
Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 32

INFOCOMMUNICATIONS JOURNAL
INFOCOMMUNICATIONS JOURNAL 1

Utilizing Machine Learning as a Prediction Scheme
for Network Performance Metrics of Self-Clocked

Congestion Control Algorithm
Ahmed Samir Jagmagji1,2,∗ , Haider Dhia Zubaydi1,∗∗ , Sándor Molnár1,† , and

Mahmood Alzubaidi3

Abstract—Congestion Control (CC) is a fundamental mecha-
nism to achieve effective and equitable sharing of network facili-
ties. As future networks evolve towards more complex paradigms,
traditional CC methods are required to become more powerful
and reliable. On the other hand, Machine Learning (ML) has
become increasingly popular for solving challenging and sophis-
ticated problems, and scientists have started to turn their interest
from rule-based approaches to ML-based methods. This paper
employs machine learning models to construct a performance
evaluation scheme to predict network metrics for the Self-Clocked
Rate Adaptation for Multimedia (SCReAM) algorithm. It uses a
rigorous data preprocessing pipeline and a systematic application
of ML methods to enhance the performance of the regression
model for SCReAM’s performance metrics. Also, we constructed
a dataset that provides SCReAM’s input parameters and output
metrics, such as network queue delay, smoothed Round Trip
Time (sRTT), and network throughput. Each prediction process
has several phases: choosing the best initial regressor model,
hyperparameter tuning, ensemble learning, stacking regressors,
and utilizing the holdout data. Each model’s performance was
evaluated through various regression metrics; this study will
mainly focus on the coefficient of determination (R2) score. The
improvement between the initial best-selected model and the final
improved model determined that we were able to increase R2 up
to 96.64% for network throughput, 99.4% for network queue
delay, and 100% for sRTT.

Index Terms—Congestion control, machine learning, optimiza-
tion, prediction, SCReAM.

I. INTRODUCTION

Modern communication technology comprises a diverse
range of services, incorporating mixed network infrastructures
that employ a combination of wired, wireless, and satellite
connections. Moreover, the features of these network environ-
ments depend on many limitations, such as network traffic, link
capacity, and user behavior, which means that more accurate
estimates are needed. Hence, it can be argued that ML is an
unambiguous approach to improving our understanding of net-
work behavior and facilitating the development of appropriate

1 A.S. Jagmagji, H.D. Zubaydi, and S. Molnár is with the
Department of Telecommunications and Media Informatics, Faculty
of Electrical Engineering and Informatics, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest,
Hungary. E-mail: ∗ahmedsa@tmit.bme.hu, ∗∗haider.zubaydi@tmit.bme.hu,
†molnar@tmit.bme.hu.

2 College of Engineering, University of Mosul, Mosul, Iraq.
3 M. Alzubaidi is with the Division of Information and Computing Tech-

nology, College of Science and Engineering, Hamad Bin Khalifa University,
Qatar Foundation, Doha, Qatar. E-mail: malzubaidi@hbku.edu.qa

solutions. The reasons behind such an argument come from
many features, such as predictive capabilities to anticipate
congestion patterns, optimization through learning historical
data to manage network traffic efficiently and adaptability by
offering dynamic and flexible solutions to real-time changes.

Network congestion arises when the network’s capacity
is insufficient to accommodate excessive traffic, resulting in
increased response time or, in more severe instances, network
failure [1]. Therefore, it is essential to provide further con-
sideration to the significant consequences caused by network
congestion. Also, there is a notable rise in media traffic,
particularly in the audiovisual domain. This can be attributed
to the growth of networking applications that have been built
on the structure of the transport layer, such as Voice Over IP
(VoIP) and Video on Demand (VoD) [2].

Researchers have proposed learning-based CC approaches
to address the previously described issues. These techniques
encompass Reinforcement Learning (RL), supervised learning,
and unsupervised learning techniques. RL has been demon-
strated to have several advantages in effectively addressing the
issue of realistic congestion in networks that exhibit dynamic
and complex state spaces [3]. Hence, it may be argued that RL
approaches offer advantages in congestion control due to their
enhanced capacity for online learning [4]. Offline learning is
appropriate for situations where assuming that others’ behavior
will converge and remain relatively stable is essential. In con-
trast, online learning facilitates a more interactive and dynamic
exchange between individuals or groups striving to achieve
shared objectives under optimal circumstances. Implementing
ML as a networking solution is increasingly becoming possible
[5].

