥ h′(l) for any v ∈ V and
l, l + Ev ∈ R ∩ Z

s .
In this case we consider the weight function

w0 : Q0 → Z by w0(l) := h(l) − h′(l) (4.1.4)

and wq : Qq → Z by wq(�q) := max{w0(l) : l is a vertex of �q}.
The transition between the two notations is realised through the identity:

h′(l) = h◦(0) − h◦(l), l ∈ R ∩ Z
s (4.1.5)

where h◦ is well-defined from h′ up to a translation. Once c is fixed (and c < ∞), then we
can assume that h◦(c) = 0, and in that case we can choose h◦(l) = h′(c) − h′(l).
4.1.6 We will focus on pairs (h, h◦) (or (h, h′)) which satisfy certain additional properties.

Definition 4.1.7 We say that h satisfies the ‘matroid rank inequality’ if

h(l1) + h(l2) ≥ h(min{l1, l2}) + h(max{l1, l2}), for all l1, l2 ∈ R ∩ Z
s . (4.1.8)

Note that the ‘matroid rank inequality’ implies the ‘stability property’

h(l) = h(l + Ev) ⇒ h(l + l̄) = h(l + l̄ + Ev); (4.1.9)

valid for any l and l̄ such that l̄ ≥ 0, |l̄| �⊃ Ev and l + l + Ev ∈ R ∩ Z
s .

Example 4.1.10 (1) Fix Z
s and c as in 4.1.1. Let M be a finite dimensional vector space

with a Z
s-grading {Ma}a such that Ma = 0 whenever either a � 0 or a ≥ c. Let h :

R(0, c) ∩ Z
s → Z be the function l �→ ∑

a�l dim Ma. Then h(0) = 0, h(c) = dim M ,
and h satisfies the matroid rank inequality.

(2) Assume that M is a finite dimensional vector space endowed with a decreasing Z
s-

filtration such that F(0) = M and F(c) = 0 and define h(l) = dim(M/F(l)) for any
l ∈ R ∩ Z

s . Then usually the matroid rank inequality is not satisfied.
(3) Suppose M is a vector space (not necessarily finite dimensional) and let {F(a)}a be a

Z
s–filtration on it. If this filtration satisfies the identity

F(max{a,b}) = F(a) ∩ F(b), for all a,b ∈ Z
s, (4.1.11)
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and if the codimension of F(a) in M is finite for all a ∈ Z
s , then the function a �→

dim M/F(a) satisfies the matroid rank inequality.
(4) Let {F(a)}a be a Z

s–filtration of the local ring OX ,o of the germ at o of an analytic
space X . If the filtration is provided by a collection of order functions (or valuations),
then {F(a)}a is a Z

s–filtration of ideals and F(a)∩ F(b) = F(max{a,b}). In particular,
if the codimension of F(a) in O

˜X ,o is finite, then the function a �→ dim OX ,o/F(a)
satisfies the matroid rank inequality. However, for more general filtrations the matroid
rank inequality does not necessarily hold.

(5) Let (X , o) be a normal surface singularity and ˜X a fixed resolution. Then the height
function l ∈ L≥0, l �→ −h1(Ol) satisfies the matroid rank inequality (cf. Remark 2.3.9
or [20, Remark 6.4.21], [28, 4.8]).

Definition 4.1.12 We say that the pair h and h◦ (respectively h and h′) satisfies the ‘Combi-
natorial Duality Property’ (CDP) if h(l + Ev) − h(l) and h◦(l + Ev) − h◦(l) (respectively
h(l + Ev) − h(l) and h′(l) − h′(l + Ev)) simultaneously cannot be nonzero for any
l, l + Ev ∈ R ∩ Z

s . Furthermore, we say that h satisfies the CDP if the pair (h, hsym)

satisfies it.

Examples of pairs (h, h◦) satisfying the CDP can be found in [3, 4] or in the following
sections.

Theorem 4.1.13 [1, Theorem 5.2.1] Assume that c < ∞ and h satisfies the stability property,
and the pair (h, h◦) (respectively (h, h′)) satisfies the Combinatorial Duality Property. Then
eu(H∗(R, w)) = h◦(0) − h◦(c) (= h′(c)).

5 Analytic lattice cohomology of normal surface singularities

5.1 General construction

Let (X , o) be a normal surface singularity, and we fix a good resolution φ : ˜X → X . For
the definition of analytic lattice cohomology we do not need explicitly the minimal good
resolution, neither the assumptions that (X , o) has to be Gorenstein with rational homology
sphere link ([1, 20]).
5.1.1 For any c ∈ L , c ≥ ZK , we consider the rectangle R(0, c). Here we might consider
the c = ∞ case too, in such a case R(0, c) = (R≥0)

s . Then we consider the multivariable
Hilbert function h : R(0, c) ∩ Z

s → Z, h(l) = dim H0(O
˜X )/H0(O

˜X (−l)) associated with
the divisorial filtration of OX ,o and the resolution φ, cf. [1, 4.2], or [20].

Clearly, h is increasing (that is, h(l1) ≥ h(l2) whenever l1 ≥ l2) and h(0) = 0.
Next, set h◦(l) = pg − h1(Ol) too (where, by definition, h1(Ol=0) = 0). Then h◦ is

decreasing, h◦(0) = pg and h◦(c) = 0 (by Corollary 2.3.8), cf. [1, 4.2] or [20]. Finally we
define the weight function

wan,0 : Q0 → Z, wan,0(l) = h(l) + h◦(l) − h◦(0) = h(l) − h1(Ol). (5.1.2)

If we reorganize h◦(0) − h◦ as h′ then wan,0(l) = h(l) − h′(l), where h′(l) = h1(Ol) and
thus h′(0) = 0 and h′(c) = pg . Clearly, wan,0(0) = 0.

We consider next the natural cube–decomposition of R(0, c) as in 3.1.2 and we define
wan,q : Qq → Z by wan,q(�q) = max{wan,0(l) : l is any vertex of �q}. This system
defines the lattice cohomology H

∗(R(0, c), wan).
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5.1.3 This weight function has several useful properties:
First of all, note that 0 ≤ h◦(l) ≤ pg for every l, hence when c = ∞ then h and wan,0

have comparable asymptotic behaviour for l � 0. A computation shows that wan,0 satisfies
the requirement 3.1.3(a), namely, w−1

an,0((∞, n]) is finite for any n ∈ Z.
Since h is induced by a filtration given by valuations, it satisfies thematroid rank inequality

(cf. Example 4.1.10). On the other hand, h1 satisfies the ‘opposite’ matroid rank inequality
(cf. Remark 2.3.9). Therefore, wan,0 itself satisfies the matroid rank inequality.

