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Abstract—The surge in urbanization and the concomitant
growth of the urban population have exacerbated issues such as
traffic congestion and air pollution across cities globally. While
Intelligent Transportation Systems (ITS) offer promise for im-
proving urban mobility, existing solutions predominantly exhibit
limitations in scalability and adaptability, thus falling short in
delivering city-wide traffic management. This unaddressed gap
necessitates the development of a robust, scalable, and adaptive
system that can manage the intricacies of urban traffic. Our
work introduces CityAI, an automated, AI-driven framework
designed to operate on a city-wide scale. The system harvests data
from diverse sensing infrastructures, employing machine learning
algorithms to predict future traffic states and patterns. Fur-
thermore, it proposes real-time interventions, including adaptive
traffic light control and V2X-based solutions. The architecture
and components of CityAI not only incorporate state-of-the-art
techniques but are also applied in real-world environments. The
CityAI framework was implemented in the city of Pécs, Hungary,
as a proof-of-concept ITS system. The framework enables city
authorities to implement proactive measures, thus preventing
traffic issues before they manifest. The paper focuses on practical
development aspects of an ITS system undertaking R&D on new
technologies, applications, and techniques which may facilitate
future product development.

Index Terms—data analytics, Intelligent Transportation Sys-
tems, machine learning, traffic light control, vehicular commu-
nication

I. INTRODUCTION

THE escalating trend of urbanization across the globe
places enormous demands on existing infrastructure,

most significantly on road traffic management systems [1].
Challenges arising from this include elevated energy con-
sumption, increased air pollution, and an adverse impact on
the quality of life for city inhabitants [2], [3]. Intelligent
Transportation Systems (ITS) have emerged as promising tools
to mitigate these issues, incorporating technologies such as
machine learning, data analytics, and advanced communication
systems [4]–[7].

However, these ITS solutions commonly suffer from limita-
tions in their scope, scalability, and adaptability. They are often
tailored for specific segments of a city or particular use cases,
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thereby lacking the versatility required for comprehensive,
city-wide applications [8]–[10]. Additionally, the technical
complexity of these systems poses a significant barrier for
traffic operators who may not have expertise in data science
or software engineering. These shortcomings are further com-
pounded by regional and legal constraints such as stringent
data protection regulations.

This paper introduces the CityAI system, an innovative
ITS framework empowered by machine learning to achieve
scalable and adaptable management of urban traffic networks.
The aim of our work was to implement a proof-of-concept ITS
system that includes state-of-the-art technologies, techniques,
and applications that may facilitate future product develop-
ment by giving guidelines for technical system design. The
contributions of this work are as follows:

• it elucidates a novel approach for multi-modal transport
integration using machine learning,

• it develops an adaptive traffic prediction model that can
scale with the complexity of growing cities,

• it presents a comprehensive data-driven decision-making
process, enhanced by a diverse set of data sources, and

• it proposes an adaptive and resilient architecture capable
of real-time monitoring and rapid response to unforeseen
events.

• it introduces a real-life implementation of a proof-of-
concept ITS system deployed in the city of Pécs.

The remainder of this paper offers a comprehensive exposi-
tion of CityAI, focusing on its architecture and the function-
alities of its key components to provide an in-depth under-
standing of its capabilities and its potential role in shaping the
future of urban transportation management.

II. RELATED WORK

In recent years, significant advancements in ITS have been
driven by the integration of machine learning, data analytics,
and advanced communication systems. Existing solutions like
City Brain [11], developed by Alibaba Cloud and deployed
in cities such as Hangzhou (China) and Kuala Lumpur
(Malaysia), and European ITS software suites like Yunex
Traffic [12], an independent company specializing in intelli-
gent traffic systems after spinning off from Siemens Mobility,
and Urban Traffic Management (UTM) [13] by SWARCO
exemplify large-scale applications of artificial intelligence (AI)
in urban management. However, the specific details of these
systems’ AI-based methodologies remain sparse, highlighting
a gap in comprehensively documented, adaptive, and scalable
AI-driven traffic management solutions. This statement is
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Á. Huszák and L. Bokor are also with the HUN-REN-BME Cloud Appli-
cations Research Group, 1117, Magyar Tudósok krt. 2, Budapest, Hungary.

A. Pekar is also with the HUN-REN-BME Information Systems Research
Group, 1117, Magyar Tudósok krt. 2, Budapest, Hungary.

L. Tizedes with the HUN-REN-SZTAKI Machine Perception Research
Laboratory.
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also supported by collections of current V2X deployment
activities in recent surveys (e.g., [14], [15]) highlighting that
cooperative ITS solutions are in their early phases of adopting
AI technologies.

Traditional machine-learning approaches have been widely
applied to traffic forecasting and classification tasks using
roadside sensors. Methods such as Hidden Markov models,
gradient boosting regression trees, artificial neural networks,
decision trees, support vector machines, Gaussian mixture
models, and Bayesian networks have been successfully em-
ployed for short-term traffic prediction and travel time estima-
tion [16]–[19]. These foundational techniques, while effective,
often face challenges in scalability and adaptability for real-
time, city-wide applications.

Recent advances have shifted towards deep learning models
that capture spatial and temporal dependencies in traffic data.
Long Short-Term Memory (LSTM) neural networks, stacked
autoencoders, and fuzzy-based convolutional neural networks
have shown promise in improving prediction accuracy under
dynamic conditions [20]–[22]. Hybrid methods combining
neural networks with statistical or optimization approaches,
such as swarm intelligence and evolving fuzzy neural net-
works, further enhance the robustness and adaptability of
traffic flow models [23]–[26].

Recent studies have focused on incremental learning and
data stream processing techniques to address the growing
need for real-time traffic management. For instance, trajectory
clustering using hyperdimensional computing and smart traffic
management platforms leveraging online incremental machine
learning represent efforts to detect and adapt to real-time
changes in traffic patterns [27], [28]. These approaches under-
score the importance of handling the dynamic and streaming
nature of urban traffic data.

Despite these advancements, many ITS solutions remain
limited by their specificity to particular urban segments or
technical complexities that hinder broader applicability. CityAI
addresses these gaps by proposing a comprehensive, data-
driven, and adaptive ITS framework that integrates multi-
modal transport data, supports scalable traffic prediction mod-
els, and enables real-time monitoring and rapid response to
urban traffic dynamics.

III. SYSTEM ARCHITECTURE

The architecture of CityAI is intricately designed to fa-
cilitate a comprehensive traffic management solution. It is
organized around three major functional components, aligning
with the focus of the upcoming sections: Data Collection
(Section IV), Data Analytics (Section V), and Informed Traf-
fic Governance and Visualization (Section VI). A schematic
representation of the architecture is depicted in Fig. 1. In
the following subsections, these functional groups are briefly
overviewed. Detailed discussions concerning individual sys-
tem components will be presented in subsequent sections.

Data Collection
Data Collection is primarily concerned with the acquisition
and preprocessing of data. This functional group incorporates
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Fig. 1. CityAI general architecture, aligned with the thematic components
of Data Collection, Data Analytics, and Informed Traffic Governance and
Visualization.

modules such as the Sensor Hub, which takes responsibility
for data collection, standardization, and forwarding.

Data Analytics
This functional group is tasked with intensive computational
activities. It includes the Machine Learning and Data Lake
modules, which engage in complex data analysis, traffic pat-
tern recognition, and actionable insight generation.

Informed Traffic Governance and Visualization
This functional group is devoted to the effective application
of acquired knowledge and insights for a range of tasks.
These tasks include real-time traffic management, network
optimization, and enhanced visualization. The analytics from
the Data Analytics group are transformed into actionable
interventions and also channeled into a visual interface for
a more holistic understanding of urban mobility patterns.

IV. DATA COLLECTION

Data collection is one of the crucial elements of an ITS
architecture, which produces the required input for all other
modules of the system. Although the Sensor Hub module
allows different data sources, such as meteorological stations
and mobile application data (crowd sensing), in the deployed
CityAI framework, three different real-time data sources are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

also supported by collections of current V2X deployment
activities in recent surveys (e.g., [14], [15]) highlighting that
cooperative ITS solutions are in their early phases of adopting
AI technologies.

Traditional machine-learning approaches have been widely
applied to traffic forecasting and classification tasks using
roadside sensors. Methods such as Hidden Markov models,
gradient boosting regression trees, artificial neural networks,
decision trees, support vector machines, Gaussian mixture
models, and Bayesian networks have been successfully em-
ployed for short-term traffic prediction and travel time estima-
tion [16]–[19]. These foundational techniques, while effective,
often face challenges in scalability and adaptability for real-
time, city-wide applications.

Recent advances have shifted towards deep learning models
that capture spatial and temporal dependencies in traffic data.
Long Short-Term Memory (LSTM) neural networks, stacked
autoencoders, and fuzzy-based convolutional neural networks
have shown promise in improving prediction accuracy under
dynamic conditions [20]–[22]. Hybrid methods combining
neural networks with statistical or optimization approaches,
such as swarm intelligence and evolving fuzzy neural net-
works, further enhance the robustness and adaptability of
traffic flow models [23]–[26].

Recent studies have focused on incremental learning and
data stream processing techniques to address the growing
need for real-time traffic management. For instance, trajectory
clustering using hyperdimensional computing and smart traffic
management platforms leveraging online incremental machine
learning represent efforts to detect and adapt to real-time
changes in traffic patterns [27], [28]. These approaches under-
score the importance of handling the dynamic and streaming
nature of urban traffic data.

Despite these advancements, many ITS solutions remain
limited by their specificity to particular urban segments or
technical complexities that hinder broader applicability. CityAI
addresses these gaps by proposing a comprehensive, data-
driven, and adaptive ITS framework that integrates multi-
modal transport data, supports scalable traffic prediction mod-
els, and enables real-time monitoring and rapid response to
urban traffic dynamics.