This paper aims to enhance the efficiency of the regression
model utilized as a performance evaluation scheme developed
through machine learning. The purpose is to estimate crucial
network metrics for SCReAM. This will be accomplished
by implementing a rigorous data preprocessing pipeline and
systematically applying machine learning techniques. Further-
more, the proposed scheme can be used to replace the exe-
cution of SCReAM without requiring SCReAM environment,
thus reducing the resource requirements by mitigating the need
to perform measurements in the live network. To implement
this method, the dataset was generated from SCReAM and
utilized as input for the regression model. Simultaneously, the
output will be similar to the initial SCReAM. Since this work

1 A. S. Jagmagji, H.D. Zubaydi, and S. Molnár is with the Department of
Telecommunications and Media Informatics, Faculty of Electrical Engineering
and Informatics, Budapest University of Technology and Economics, Budapest,
Hungary. E-mail: *(ahmedsa@tmit.bme.hu), **(haider.zubaydi@tmit.bme.hu),
†(molnar@tmit.bme.hu).

2 College of Engineering, University of Mosul, Mosul, Iraq.
3 M. Alzubaidi is with the Division of Information and Computing Tech-

nology, College of Science and Engineering, Hamad Bin Khalifa University,
Qatar Foundation, Doha, Qatar. (E-mail: malzubaidi@hbku.edu.qa)

Utilizing Machine Learning as a Prediction Scheme
for Network Performance Metrics of Self-Clocked

Congestion Control Algorithm
Ahmed Samir Jagmagji 1,2,*, Haider Dhia Zubaydi 1, **, Sándor Molnár 1,†, and Mahmood Alzubaidi 3

Abstract—Congestion Control (CC) is a fundamental mecha-
nism to achieve effective and equitable sharing of network fa-
cilities. As future networks evolve towards more complex para-
digms, traditional CC methods are required to become more
powerful and reliable. On the other hand, Machine Learning
(ML) has become increasingly popular for solving challeng-
ing and sophisticated problems, and scientists have started to
turn their interest from rule-based approaches to ML-based
methods. This paper employs machine learning models to con-
struct a performance evaluation scheme to predict network
metrics for the Self-Clocked Rate Adaptation for Multimedia
(SCReAM) algorithm. It uses a rigorous data preprocessing
pipeline and a systematic application of ML methods to en-
hance the performance of the regression model for SCReAM’s
performance metrics. Also, we constructed a dataset that pro-
vides SCReAM’s input parameters and output metrics, such
as network queue delay, smoothed Round Trip Time (sRTT),
and network throughput. Each prediction process has several
phases: choosing the best initial regressor model, hyperparam-
eter tuning, ensemble learning, stacking regressors, and uti-
lizing the holdout data. Each model’s performance was evalu-
ated through various regression metrics; this study will mainly
focus on the coefficient of determination (R2) score. The im-
provement between the initial best-selected model and the fi-
nal improved model determined that we were able to increase
R2 up to 96.64% for network throughput, 99.4% for network
queue delay, and 100% for sRTT.

Index Terms—Congestion control, machine learning, optimi-
zation, prediction, SCReAM.

INFOCOMMUNICATIONS JOURNAL 1

Utilizing Machine Learning as a Prediction Scheme
for Network Performance Metrics of Self-Clocked

Congestion Control Algorithm
Ahmed Samir Jagmagji1,2,∗ , Haider Dhia Zubaydi1,∗∗ , Sándor Molnár1,† , and

Mahmood Alzubaidi3

Abstract—Congestion Control (CC) is a fundamental mecha-
nism to achieve effective and equitable sharing of network facili-
ties. As future networks evolve towards more complex paradigms,
traditional CC methods are required to become more powerful
and reliable. On the other hand, Machine Learning (ML) has
become increasingly popular for solving challenging and sophis-
ticated problems, and scientists have started to turn their interest
from rule-based approaches to ML-based methods. This paper
employs machine learning models to construct a performance
evaluation scheme to predict network metrics for the Self-Clocked
Rate Adaptation for Multimedia (SCReAM) algorithm. It uses a
rigorous data preprocessing pipeline and a systematic application
of ML methods to enhance the performance of the regression
model for SCReAM’s performance metrics. Also, we constructed
a dataset that provides SCReAM’s input parameters and output
metrics, such as network queue delay, smoothed Round Trip
Time (sRTT), and network throughput. Each prediction process
has several phases: choosing the best initial regressor model,
hyperparameter tuning, ensemble learning, stacking regressors,
and utilizing the holdout data. Each model’s performance was
evaluated through various regression metrics; this study will
mainly focus on the coefficient of determination (R2) score. The
improvement between the initial best-selected model and the final
improved model determined that we were able to increase R2 up
to 96.64% for network throughput, 99.4% for network queue
delay, and 100% for sRTT.