Theorem 5.1.4 [1, 20]

(a) (Independence of c) H
∗(R(0, c), wan) is independent of the choice of c ≥ ZK .

(b) (Independence of φ) Assume that the resolution graph is a tree (a property independent
of the resolution). Then H

∗(R(0, c), wan) (c ≥ ZK ) is independent of the choice of the
resolution φ.

(c) (CDP) Assume that gv = 0 for any v ∈ V . Then there exists no l ∈ L≥0 and v ∈ V such
that the differences h(l + Ev) − h(l) and h◦(l) − h◦(l + Ev) are simultaneously strictly
positive.

(d) (Finiteness) The module H
∗
red(R(0, c), wan) has finite Z–rank, hence the Euler charac-

teristic eu(H∗(R(0, c), wan)) is well-defined.
(e) (The Euler characteristic eu(H∗(R(0, c), wan))) If the link is a rational homology

sphere, then eu(H∗(R(0, c), wan)) = pg(X , o). In particular, H
∗(R(0, c), wan) is a

categorification of the geometric genus.

Definition 5.1.5 Assume that the link is a rational homology sphere. The graded Z[U ]–
module H

∗(R(0, c), wan) (c ≥ ZK ) will be denoted by H
∗
an,0(X , o). It is called the analytic

lattice cohomology of (X , o) associated with the canonical spinc–structure.

Remark 5.1.6 Similarly to the topological case (see Example 3.2), the analytic lattice coho-
mology has different versions for different spinc–structures, too. For more information on
these see [2].

5.2 Reinterpretation of h◦ in the Gorenstein case

Suppose that the normal surface singularity (X , o) is Gorenstein, not of type A, D or E , and
φ : ˜X → X is the minimal good resolution . Thus ZK ∈ L , ZK ≥ E , and O

˜X (K
˜X ) ∼=

	2
˜X

∼= O
˜X (−ZK ), therefore in the sequel we will only use the −ZK notation.

Proposition 5.2.1 If we choose c = ZK , then h◦(l) = h(ZK − l), i.e. h◦ is obtained as the
symmetrization of h. In particular wan,0(l) = h(l) + h(ZK − l) − pg = wan,0(ZK − l).

Proof From (2.3.10) we have that dim H0(O
˜X (−ZK + Z))/H0(O

˜X (−ZK )) = h1(OZ ) =
h′(Z) for any Z > 0. On the other hand, by the opposite matroid rank inequality (cf. Remark
2.3.9) we also have h1(OZ ) = h1(Omin{Z ,ZK }).
For a general c ≥ ZK , from (4.1.5) we have h◦(l) = h′(c) − h′(l), so by Corollary 2.3.5

h◦(l) := dim
H0(˜X ,O

˜X (−ZK + c))

H0(˜X ,O
˜X (−ZK + l))

= dim
H0(˜X ,O

˜X )

H0(˜X ,O
˜X (−ZK + min{l, ZK })) . (5.2.2)

Specifically for c = ZK and 0 ≤ l ≤ ZK :

h◦(l) = dim H0(O
˜X )/H0(O

˜X (−ZK + l)) = h(ZK − l); (5.2.3)
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and also h′(l) = h◦(0) − h◦(l) = dim H0(O
˜X (−ZK + l))/H0(O

˜X (−ZK )). (5.2.4)

��
Remark 5.2.5 Note that this symmetry is true for the topological weight function too: χ(l) =
χ(ZK − l) (for the topological lattice cohomology see Example 3.2 or [18, 20]). However,
in the analytic case, the symmetry might fail for non-Gorenstein germs (even if we consider
a numerically Gorenstein topological type).

5.2.6As it will be the model for our approach later, we present here a proof of the fact, that if
(X , o) is a Gorenstein normal surface singularity, not of type ADE , with rational homology
sphere link, then the pair (h, hsym) satisfies the Combinatorial Duality property. We choose
c = ZK .

For each holomorphic function germ f ∈ OX ,o consider divE ( f ) ∈ L≥0. One can easily
prove, that divE ( f ) ∈ S. Then let us define San as {divE ( f ) : f ∈ OX ,o} ⊂ S.

Now assume by contradiction that the pair (h, hsym) does not satisfy the CDP. Then
there exists a lattice point l, a vertex v and s′, s′′ ∈ San such that divE (s′) ≥ l, s′

v = lv ,
divE (s′′) ≥ ZK − l − Ev , s′′

v = (ZK − l)v − 1. Hence, divE (s′s′′) = divE (s′) + divE (s′′) ≥
ZK − Ev with equality at Ev–coordinate. But this contradicts Theorem 2.3.3, which states
that H0(OEv (−ZK + Ev)) ∼= H1(OEv )

∗ ∼= 0.

6 The general construction of �m,n and its properties

Let (X , o) be a Gorenstein normal surface singularity, not of type ADE , and we fix the
minimal good resolution φ : ˜X → X . As above, ZK ∈ L and ZK ≥ E (see 2.1.5). We also
assume that the link is a rational homology sphere.

Recall that in the case of Gorenstein singularitiesO
˜X (−ZK ) ∼= 	2

˜X
∼= O

˜X (K
˜X ), therefore

K
˜X can be chosen as −ZK . In the sequel we will only use the −ZK notation.
In this section we construct a lattice cohomology module, which will be a categorification

of a common generalization πm,n of the numerical invariants δm , γm and λm .

6.1 ım, �m and �m in the Gorenstein case

The definitions of the δm , γm and λm plurigenera in the Gorenstein case transform into the
following. For every m ≥ 1, m ∈ Z:

• δm = dim H0(˜X \ E,O
˜X (−mZK ))/H0(˜X ,O

˜X (−mZK + (m − 1)E));
• γm = dim H0(˜X \ E,O

˜X (−mZK ))/H0(˜X ,O
˜X (−mZK ));

• λm = dim H0(˜X \ E,O
˜X (−mZK ))/H0(˜X ,O

˜X (−mZK + mE)).

Note that δ1 = γ1 = pg (see Remark 2.2.2).

Lemma 6.1.1 H0(˜X \ E,O
˜X (−mZK )) ∼= H0(˜X ,O

˜X ).

Proof Since −mZK has support in E , it follows that H0(˜X \ E,O
˜X (−mZK )) ∼= H0(˜X \

E,O
˜X ).Next, take the following exact sequence of sheaf cohomology with compact support

(cf. Theorem 1.39 in [23]):

0 → H0(
˜X ,O

˜X

) → H0(
˜X \ E,O

˜X

) → H1
c

(

˜X ,O
˜X

) → H1(
˜X ,O

˜X

)

→ H1(
˜X \ E,O

˜X

) → · · ·
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Here the middle term is isomorphic to H1(˜X ,	2
˜X
)∗ via Theorem 2.3.2, which vanishes by

Theorem 2.3.6. ��
Corollary 6.1.2 For every m ≥ 1, m ∈ Z:

• δm = dim H0(˜X ,O
˜X )/H0(˜X ,O

˜X (−mZK + (m − 1)E));
• γm = dim H0(˜X ,O

˜X )/H0(˜X ,O
˜X (−mZK ));

• λm = dim H0(˜X ,O
˜X )/H0(˜X ,O

˜X (−mZK + mE)).