III. SYSTEM ARCHITECTURE

The architecture of CityAI is intricately designed to fa-
cilitate a comprehensive traffic management solution. It is
organized around three major functional components, aligning
with the focus of the upcoming sections: Data Collection
(Section IV), Data Analytics (Section V), and Informed Traf-
fic Governance and Visualization (Section VI). A schematic
representation of the architecture is depicted in Fig. 1. In
the following subsections, these functional groups are briefly
overviewed. Detailed discussions concerning individual sys-
tem components will be presented in subsequent sections.

Data Collection
Data Collection is primarily concerned with the acquisition
and preprocessing of data. This functional group incorporates

D
at

a 
an

al
yt

ic
s

D
at

a 
co

lle
ct

io
n Data sources

• Traffic cameras
• Public transport OBU
• V2X data collection
• Meteorological stations
• Mobile crowdsensing
• Inductive loops
• Traffic lights programs
• National Access Point

Sensor Hub 
module

D
at

a 
co

lle
ct

io
n Data sources

• Traffic cameras
• Public transport OBU
• V2X data collection
• Meteorological stations
• Mobile crowdsensing
• Inductive loops
• Traffic lights programs
• National Access Point

Sensor Hub 
module

In
fo

rm
ed

 T
ra

ffi
c 

G
ov

er
na

nc
e 

& 
Vi

su
al

iz
at

io
n

R
ea

l-t
im

e 
tra

ffi
c 

lig
ht

 c
on

tro
l

Pu
bl

ic
 tr

an
sp

or
t 

co
nt

ro
l

V2
X 

co
m

m
un

ic
at

io
n

M
ob

ile
 a

pp
lic

at
io

n 
fo

r c
iti

ze
ns

C
on

ne
ct

ed
 c

ar
s 

pl
at

fo
rm

 
in

te
gr

at
io

n

In
fo

rm
ed

 T
ra

ffi
c 

G
ov

er
na

nc
e 

& 
Vi

su
al

iz
at

io
n

R
ea

l-t
im

e 
tra

ffi
c 

lig
ht

 c
on

tro
l

Pu
bl

ic
 tr

an
sp

or
t 

co
nt

ro
l

V2
X 

co
m

m
un

ic
at

io
n

M
ob

ile
 a

pp
lic

at
io

n 
fo

r c
iti

ze
ns

C
on

ne
ct

ed
 c

ar
s 

pl
at

fo
rm

 
in

te
gr

at
io

n

Traffic Control Center 
for city traffic operators

Machine Learning 
module

Data Lake
module

Fig. 1. CityAI general architecture, aligned with the thematic components
of Data Collection, Data Analytics, and Informed Traffic Governance and
Visualization.

modules such as the Sensor Hub, which takes responsibility
for data collection, standardization, and forwarding.

Data Analytics
This functional group is tasked with intensive computational
activities. It includes the Machine Learning and Data Lake
modules, which engage in complex data analysis, traffic pat-
tern recognition, and actionable insight generation.

Informed Traffic Governance and Visualization
This functional group is devoted to the effective application
of acquired knowledge and insights for a range of tasks.
These tasks include real-time traffic management, network
optimization, and enhanced visualization. The analytics from
the Data Analytics group are transformed into actionable
interventions and also channeled into a visual interface for
a more holistic understanding of urban mobility patterns.

IV. DATA COLLECTION

Data collection is one of the crucial elements of an ITS
architecture, which produces the required input for all other
modules of the system. Although the Sensor Hub module
allows different data sources, such as meteorological stations
and mobile application data (crowd sensing), in the deployed
CityAI framework, three different real-time data sources are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

also supported by collections of current V2X deployment
activities in recent surveys (e.g., [14], [15]) highlighting that
cooperative ITS solutions are in their early phases of adopting
AI technologies.

Traditional machine-learning approaches have been widely
applied to traffic forecasting and classification tasks using
roadside sensors. Methods such as Hidden Markov models,
gradient boosting regression trees, artificial neural networks,
decision trees, support vector machines, Gaussian mixture
models, and Bayesian networks have been successfully em-
ployed for short-term traffic prediction and travel time estima-
tion [16]–[19]. These foundational techniques, while effective,
often face challenges in scalability and adaptability for real-
time, city-wide applications.
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representation of the architecture is depicted in Fig. 1. In
the following subsections, these functional groups are briefly
overviewed. Detailed discussions concerning individual sys-
tem components will be presented in subsequent sections.

Data Collection
Data Collection is primarily concerned with the acquisition
and preprocessing of data. This functional group incorporates
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Fig. 1. CityAI general architecture, aligned with the thematic components
of Data Collection, Data Analytics, and Informed Traffic Governance and
Visualization.

modules such as the Sensor Hub, which takes responsibility
for data collection, standardization, and forwarding.

Data Analytics
This functional group is tasked with intensive computational
activities. It includes the Machine Learning and Data Lake
modules, which engage in complex data analysis, traffic pat-
tern recognition, and actionable insight generation.

Informed Traffic Governance and Visualization
This functional group is devoted to the effective application
of acquired knowledge and insights for a range of tasks.
These tasks include real-time traffic management, network
optimization, and enhanced visualization. The analytics from
the Data Analytics group are transformed into actionable
interventions and also channeled into a visual interface for
a more holistic understanding of urban mobility patterns.

IV. DATA COLLECTION

Data collection is one of the crucial elements of an ITS
architecture, which produces the required input for all other
modules of the system. Although the Sensor Hub module
allows different data sources, such as meteorological stations
and mobile application data (crowd sensing), in the deployed
CityAI framework, three different real-time data sources are

Fig. 1. CityAI general architecture, aligned with the thematic components 
of Data Collection, Data Analytics, and Informed Traffic Governance and 

Visualization.



An AI-Driven Intelligent Transportation System: 
Functional Architecture and Implementation

SEPTEMBER 2024 • VOLUME XVI • NUMBER 320

INFOCOMMUNICATIONS JOURNAL

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

used currently: traffic cameras, public bus trajectories, and
V2X information.

A. Traffic Cameras

The CityAI systems modules rely on estimated statistical
information regarding vehicle traffic (speed, flow, occupancy)
in urban environments by processing the images of preinstalled
cameras. It is worth mentioning that the primary aim of these
PTZ (pan-tilt-zoom) surveillance cameras - owned by the local
authority of Pécs - is to ensure public safety. The position
and view angle of the cameras made it very challenging to
use them for traffic monitoring. Therefore, the system applied
in this work has different characteristics from speed, flow,
and occupancy (SFO) information extracted by standard traffic
monitoring camera systems [29]. Here, we used cameras from
a pre-installed network of urban surveillance cameras with
preset positions that monitor only a particular section of the
traffic path at a time. Due to preset changes, only periodical
data acquisition from the monitored area was possible during
intervals when the surveillance camera preset was monitoring
a particular section. Also, an automatic detection algorithm
was needed to determine the camera’s current preset position.

1) Implementation of the system: After evaluating the data
from the preliminary tests, our design choice was to use a
distributed system architecture, where we deployed NVIDIA
Jetson Nano embedded computers to process each camera
image locally (cf. Fig. 2). In the processing pipeline, incoming
camera images are pre-processed to determine which preset the
camera is currently in, and then the Yolo neural network [30],
[31] is applied to detect the objects visible in the image.
After filtering by class, the vehicle object (auto, bus, truck,
motorcycle) instances are fed into a tracker module to establish
which objects in the current frame correspond to past object
displacements. The camera image is calibrated to the real-
world scene since we measured the projection of the camera
image onto the road surface plane using the homography
transformation [32]. Using this information, the speed of the
tracked objects is computed by counting the pixel displace-
ment on consecutive images. Also, we have set trigger and
occupancy zones on the images. Therefore, using these zones
one can calculate the SFO [33], [34] values of the passing
objects as follows:

Speed is the current specified object speed for a given trigger
zone (cf. Fig. 3).

Speed =
sc
tf
, (1)

where sc is the distance the center of the same object in two
consecutive calibrated frames, tf is the time that has passed
between taking two consecutive frames.

Flow =
d

t
· tp, (2)

where d is the numbered tracked objects belonging to the
given trigger zone, t is the elapsed time (end of measurement
- start of measurement), and tp is the Flow time window rate
(a multiplier calculated from the preset cycle time).

The occupancy statistical information is calculated using
the occupancy zones shown in Fig. 4. The occupancy is the

Fig. 2. Image processing data flow.

Fig. 3. The used trigger zones.

median value of the velocity of the objects within the zone
divided by the number of objects at a time instant. Namely,

Occupancy =
n

Medni=0vi
, (3)

where n is the number of objects (the number of vehicles in
the occupancy zone at the moment of the measured time), vi
is the speed of the i-th object, and Medni=0vi is the median
speed of n objects. The calculated value is normalized between
0 and 100. The value is 0 if there is no traffic and 100 if the
band is saturated. If the median speed is 0 and n is greater
than 0, then a value of 100 is transmitted.

The data measured by the distributed Jetson Nanos are
aggregated and periodically transmitted to higher-level com-
ponents of the system for processing. Data communication
relies on stream processing, utilizing a distributed streaming
platform for efficient data ingestion through message queuing.
This approach effectively manages data streams and promotes
seamless communication between various system components.
Asynchronous information transmission enables real-time pro-
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cessing and analysis of data as it is generated. Additionally,
the streaming platform ensures load balancing and load sharing
for ingested data, boosting the system’s scalability and fault
tolerance.