Index Terms—Congestion control, machine learning, optimiza-
tion, prediction, SCReAM.

I. INTRODUCTION

Modern communication technology comprises a diverse
range of services, incorporating mixed network infrastructures
that employ a combination of wired, wireless, and satellite
connections. Moreover, the features of these network environ-
ments depend on many limitations, such as network traffic, link
capacity, and user behavior, which means that more accurate
estimates are needed. Hence, it can be argued that ML is an
unambiguous approach to improving our understanding of net-
work behavior and facilitating the development of appropriate

1 A.S. Jagmagji, H.D. Zubaydi, and S. Molnár is with the
Department of Telecommunications and Media Informatics, Faculty
of Electrical Engineering and Informatics, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest,
Hungary. E-mail: ∗ahmedsa@tmit.bme.hu, ∗∗haider.zubaydi@tmit.bme.hu,
†molnar@tmit.bme.hu.

2 College of Engineering, University of Mosul, Mosul, Iraq.
3 M. Alzubaidi is with the Division of Information and Computing Tech-

nology, College of Science and Engineering, Hamad Bin Khalifa University,
Qatar Foundation, Doha, Qatar. E-mail: malzubaidi@hbku.edu.qa

solutions. The reasons behind such an argument come from
many features, such as predictive capabilities to anticipate
congestion patterns, optimization through learning historical
data to manage network traffic efficiently and adaptability by
offering dynamic and flexible solutions to real-time changes.

Network congestion arises when the network’s capacity
is insufficient to accommodate excessive traffic, resulting in
increased response time or, in more severe instances, network
failure [1]. Therefore, it is essential to provide further con-
sideration to the significant consequences caused by network
congestion. Also, there is a notable rise in media traffic,
particularly in the audiovisual domain. This can be attributed
to the growth of networking applications that have been built
on the structure of the transport layer, such as Voice Over IP
(VoIP) and Video on Demand (VoD) [2].

Researchers have proposed learning-based CC approaches
to address the previously described issues. These techniques
encompass Reinforcement Learning (RL), supervised learning,
and unsupervised learning techniques. RL has been demon-
strated to have several advantages in effectively addressing the
issue of realistic congestion in networks that exhibit dynamic
and complex state spaces [3]. Hence, it may be argued that RL
approaches offer advantages in congestion control due to their
enhanced capacity for online learning [4]. Offline learning is
appropriate for situations where assuming that others’ behavior
will converge and remain relatively stable is essential. In con-
trast, online learning facilitates a more interactive and dynamic
exchange between individuals or groups striving to achieve
shared objectives under optimal circumstances. Implementing
ML as a networking solution is increasingly becoming possible
[5].

This paper aims to enhance the efficiency of the regression
model utilized as a performance evaluation scheme developed
through machine learning. The purpose is to estimate crucial
network metrics for SCReAM. This will be accomplished
by implementing a rigorous data preprocessing pipeline and
systematically applying machine learning techniques. Further-
more, the proposed scheme can be used to replace the exe-
cution of SCReAM without requiring SCReAM environment,
thus reducing the resource requirements by mitigating the need
to perform measurements in the live network. To implement
this method, the dataset was generated from SCReAM and
utilized as input for the regression model. Simultaneously, the
output will be similar to the initial SCReAM. Since this work

INFOCOMMUNICATIONS JOURNAL 1

Utilizing Machine Learning as a Prediction Scheme
for Network Performance Metrics of Self-Clocked

Congestion Control Algorithm
Ahmed Samir Jagmagji1,2,∗ , Haider Dhia Zubaydi1,∗∗ , Sándor Molnár1,† , and

