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ABSTRACT

This research aims to study the pullout resistance of a helical pile using three methods of machine
learning techniques, which are: random forest regression, support vector regression, and adaptive neuro-
fuzzy inference system, based on experimental results of a helical pile. The performance of these three
techniques has been d compared and the results show that random forest algorithm has best perfor-
mance than neuro-fuzzy inference system and support vector technique. The results show that machine
learning considered a good tool in terms of estimating the pullout resistance of helical piles in the soil.
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1. INTRODUCTION

In recent years, significant development and improvement have been observed in engineering
fields due to the use of modern computational methods and measurement techniques [1].
One of these fields in which these improvements have been noticed is the field of civil en-
gineering and geotechnical engineering [2, 3]. There are many types of deep foundations; one
of these types is helical piles (HPs), as they consist of a central shaft steel column with helix-
shaped plates, hence the name helical piles [4]. HPs are used to support building structures,
bridges, and other types of infrastructure because they provide bearing capacity and stability
for different types of structures and buildings [5]. HPs are also used in cases where traditional
deep foundation systems are not practical and feasible, like drilled columns and driven piles
for different soil conditions [6] and also used in commercial and residential properties and
areas with limited access and space [7]. HPs provide an alternative solution as a foundation
that provides good stability and is sufficient to resist horizontal stresses, compression and
tension [8]. The helical piles have received great attention from researchers studying their
behavior due to their stability and provide good performance in avoiding horizontal pres-
sures, compression and tension. In 2017, G. Spagnoli [8], improved a theoretical model to
analyze the bearing capacity and torque of HPs based on cone penetration testing to
determine the axial resistance of helical piles and predict the torque required for installation.,
various methods have been explored [9, 10]. To analyze and understand the behavior of
HPs, models of finite elements are widely used for this purpose [11–13]. The researchers
discussed different methods and approaches to verify pullout resistance (Pul), as it is one of
the important parameters for HPs for both piles and anchors [14–16]. The various soft
computing techniques, which represent a set of computational techniques designed to find
solutions and deal with incomplete, uncertain, or imprecise data for which it is difficult to
find solutions using traditional methods, are vastly used in various engineering fields [17–19].
Fuzzy logic [20], particle swarm optimization [21], neural networks [22], metaheuristic
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techniques [23] and genetic algorithms [24] are some soft
computing techniques commonly used in engineering fields.
In geotechnical engineering applications, it is widely used,
like designing stabilized earth walls [25], assessing landslide
and slope stability [26], predicting soil compression coeffi-
cient [27], modeling bearing capacity [28] and among
others. Within a mathematical framework, these techniques
can optimize the relationship between multiple parameters
[29], tailored to a specific problem. By taking a cost function,
these algorithms perform intricate computations to maxi-
mize/minimize this function. Na et al. [30] in 2016, utilized
the Harmony Search Algorithm (HSA) to optimally design
the material cost of HPs. The HSA was discovered to be an
effective approach for this objective, as it resulted in a cost
reduction of 27% [30]. The Adaptive Neuro-Fuzzy Inference
System (ANFIS) is a kind of Artificial Neural Network
(ANN) that combines the reasoning capabilities of fuzzy
logic and the learning abilities of neural networks to create a
hybrid intelligent system. ANFIS is used for modeling
complex systems where the relationships between inputs and
outputs are not well understood. It works by using a set of
input variables and a set of output variables to create a fuzzy
inference system. This system is then trained using a com-
bination of supervised and unsupervised learning algorithms
to adjust the parameters of the fuzzy logic rules to better
match the desired outputs [31]. Helical piles are widely used
in civil engineering for foundation construction due to their
unique properties, including ease of installation and excel-
lent load-bearing capacity. However, predicting the pullout
resistance behavior of helical piles is a complex and chal-
lenging problem, as it depends on a variety of factors like soil
properties, installation method, and pile geometry. In recent
years, machine learning techniques have emerged as a
promising tool for analyzing and predicting the behavior of
complex systems like helical piles. In this study, three ma-
chine learning methods - adaptive neuro fuzzy inference
system, random forest regression, and support vector
regression – have been applied to experimental results of a
helical pile, with the aim of evaluating their performance
and identifying the most effective approach for predicting
the pullout resistance behavior of helical piles. In this paper,
a comparative analysis of three machine learning methods -
adaptive neuro fuzzy inference system, random forest
regression, and support vector regression - is presented for
predicting the pullout resistance behavior of a helical pile.
The results show that random forest regression out-
performed the other two methods in terms of accuracy and
error values. This study provides valuable insights into the
potential of machine learning techniques for evaluating the
actions of helical piles in soil, and offers practical guidance
for engineers and researchers in this field.