6.2 General construction

Suppose that the singularity (X , o) is not of type ADE , in particular ZK ≥ E . Then we
will construct a categorification of πm,n := dim H0(˜X ,O

˜X )/H0(˜X ,O
˜X (−mZK +nE)) for

every pair m ≥ 1, n ≥ 0, m, n ∈ Z such that mZK − nE ≥ 0.
Clearly, δm = πm,m−1, γm = πm,0 and λm = πm,m satisfy the required condition. (These

πm,n were considered already in a more general setting in [20, Sect. 6.8.D].)

Definition 6.2.1 In the lattice L ,withfixedbasis {Ev}v∈V , consider the rectangle R(0,mZK−
nE) (here mZK − nE ≥ 0). Let

hπm,n (l) := dim
H0(O

˜X ((m − 1)ZK − nE))

H0(O
˜X ((m − 1)ZK − nE − l))

be the ‘Hilbert function’ of the divisorial filtration on H0(O
˜X ((m − 1)ZK − nE)); and let

h′
πm,n

(l) := dim
H0(O

˜X (−mZK + nE + l))

H0(O
˜X (−mZK + nE))

.

We define the weight function wπm,n ,0 : R(0,mZK − nE) ∩ Z
s → Z as in (4.1.4):

wπm,n ,0(l) = hπm,n (l) − h′
πm,n

(l),

and extend it to get wπm,n ,q as in (3.1.5). Associated with this lattice and weight function we
get a lattice cohomology H

∗(R(0,mZK − nE), wπm,n ).

Remark 6.2.2 hπm,n and h′
πm,n

are both increasing functions with hπm,n (0) = h′
πm,n

(0) = 0,
so they give the h and h′ = h◦(0) − h◦ functions of a combinatorial lattice cohomology on
R(0,mZK − nE). In this analogy h◦

πm,n
is (compare with (4.1.5))

h◦
πm,n

(l) = h′
πm,n

(mZK − nE) − h′
πm,n

(l) = dim
H0(O

˜X )

H0(O
˜X (−mZK + nE + l))

= h(mZK − nE − l).

Lemma 6.2.3 hπm,n satisfies the matroid rank inequality.

Proof The divisorial filtration L � l �→ H0(O
˜X ((m − 1)ZK − nE − l)) ⊂ H0(O

˜X ((m −
1)ZK − nE)) satisfies Eq. (4.1.11) and has finite codimension, hence 4.1.10 can be applied.

��
Lemma 6.2.4 The function l �→ −h′

πm,n
(l) satisfies the matroid rank inequality and it

stabilizes:

h′
πm,n

(l) = dim
H0(O

˜X )

H0(O
˜X (−mZK + nE))

= πm,n for all ≥ mZK − nE .
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Proof For the first part, notice that the inequality (4.1.8) remains the same after translating
the height function by a constant. Therefore, in our case it is enough to prove that

h◦
πm,n

(l1) + h◦
πm,n

(l2) ≥ h◦
πm,n

(min{l1, l2}) + h◦
πm,n

(max{l1, l2}).
However, by Remark 6.2.2 this translates as

h(mZK − nE − l1) + h(mZK − nE − l2)

≥ h(max{mZK − nE − l1,mZK − nE − l2})
+ h(min{mZK − nE − l1,mZK − nE − l2}),

which indeed holds, because the Hilbert function h already satisfies the matroid rank
inequality (cf. 5.1.3 or 4.1.10 applied to the divisorial filtration of H0(O

˜X )).
The second part follows from Corollary 2.3.5. ��

Proposition 6.2.5 The pair (hπm,n , h
′
πm,n

) (or, equivalently, the pair (hπm,n , h
◦
πm,n

)) satisfies
the Combinatorial Duality Property.

Proof Let us consider the step from l to l + Ev . If hπm,n (l + Ev) > hπm,n (l) then there exists
some f ∈ H0(O

˜X ((m − 1)ZK − nE)) with divE ( f ) ≥ l, divEv ( f ) = lv . Similarly, if
h′

πm,n
(l + Ev) > h′

πm,n
(l), then there exists a meromorphic section s of O

˜X (−mZK + nE)

with divE (s) ≥ −l− Ev, divEv (s) = −lv −1. In particular, if both functions jump, then f s,
as a meromorphic section of O

˜X (−ZK ), has divisor divE ( f s) ≥ −Ev, divEv ( f s) = −1.
Hence f s �= 0 in H0(O

˜X (−ZK + Ev))/H0(O
˜X (−ZK )) ∼= H0(OEv (−ZK + Ev)) ∼=

H1(OEv )
∗ = 0 (where we have used Serre duality on the rational curve Ev , see Theorem

2.3.3). This leads to contradiction. ��
Corollary 6.2.6 The lattice cohomology H

∗(R(0,mZK − nE), wπm,n ) defined on
R(0,mZK − nE) with the weight function wπm,n ,0(l) = hπm,n (l) − h′

πm,n
(l) has Euler

characteristic h′
πm,n

(mZK − nE) = πm,n.
In particular, as agradedZ[U ]–module,H∗(R(0,mZK−nE), wπm,n ) is a categorification

of πm,n.

Proof FromRemark 6.2.2, Lemma 6.2.3 and Proposition 6.2.5we see that the functions hπm,n

and h′
πm,n

satisfy the requirements of Theorem 4.1.13. The value of the Euler characteristic
comes from Lemma 6.2.4. ��
Corollary 6.2.7 H

∗(R(0, c), wπm,n ) is independent of the choice of c ≥ mZK − nE.

Proof One can just copy the argument from the proof of Theorem 5.1.4(a), see also Lemma
11.9.2 in [20]. Indeed, that proof only uses the fact that (with our notation) wπm,n ,0 satisfies
the matroid rank inequality (see Lemmas 6.2.3 and 6.2.4) and is increasing in the rectangle
R(mZK −nE, c) (by the stabilization h′

πm,n
(l) = h′

πm,n
(mZK −nE) for all l ≥ mZK −nE ,

cf. Lemma 6.2.4). ��
Definition 6.2.8 The lattice cohomology (computed from the minimal good resolution φ :
˜X → X of a non–ADE Gorenstein normal surface singularity (X , o)with rational homology
sphere link) associated with the weight function wπm,n ,0 and lattice R(0, c) with c large
enough will be denoted by H

∗((X , o), wπm,n ) (it is a double graded Z[U ]–module, which by
the above discussion, is independent of the choice of c ≥ mZK + nE).