Mahmood Alzubaidi3

Abstract—Congestion Control (CC) is a fundamental mecha-
nism to achieve effective and equitable sharing of network facili-
ties. As future networks evolve towards more complex paradigms,
traditional CC methods are required to become more powerful
and reliable. On the other hand, Machine Learning (ML) has
become increasingly popular for solving challenging and sophis-
ticated problems, and scientists have started to turn their interest
from rule-based approaches to ML-based methods. This paper
employs machine learning models to construct a performance
evaluation scheme to predict network metrics for the Self-Clocked
Rate Adaptation for Multimedia (SCReAM) algorithm. It uses a
rigorous data preprocessing pipeline and a systematic application
of ML methods to enhance the performance of the regression
model for SCReAM’s performance metrics. Also, we constructed
a dataset that provides SCReAM’s input parameters and output
metrics, such as network queue delay, smoothed Round Trip
Time (sRTT), and network throughput. Each prediction process
has several phases: choosing the best initial regressor model,
hyperparameter tuning, ensemble learning, stacking regressors,
and utilizing the holdout data. Each model’s performance was
evaluated through various regression metrics; this study will
mainly focus on the coefficient of determination (R2) score. The
improvement between the initial best-selected model and the final
improved model determined that we were able to increase R2 up
to 96.64% for network throughput, 99.4% for network queue
delay, and 100% for sRTT.

Index Terms—Congestion control, machine learning, optimiza-
tion, prediction, SCReAM.

I. INTRODUCTION

Modern communication technology comprises a diverse
range of services, incorporating mixed network infrastructures
that employ a combination of wired, wireless, and satellite
connections. Moreover, the features of these network environ-
ments depend on many limitations, such as network traffic, link
capacity, and user behavior, which means that more accurate
estimates are needed. Hence, it can be argued that ML is an
unambiguous approach to improving our understanding of net-
work behavior and facilitating the development of appropriate

1 A.S. Jagmagji, H.D. Zubaydi, and S. Molnár is with the
Department of Telecommunications and Media Informatics, Faculty
of Electrical Engineering and Informatics, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest,
Hungary. E-mail: ∗ahmedsa@tmit.bme.hu, ∗∗haider.zubaydi@tmit.bme.hu,
†molnar@tmit.bme.hu.

2 College of Engineering, University of Mosul, Mosul, Iraq.
3 M. Alzubaidi is with the Division of Information and Computing Tech-

nology, College of Science and Engineering, Hamad Bin Khalifa University,
Qatar Foundation, Doha, Qatar. E-mail: malzubaidi@hbku.edu.qa

solutions. The reasons behind such an argument come from
many features, such as predictive capabilities to anticipate
congestion patterns, optimization through learning historical
data to manage network traffic efficiently and adaptability by
offering dynamic and flexible solutions to real-time changes.

Network congestion arises when the network’s capacity
is insufficient to accommodate excessive traffic, resulting in
increased response time or, in more severe instances, network
failure [1]. Therefore, it is essential to provide further con-
sideration to the significant consequences caused by network
congestion. Also, there is a notable rise in media traffic,
particularly in the audiovisual domain. This can be attributed
to the growth of networking applications that have been built
on the structure of the transport layer, such as Voice Over IP
(VoIP) and Video on Demand (VoD) [2].

Researchers have proposed learning-based CC approaches
to address the previously described issues. These techniques
encompass Reinforcement Learning (RL), supervised learning,
and unsupervised learning techniques. RL has been demon-
strated to have several advantages in effectively addressing the
issue of realistic congestion in networks that exhibit dynamic
and complex state spaces [3]. Hence, it may be argued that RL
approaches offer advantages in congestion control due to their
enhanced capacity for online learning [4]. Offline learning is
appropriate for situations where assuming that others’ behavior
will converge and remain relatively stable is essential. In con-
trast, online learning facilitates a more interactive and dynamic
exchange between individuals or groups striving to achieve
shared objectives under optimal circumstances. Implementing
ML as a networking solution is increasingly becoming possible
[5].

This paper aims to enhance the efficiency of the regression
model utilized as a performance evaluation scheme developed
through machine learning. The purpose is to estimate crucial
network metrics for SCReAM. This will be accomplished
by implementing a rigorous data preprocessing pipeline and
systematically applying machine learning techniques. Further-
more, the proposed scheme can be used to replace the exe-
cution of SCReAM without requiring SCReAM environment,
thus reducing the resource requirements by mitigating the need
to perform measurements in the live network. To implement
this method, the dataset was generated from SCReAM and
utilized as input for the regression model. Simultaneously, the
output will be similar to the initial SCReAM. Since this work

DOI: 10.36244/ICJ.2024.3.1

mailto:ahmedsa%40tmit.bme.hu?subject=
mailto:haider.zubaydi%40tmit.bme.hu?subject=
mailto:molnar%40tmit.bme.hu?subject=
mailto:malzubaidi%40hbku.edu.qa?subject=
https://doi.org/10.36244/ICJ.2024.3.1

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 3

INFOCOMMUNICATIONS JOURNAL 2

utilized the generated dataset, it falls within the supervised
learning scheme. The primary objective of this work is to
concentrate on QoS measures, whereas the evaluation of QoE
falls outside the scope of our studies.