The algorithm was tested under various weather and lighting
conditions to assess the performance of the automatic SFO
measurement system. We manually counted the number of
vehicles across different time intervals to compare with the
automated measurements. The evaluation was conducted at
eight different measurement locations. Under daylight and
favorable lighting conditions, there was no significant discrep-
ancy between the manual and automated counts. However, in
low visibility conditions, such as rain and twilight, an error
margin of approximately 5-10% was observed, varying by
location. The error primarily stemmed from the algorithm
undercounting vehicles compared to manual counts. Addition-
ally, the camera’s viewing angle relative to the road had a
minor influence on the algorithm’s accuracy. The system also
considers real-time weather data during operation. The error
introduced by weather conditions and twilight can be mitigated
by applying compensatory estimation values (5-10%) when
making traffic decisions.

B. Public Transport Trajectories

The advancements in technology have led to an increase
in the capabilities of in-vehicle sensors and on-board units,
allowing them to collect and periodically report trajectory
data [35], [36]. A vehicle trajectory, defined as the path
generated by a moving vehicle in space [37], is recorded
by vehicle trajectory data, which captures the movement of
individual vehicles [38]. These trajectory data have become a
crucial element in modern traffic management [39]. However,
the collection of diverse data still poses a challenge due to
factors such as privacy concerns and the administration of
sensors by different entities.

Our system currently employs bus trajectories to improve
traffic flow forecasting and congestion detection. Specifically,
we utilize the trajectories of public buses operating in the city
of Pécs, Hungary’s 5th largest city. The buses are operated by
TükeBusz Zrt., the local public transport service provider. At
the time of system implementation, the company operated 202
buses on a 300 km network. The on-board units installed in
the buses periodically collect and record various data. These

data are then transmitted to a remote collection unit which
forwards it to our system in a comma-separated format.

C. Vendor-independent V2X information collec-
tion/dissemination sub-system

The purpose of our proposed CityAI framework’s V2X-
based data collection and intervention modules is twofold. On
the one hand, it aims at implementing standardized vehicular
data exchange to support dynamic, adaptive, and fine-grained
information gathering and dissemination tasks in the ITS
domain. On the other hand, it provides solution portability
by ensuring that the implementation works independently
from the V2X device manufacturer’s application programming
interface and other vendor-specific details, making information
exchange of data collection and intervention both feasible in
a generic manner, independently of V2X implementations.

Our V2X sub-system is to be able to store and process
the data generated by on-board and road-side units - the two
basic infrastructure elements of vehicle communication – and
present the resulting data set to other processing components in
the framework. The proposed solution can act as an integration
point in any complex ITS architecture where vehicular com-
munication is considered: it converts manufacturer-specific
V2X data into a vendor-independent format, creates/maintains
connection with other backend components, and performs
further data conversion so that the connected modular elements
can easily process the data in a bidirectional way. Fig. 5 shows
the general architecture of the V2X sub-system, highlighting
the integration links and the most essential modules briefly
introduced below.

• On-board Unit (OBU): its communication relies on CAM
(Cooperative Awareness Message) and DENM (Decen-
tralized Environmental Notification Message) services,
which the RSU (Road Side Unit) receives and forwards
to the data management component.

• Human Machine Interface (HMI): it can trigger various
DENM messages and display the received traffic/accident
information using the Google Maps API.

• Road-side Unit (RSU): RSUs forward the data received
from the OBU to the centralized, vendor-independent data
management component. We added a particular module
to the RSU to help this operation by converting the
manufacturer-specific data representation into general,
device-independent data models.

• V2X Dashboard: to visualize the data of the V2X sub-
system for testing, evaluation, and demonstration pur-
poses, we have implemented a web dashboard interface
that displays the received CAM and DENM messages and
their explicit content (cf. Fig. 5)

• Traffic Control Center V2X interfaces: data can be sent
and received through the Stream Processing module and
also the REST services offered by the TCC implementa-
tion. The V2X sub-system can integrate with the dispatch
center through both available interfaces.

• Vendor-independent data management framework mod-
ule: the central component of the V2X sub-system
realizes the data management functions of device-
independent facilities-layer protocol data models of CAM
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independent facilities-layer protocol data models of CAM
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poses, we have implemented a web dashboard interface
that displays the received CAM and DENM messages and
their explicit content (cf. Fig. 5)

• Traffic Control Center V2X interfaces: data can be sent
and received through the Stream Processing module and
also the REST services offered by the TCC implementa-
tion. The V2X sub-system can integrate with the dispatch
center through both available interfaces.

• Vendor-independent data management framework mod-
ule: the central component of the V2X sub-system
realizes the data management functions of device-
independent facilities-layer protocol data models of CAM
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Fig. 5. Proof-of-concept implementation of the V2X sub-system.

and DENM, corresponding to the standards. It imple-
ments the device-independent, Apache AVRO scheme-
based data models designed for the framework. It also
provides the interfaces to related systems so that they
can access the device-independent V2X data. Using these
interfaces, the converter middleware implemented in the
RSU can create data and provide data to other systems
through them.

V. DATA ANALYTICS

The raw data gathered by different sensors must be unified
and pre-processed to make it adaptable for data analytics and
other services. The main modules that handle the incoming
data flows and make it available for other CityAI modules are
the Stream Processing-, Machine Learning-, and Data Lake
modules.

A. Stream Processing Module

Sensor data, originating from an array of sources and
devices, is transmitted in various formats. The high speed,
volume, and diversity of these data types render traditional
processing methods, such as batch-based approaches, ineffi-
cient, unscalable, and unreliable.

Stream processing [40] offers an innovative technique
for the effective extraction and analysis of heterogeneous
data. This method perceives data as continuous, never-ending
streams and boasts the primary advantage of immediate data
processing upon availability. Stream processing alleviates the
burden on storage systems by requiring minimal resources
through real-time data processing, enabling the extraction

of valuable features on the fly without requiring extensive
measurement data storage.

Several solutions exist in this context, encompassing mes-
sage brokers, Pub/Sub services, WebSocket, event-driven ar-
chitecture, and reactive programming. However, we have cho-
sen Apache Kafka1 as CityAI’s backbone. As a reliable, scal-
able, and high-throughput message broker, Kafka adeptly man-
ages substantial data stream volumes with minimal latency.
Furthermore, Kafka offers robust fault tolerance, message
ordering, and real-time data processing capabilities, rendering
it an exemplary choice for constructing a complex system such
as an intelligent transportation system.

Data from disparate sources are stored in distinct Kafka
topics. Kafka Producer applications or Kafka Source con-
nectors write data into these topics, while Kafka Consumer
applications or Kafka Sink connectors read data from them.
We also employ Kafka Stream applications to execute data
pre-processing for the system’s other components.

In conclusion, leveraging Apache Kafka has enabled us to
develop a high-performance and dependable proof-of-concept
system.

B. Machine Learning Module
The main goal of the CityAI Machine Learning module

(MLM) is to obtain valuable information from the gathered
raw traffic data (originating from the city’s traffic sensing
infrastructure) with machine learning-based prediction and
anomaly detection algorithms [41]. It communicates with the
Stream Processing and the Data Lake modules, the former pro-
vides the raw real-time traffic data, and it helps to disseminate

1https://kafka.apache.org
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the information produced by the MLM. The latter has a role
in model training and visualization of the traffic data, as it
provides the historical data for the MLM.

Fig. 6 shows the components of the Machine Learning
module. As mentioned above, due to the architecture of
the system, the MLM communicates directly only with the
Stream Processing and the Data Lake modules. Based on the
timing of the communication between the modules, we can
distinguish between real-time and demand-driven communi-
cation. The MLM accesses the stored/historical data that is
required through the DataLakeInterface. Historical data are
used for training and monitoring the prediction models. It
is worth mentioning that the data is not needed all the time
but is frequently accessed because of its multiple uses. The
MLM accesses the required real-time data streams through the
StreamProcessingInterface. Real-time data are used for real-
time traffic behavior identification, forecasting, and outlier de-
tection. The data is received asynchronously and continuously
at varying frequencies, which are subsequently resampled and
sent in uniform time units.

The MLM consists of three main blocks:

• Apache Flink Cluster, where real-time functionalities are
executed. These functionalities are defined as separate
Flink jobs, and their current states can be monitored
through a Web Dashboard. Our choice of Apache Flink
was driven by the unique demands of our use case. It pro-
vides an optimal combination of performance, scalability,
and compatibility features that best meet our project
requirements. Additionally, implementing the cluster us-
ing Flink ensures seamless integration with the Apache
ecosystem, including Kafka.

• Monitoring Component, which offers a platform for track-
ing prediction tasks and models. This component enables
the training of new models or the retraining of existing
ones as needed.

• ModelServing Component, which oversees prediction
tasks, stores trained models, and provides access to them.

By integrating these three components, the MLM can serve
the city traffic operators in the traffic management process with
several crucial functionalities. As discussed in Section I, the
technical complexity of management systems poses a signifi-
cant barrier for traffic operators who may not have expertise
in data science or software engineering. Therefore, it is imper-
ative that this module pre-processes the raw traffic data and
complements missing or flawed measurements automatically.

It can provide real-time traffic state predictions for different
road sections and time horizons, which helps traffic operators
plan interventions on time. The traffic state predictions appear
in the control center, together with intervention suggestions
generated by artificial intelligence-based solutions. However,
the final decision about the type and volume of the intervention
is made by humans, only the suggestion is generated by AI,
which leaves control in the hands of the central authority.

A special type of prediction focuses on traffic congestion.
The first phase of the congestion is recognized by anomaly
detection algorithms, which are trained to find these specific
patterns in the traffic times series. This way, the detection time
can be kept low, and the intervention can be made on time,
before the initial congestion evolves into a traffic jam, on a
wider scale.