123



Categorification of the plurigenera… Page 15 of 25 68

6.3 Comparison with the analytic lattice cohomology

Wecompare the ‘new’weight functionwπm,n ,0 with the ‘old one’,wan,0(l) = h(l)−h1(Ol) =
h(l)−h′(l) (corresponding tom = 1, n = 0, or to the case of the analytic lattice cohomology
as categorification of pg). In this discussion we need to use a stronger assumption, namely

(m − 1)ZK − nE ≥ 0,

which is fulfilled in the case of δm and γm but not forλm (at least not for anyGorenstein normal
surface singularity with rational homology sphere link). The specific cases not covered by
this inequality will be treated in Sect. 8.

Proposition 6.3.1 Suppose that (m − 1)ZK − nE ≥ 0. If l ≤ (m − 1)ZK − nE, then
hπm,n (l) = 0. If l ≥ (m − 1)ZK − nE, then we have hπm,n (l) = h(l − (m − 1)ZK + nE)

and h′
πm,n

(l) = h′(l − (m − 1)ZK + nE) + dπm,n , where dπm,n is the constant πm,n − pg.

Proof Assume that l ≤ (m − 1)ZK − nE . Then the first statement follows from Corollary
2.3.5:

H0(O
˜X ((m − 1)ZK − nE − l)) ∼= H0(O

˜X ((m − 1)ZK − nE)) ∼= H0(O
˜X ). (6.3.2)

If l ≥ (m − 1)ZK − nE , then (via the second identity of (6.3.2))

hπm,n (l) = dim
H0(˜X ,O

˜X )

H0(˜X ,O
˜X (−(l − (m − 1)ZK + nE)))

= h(l − (m − 1)ZK + nE).

Now let us consider h′
πm,n

in the case l ≥ (m − 1)ZK − nE . By Eq. (5.2.4)

h′(l − (m − 1)ZK + nE) = dim
H0(˜X ,O

˜X (−ZK + l − (m − 1)ZK + nE))

H0(˜X ,O
˜X (−ZK ))

= dim
H0(˜X ,O

˜X (−mZK + nE + l))

H0(˜X ,O
˜X (−mZK + nE))

− dim
H0(˜X ,O

˜X (−ZK ))

H0(˜X ,O
˜X (−mZK + nE))

= h′
πm,n

(l) − dπm,n ,

where we set dπm,n := dim H0(˜X ,O
˜X (−ZK ))/H0(˜X ,O

˜X (−mZK + nE)).

Finally, the identity dγm = γm − pg follows from Eq. (2.3.12) and the definition of the
number πm,n (see notation in 6.2). ��
Corollary 6.3.3 If (m − 1)ZK − nE ≥ 0, then H

∗((X , o), wπm,n )
∼= H

∗
an,0(X , o)[−2dπm,n ].

Proof By Proposition 6.3.1 the weight function l �→ wπm,n ,0(l) is decreasing in the rectangle
R(0, (m − 1)ZK − nE). As wπm,n ,0 also satisfies the matroid rank inequality, similarly to
the proof of Corollary 6.2.7 (see also Lemma 7.3.9 from [20]), we get that the map

H
∗(R(0,mZK − nE), wπm,n ) → H

∗(R((m − 1)ZK − nE,mZK − nE), wπm,n )

induced by the natural inclusion is a graded Z[U ]–module isomorphism. However, the affine
translation τ : l �→ l−(m−1)ZK +nE identifies the rectangles R((m−1)ZK −nE,mZK −
nE) and R(0, ZK ) and by Proposition 6.3.1 we have that for any l ∈ R((m − 1)ZK −
nE,mZK − nE) ∩ Z

s : wπm,n (l) = wan,0(τ (l)) − dπm,n . Therefore, τ induces a graded
Z[U ]–module cochain complex isomorphism

τ ∗ : F∗(R(0, c), wan)[−2dπm,n ]
∼=−→ F∗(R((m − 1)ZK − nE,mZK − nE), wπm,n ).
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This induces the gradedZ[U ]–module isomorphismon the cohomologies stated in the lemma.
��

7 The cases ım, �m revisited

Let (X , o) be a Gorenstein normal surface singularity, not of type ADE , and we fix the
minimal good resolution φ : ˜X → X . We also assume that the link is a rational homology
sphere.

In this section we collect all the results from the previous sections specified to the δm and
γm cases.

7.1 The categorification of ım

Recall that δm = πm,m−1 = dim H0(˜X ,O
˜X )/H0(˜X ,O

˜X (−mZK + (m − 1)E)) for any
m ≥ 1. In the lattice L , with fixed basis {Ev}v∈V , consider the rectangle R(0,mZK − (m −
1)E). Let

hδm (l) := dim
H0(O

˜X ((m − 1)(ZK − E)))

H0(O
˜X ((m − 1)(ZK − E) − l))

and

h′
δm

(l) := dim
H0(O

˜X (−mZK + (m − 1)E + l))

H0(O
˜X (−mZK + (m − 1)E))

be increasing functions (with h◦
δm

(l) = dim H0(O
˜X )/H0(O

˜X (−mZK + (m − 1)E + l))).
We define the weight function wδm ,0 : R(0,mZK − (m − 1)E) ∩ Z

s → Z as

wδm ,0(l) = hδm (l) − h′
δm

(l) = hδm (l) + h◦
δm

(l) − δm,

and wδm ,q as in (3.1.5). Associated with this lattice and weight function we get a lattice
cohomology H

∗(R(0,mZK − (m − 1)E), wδm ).

Theorem 7.1.1 (a) (Matroid rank inequality) both hδm and −h′
δm

satisfy the matroid rank
inequality;

(b) (Lattice cohomology) the lattice cohomology associated with the weight function
wδm ,0 = hδm − h′

δm
in the rectangle R(0, c), whenever c ≥ mZK − (m − 1)E, stabilizes

with respect to c. It will be denoted by H
∗((X , o), wδm );

(c) (CDP) the pair (hδm , h′
δm

) satisfies the CDP;
(d) (Euler characteristic) the lattice cohomology defined on R(0,mZK − (m − 1)E) with

the weight function wδm ,0(l) = hδm (l) − h′
δm

(l) = hδm (l) + h◦
δm

(l) − h◦
δm

(0) has Euler
characteristic h′

δm
(mZK − (m − 1)E) − h′

δm
(0) = δm. In particular, as a graded Z[U ]–

module, H
∗((X , o), wδm ) is a categorification of δm;

(e) (Relations with the original Hilbert functions) if l ≤ (m−1)(ZK −E), then hδm (l) =
0, if l ≥ (m − 1)(ZK − E), then hδm (l) = h(l − (m − 1)(ZK − E)) and h′

δm
(l) =

h′(l − (m − 1)(ZK − E)) + dδm , where dδm = δm − pg is the non–negative constant

dδm = dim H0(O
˜X (−ZK ))/H0(O

˜X (−mZk + (m − 1)E).