This paper is organized as follows: Section II introduces the
related works that proposed ML congestion control approaches
to handle congestion control. Section III describes the method-
ology of our proposed model, including data preprocessing,
model selection, tuning, improvement, and evaluation. Section
IV presents the results obtained from our experiments for pre-
dicting network queue delay, sRTT, and network throughput.
Finally, this paper is concluded in Section V.

II. RELATED WORK

The primary challenge related to congestion control resides
in determining the appropriate mechanism and timing for data
transmission. Researchers have successfully employed ML
techniques to devise robust methodologies for addressing dy-
namic scenarios within computer networks. Current machine
learning research utilizes three main categories: supervised,
unsupervised, and reinforcement learning. This section covers
research efforts that contributed to managing and predicting
network congestion by utilizing machine learning schemes.

A general overview has been introduced in [6] that dis-
cusses how to revolutionize CC algorithms using various ML
techniques. This research discusses various ML mechanisms,
such as supervised learning and RL, that utilize real-time
modification of control parameters and predict network traffic
to eliminate network congestion. Furthermore, the authors
highlighted the possibility of managing traditional congestion
control challenges such as packet loss and network latency.

Machine Learning Aided Congestion Control (MLACC) [7]
is a novel approach that integrates traditional CC protocols
with ML to address efficiency and fairness issues. CC param-
eters are dynamically adjusted based on network conditions us-
ing an RL-based framework. The results indicate that MLACC
surpasses traditional congestion control approaches, balancing
fair resource allocation among users and high throughput.

Another work that focuses on utilizing ML to improve the
fairness of TCP congestion control algorithms is introduced
in [8]. The authors argue that unfair bandwidth distribution
among users occurs in traditional TCP mechanisms. Thus, an
ML-based approach is proposed to ensure a fair distribution of
network resources by dynamically adjusting TCP parameters.
The effectiveness of this approach in various network scenarios
is demonstrated in experimental results.

As discussed in [9], ML can also be employed in other
network paradigms, such as Software-Defined Networking
(SDN), to enhance congestion control. The proposed frame-
work allows SDN controllers to empower the network with
real-time traffic management decisions by leveraging machine
learning models. This work reveals that combining ML’s
predicting capabilities with SDN’s scalability and flexibility
features enhances congestion management and network per-
formance.

The authors in [10] argue the possibility of mastering con-
gestion control by enabling computers to learn from heuristic

designs. A detailed analysis of how heuristic-based congestion
control algorithms can be employed to train ML models
to produce more adaptive and robust control schemes. This
study shows that ML can apply heuristics in different network
conditions to improve performance.

An ablation study on leveraging Deep Reinforcement Learn-
ing (DRL) for congestion control is presented in [11]. Various
components of the DRL model are systematically evaluated
based on its performance. This study provides guidelines to
optimize the performance of such models by identifying the
most critical elements affecting DRL in managing network
congestion.

A comprehensive troubleshooting solution using ML for
traffic congestion control is proposed in [12]. The developed
framework can suggest corrective actions by identifying the
leading causes of congestion. This framework enables proac-
tive traffic flow management by predicting potential congestion
issues and analyzing traffic patterns by leveraging various ML
models.

Two congestion control systems, Aurora and Custard, em-
ploy DRL techniques described in references [13] and [14].
The idea behind these plans is to use DRL to develop a way
to map real-world network data to find the best transmission
rate. DRL is a contemporary ML technique utilized to evaluate
network conditions. This process involves multiple stages:
agent training, procedure learning, and enhancing behavior
through continuous environmental interaction. The network
condition is characterized by the bandwidth, RTT, and loss
rate, which serve as input parameters for the network agent.

In [15], the authors introduced a loss predictor that utilizes
random forest, a supervised learning method, to estimate
the likelihood of packet loss resulting from congestion. This
methodology can predict and mitigate occurrences of packet
loss, diminish the frequency of rate reduction during transmis-
sion, and attain enhanced throughput. These studies employ
machine learning techniques to estimate congestion-related
metrics based on passive data. Such approaches demonstrate
significant potential for predicting parameter values.