The Monitoring Component is crucial to have a constant
measurement of the precision of the above-mentioned predic-
tion models. The city infrastructure and, therefore, the traf-
fic patterns change dynamically (e.g., closing/opening lanes,
building new roads, maintenance works, and mass events).
Thus, if the utilized models are not precise enough, they should
be retrained with the novel traffic time series, the module
does it automatically. Another useful feature of the module
is that it uses public transport data to make predictions more
precise. Furthermore, it can provide predictions of the arrival
and departure times of public transport vehicles for passengers.

In our proof-of-concept, we validated multiple machine
learning algorithms using a comprehensive dataset collected
from the city’s traffic sensing infrastructure. After comparing
their performance on various prediction horizons, we chose
XGBoost and SVM as our top selections. For instance, we
evaluated the models’ performance at short intervals, such
as one or two minutes, and longer intervals, such as days.
Depending on the SFO input data, the algorithms performed
very similarly, with the only discrepancies appearing across
different prediction horizons.

For the learning process, we divided the dataset into training
and validation subsets, using a 70/30 split. We trained the
models on the training set and validated their performance
on the validation set. During the training phase, we applied
techniques such as cross-validation and hyperparameter tuning
to optimize the performance of each algorithm.

We assessed the performance of the selected models using
metrics such as mean absolute error (MAE), mean squared
error (MSE), and coefficient of determination (R-squared).
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These metrics helped us to continuously monitor the models’
precision through the Monitoring Component, allowing us to
retrain them whenever necessary. This ensured that our system
remained up-to-date and capable of delivering reliable traffic
predictions.

C. Data Lake Module
The main function of our Data Lake [42] component is to

consolidate data from multiple sources in a single location,
enabling the exploration of complex relationships between data
from different sources. It receives data from the corresponding
topics in the Stream Processing module, writes them to the
Data Lake tables corresponding to the topic, and indexes
them. In our prototype implementation, the Machine Learning,
Traffic Management, and Dispatch Center components are
directly linked for data retrieval, providing a central repository
that is accessible to various applications.

Our Data Lake design comprises of two main components:
a data warehouse optimized for efficient data insertion and
storage and an indexed data warehouse that supports dynamic
data retrieval. The former is implemented using Cassandra2,
and the latter uses ElasticSearch3. Additional tools such as
event monitoring, alerting, and data archival were also inte-
grated into the solution to enhance its functionality.

The primary concern in the design of the Data Lake
connectivity was data security and consistency. Write oper-
ations are performed indirectly through the Stream Processing
component. To achieve this, corresponding Kafka Consumers
were developed, which connect to the topics, transform the
messages published in these topics, and write them into the
database. The data written into the database are subsequently
indexed.

We differentiate between two distinct methods of data
reading. Read operations are primarily performed by directly
connecting to the relevant data store and executing native
queries. Currently, there is no abstraction layer or proxy for
data querying. Instead, a data warehouse solution is utilized to
retrieve specific stored data based on unique identifiers or other
predefined (indexed) fields. The second method of querying
data is through Kafka, where the desired data can be obtained
using appropriate Kafka Source components.

VI. INFORMED TRAFFIC GOVERNANCE AND
VISUALIZATION

The section discusses how the different types of data flows
and AI-based predictions can be used for interventions and
value-added services. Within the CityAI system, we deployed
a pilot implementation of reinforcement learning-based traffic
light control and introduced a traffic data dissemination service
based on V2X and public transport congestion detection
service using incremental learning.

A. Reinforcement Learning-based Traffic Light Control
An advantage of reinforcement learning-based traffic light

control approaches over conventional signal control tech-
niques, such as traffic theory-based and heuristic methods, is

2https://cassandra.apache.org
3https://www.elastic.co/elasticsearch/

that it does not rely on pre-defined rules but learns the ap-
propriate actions based on the feedback they receive from the
observations. The adoption of reinforcement learning for traffic
signal control has become very popular recently. Finding the
appropriate formulation of states and rewards is crucial to
achieving training stability and providing rapid convergence to
derive the best policies [43]. Several survey papers were pub-
lished [44]–[47] that categorize hundreds of research papers in
this field. According to the results overviewed in these papers,
reinforcement learning has shown superior performance over
conventional methods. Although, the performance of these
solutions was investigated in a simulated environment that was
SUMO traffic simulator in most of the cases. Although some
of the papers investigate real-world scenarios, such as [48], to
the best of our knowledge, there are no reinforcement learning-
based traffic light control approaches implemented in real-life
environments.

To make interventions in the traffic, we used reinforcement
learning as a goal-oriented machine learning technique, which
can learn how to attain a complex objective and maximize
along a particular dimension. The approach is concerned with
how the agent should take action in the current state of the
environment and maximize the overall reward gained. To make
the method successful, a lot depends on how the action,
the state of the environment, and the reward function are
constructed.

The uniqueness of our RL-based traffic control method is
that it was deployed in real life as a proof-of-concept solution.
Therefore, our hands were tied, and we had to adapt to
the existing conditions when defining the environment states
reward function, and possible actions. The Hungarian road
operator allowed us to run our RL-based scheme in one
specific junction in the downtown of Pécs, on the main road
that crosses the city. The Rákóczi rd. - Alsómalom rd. junction
(Fig. 7) is part of a green-wave traffic control system that
significantly limits the allowed signal program changes. Also,
the Swarco ACTROS traffic light controller and the traffic
management system used by the road operator made it not
possible to dynamically create and upload new signal programs
in run-time. Instead, only pre-defined and previously uploaded
signal programs to the controller can be activated. Moreover,
the signal program slots in the controller are also limited. Due
to all of these restrictions, the road operator allowed four
additional signal programs as modifications of the original
one. In these programs, the start time and end time of the
green phase were modified by ±2 seconds, respectively. E.g.,
in the allowed signal programs, the green phase of signal
group J1 can be in the 24-78, 24-76, 22-78, 22-80, and 20-
80 seconds time ranges, while the cycle time is constantly
Cl = 105 s. Fig. 7 shows the traffic light program for the
first example (J1 green phase: 24-78 s). The action of our
reinforcement learning-based approach was to select one of
the five available traffic light programs. Moreover, the system
used by the Hungarian road operator also limited the frequency
of program changes to one program change every 15 minutes.
Due to all these limitations we had to adapt, we can declare
that the allowed traffic light program changes are only enough
to fine-tune the current traffic light setup, but not sufficient to



An AI-Driven Intelligent Transportation System: 
Functional Architecture and Implementation

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 25

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

make fundamental changes in the traffic flow.
In a real-life environment, the accuracy of deployed sensors

is also limited. Moreover, in the case of traffic cameras, it can
vary due to weather conditions and light intensity. In our pilot
system, surveillance cameras were used to measure the speed
[km/h], road occupancy [%], and flow [vehicle/hour] metrics.
The camera observation zones in the controlled intersection
are presented in Fig. 7. These PTZ (pan-tilt-zoom) cameras
were deployed to ensure security for citizens and not for traffic
monitoring purposes. Therefore, the perspective was not ideal,
and only the flow values were reliable enough to be used as
the state descriptor for the reinforcement learning algorithm.
Although, the image processing module was able to distinguish
and separately monitor the lanes’ traffic, the measured values
for lanes having the same direction were merged. The merged
observation zones are illustrated with the same color code in
Fig. 7. In order to conceal the variations of the measured
speed (v) values, moving average with 15 minutes window
size was deployed to determine the state (st) used as input for
the reinforcement learning agent.

st = {v1, v2, v3, v4, v5, v6} (4)

The reward function plays a significant role in the learning
phase, while during the execution of the learned model, it
is used only for monitoring purposes. There are two main
methods to learn the model for real-life control: (i.) the
actions are performed in the real environment, (ii.) a simulated
environment is used.

In the first case, the determined actions can be more accurate
and effective, but on the other hand, the learning phase is
quite challenging. The reason is that the performed actions
during the learning phase can be random and lead to unwanted
situations. Traffic control is very sensitive from this aspect
because we can not afford to cause traffic jams during the
training phase.

The only option we had was to use a simulated environment
to learn the agent and later use it for real-life traffic signal
control. Therefore, we modeled not just the specific junction
controlled by the reinforcement learning agent but also several
neighboring junctions on the main road that crosses the city of
Pécs, as illustrated in Fig. 8. Including neighboring junctions
in the simulated environment was necessary because our aim

was to achieve global improvement in the traffic flow and not
just in the controlled intersection. Moreover, we had to take
the pre-configured signal programs of other intersections into
account in order not to disrupt the green-wave provision. The
objective of the reward function was to maximize the average
speed of the vehicles in the region of all nine intersections
shown in Fig. 8. The simulation of the environment was
performed in SUMO [49] by setting up traffic demands based
on validated O-D (Origin-Destination) trip tables provided by
the road operator.
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Fig. 8. SUMO simulation of the main road traffic in the center of Pécs.