(f) (Relation with the analytic lattice cohomology) there exists a natural double graded
Z[U ]–module isomorphism:

H
∗((X , o), wδm ) ∼= H

∗
an,0(X , o)[−2dδm ].
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7.2 The categorification of �m

8.1 In this case γm = πm,0 = dim H0(˜X ,O
˜X )/H0(˜X ,O

˜X (−mZK )) for any m ≥ 1, and in
the rectangle R(0,mZK ) we set the increasing functions

hγm (l) := dim
H0(O

˜X ((m − 1)ZK ))

H0(O
˜X ((m − 1)ZK − l))

and

h′
γm

(l) := dim
H0(O

˜X (−mZK + l))

H0(O
˜X (−mZK )

corresponding to h◦
γm

(l) = dim H0(O
˜X )/H0(O

˜X (−mZK + l)). We define the weight
function wγm ,0 : R(0,mZK ) ∩ Z

s → Z as

wγm ,0(l) = hγm (l) − h′
γm

(l) = hγm (l) + h◦
γm

(l) − γm,

and wγm ,q as in (3.1.5). In this way we obtain the lattice cohomology H
∗(R(0,mZK ), wγm ).

Theorem 7.2.1 (a) (Matroid rank inequality) both hγm and −h′
γm

satisfy the matroid rank
inequality;

(b) (Lattice cohomology) the lattice cohomology associated with the weight function
wγm ,0 = hγm − h′

γm
in the rectangle R(0, c), whenever c ≥ mZK , stabilizes with respect

to c. It will be denoted by H
∗((X , o), wγm );

(c) (CDP) the pair (hγm , h′
γm

) satisfies the CDP;
(d) (Euler characteristic) the lattice cohomology defined on R(0,mZK ) with the weight

functionwγm ,0(l) = hγm (l)−h′
γm

(l) = hγm (l)+h◦
γm

(l)−h◦
γm

(0) has Euler characteristic
h′

γm
(mZK ) − h′

γm
(0) = γm. In particular, as a graded Z[U ]–module, H

∗((X , o), wγm )

is a categorification of γm;
(e) (Relations with the original Hilbert functions) if l ≤ (m − 1)ZK , then hγm (l) = 0, if

l ≥ (m−1)ZK , then hγm (l) = h(l−(m−1)ZK ) and h′
γm

(l) = h′(l−(m−1)ZK )+dγm ,
where h and h′ denote the standard Hilbert dγm = γm − pg is the non–negative constant

dγm = dim H0(O
˜X (−ZK ))/H0(O

˜X (−mZK ).

(f) (Relation with the analytic lattice cohomology) there exists a natural graded Z[U ]–
module isomorphism:

H
∗((X , o), wγm ) ∼= H

∗
an,0(X , o)[−2dγm ].

Remark 7.2.2 Assume that the minimal good resolution φ is already a minimal resolu-
tion. Then several cohomological invariants considered above have additional equivalent
descriptions.

(i) We claim that

γm = h1
(

O
˜X ((m − 1)ZK )

)

for every m ≥ 1. (7.2.3)

Indeed, since ZK ∈ S, by Theorem 2.3.6 the module H1(˜X ,O
˜X (−mZK )) ∼= 0 and the

following sequence is exact:

0 → H0(
˜X ,O

˜X (−mZK )
) → H0(

˜X \ E,O
˜X (−mZK )

) → H1
c

(

˜X ,O
˜X (−mZK )

) → 0.

Furthermore, by Theorem 2.3.2 H1
c (˜X ,O

˜X (−mZK )) ∼= H1(˜X ,O
˜X ((m − 1)ZK ))∗.
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(ii) Furthermore, we can also give another equivalent description of h′
γm

:

h′
γm

(l) = dim
H0(˜X ,O

˜X (−mZK + l))

H0(˜X ,O
˜X (−mZK ))

= h1(l,Ol((m − 1)ZK ), (7.2.4)

which better resembles the original h′ function of the analytic lattice cohomology (cf. 5.1.5).
Indeed, as ZK ∈ S, from the vanishing H1(O

˜X (−mZK )) = 0 (cf. Theorem 2.3.6) we
have the exact sequence:

0 → H0(O
˜X (−mZK )) → H0(O

˜X (−mZK + l)) → H0(Ol(−mZK + l)) → 0;
and then by Theorem 2.3.3

H0(Ol(−mZK + l))∗ ∼= H1(Ol(−ZK + l + mZK − l)) ∼= H1(Ol((m − 1)ZK )).

(iii) We can reprove the stabilization of the h′
γm

function for l ≥ mZK in this new setup
as follows. Consider the sheaf exact sequence:

0 → O
˜X (−ZK ) → O

˜X ((m − 1)ZK ) → OmZK ((m − 1)ZK ) → 0.

The exact sequence of sheaf cohomologies and the vanishing H1(O
˜X (−ZK )) = 0 (via

Theorem 2.3.6) give

H1(
˜X ,O

˜X ((m − 1)ZK )
) ∼= H1(mZK ,OmZK ((m − 1)ZK )

)

.

Since in general we have surjections H1(˜X ,L) → H1(l2,L|l2) → H1(l1,L|l1) for any
l2 ≥ l1, we obtain that

H1(l,Ol((m − 1)ZK )) = H1(O
˜X ((m − 1)ZK )) for anyl ≥ mZK . (7.2.5)

Hence from (7.2.3) we then have that hγm (l) = γm for any l ≥ mZK .

8 The categorification of �m

In this case of n = m we have to separate two cases. First, all the results from Subsect.
6.2 (proved under the assumption mZK − nE ≥ 0) are valid for any singularity (non-
ADE Gorenstein normal surface singularity, with rational homology sphere link andminimal
good resolution). On the other hand, the results of Subsect. 6.3 are valid under the stronger
assumption (m − 1)ZK − nE ≥ 0. The remaining case will be analysed independently and
will produce a different structure theorem.