For online learning schemes, the authors in [16] employed
a trial-and-error methodology to determine the optimal trans-
mitting rate. This research highlights the implementation of
replacing the absolute value of RTT with a rise in RTT, as well
as ensuring the fulfillment of desired network characteristics,
such as fair convergence. The authors focused on investigating
the impact of altering transmission rates on optimizing the en-
vironment’s performance without relying on prior knowledge.
Even though online learning can quickly adjust to changes in
the network, its performance may sometimes drop because
of its limits, which could lead to getting stuck in a local
optimal [17]. Acknowledging that online learning typically
involves a significant amount of time for routing convergence
[18] is essential. This refers to the duration required for all
routers within the network to reach a consensus on the current
topology.

Although the presented works provide significant insights
into various ML applications for congestion control, our work
contributes by introducing a novel approach that includes the
newly constructed dataset that allows predicting SCReAM’s

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 34

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 3

Reference Focus Key Techniques Major Contribution Application Results

[6] Adjustment and prediction
of network traffic

RL, supervised learn-
ing

Enhanced packet loss
management and latency

Network traffic Adjusting control parame-
ters in real-time

[7] CC efficiency and fairness RL Balanced resource alloca-
tion and network through-
put

Network traffic Outperforms traditional
methods

[8] Fairness of bandwidth dis-
tribution

ML-based TCP pa-
rameter adjustment

Fairness of resource distri-
bution

TCP networks Proved effectiveness in
various scenarios

[9] Integration of ML and
SDN

SDN controllers, ML
models

Real-time traffic manage-
ment

Network traffic Improved network man-
agement and performance

[10] Heuristics CC learning Heuristic-based ML Adaptive and robust con-
trol mechanisms

Network traffic Improved performance in
different conditions

[11] DRL model evaluation DRL Optimization of DRL
models

Network traffic Improved performance
through the identified
critical components

[12] Identifying traffic issues
through a diagnostic
framework

ML models Proactive traffic flow man-
agement

Urban traffic Ability to predict and fix
congestion problems

[13] Employing DRL to ad-
dress internet CC

DRL Demonstrates RL’s ability
to outperform state-of-the-
art methods and presents
OpenAI Gym as a test
suite

Internet CC Captures complex data
traffic patterns, highlights
challenges in safety,
generalization, and
fairness

[14] Leveraging DRL for CC DRL Indicates that RL can
efficiently improve
resource allocation and
manage data rates of
network traffic

Traffic
management

Addresses dynamic net-
work environment issues,
exceeds the performance
of existing algorithms

[15] Enhancing TCP CC
through ML

ML Dynamically adjusting pa-
rameters to improve TCP
performance

TCP networks Better performance com-
pared to traditional meth-
ods

[16] Online learning approach
for CC

Online learning adapting to network
conditions by introducing
PCC Vivace

Network traffic Achieved high adaptabil-
ity and performance

Our paper Enhancing the
performance of SCReAM
and predicting its
parameters

Data preprocessing,
regression model,
supervised learning

Predicts crucial network
metrics, replaces
SCReAM execution

SCReAM
algorithm

Accurate prediction capa-
bilities, reduces resource
requirements

TABLE I: Comparison of related works on CC with ML

parameters and reduces resource requirements. By leverag-
ing supervised learning mechanisms, our work can enhance
SCReAM’s performance in diverse network scenarios. Table I
presents a detailed comparison of related works and ours.

In this study, we will focus on supervised (offline) learn-
ing because online learning demands enormous training data
sets to obtain satisfactory performance [19]. In addition, we
have a fixed training dataset that does not require any real-
time interaction with the environment, which is required by
online learning [20]. The advantages include the concept of
linear regression, which is transparent and straightforward.
Normalization can also be employed as a technique to mit-
igate the issue of overfitting. Furthermore, stochastic gradient
descent facilitates the seamless updating of linear models with
incoming data. Moreover, utilizing widely recognized and ap-
propriate categorized input data in supervised learning yields
significantly higher reliability and precision than unsupervised

learning. The utilization of labels can enhance performance
on specific tasks. Proficient in identifying solutions for a
diverse range of linear and non-linear problems, including but
not limited to classification, robotics, prediction, and factory
control.