In order to make the environment compatible with different
reinforcement learning-related Python packages, we used the
OpenAI Gym framework to create the SUMO-based environ-
ment. Although the real-life reinforcement learning-based traf-
fic light control was demonstrated in a single intersection, the
implemented environment also supports multiple intersection
control using multi-agent reinforcement learning techniques.
There are several reinforcement learning algorithm packages
available (e.g., KerasRL, Tensorforce, and StableBaselines3),
but currently, only RLlib has multi-agent support. Moreover,
RLlib is actively maintained, has a large community, and
also offers other advanced features, such as hyperparameter
optimization and action masking. We tested the performance
of different algorithms, such as PPO, A3C, and PG, but the
best results were achieved by DQN. The DQN model was
trained for 40 simulated days in the SUMO environment. The
trained DQN model was deployed in the CityAI domain and
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make fundamental changes in the traffic flow.
In a real-life environment, the accuracy of deployed sensors

is also limited. Moreover, in the case of traffic cameras, it can
vary due to weather conditions and light intensity. In our pilot
system, surveillance cameras were used to measure the speed
[km/h], road occupancy [%], and flow [vehicle/hour] metrics.
The camera observation zones in the controlled intersection
are presented in Fig. 7. These PTZ (pan-tilt-zoom) cameras
were deployed to ensure security for citizens and not for traffic
monitoring purposes. Therefore, the perspective was not ideal,
and only the flow values were reliable enough to be used as
the state descriptor for the reinforcement learning algorithm.
Although, the image processing module was able to distinguish
and separately monitor the lanes’ traffic, the measured values
for lanes having the same direction were merged. The merged
observation zones are illustrated with the same color code in
Fig. 7. In order to conceal the variations of the measured
speed (v) values, moving average with 15 minutes window
size was deployed to determine the state (st) used as input for
the reinforcement learning agent.

st = {v1, v2, v3, v4, v5, v6} (4)

The reward function plays a significant role in the learning
phase, while during the execution of the learned model, it
is used only for monitoring purposes. There are two main
methods to learn the model for real-life control: (i.) the
actions are performed in the real environment, (ii.) a simulated
environment is used.

In the first case, the determined actions can be more accurate
and effective, but on the other hand, the learning phase is
quite challenging. The reason is that the performed actions
during the learning phase can be random and lead to unwanted
situations. Traffic control is very sensitive from this aspect
because we can not afford to cause traffic jams during the
training phase.

The only option we had was to use a simulated environment
to learn the agent and later use it for real-life traffic signal
control. Therefore, we modeled not just the specific junction
controlled by the reinforcement learning agent but also several
neighboring junctions on the main road that crosses the city of
Pécs, as illustrated in Fig. 8. Including neighboring junctions
in the simulated environment was necessary because our aim

was to achieve global improvement in the traffic flow and not
just in the controlled intersection. Moreover, we had to take
the pre-configured signal programs of other intersections into
account in order not to disrupt the green-wave provision. The
objective of the reward function was to maximize the average
speed of the vehicles in the region of all nine intersections
shown in Fig. 8. The simulation of the environment was
performed in SUMO [49] by setting up traffic demands based
on validated O-D (Origin-Destination) trip tables provided by
the road operator.
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Fig. 8. SUMO simulation of the main road traffic in the center of Pécs.

In order to make the environment compatible with different
reinforcement learning-related Python packages, we used the
OpenAI Gym framework to create the SUMO-based environ-
ment. Although the real-life reinforcement learning-based traf-
fic light control was demonstrated in a single intersection, the
implemented environment also supports multiple intersection
control using multi-agent reinforcement learning techniques.
There are several reinforcement learning algorithm packages
available (e.g., KerasRL, Tensorforce, and StableBaselines3),
but currently, only RLlib has multi-agent support. Moreover,
RLlib is actively maintained, has a large community, and
also offers other advanced features, such as hyperparameter
optimization and action masking. We tested the performance
of different algorithms, such as PPO, A3C, and PG, but the
best results were achieved by DQN. The DQN model was
trained for 40 simulated days in the SUMO environment. The
trained DQN model was deployed in the CityAI domain and
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make fundamental changes in the traffic flow.
In a real-life environment, the accuracy of deployed sensors

is also limited. Moreover, in the case of traffic cameras, it can
vary due to weather conditions and light intensity. In our pilot
system, surveillance cameras were used to measure the speed
[km/h], road occupancy [%], and flow [vehicle/hour] metrics.
The camera observation zones in the controlled intersection
are presented in Fig. 7. These PTZ (pan-tilt-zoom) cameras
were deployed to ensure security for citizens and not for traffic
monitoring purposes. Therefore, the perspective was not ideal,
and only the flow values were reliable enough to be used as
the state descriptor for the reinforcement learning algorithm.
Although, the image processing module was able to distinguish
and separately monitor the lanes’ traffic, the measured values
for lanes having the same direction were merged. The merged
observation zones are illustrated with the same color code in
Fig. 7. In order to conceal the variations of the measured
speed (v) values, moving average with 15 minutes window
size was deployed to determine the state (st) used as input for
the reinforcement learning agent.

st = {v1, v2, v3, v4, v5, v6} (4)

The reward function plays a significant role in the learning
phase, while during the execution of the learned model, it
is used only for monitoring purposes. There are two main
methods to learn the model for real-life control: (i.) the
actions are performed in the real environment, (ii.) a simulated
environment is used.

In the first case, the determined actions can be more accurate
and effective, but on the other hand, the learning phase is
quite challenging. The reason is that the performed actions
during the learning phase can be random and lead to unwanted
situations. Traffic control is very sensitive from this aspect
because we can not afford to cause traffic jams during the
training phase.

The only option we had was to use a simulated environment
to learn the agent and later use it for real-life traffic signal
control. Therefore, we modeled not just the specific junction
controlled by the reinforcement learning agent but also several
neighboring junctions on the main road that crosses the city of
Pécs, as illustrated in Fig. 8. Including neighboring junctions
in the simulated environment was necessary because our aim

was to achieve global improvement in the traffic flow and not
just in the controlled intersection. Moreover, we had to take
the pre-configured signal programs of other intersections into
account in order not to disrupt the green-wave provision. The
objective of the reward function was to maximize the average
speed of the vehicles in the region of all nine intersections
shown in Fig. 8. The simulation of the environment was
performed in SUMO [49] by setting up traffic demands based
on validated O-D (Origin-Destination) trip tables provided by
the road operator.
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Fig. 8. SUMO simulation of the main road traffic in the center of Pécs.

In order to make the environment compatible with different
reinforcement learning-related Python packages, we used the
OpenAI Gym framework to create the SUMO-based environ-
ment. Although the real-life reinforcement learning-based traf-
fic light control was demonstrated in a single intersection, the
implemented environment also supports multiple intersection
control using multi-agent reinforcement learning techniques.
There are several reinforcement learning algorithm packages
available (e.g., KerasRL, Tensorforce, and StableBaselines3),
but currently, only RLlib has multi-agent support. Moreover,
RLlib is actively maintained, has a large community, and
also offers other advanced features, such as hyperparameter
optimization and action masking. We tested the performance
of different algorithms, such as PPO, A3C, and PG, but the
best results were achieved by DQN. The DQN model was
trained for 40 simulated days in the SUMO environment. The
trained DQN model was deployed in the CityAI domain and
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make fundamental changes in the traffic flow.
In a real-life environment, the accuracy of deployed sensors

is also limited. Moreover, in the case of traffic cameras, it can
vary due to weather conditions and light intensity. In our pilot
system, surveillance cameras were used to measure the speed
[km/h], road occupancy [%], and flow [vehicle/hour] metrics.
The camera observation zones in the controlled intersection
are presented in Fig. 7. These PTZ (pan-tilt-zoom) cameras
were deployed to ensure security for citizens and not for traffic
monitoring purposes. Therefore, the perspective was not ideal,
and only the flow values were reliable enough to be used as
the state descriptor for the reinforcement learning algorithm.
Although, the image processing module was able to distinguish
and separately monitor the lanes’ traffic, the measured values
for lanes having the same direction were merged. The merged
observation zones are illustrated with the same color code in
Fig. 7. In order to conceal the variations of the measured
speed (v) values, moving average with 15 minutes window
size was deployed to determine the state (st) used as input for
the reinforcement learning agent.

st = {v1, v2, v3, v4, v5, v6} (4)

The reward function plays a significant role in the learning
phase, while during the execution of the learned model, it
is used only for monitoring purposes. There are two main
methods to learn the model for real-life control: (i.) the
actions are performed in the real environment, (ii.) a simulated
environment is used.

In the first case, the determined actions can be more accurate
and effective, but on the other hand, the learning phase is
quite challenging. The reason is that the performed actions
during the learning phase can be random and lead to unwanted
situations. Traffic control is very sensitive from this aspect
because we can not afford to cause traffic jams during the
training phase.

The only option we had was to use a simulated environment
to learn the agent and later use it for real-life traffic signal
control. Therefore, we modeled not just the specific junction
controlled by the reinforcement learning agent but also several
neighboring junctions on the main road that crosses the city of
Pécs, as illustrated in Fig. 8. Including neighboring junctions
in the simulated environment was necessary because our aim

was to achieve global improvement in the traffic flow and not
just in the controlled intersection. Moreover, we had to take
the pre-configured signal programs of other intersections into
account in order not to disrupt the green-wave provision. The
objective of the reward function was to maximize the average
speed of the vehicles in the region of all nine intersections
shown in Fig. 8. The simulation of the environment was
performed in SUMO [49] by setting up traffic demands based
on validated O-D (Origin-Destination) trip tables provided by
the road operator.
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Fig. 8. SUMO simulation of the main road traffic in the center of Pécs.

In order to make the environment compatible with different
reinforcement learning-related Python packages, we used the
OpenAI Gym framework to create the SUMO-based environ-
ment. Although the real-life reinforcement learning-based traf-
fic light control was demonstrated in a single intersection, the
implemented environment also supports multiple intersection
control using multi-agent reinforcement learning techniques.
There are several reinforcement learning algorithm packages
available (e.g., KerasRL, Tensorforce, and StableBaselines3),
but currently, only RLlib has multi-agent support. Moreover,
RLlib is actively maintained, has a large community, and
also offers other advanced features, such as hyperparameter
optimization and action masking. We tested the performance
of different algorithms, such as PPO, A3C, and PG, but the
best results were achieved by DQN. The DQN model was
trained for 40 simulated days in the SUMO environment. The
trained DQN model was deployed in the CityAI domain and
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fed with real-life flow [vehicle/hour] values extracted from
camera video streams.