In all cases λm = πm,m = dim H0(˜X ,O
˜X )/H0(˜X ,O

˜X (−mZK + mE)) for any m ≥ 1.
Using Subsect. 6.2 we have the following facts. Define in the rectangle R(0,mZK − mE)

hλm (l) := dim
H0(O

˜X ((m − 1)ZK − mE))

H0(O
˜X ((m − 1)ZK − mE − l))

and

h′
λm

(l) := dim
H0(O

˜X (−mZK + mE + l))

H0(O
˜X (−mZK + mE))

,

the two increasing functions (with h◦
λm

(l) = dim H0(O
˜X )/H0(O

˜X (−mZK + mE + l))).
Define also the weight function wλm ,0 : R(0,mZK − mE) ∩ Z

s → Z by

wλm ,0(l) = hλm (l) − h′
λm

(l) = hλm (l) + h◦
λm

(l) − λm,

and wλm ,q as in (3.1.5). They define the lattice cohomology H
∗(R(0,mZK − mE), wλm ).
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Theorem 8.1.1 (a) (Matroid rank inequality) both hλm and −h′
λm

satisfy the matroid rank
in equality;

(b) (Lattice cohomology) the lattice cohomology associated with the weight function
wλm ,0 = hλm − h′

λm
in the rectangle R(0, c), whenever c ≥ mZK − mE, stabilizes

with respect to c. It will be denoted by H
∗((X , o), wλm );

(c) (CDP) the pair (hλm , h′
λm

) satisfies the CDP;
(d) (Euler characteristic) the lattice cohomology defined on R(0,mZK − mE) with the

weight function wλm ,0(l) = hλm (l) − h′
λm

(l) = hλm (l) + h◦
λm

(l) − h◦
λm

(0) has Euler
characteristic h′

λm
(mZK − mE) − h′

λm
(0) = λm. Hence, as a graded Z[U ]–module,

H
∗((X , o), wλm ) is a categorification of λm.

In the comparison of (hλm , h′
λm

)with (h, h′)we need to divide the discussions in different
cases.
8.1.2 Assume that mZK − mE ≥ ZK . Under this assumption we can apply the results of
Subsect. 6.3. Then the statements of Theorem 8.1.1 can be complemented by the following
facts:

(e) (Relations with the original Hilbert functions) If l ≤ (m − 1)ZK − mE , then
hλm (l) = 0, if l ≥ (m − 1)ZK − mE , then hλm (l) = h(l − (m − 1)ZK + mE) and
h′(l− (m−1)ZK +mE) = h′

λm
(l)−dλm , where dλm = λm − pg . (From definition, λm − pg

equals the non-negative integer dim H0(O
˜X (−ZK ))/H0(O

˜X (−mZK + mE)) as well.)
(f) (Relation with the analytic lattice cohomology) in this case there exists a natural

graded Z[U ]–module isomorphism:

H
∗((X , o), wλm ) ∼= H

∗
an,0(X , o)[−2dλm ].

8.2 In the remaining part of this section we assume that mZK − mE � ZK .
In this case (the first version of) the structure theorem — as a comparison of

H
∗((X , o), wλm ) with the analytic lattice cohomology — is the following.

Theorem 8.2.1 Set dλm := λm − pg (similarly as in the previous case 8.1.2). Then

H
∗((X , o), wλm ) ∼= H

∗(R(E, ZK ), wan)[−2dλm − 2]. (8.2.2)

The proof runs differently for m = 1 and m ≥ 2. In both cases we will also provide the
specific cohomological descriptions of hλm and h′

λm
, and we also prove that dλm ≥ 0 as well.

Finally, in Theorem 8.5.3 we rewrite the right hand side of (8.2.2) in terms of H
∗
an,0(X , o).

8.3. Assume m = 1.
Clearly ZK − E � ZK , so the discussion 8.1.2 does not hold. However, in this case all

the involved terms can be computed explicitly. Indeed, for l ≥ 0,

hλ1(l) = dim
H0(O

˜X (−E))

H0(O
˜X (−E − l))

= dim
H0(O

˜X )

H0(O
˜X (−E − l))

− dim
H0(O

˜X )

H0(O
˜X (−E))

= h(l + E) − h(E).

But H0(O
˜X )/H0(O

˜X (−E)) 
 OX ,o/mX ,o 
 C, where mX ,o is the maximal ideal of
OX ,o. Hence

h(E) = dim H0(O
˜X )/H0(O

˜X (−E)) = 1. (8.3.1)

These two facts combined give hλ1(l) = h(l + E) − 1. Furthermore,

h′
λ1

(l) = dim
H0(O

˜X (−ZK + E + l))

H0(O
˜X (−ZK + E))

= dim
H0(O

˜X (−ZK + E + l))

H0(O
˜X (−ZK ))
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− dim
H0(O

˜X (−ZK + E))

H0(O
˜X (−ZK ))

.

Hence, h′
λ1

(l) = h′(l + E) − h′(E). But h′(E) = h1(OE ) = 0, hence h′
λ1

(l) = h′(l + E).
Thus

wλ1,0 : R(0, ZK − E)∩Z
s → Z : wλ1,0(l) = hλ1(l)−h′

λ1
(l) = wan,0(l+ E)−1. (8.3.2)

Corollary 8.3.3 H
∗((X , o), wλ1)

∼= H
∗(R[E, ZK ], wan)[−2].

Proof Note that in (8.3.2) l runs in the rectangle R(0, ZK − E), see also Theorem 8.1.1(b),
hence l + E ∈ R(E, ZK ). Then the affine translation τ : R(E, ZK ) → R(0, ZK − E), l �→
l − E satisfies wan,0(l) − 1 = wλ1,0(τ (l)), hence it induces a graded isomorphism on the
cochain complexes and, therefore, on the cohomologymodules, just as in the case ofCorollary
6.3.3. ��

This together with the next fact prove (8.2.2) for m = 1.

Corollary 8.3.4 λ1 = pg in the Gorenstein, rational homology sphere case.

Proof By Corollary 6.1.2 and identities (2.3.12) and (5.2.4) we have

λ1 − pg = dim
H0(O

˜X (−ZK + E))

H0(O
˜X (−ZK ))

= h′(E) = h1(OE ) = 0.

��

8.4. Assume that m ≥ 2 and mZK − mE � ZK .
Let ˜E be the sum of those irreducible exceptional divisors Ev , where the multiplicity of

ZK is 1. From assumption ˜E > 0. Let ˜ZK := ZK − ˜E . Clearly, for any m ≥ 2 we have
m(ZK − E) ≥ ˜ZK .

Notation 8.4.1 Note that if l ≥ 0 and l ≥ (m − 1)ZK − mE , then automatically l ≥
(m−1)ZK −mE+˜E . Let us denote this latter effective cyclewith Z := (m−1)ZK −mE+˜E .

Lemma 8.4.2 The natural inclusion H0(O
˜X (−ZK )) → H0(O

˜X (−˜ZK )) is an isomorphism.

Proof This follows from the vanishing

h0(O
˜E

( − ˜ZK )
) = h1

(

O
˜E (˜ZK + ˜E − ZK )

) = h1(O
˜E ) = 0.