2. MATERIALS AND METHODS

The pullout resistance of a helical pile, which is a type of
deep foundation, can be affected by various factors. These
include the type and characteristics of the soil, the geometry

and size of the helix plates, the spacing and orientation of
the plates [32], the geometry and size of the pile shaft, the
installation torque and method [33], the groundwater level
[34] and soil moisture content, the loading conditions and
magnitude, the depth of embedment, and environmental
factors such as temperature and corrosion [35]. All of these
factors can impact the performance of the helical pile in
terms of its ability to withstand axial or uplift loads
and therefore need to be carefully considered during the
design and installation process. In intelligent simulations,
the effective factors act as inputs for a target parameter, and
the network aims to capture their relationship and identify
any patterns. The current study utilizes the dataset provided
by Nazir et al. [36] for this purpose [36]. The embedment
ratio Rem of a helical pile is the depth-to-diameter ratio and
is an important design parameter that can affect the per-
formance of the helical pile. The embedment ratio can vary
depending on factors like the soil type, the loading condi-
tions, and the required capacity of the pile. A higher
embedment ratio generally results in a higher capacity of the
pile to resist axial or uplift loads, but may also increase the
installation difficulty and cost. The dataset analyzed in this
study includes 36 samples that record the Pul of helical piles,
as an independent variable, along with the embedment
ratio Rem, soil density class CSD, and shaft diameter ratio
ðRSD ¼ Db=DsÞ as input parameters affecting Pul as it is
shown in Fig. 1 where Ds is the central shaft diameter and
Db is the helical plate (flange) diameter.

Figures 2–5 display the changes in Rem, CSD, RSD, and Pul
respectively. The embedment ratio ranges from 0 to 5 with a
mean value of 2.5. The soil density class has two recorded

Fig. 1. Shaft diameter ratio in helical pile
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values of 85 and 35 kN m�3 that correspond to dense and
loose soils, respectively. The dataset consists of an equal
number of samples for both dense and loose soil types. The
shaft diameter ratio, follows a repeated pattern with the

values 0.3, 0.4, and 0.5, resulting in a total of 36 samples in
the dataset 6 3 23 3. The corresponding Pul values range
from 0 to 1622.47 N with an average of 376.8 N. It is
observed that the Pul values for dense soils are higher
compared to loose soils.

3. METHODOLOGY

Three models were formulated to analyze the performance
of the pullout resistance in this work including an adaptive
neuro-fuzzy inference system, random forest regression, and
support vector machine.

3.1. Adaptive neuro-fuzzy inference system

White [37] introduced the concepts of Generalized Regres-
sion Neural Network (GRNN) and Multi-Layer Perceptron
Neural Network (MLPNN) as two popular types of ANNs.
ANNs are computational models that mimic the functioning
of biological neural systems, as described by McCulloch and
Pitts [38] and Anderson and McNeill [39]. The key elements
of these networks are the neurons, which are interconnected
through synapses to process signals, as it is explained by Hu
and Hwang [40]. To establish a non-linear correlation be-
tween the inputs and targets, the data undergo a series of
operations across multiple layers. A GRNN comprises four
layers, specifically, the input layer, pattern layer, summation
layer, and output layer, as described by Xie et al. [41].
Conversely, an MLPNN has a minimum of three layers,
including the input layer, one or more hidden layer(s), and
the output layer, as stated by Hornik et al. [42]. In both the
GRNN and MLPNN, the number of neurons in the first and
last layers corresponds to the dimensions of the inputs and
targets, respectively. The number of neurons in the hidden
layer of the MLPNN is flexible and usually determined by
the user, whereas in the GRNN, the number of neurons in
the pattern layer matches the number of instances. In both
models, the primary computations are performed in the
middle layers, and the output neurons conduct a linear
calculation to produce responses. Further details on these
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Fig. 2. The embedment ratio
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Fig. 3. The soil density class
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Fig. 4. The shaft diameter ratio
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Fig. 5. Pullout resistance
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models can be found in various literature sources, such as
Seyedashraf et al. [43] and Ge et al. [44]. The ANFIS model,
introduced by Jang [45], combines the benefits of neural
networks and fuzzy logic, as noted by Moayedi et al. [46].
Fuzzy systems involve operations like fuzzification, a fuzzy
inference engine, and defuzzification, which are used to
transform crisp values into linguistic fuzzy variables for
entry into an inference engine. The fuzzy rules are applied to
these variables, and the resulting value is subjected to a
defuzzification process to convert the response back into
crisp values. The ANFIS is similar to ANNs in that it con-
sists of five layers, each of which performs a specific oper-
ation, including The ANFIS comprises five layers, with the
first layer, called the fuzzification layer, transforming crisp
inputs into fuzzy ones. In the implication layer, the ANN’s
weight functions are calculated, and the obtained weights are
normalized in the normalization layer. The fourth layer
carries out defuzzification, and the output is produced by the
neurons in the output layer, as explained by Alajmi and
Almeshal [47].