The introduced reinforcement learning-based traffic light
control (RL-TLC) algorithm that uses the trained DQN model,
gathers the requested input from the Kafka platform (Stream
Processing module) and pushes the proposed traffic light
program ID as illustrated in Fig. 9. The proposed program
ID is consumed by the Dispatch Center, which confirms the
traffic light program automatically or by human operators and
pushes its ID back to the Stream Processing module. We used
the automatic confirmation setup during real-life experiments.
In order to activate the selected signal program, we used the
REST API provided by the road operator (MK), which is
accessible from their own domain. The new signal program
ID data entries were immediately forwarded through the REST
API of the road operator to the traffic signal management tool
(JTR-controller). The JTR-controller is responsible for sending
the signal program ID to the local intersection traffic signal
controller and activating it. The CityAI traffic light control
architecture overview and data flows are presented in Fig. 9.
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Fig. 9. RL-based traffic light control architecture and data flow.

In cooperation with the Hungarian road operator, we were
able to test the presented CityAI reinforcement learning-based
traffic light control system in real-life conditions. The proof-
of-concept demonstration was running on a regular working
day (Monday, 11 Apr 2022) between 6:30 AM and 8:00
PM. In order to compare the performance of the RL-based
scheme with the default signal program, we collected the
speed [km/h] and flow [vehicle/hour] values from the Kafka
platform measured on the demonstration day and one week
before (also a Monday). According to the series of flow values,
the traffic was very similar on the two examined days. For
the speed values, we found that instead of 40.8 km/h average
speed, the reinforcement learning-based traffic light control
scheme increased the average speed to 44.5 km/h. Although
the duration of the real-life test was only one-day long that
is not sufficient to justify the performance improvement as
a scientific result, we believe that the implemented proof-of-
concept solution is very promising, especially if reliable data
sources are available and more flexible changes in the traffic
signal program are allowed. To the best of our knowledge,

this was the first real-life implementation of a reinforcement
learning-based signal control scheme.

B. Vendor-independent V2X information collec-
tion/dissemination sub-system

The proposed V2X sub-system enables vehicles to commu-
nicate with other vehicles, the CityAI infrastructure, and other
road users through wireless communication protocols. Besides
the highly efficient, timely, and disseminated data collection
support, one of the significant capabilities of this sub-system
is the ability to implement various intervention types, such as
cooperative awareness, and cooperative decision-making.

Cooperative awareness refers to the ability of V2X capable
road users to share information about their speed, location, and
other relevant data with other road users and infrastructure,
thereby improving the overall situational awareness of all
parties. This type of intervention allows for the real-time
exchange of information between vehicles, such as traffic con-
gestion, roadwork, weather conditions, and any other events
that could affect the driver’s safety. This information can be
used to alert drivers of potential hazards on the road and make
informed decisions to avoid collisions and improve traffic flow.

Cooperative decision-making refers to the ability of road
users to rely on the information shared through cooperative
awareness to make more informed decisions, such as adjust-
ing speed or changing lanes to avoid a potential collision.
This intervention also allows vehicles to make decisions that
optimize traffic flow, such as forming platoons of vehicles to
increase the capacity of highways, enhance the throughput
of intersections, and reduce congestion. Additionally, this
type of intervention can optimize electric vehicles’ energy
consumption by allowing them to communicate and coordinate
their recharging schedules.

From a Traffic Control Center perspective of our CityAI
architecture, the intervention capabilities of the proposed V2X
sub-system can provide valuable information and tools for
traffic optimization and information dissemination. By uti-
lizing the real-time data exchanged between road users and
infrastructure, the TCC can comprehensively understand traffic
conditions, allowing it to make more informed decisions to
optimize traffic flow and reduce congestion by providing V2X-
based traffic and advisory information

One of the critical benefits of V2X technology for the TCC
is the ability to use cooperative awareness information to
provide real-time traffic updates and alerts to drivers, such
as roadwork, accidents, and other events that could affect
safety. The TCC can also use the information from cooperative
decision-making to make decisions that optimize traffic in the
area. The TCC can use V2X technology to control traffic
lights, manage lane usage, and adjust speed limits in real
time to improve traffic flow and reduce delays. Overall, the
intervention capabilities of V2X technology can significantly
enhance the ability of CityAI to manage and optimize traffic,
improving the overall efficiency and safety of the city-wide
transportation system.

We implemented a proof-of-concept testbed containing one
vehicle and one roadside unit equipment for the functional
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REST API provided by the road operator (MK), which is
accessible from their own domain. The new signal program
ID data entries were immediately forwarded through the REST
API of the road operator to the traffic signal management tool
(JTR-controller). The JTR-controller is responsible for sending
the signal program ID to the local intersection traffic signal
controller and activating it. The CityAI traffic light control
architecture overview and data flows are presented in Fig. 9.
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In cooperation with the Hungarian road operator, we were
able to test the presented CityAI reinforcement learning-based
traffic light control system in real-life conditions. The proof-
of-concept demonstration was running on a regular working
day (Monday, 11 Apr 2022) between 6:30 AM and 8:00
PM. In order to compare the performance of the RL-based
scheme with the default signal program, we collected the
speed [km/h] and flow [vehicle/hour] values from the Kafka
platform measured on the demonstration day and one week
before (also a Monday). According to the series of flow values,
the traffic was very similar on the two examined days. For
the speed values, we found that instead of 40.8 km/h average
speed, the reinforcement learning-based traffic light control
scheme increased the average speed to 44.5 km/h. Although
the duration of the real-life test was only one-day long that
is not sufficient to justify the performance improvement as
a scientific result, we believe that the implemented proof-of-
concept solution is very promising, especially if reliable data
sources are available and more flexible changes in the traffic
signal program are allowed. To the best of our knowledge,

this was the first real-life implementation of a reinforcement
learning-based signal control scheme.

B. Vendor-independent V2X information collec-
tion/dissemination sub-system

The proposed V2X sub-system enables vehicles to commu-
nicate with other vehicles, the CityAI infrastructure, and other
road users through wireless communication protocols. Besides
the highly efficient, timely, and disseminated data collection
support, one of the significant capabilities of this sub-system
is the ability to implement various intervention types, such as
cooperative awareness, and cooperative decision-making.

Cooperative awareness refers to the ability of V2X capable
road users to share information about their speed, location, and
other relevant data with other road users and infrastructure,
thereby improving the overall situational awareness of all
parties. This type of intervention allows for the real-time
exchange of information between vehicles, such as traffic con-
gestion, roadwork, weather conditions, and any other events
that could affect the driver’s safety. This information can be
used to alert drivers of potential hazards on the road and make
informed decisions to avoid collisions and improve traffic flow.

Cooperative decision-making refers to the ability of road
users to rely on the information shared through cooperative
awareness to make more informed decisions, such as adjust-
ing speed or changing lanes to avoid a potential collision.
This intervention also allows vehicles to make decisions that
optimize traffic flow, such as forming platoons of vehicles to
increase the capacity of highways, enhance the throughput
of intersections, and reduce congestion. Additionally, this
type of intervention can optimize electric vehicles’ energy
consumption by allowing them to communicate and coordinate
their recharging schedules.

From a Traffic Control Center perspective of our CityAI
architecture, the intervention capabilities of the proposed V2X
sub-system can provide valuable information and tools for
traffic optimization and information dissemination. By uti-
lizing the real-time data exchanged between road users and
infrastructure, the TCC can comprehensively understand traffic
conditions, allowing it to make more informed decisions to
optimize traffic flow and reduce congestion by providing V2X-
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is the ability to use cooperative awareness information to
provide real-time traffic updates and alerts to drivers, such
as roadwork, accidents, and other events that could affect
safety. The TCC can also use the information from cooperative
decision-making to make decisions that optimize traffic in the
area. The TCC can use V2X technology to control traffic
lights, manage lane usage, and adjust speed limits in real
time to improve traffic flow and reduce delays. Overall, the
intervention capabilities of V2X technology can significantly
enhance the ability of CityAI to manage and optimize traffic,
improving the overall efficiency and safety of the city-wide
transportation system.

We implemented a proof-of-concept testbed containing one
vehicle and one roadside unit equipment for the functional
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fed with real-life flow [vehicle/hour] values extracted from
camera video streams.

The introduced reinforcement learning-based traffic light
control (RL-TLC) algorithm that uses the trained DQN model,
gathers the requested input from the Kafka platform (Stream
Processing module) and pushes the proposed traffic light
program ID as illustrated in Fig. 9. The proposed program
ID is consumed by the Dispatch Center, which confirms the
traffic light program automatically or by human operators and
pushes its ID back to the Stream Processing module. We used
the automatic confirmation setup during real-life experiments.
In order to activate the selected signal program, we used the
REST API provided by the road operator (MK), which is
accessible from their own domain. The new signal program
ID data entries were immediately forwarded through the REST
API of the road operator to the traffic signal management tool
(JTR-controller). The JTR-controller is responsible for sending
the signal program ID to the local intersection traffic signal
controller and activating it. The CityAI traffic light control
architecture overview and data flows are presented in Fig. 9.
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In cooperation with the Hungarian road operator, we were
able to test the presented CityAI reinforcement learning-based
traffic light control system in real-life conditions. The proof-
of-concept demonstration was running on a regular working
day (Monday, 11 Apr 2022) between 6:30 AM and 8:00
PM. In order to compare the performance of the RL-based
scheme with the default signal program, we collected the
speed [km/h] and flow [vehicle/hour] values from the Kafka
platform measured on the demonstration day and one week
before (also a Monday). According to the series of flow values,
the traffic was very similar on the two examined days. For
the speed values, we found that instead of 40.8 km/h average
speed, the reinforcement learning-based traffic light control
scheme increased the average speed to 44.5 km/h. Although
the duration of the real-life test was only one-day long that
is not sufficient to justify the performance improvement as
a scientific result, we believe that the implemented proof-of-
concept solution is very promising, especially if reliable data
sources are available and more flexible changes in the traffic
signal program are allowed. To the best of our knowledge,

this was the first real-life implementation of a reinforcement
learning-based signal control scheme.