III. METHODOLOGY

Our methodology focuses on developing a regression model
to predict three target variables: network queue delay, sRTT,
and network bandwidth (RateTransmitted). Network queue
delay is the estimated queue delay of the entire network
calculated by SCReAM. In contrast, TCP endeavors to predict
future round-trip times by sampling packet behavior across a
connection and averaging the results, referred to as the sRTT
[21]. Our methodology includes a rigorous data preprocessing
pipeline and a systematic application of machine learning
techniques. The goal was to improve the performance of each

INFOCOMMUNICATIONS JOURNAL 3

Reference Focus Key Techniques Major Contribution Application Results

[6] Adjustment and prediction
of network traffic

RL, supervised learn-
ing

Enhanced packet loss
management and latency

Network traffic Adjusting control parame-
ters in real-time

[7] CC efficiency and fairness RL Balanced resource alloca-
tion and network through-
put

Network traffic Outperforms traditional
methods

[8] Fairness of bandwidth dis-
tribution

ML-based TCP pa-
rameter adjustment

Fairness of resource distri-
bution

TCP networks Proved effectiveness in
various scenarios

[9] Integration of ML and
SDN

SDN controllers, ML
models

Real-time traffic manage-
ment

Network traffic Improved network man-
agement and performance

[10] Heuristics CC learning Heuristic-based ML Adaptive and robust con-
trol mechanisms

Network traffic Improved performance in
different conditions

[11] DRL model evaluation DRL Optimization of DRL
models

Network traffic Improved performance
through the identified
critical components

[12] Identifying traffic issues
through a diagnostic
framework

ML models Proactive traffic flow man-
agement

Urban traffic Ability to predict and fix
congestion problems

[13] Employing DRL to ad-
dress internet CC

DRL Demonstrates RL’s ability
to outperform state-of-the-
art methods and presents
OpenAI Gym as a test
suite

Internet CC Captures complex data
traffic patterns, highlights
challenges in safety,
generalization, and
fairness

[14] Leveraging DRL for CC DRL Indicates that RL can
efficiently improve
resource allocation and
manage data rates of
network traffic

Traffic
management

Addresses dynamic net-
work environment issues,
exceeds the performance
of existing algorithms

[15] Enhancing TCP CC
through ML

ML Dynamically adjusting pa-
rameters to improve TCP
performance

TCP networks Better performance com-
pared to traditional meth-
ods

[16] Online learning approach
for CC

Online learning adapting to network
conditions by introducing
PCC Vivace

Network traffic Achieved high adaptabil-
ity and performance

Our paper Enhancing the
performance of SCReAM
and predicting its
parameters

Data preprocessing,
regression model,
supervised learning

Predicts crucial network
metrics, replaces
SCReAM execution

SCReAM
algorithm

Accurate prediction capa-
bilities, reduces resource
requirements

TABLE I: Comparison of related works on CC with ML

parameters and reduces resource requirements. By leverag-
ing supervised learning mechanisms, our work can enhance
SCReAM’s performance in diverse network scenarios. Table I
presents a detailed comparison of related works and ours.

In this study, we will focus on supervised (offline) learn-
ing because online learning demands enormous training data
sets to obtain satisfactory performance [19]. In addition, we
have a fixed training dataset that does not require any real-
time interaction with the environment, which is required by
online learning [20]. The advantages include the concept of
linear regression, which is transparent and straightforward.
Normalization can also be employed as a technique to mit-
igate the issue of overfitting. Furthermore, stochastic gradient
descent facilitates the seamless updating of linear models with
incoming data. Moreover, utilizing widely recognized and ap-
propriate categorized input data in supervised learning yields
significantly higher reliability and precision than unsupervised

learning. The utilization of labels can enhance performance
on specific tasks. Proficient in identifying solutions for a
diverse range of linear and non-linear problems, including but
not limited to classification, robotics, prediction, and factory
control.

III. METHODOLOGY

Our methodology focuses on developing a regression model
to predict three target variables: network queue delay, sRTT,
and network bandwidth (RateTransmitted). Network queue
delay is the estimated queue delay of the entire network
calculated by SCReAM. In contrast, TCP endeavors to predict
future round-trip times by sampling packet behavior across a
connection and averaging the results, referred to as the sRTT
[21]. Our methodology includes a rigorous data preprocessing
pipeline and a systematic application of machine learning
techniques. The goal was to improve the performance of each

TABLE I
Comparison of related works on CC with ML

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 5

INFOCOMMUNICATIONS JOURNAL 4

regression model progressively. The methodology employed
in this study is depicted in Figure 1. It comprises several key
components, including SCReAM, dataset generation, data pre-
processing, model selection, and tuning, model improvement,
and model evaluation.