3.2. Random forest regression

Random Forest Regression (RFR) is widely utilized in ma-
chine learning for regression tasks and can be seen as an
advancement of the RFR, which is primarily used for clas-
sification tasks. In RFR, numerous decision trees are
generated, with each tree trained on a randomly chosen
subset of the data and features. Afterwards, the algorithm
consolidates the predictions from all the trees to produce the
final prediction. By decreasing the model’s variance, utilizing
RFR instead of a single decision tree can enhance the pre-
diction’s accuracy. This is achieved by reducing the over-
fitting of the model, which can be a common issue with
decision trees. RFR also has the ability to handle high-
dimensional data and non-linear relationships between the
features and the output. RFR is implemented in Python
using the scikit-learn library. To achieve the intended level
of accuracy, the model’s hyper-parameters, including the
number of trees and the number of features in each tree, can
be adjusted. Once the model has undergone training, it is
capable of making predictions on new data.

3.3. Support vector regression

Support Vector Regression (SVR) is a machine learning al-
gorithm used for regression tasks. It is based on the Support
Vector Machine (SVM) algorithm, which is primarily used
for classification tasks. SVR functions by identifying a hy-
perplane that best suits the data and maximizes the distance
between the hyperplane and the nearest data points. This
hyperplane is then used to make predictions on new data.
One of the advantages of using SVR is that it can handle
non-linear relationships between the features and the output
by using a kernel function. The kernel function maps the
data to a higher-dimensional feature space where it is easier
to find a hyperplane that separates the data points. SVR can
also handle outliers in the data by controlling the width of
the margin around the hyperplane. SVR is implemented in

Python using the scikit-learn library. The hyper-parameters
of the model, like the type of kernel function and the reg-
ularization parameter, can be tuned to achieve the desired
level of accuracy. Once the model is trained, it can be used to
make predictions on new data. Overall, SVR is a powerful
machine learning algorithm that is well-suited for regression
tasks, particularly when the data has non-linear relationships
between the features and the output. It can also handle
outliers in the data and can tune the level of complexity of
the model by controlling the width of the margin around the
hyperplane.

4. RESULTS AND DISCUSSION

The proposed models were implemented and evaluated us-
ing two types of data: training data and testing data. The
training data comprised 25 samples, while the testing data
contained 11 samples. The data were randomly permuted to
enable a random selection, and a 70:30 selection ratio was
applied, as stated in the text.

4.1. Indices used to evaluate accuracy

To evaluate the accuracy of both data groups, three widely
accepted criteria are employed. The first criterion used to
measure the prediction error for J samples is the Root Mean
Square Error (RMSE), as it is expressed in the following
equation,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

XJ

i¼1

½ðPul;iobservation � Pul;iestimation

��2
vuut : (1)

The values of Pul are estimated and expected using
Pul;iestimation and Pul;iobservation , respectively. The second measure
used for accuracy assessment is the Mean Absolute Error
(MAE) which is calculated on the base of Eq. (2),

MAE ¼ 1
J

XJ

i¼1

��Pul;iobservation � Pul;iestimation

��: (2)

4.2. Training and development

The ANFIS with adjustable parameters of its Membership
Functions (MFs) is fed by training data and during the training
procedure, the system attempts to optimize the tuning of the
MFs to capture the relationship between Pul and the inde-
pendent variables, Rem, CSD, and RSD. The ANFIS is optimized
over a total of 1000 iterations. The pullout resistance patterns
obtained in the laboratory and by predictive models is dis-
played in Fig. 6. It can be observed from the figure that all
models could accurately capture most of the Pul behavior.
Nevertheless, the random forest model outperformed the
others in predicting the maximum and minimum Pul.

4.3. Results of testing and comparison

During the second phase, the pullout was predicted for
new pile conditions, and as with the training phase, the
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performance of each network was evaluated using RMSE,
MAE, and PCC by comparing the predicted values to the
expected values. Figure 7 displays the difference between the
expected and predicted pullout resistance, which is referred
to as “Error”. The regression chart shows a high aggregation
of data points around the ideal line (i.e., x 5 0), and the
graph exhibits a higher frequency of small errors. These
results demonstrate the satisfactory performance of the
models used.

Based on Fig. 7, it can be concluded that all predicted
outputs have a high level of agreement with the laboratory
results over a specific domain of the dataset. However,
ANFIS has the worst performance while random regression
performed better than others.

5. CONCLUSIONS

Three machine learning were utilized to study the behavior
of the pullout resistance of a helical pile. Adaptive neuro-
fuzzy inference systems, random forest regression, and
support vector regression were employed to study and
analyze the experimental results of a helical pile. While the
adaptive neuro-fuzzy inference system performed well on

the training set, it had a deficiency on the test set. The
support vector technique has better performance than
the adaptive neuro-fuzzy inference system and worse
than the random forest algorithm. Overall, random forest
machine learning regression outperformed other methods
in this study and returns a good prediction state with
acceptable error values. Consequently, random forest
regression is highly recommended to represent complex data
of pile foundation analysis.
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