B. Vendor-independent V2X information collec-
tion/dissemination sub-system

The proposed V2X sub-system enables vehicles to commu-
nicate with other vehicles, the CityAI infrastructure, and other
road users through wireless communication protocols. Besides
the highly efficient, timely, and disseminated data collection
support, one of the significant capabilities of this sub-system
is the ability to implement various intervention types, such as
cooperative awareness, and cooperative decision-making.

Cooperative awareness refers to the ability of V2X capable
road users to share information about their speed, location, and
other relevant data with other road users and infrastructure,
thereby improving the overall situational awareness of all
parties. This type of intervention allows for the real-time
exchange of information between vehicles, such as traffic con-
gestion, roadwork, weather conditions, and any other events
that could affect the driver’s safety. This information can be
used to alert drivers of potential hazards on the road and make
informed decisions to avoid collisions and improve traffic flow.

Cooperative decision-making refers to the ability of road
users to rely on the information shared through cooperative
awareness to make more informed decisions, such as adjust-
ing speed or changing lanes to avoid a potential collision.
This intervention also allows vehicles to make decisions that
optimize traffic flow, such as forming platoons of vehicles to
increase the capacity of highways, enhance the throughput
of intersections, and reduce congestion. Additionally, this
type of intervention can optimize electric vehicles’ energy
consumption by allowing them to communicate and coordinate
their recharging schedules.

From a Traffic Control Center perspective of our CityAI
architecture, the intervention capabilities of the proposed V2X
sub-system can provide valuable information and tools for
traffic optimization and information dissemination. By uti-
lizing the real-time data exchanged between road users and
infrastructure, the TCC can comprehensively understand traffic
conditions, allowing it to make more informed decisions to
optimize traffic flow and reduce congestion by providing V2X-
based traffic and advisory information

One of the critical benefits of V2X technology for the TCC
is the ability to use cooperative awareness information to
provide real-time traffic updates and alerts to drivers, such
as roadwork, accidents, and other events that could affect
safety. The TCC can also use the information from cooperative
decision-making to make decisions that optimize traffic in the
area. The TCC can use V2X technology to control traffic
lights, manage lane usage, and adjust speed limits in real
time to improve traffic flow and reduce delays. Overall, the
intervention capabilities of V2X technology can significantly
enhance the ability of CityAI to manage and optimize traffic,
improving the overall efficiency and safety of the city-wide
transportation system.

We implemented a proof-of-concept testbed containing one
vehicle and one roadside unit equipment for the functional

Fig. 9. RL-based traffic light control architecture and data flow.
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assessment of integrating the V2X paradigm and our vendor-
independent V2X data management solution into the CityAI
framework. The proof-of-concept testbed comprises the com-
ponents introduced in Fig. 5. In this experimental implementa-
tion, the RSU is connected to the central components through
cellular backhauling, and the OBU-RSU communication is
performed over a standardized ITS-G5 V2X interface. In our
testbed, we employed Commsignia OB4 and RS4 devices [50]
as OBU and RSU nodes, respectively. The specifications of
these devices can be found in Table I. The data received by
the vehicle OBU is traversed by a local Wi-Fi network to
a tablet, running an Android-based HMI application (further
details are depicted in Fig. 5). This HMI developed for the
proof-of-concept experiments serves two functions:

• Triggering different types of DENM messages in the
OBU: The OBU will forward these messages to the RSU,
sending the relevant data to the TCC according to the
data path depicted in Fig. 5. The HMI can trigger four
types of DENM messages (Roadworks Warning – Major
Roadworks, Roadworks Warning – Street Cleaning, Haz-
ardous Location Notification – Animal On The Road, and
Emergency Vehicle Approaching).

• Visualization of incident information traversed by the
TCC via the RSU and ITS-G5 or using the REST API
services directly through 4G/5G cellular and displayed for
the driver using Google Maps API. Information retrieval
is DENM-based in the case of V2X access, while for cel-
lular communications, it is triggered by a periodic query
with a parameterizable interval (in the demo scenario,
an interval of 5 seconds was set) or by an event-based
solution that activates when the vehicle moves (detected
by the GPS module built into the HMI tablet).

TABLE I
MAIN TECHNICAL SPECIFICATIONS OF THE USED OBU/RSU DEVICES.

Feature Specification

CPU 800MHz Freescale
OS Linux
RAM 2GB DDR3 SDRAM
Flash 4GB eMMc
Antenna 2xV2X, 2xWiFi, 2xLTE/3G, 1xGNSS
Data 1xETH, 2xUSB, 1xCAN, 1xOBD-II
V2X chipset Autotalks Secton
Hardware Security Module SLI97
Further references OB4 [51] / RS4 [52]

The proof-of-concept validation was performed in the city
of Pécs, specifically on Road 58, Siklósi út. It is an extensive
2×2 lane road that stretches from the city center of Pécs all the
way to the M60 motorway, primarily heading in a southerly
direction. It features a few significant curves, roundabouts,
and side road branches with traffic lights interrupting the flow
of traffic. The road connects six neighborhoods with the city
center. Shortly after crossing the Pécs city limits, it connects
to the M60 motorway. The location of the test was near the
city center section of the road, in close proximity to the public
cemetery.

Fig. 10 shows the graphical interface of the HMI. The button
responsible for triggering the four DENM messages is located

in the lower right part of the screen. The accident/traffic in-
formation received from the TCC is displayed using a Google
Maps marker, the title of which is the type of event. Additional
information can be assigned to the markers on the map. In
the example of Fig. 10, we experimented with the V2X-based
intervention: the TCC center gathered and disseminated the
event through the ITS-G5 interface of the RSU. The OBU
received the information, and the HMI presented the marker
at the event location together with the source of the given
incident (i.e., in this case the TCC as a dispatcher). We can
also further differentiate the markers: through the REST API
service, we also receive the information that the confirmation
of the event is POSSIBLE or VERIFIED for each event. In
the first case, the notification represents a possible event, while
in the second value, the report shows a confirmed, definitely
existing event.

Fig. 10. Example screenshot from the Android-based HMI of the V2X sub-
system’s proof-of-concept testbed.

In the intervention scenarios of our proof-of-concept ex-
periments, the traffic incident information is generated in the
TCC and then transmitted to the vehicle. This information is
then visualized on the vehicle’s HMI, allowing the driver to
see details of the accident, such as location and severity. This
allows the driver to make informed decisions about the best
route to take, avoiding any potential hazards or delays caused
by the incident. It also allows the driver to be better prepared
in case they encounter the accident scene on their route.

C. Public Transport Congestion Detection

The standard of living in metropolitan areas is heavily
dependent on the ability of transportation systems to move
residents, workers, and goods between various locations. How-
ever, as urbanization continues to expand worldwide, cities
are experiencing a rise in population density. This leads to an
increase in the number of vehicles on the road, exacerbating
the issue of traffic congestion. This congestion not only
hinders economic productivity, but also harms the environment
and public safety through increased fuel consumption, air
pollution, and increased costs of goods and services. Because
of this, the ability to quickly and accurately detect and predict
traffic congestion is a crucial task.

Given the importance of addressing traffic congestion in
public transportation, we explore the use of incremental
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independent V2X data management solution into the CityAI
framework. The proof-of-concept testbed comprises the com-
ponents introduced in Fig. 5. In this experimental implementa-
tion, the RSU is connected to the central components through
cellular backhauling, and the OBU-RSU communication is
performed over a standardized ITS-G5 V2X interface. In our
testbed, we employed Commsignia OB4 and RS4 devices [50]
as OBU and RSU nodes, respectively. The specifications of
these devices can be found in Table I. The data received by
the vehicle OBU is traversed by a local Wi-Fi network to
a tablet, running an Android-based HMI application (further
details are depicted in Fig. 5). This HMI developed for the
proof-of-concept experiments serves two functions:

• Triggering different types of DENM messages in the
OBU: The OBU will forward these messages to the RSU,
sending the relevant data to the TCC according to the
data path depicted in Fig. 5. The HMI can trigger four
types of DENM messages (Roadworks Warning – Major
Roadworks, Roadworks Warning – Street Cleaning, Haz-
ardous Location Notification – Animal On The Road, and
Emergency Vehicle Approaching).

• Visualization of incident information traversed by the
TCC via the RSU and ITS-G5 or using the REST API
services directly through 4G/5G cellular and displayed for
the driver using Google Maps API. Information retrieval
is DENM-based in the case of V2X access, while for cel-
lular communications, it is triggered by a periodic query
with a parameterizable interval (in the demo scenario,
an interval of 5 seconds was set) or by an event-based
solution that activates when the vehicle moves (detected
by the GPS module built into the HMI tablet).

TABLE I
MAIN TECHNICAL SPECIFICATIONS OF THE USED OBU/RSU DEVICES.

Feature Specification

CPU 800MHz Freescale
OS Linux
RAM 2GB DDR3 SDRAM
Flash 4GB eMMc
Antenna 2xV2X, 2xWiFi, 2xLTE/3G, 1xGNSS
Data 1xETH, 2xUSB, 1xCAN, 1xOBD-II
V2X chipset Autotalks Secton
Hardware Security Module SLI97
Further references OB4 [51] / RS4 [52]

The proof-of-concept validation was performed in the city
of Pécs, specifically on Road 58, Siklósi út. It is an extensive
2×2 lane road that stretches from the city center of Pécs all the
way to the M60 motorway, primarily heading in a southerly
direction. It features a few significant curves, roundabouts,
and side road branches with traffic lights interrupting the flow
of traffic. The road connects six neighborhoods with the city
center. Shortly after crossing the Pécs city limits, it connects
to the M60 motorway. The location of the test was near the
city center section of the road, in close proximity to the public
cemetery.