��

Corollary 8.4.3 In the case of a non-ADE Gorenstein singularity with rational homology
sphere link pg = dim H0(O

˜X )/H0(O
˜X (−˜ZK ))

Proof Combine (2.3.12) and Lemma 8.4.2. ��

Proposition 8.4.4 If l ≤ Z, then hλm (l) = 0. If l ≥ Z, then hλm (l) = h(l − ((m − 1)ZK −
mE))−1 and h′

γm
(l) = h′(l−((m−1)ZK −mE))+dλm , where dλm is the constant λm − pg.

(For a homological expression of dλm valid in this case see (8.4.6) too.)

123



Categorification of the plurigenera… Page 21 of 25 68

Proof As hλm is increasing, for the first part it is enough to prove that hλm (Z) = 0. Let us
consider the following exact sequence of sheaves:

0 → O
˜X (−˜E) → O

˜X (Z − ˜E) → OZ (Z − ˜E) → 0.

The respective cohomological exact sequence is the following:

0 → H0(O
˜X (−˜E)

) → H0(O
˜X ((m − 1)ZK − mE)

) → H0(OZ (Z − ˜E)
) → · · ·

According to Theorem 2.3.4 the last term H0(OZ (Z − ˜E)) vanishes, so

H0(O
˜X (−˜E)) ∼= H0(O

˜X ((m − 1)ZK − mE)), (8.4.5)

hence hλm (Z) = 0 by definition.
Now, for l ≥ Z

hλm (l) = dim
H0(O

˜X ((m − 1)ZK − mE))

H0(O
˜X ((m − 1)ZK − mE − l))

= dim
H0(O

˜X ((m − 1)ZK − mE))

H0(O
˜X (−˜E))

+ dim
H0(O

˜X (−˜E))

H0(O
˜X ((m − 1)ZK − mE − l))

= dim
H0(O

˜X )

H0(O
˜X (−(l − (m − 1)ZK + mE)))

− dim
H0(O

˜X )

H0(O
˜X (−˜E))

= h(l − (m − 1)ZK + mE) − 1

by (8.3.1) and (8.4.5).
Next, for the statement regarding h′

λ1
take l ≥ Z . Then

h′(l − (m − 1)ZK + mE) = dim H0(O
˜X (−mZK + mE + l))/H0(O

˜X (−˜ZK ))

= dim
H0(O

˜X (−mZK + mE + l))

H0(O
˜X (−mZK + mE))

− dim
H0(O

˜X (−˜ZK ))

H0(O
˜X (−mZK + mE))

= h′
λm

(l) − dλm ,

where dλm is the non-negative integer

dλm = dim H0(O
˜X (−˜ZK )/H0(O

˜X (−mZK + mE)). (8.4.6)

From Corollary 8.4.3 we indeed get that dλm = λm − pg . ��
Corollary 8.4.7

H
∗(R(0,mZK − mE), wλm ) ∼= H

∗(R(Z ,mZK − mE), wλm )

∼= H
∗(R(˜E, ZK ), wan)[−2dλm − 2].

Proof For the first isomorphismweuse the fact thatwλm ,0 satisfies thematroid rank inequality
(cf. Theorem 8.1.1(a)) and it is decreasing on the rectangle R(0, Z) (cf. Proposition 8.4.4).
Then the same argument as in the proof of Corollary 6.2.7 (see also Lemma 11.9.2 in [20])
provides the isomorphism

H
∗(R(0,mZK − mE), wλm ) ∼= H

∗(R(Z ,mZK − mE), wλm ).
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For the second isomorphism notice, that through Proposition 8.4.4, on the rectangle
R(Z ,mZK − mE) the weight function is

wλm ,0(l) = hλm (l) − h′
λm

(l)

= h(l − (m − 1)ZK + mE) − h′(l − (m − 1)ZK + mE) − dλm − 1

= wan,0(l − (m − 1)ZK + mE) − dλm − 1. (8.4.8)

Note also that if l ∈ R(Z ,mZK −mE) ∩ Z
s , then l − (m − 1)ZK +mE ∈ R(˜E, ZK ) ∩ Z

s ,
so the affine translation τ : l �→ l− (m−1)ZK +mE maps R(Z ,mZK −mE) to R(˜E, ZK )

and satisfies the identity:

wλm ,0(l) = wan,0(τ (l)) − dλm − 1. (8.4.9)

Similarly to the proof of Corollary 6.3.3, τ induces a graded cochain isomorphism and thus
a graded isomorphism on the cohomology modules

τ ∗ : H
∗(R(˜E, ZK ), wan)[−2dλm − 2] ∼=−→ H

∗(R(Z ,mZK − mE), wλm ).

��

Remark 8.4.10 Note that the original Hilbert function h on the rectangle R(˜E, E) ∩ Z
s is

constant 1. This means that wan,0 is decreasing in this rectangle (as it satisfies the matroid
rank inequality, cf. 5.1.3). Thus, in fact

H
∗(R(˜E, ZK ), wan)[−2dλm − 2] ∼= H

∗(R(E, ZK ), wan)[−2dλm − 2]. (8.4.10)

Indeed, use the same proof as for Corollary 6.2.7. Thus, by Corollary 8.4.7 and the above
(8.4.10) we obtain the proof of (8.2.2) in this case too.

8.5. Comparison of H
∗((X , o), wλm ) and H

∗
an,0(X , o) in the mZK − mE � ZK case

In the mZK −mE ≥ ZK case we already saw in 8.1.2 that the Z[U ]–modules in the title
are isomorphic through a homogeneous graded Z[U ]–module isomorphism which shifts the
grading by 2dλm . In this subsection will prove a similar result for the remaining case. We
start with the identity (8.2.2) and we will use the notations of the previous subsections.

8.5.1 An equivalent description of the lattice cohomology [18][20, Theorem 11.1.12].
At this point it is convenient to consider an another description of the lattice cohomology.

Let us fix a rectangle R, a cube decomposition (cf. 3.1.2) and a weight function w. For each
n ∈ Z we define Sn = Sn(w) ⊂ R as the union of all the cubes �q (of any dimension q)
with w(�q) ≤ n. Clearly, Sn = ∅, whenever n < mw = minl∈R∩Zs w0(l). Then, for any
q ≥ 0, we have the following graded Z[U ]–module isomorphism of degree zero:

H
q(R, w) ∼= ⊕n≥mw H

q(Sn, Z).

The Z–grading on the right hand side is the following: the d = 2n–homogeneous ele-
ments consist of Hq(Sn, Z); while the U–action is given by the restriction map rn+1 :
Hq(Sn+1, Z) → Hq(Sn, Z). Moreover, for q = 0, a fixed base-point lw ∈ Smw provides an
augmentation (splitting) H0(Sn, Z) = Z ⊕ ˜H0(Sn, Z), which agrees with the augmentation
of the graded Z[U ]–modules

H
0(R, w) ∼= T +

2mw
⊕ H

0
red(R, w) and H

q(R, w) ∼= H
q
red(R, w) for q ≥ 1.
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Remark 8.5.2 In the analytic lattice cohomology wan,0(0) = 0 and wan,0(Ev) = 1 for all
Ev-s. Thus the point {0} is an isolated point in S0, which constitutes a distinct connected
component of S0. It ‘becomes empty’ in S−1, i.e. {0} generates a free Z–module ({0}) =
Z〈{0}〉 in H

0
an,0(X , o), and a torsion Z[U ]–submodule of H

∗
an,0(X , o) with trivialU–action.

Hence the quotient H
∗
an,0(X , o)/({0}) as a double graded Z[U ]–module is well-defined.

Theorem 8.5.3 Suppose we have a non-ADE Gorenstein normal surface singularity with
rational homology sphere link. Let m ∈ Z be such that mZK − mE � ZK . Then we have
the following graded Z[U ]–module isomorphism:

H
∗((X , o), wλm ) ∼= H

∗
an,0(X , o)/({0})[−2dλm − 2].

Proof Since H
∗
an,0(X , o) ∼= H

∗(R(0, ZK ), wan), by (8.2.2) it is enough to prove that

H
∗(R(E, ZK ), wan) ∼= H

∗(R(0, ZK ), wan)/({0}).
We proceed in two steps. First we consider the closed cubical subcomplex X :=
∪vR(Ev, ZK ) of R := R(0, ZK ). This can also be obtained from R if we delete all
the relative interiors of the those cubes which contain 0 as a vertex: X = R \ C , where
C := {∑v tvEv | 0 ≤ tv < 1 for all v}. Then we claim that the inclusion R(E, ZK ) ⊂ X
induces a double graded Z[U ]–module isomorphism:

H
∗(R(E, ZK ), wan) ∼= H

∗(X , wan). (8.5.4)

Indeed, let us fix a vertex v and consider any cycle l > 0with Ev �⊂ |l|. Then h(l) = h(l+Ev)

(because if the pullback by φ of a function vanishes along some Ew , w �= v, then it vanishes
along Ev as well). On the other hand, h1(Ol+Ev ) ≥ h1(Ol). Hencewan(l+Ev) ≤ wan(l). In
particular, for any Sn ⊂ X the inclusion Sn ∩ R(Ev, ZK ) ⊂ Sn admits a strong deformation
retract (by a similar argument as in the proof of Theorem 5.1.4(a), see also Lemma 11.9.2 in
[20]). Using this, inductively we proceed as follows. Let us order the vertices v1, v2, . . . , vs .
Then, all the inclusions of the next pairs induce isomorphisms at the lattice cohomology level:
R(Ev1 , ZK ) ⊂ X , R(Ev1 + Ev2 , ZK ) ⊂ R(Ev1 , ZK ), . . ., R(E, ZK ) ⊂ R(E − Evs , ZK ).
Hence (8.5.4) follows.

Finally, we verify the isomorphism

H
∗(X , wan) ∼= H

∗(R(0, ZK ), wan)/({0}). (8.5.5)

First, notice that for any cycle 0 < l ≤ E the ideal { f ∈ OX ,o : div(φ∗ f ) ≥ l} is the
maximal ideal mX ,o of OX ,o, hence h(l) ≡ 1, while h(0) = 0. Furthermore, h1(Ol) = 0 for
any 0 ≤ l ≤ E , hence wan,0(0) = 0 and wan,0(l) = 1 for any 0 < l ≤ E . Let C be the
closure of C and bC : C \ C . Notice that both C and bC are contractible.

Next, consider a level set Sn = Sn(wan,0) in R(0, ZK ). Then for n < 0 we have Sn ∩X =
Sn . For n = 0, S0 ∩X is obtained from S0 by eliminating the component {0}, which consists
of a single point. If n > 0 then Sn ∩X contains bC and Sn is obtained from Sn ∩X by gluing
C to Sn ∩ X along bC . Hence Sn ∩ X and Sn have the same homotopy type. Thus (8.5.5)
follows too. ��

9 Examples

9.1 In this section we provide some examples and concrete computations of the plurigenera.
For more information and concrete examples see e.g. [20, Sect. 6.8.D], [23] or [29].
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Example 9.1.1 [23, Corollary 4.19] or [20, Example 6.8.64]. Under the assumptions of
Remark. 7.2.2

γm − pg = dγm = −m(m − 1)

2
· Z2

K . (9.1.2)

This follows basically from the formula from Theorem 7.2.1(e) and the exact sequence

0 → O
˜X (−mZK ) → O

˜X (−ZK ) → O(m−1)ZK (−ZK ) → 0

and the vanishing h1(O
˜X (−mZK )) = 0 for any m ≥ 1.

The other terms dδm and dλm are more arithmetical.

Example 9.1.3 Assume that (X , o) is weighted homogeneous and Gorenstein. Assume that
the link is QHS3, a star shaped graph with central vertex E0 with Euler number −b and
Seifert invariants {(αi , ωi )}νi=1 (for notations and details see e.g. [20]). Define

r :=
(

2 −
∑

i

αi − 1

αi

)

/
(

− b +
∑

i

ωi

αi

)

.

Let R be its graded ring R = ⊕d≥0Rd . Then dimRd = max{0, 1 + N (d)}, N (d) =
db − ∑

i�dωi/αi�. Moreover, see e.g. [20, Example 6.8.62] or [29],

δm =
∑

d≤mr

dimRd , λm =
∑

d<mr

dimRd ,

Let us consider the following concrete example. Assume that b = 3, ν = 5 and each
(αi , ωi ) is (2, 1). In this case ZK = E+E0, hencem(ZK −E) � ZK . Moreover, Z2

K = −2.
The singularity is minimally elliptic with pg = 1. A computation gives γm − pg = dγm =
m(m − 1) (cf. (9.1.2)), and

δm =
{

m2+3
4 if m is odd,

m2+8
4 if m is even;

λm =
{

m2−2m+9
4 if m is odd,

m2−2m+4
4 if m is even.

In this case H
≥1
an,0 = 0, and H

0
an,0 = T +

0 ⊕ ({0}), where ({0}) is a free Z–module of rank 1
and of degree 0, with trivialU–action (as in Remark 8.5.2), cf. [20, Example 11.1.30]. Hence
in this case H

∗
an,0(X , o)/({0}) = T +

0 and H
∗((X , o), wλm ) = T +

0 [−2λm].
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