Fig. 10 shows the graphical interface of the HMI. The button
responsible for triggering the four DENM messages is located

in the lower right part of the screen. The accident/traffic in-
formation received from the TCC is displayed using a Google
Maps marker, the title of which is the type of event. Additional
information can be assigned to the markers on the map. In
the example of Fig. 10, we experimented with the V2X-based
intervention: the TCC center gathered and disseminated the
event through the ITS-G5 interface of the RSU. The OBU
received the information, and the HMI presented the marker
at the event location together with the source of the given
incident (i.e., in this case the TCC as a dispatcher). We can
also further differentiate the markers: through the REST API
service, we also receive the information that the confirmation
of the event is POSSIBLE or VERIFIED for each event. In
the first case, the notification represents a possible event, while
in the second value, the report shows a confirmed, definitely
existing event.

Fig. 10. Example screenshot from the Android-based HMI of the V2X sub-
system’s proof-of-concept testbed.

In the intervention scenarios of our proof-of-concept ex-
periments, the traffic incident information is generated in the
TCC and then transmitted to the vehicle. This information is
then visualized on the vehicle’s HMI, allowing the driver to
see details of the accident, such as location and severity. This
allows the driver to make informed decisions about the best
route to take, avoiding any potential hazards or delays caused
by the incident. It also allows the driver to be better prepared
in case they encounter the accident scene on their route.

C. Public Transport Congestion Detection

The standard of living in metropolitan areas is heavily
dependent on the ability of transportation systems to move
residents, workers, and goods between various locations. How-
ever, as urbanization continues to expand worldwide, cities
are experiencing a rise in population density. This leads to an
increase in the number of vehicles on the road, exacerbating
the issue of traffic congestion. This congestion not only
hinders economic productivity, but also harms the environment
and public safety through increased fuel consumption, air
pollution, and increased costs of goods and services. Because
of this, the ability to quickly and accurately detect and predict
traffic congestion is a crucial task.

Given the importance of addressing traffic congestion in
public transportation, we explore the use of incremental
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2×2 lane road that stretches from the city center of Pécs all the
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learning (IL) [53]–[56] for real-time detection of congestion.
Specifically, we investigate the potential of using IL to adapt
and scale the detection of congestion in public transport. To
achieve this, we utilize long short-term memory (LSTM) in
combination with IL to predict short-term bus travel speed by
capturing the long-term temporal dependency.

In our experimental implementation, the model is trained
in a continuous loop. The data collected from the buses’
trajectories is stored in a database and used for training.
The data is pre-processed and then separated into sequences.
Depending on the number of routes being monitored, the
appropriate LSTM model is either trained or updated to handle
the trajectories. If the number of inputs and outputs remains
unchanged, the LSTM model remains unchanged. Once a new
model is trained, it is evaluated against the previous model
stored in the database using test data. If the new model shows
better performance, it is stored as the current model. If not, it
is discarded.

We tested the effectiveness of our solution in Pécs, Hungary.
The results showed that our incrementally updated model was
able to detect congestion with an accuracy of up to 82.37%.
Additionally, we found that the model’s accuracy in estimating
travel speed can increase up to 221.46% within just six days,
demonstrating its versatility. Additionally, resource consump-
tion was found to be similar to traditional learning methods,
making it a promising option for use in resource-constrained
environments. For a detailed analysis of the achieved results,
we refer the reader to discuss [57].

In summary, our solution is adaptive, scalable, and able
to operate in real time. It can improve the efficiency of
public transportation by providing a more accurate basis for
congestion detection while reducing resource consumption.
Additionally, as the model is incrementally updated, it can
adapt and evolve in tandem with the streaming data, resulting
in faster convergence.

D. Scalability Considerations and Performance Evaluation

During the development of the CityAI framework, sev-
eral key architectural decisions and system components were
specifically chosen to ensure the system’s ability to handle the
demands of a growing city infrastructure. Below, we provide
an analysis of these aspects, highlighting their contributions
to the overall scalability of CityAI.

1) Sensor Hub and Data Collection Modules: The Sensor
Hub module is designed with scalability in mind, incorporating
a modular architecture that allows for the easy addition of
new sensor types and data sources. Each sensor hub operates
independently, ensuring that data collection can be expanded
by simply deploying additional hubs across the city. This
modular approach not only facilitates scalability in terms of the
number of sensors but also in terms of geographic coverage.
As more regions of a city are equipped with sensors, the
system can absorb and integrate this data without requiring
significant modifications to the underlying architecture.

2) Stream Processing with Apache Kafka: The CityAI
framework leverages Apache Kafka as the backbone of its
stream processing architecture. Kafka’s high throughput, low

latency, and distributed nature make it inherently scalable and
capable of handling millions of events per second. This ensures
that as the volume of traffic data, sensor inputs, and vehicular
communications increase, the system can continue to process
and analyze this data in real time without degradation in
performance. Kafka’s ability to seamlessly integrate with other
distributed data processing frameworks further enhances the
system’s scalability, allowing for the dynamic addition of new
data sources or the expansion of processing nodes as required
by the growing demands of a city.

3) Data Analytics and Machine Learning Modules: The
Data Analytics component, particularly the MLM, is built to
scale with increasing data volumes. The use of distributed
processing frameworks like Apache Flink allows the system
to handle large-scale data streams in real time, making it
adaptable to the growing complexity of urban traffic patterns.
As the data volume grows, additional processing nodes can be
deployed to maintain performance, ensuring that the system’s
predictive models remain accurate and responsive.

Moreover, the MLM’s architecture supports the incremental
retraining of models, allowing it to adapt to changing traffic
conditions without the need for extensive computational re-
sources. This ability to update models on the fly, combined
with distributed processing, ensures that the system can scale
efficiently as the city’s traffic infrastructure evolves.

4) Informed Traffic Governance and V2X Integration:
CityAI’s traffic governance framework is designed to be
adaptive and responsive, which is critical for scalability. The
integration of V2X communication technology enables the
system to manage an increasing number of connected vehi-
cles and infrastructure elements. By ensuring that the V2X
communication sub-system operates independently of specific
hardware vendors, the system can scale to accommodate new
vehicles and roadside units as they are deployed, without
requiring significant reconfiguration.

The reinforcement learning-based traffic light control sys-
tem is another testament to the system’s scalability. By using
a flexible, data-driven approach to traffic management, CityAI
can dynamically adjust to the increasing complexity of urban
traffic without being constrained by rigid, pre-defined rules.

5) Data Lake and Long-Term Storage: The Data Lake mod-
ule, built on scalable technologies like Cassandra and Elastic-
search, ensures that the system can manage vast amounts of
historical and real-time data. As the volume of data grows,
these technologies allow for horizontal scaling, meaning that
additional storage nodes can be added to accommodate more
data without impacting performance. This scalability is crucial
for supporting long-term traffic analysis, anomaly detection,
and strategic planning in increasingly complex urban environ-
ments.

VII. CONCLUSION

Considering the trends in urbanization and sustainability,
there is an urgent need for efficient ITS services that aim
to improve mobility and make transportation easier, faster,
and more reliable. The proposed CityAI system aims to
address these challenges by providing an automated, artificial
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intelligence-based solution for managing city traffic. This
paper introduces key modules’ capabilities, architecture, and
functions of our proof-of-concept ITS system deployed in
the city of Pécs, Hungary. The framework includes state-
of-the-art technologies, techniques, and applications but also
considers real-world applicability. Since the driving force
of all ITS solutions is data, we implemented different data
collection modules, such as image processing for extracting
vehicle traffic information from roadside cameras, gathering
public bus trajectories, and V2X information. To handle the
continuous flow of data streams, a Stream Processing module
was used in order to make the pre-processed data available
for machine learning-based traffic prediction, anomaly detec-
tion algorithms, and adaptive traffic control. Although many
papers investigate machine learning-based traffic light control
in simulated environments, our pilot implementation is the first
published reinforcement learning-based traffic light controller
that was running in a real-life environment as part of the
CityAI system. We also prepared the system to use V2X data
to inform drivers about the best route to take, avoiding any
potential hazards or delays caused by incidents. Moreover, a
public transport congestion detection service was implemented
to inform customers and operators about future delays. We can
witness that machine learning can be widely used to resolve
various issues in modern ITS. A complex system, such as
the introduced CityAI system, is required to ensure reliable
data gathering, processing, control, and information services
to make the concept work in practice.
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intelligence-based solution for managing city traffic. This
paper introduces key modules’ capabilities, architecture, and
functions of our proof-of-concept ITS system deployed in
the city of Pécs, Hungary. The framework includes state-
of-the-art technologies, techniques, and applications but also
considers real-world applicability. Since the driving force
of all ITS solutions is data, we implemented different data
collection modules, such as image processing for extracting
vehicle traffic information from roadside cameras, gathering
public bus trajectories, and V2X information. To handle the
continuous flow of data streams, a Stream Processing module
was used in order to make the pre-processed data available
for machine learning-based traffic prediction, anomaly detec-
tion algorithms, and adaptive traffic control. Although many
papers investigate machine learning-based traffic light control
in simulated environments, our pilot implementation is the first
published reinforcement learning-based traffic light controller
that was running in a real-life environment as part of the
CityAI system. We also prepared the system to use V2X data
to inform drivers about the best route to take, avoiding any
potential hazards or delays caused by incidents. Moreover, a
public transport congestion detection service was implemented
to inform customers and operators about future delays. We can
witness that machine learning can be widely used to resolve
various issues in modern ITS. A complex system, such as
the introduced CityAI system, is required to ensure reliable
data gathering, processing, control, and information services
to make the concept work in practice.
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