A. The SCReAM Algorithm

SCReAM was first introduced in 2014 and subsequently
standardized in 2017 [22][23]. SCReAM is a congestion
control algorithm that combines loss-based and delay-based
techniques to create a hybrid model for managing network
congestion in LTE networks. Packet conservation manages net-
work congestion by dynamically adapting network parameters,
such as transmission rate and queuing time. SCReAM adapts
to variations in network conditions by adjusting its network
parameters to achieve optimal performance, as determined
by the assessments. Moreover, it mitigates the variations in
short-term latency by employing a practical algorithm for
calculating the congestion window. Additionally, the inclusion
of the self-clocking feature contributes to the achievement
of shorter time scale operation, hence enhancing its overall
usefulness. Considering its better performance than alternative
delay-based algorithms, we have selected SCReAM as the
foundation for our experimental, evaluative, and analytical
research [24][25].

While the initial design of SCReAM focused on its appli-
cation in WebRTC, it demonstrates the potential to be utilized
in several applications that require RTP streams. SCReAM is
the foundation for the rate adaptation notion and other strate-
gies that have evolved from TCP-friendly window-based and
LEDBAT protocols [26]. The packet conservation principle is
also incorporated into SCReAM, a crucial and fundamental
concept in minimizing network congestion [27].

The critical elements of SCReAM architecture are network
congestion control, media rate control, and sender transmission
control, depicted in Figure 2. The sender comprises more
elements, namely the UDP socket and RTP packet queue.
On the other hand, the receiver consists of an RTP payload
decapsulator, a de-jitter buffer (which may be optional), and a
video decoder. Given that the essential SCReAM congestion
management algorithm’s functionalities are executed on the
transmitting end, the primary goal is to illustrate its main
components.

SCReAM is considered more appropriate than rate-based
algorithms since it incorporates a self-clocking concept. This
design feature enables the algorithm to operate within shorter
intervals, precisely one round-trip time (RTT). Nevertheless,
the architecture of SCReAM is characterized by its com-
plexity due to sophisticated documentation and code, leading
researchers to be reluctant to dive into or pursue studies in
it. Furthermore, SCReAM incorporates numerous parameters
assigned with specified values. Therefore, this study focuses
on identifying and examining the key variables, which will be
discussed in the subsequent part.

SCReAM can be implemented using two approaches: one
involves utilizing a test application based on Windows and
Visual Studio software. In contrast, the other involves using

a Linux-based BW test application. The initial methodology
of SCReAM involves a single transmitter and receiver built-in
C++. Various auxiliary classes are employed: NetQueue, Video
Encoder, and RTPQueue. Furthermore, the coordinator code,
called scream v a, is utilized when combined with these com-
ponents. The coordinator code manages and integrates multiple
codes into an integrated framework. The initial methodology
was employed for our experimental procedures, whereas the
second strategy was utilized for the initial evaluation of
SCReAM.

B. Dataset Generation

The subsequent component of this phase is identifying and
selecting potential parameters to analyze and optimize the
performance of SCReAM. A comprehensive investigation was
conducted on several aspects, relying on the specifications
outlined in RFC8298 [23] and the coding process. Afterward,
a range of parameters were initially examined. Subsequently,
a comprehensive analysis is conducted on each parameter to
ascertain its potential impact, ensuring its incorporation into
our experimental procedures. Moreover, several parameters
have yet to be considered due to their negligible impact on
the results.

To ensure the effective execution of our experiments, it
is essential to establish a comprehensive set of values for
each parameter, thereby facilitating a clear understanding of
the impact of each parameter on the overall performance.
The experimentation commenced by employing a diverse
set of values for each parameter. After performing ≈40,000
experiments, a range narrowing occurs exclusively in instances
with negligible performance alteration. Therefore, the margin
values that yield identical performance measures are removed.
Our objective was to establish the default value of each
parameter as the median value within the range to facilitate
an accurate understanding of performance variations before
and after the modifications. It is crucial to note that the
maximum target bitrate initially had a default value of 20 Mbps
in the algorithm. However, due to the high-speed nature of
our experimental implementation, we ultimately adjusted the
default value to 100 Mbps. The following parameters have
been determined for the construction of our dataset:

• P1: Target value for the minimum queue delay (QDlow)
• P2: Threshold for the detection of incipient congestion

(QDth)
• P3: Maximum segment size (RTP packet size) (MSS)
• P4: Interval between media bitrate adjustments (RAI)
• P5: Minimum target bitrate in Mbps (bits per second)

(TBmin)
• P6: Maximum allowed rate increase speed (RUS)
• P7: Guard factor against early congestion onset (PCG)
• P8: Guard factor against RTP queue buildup (QSF)
• P9: RTP queue delay threshold for a target rate reduction

(RQth)
• P10: Scale factor for target rate when RTP queue delay

threshold exceeds P9 (TRS)
The dataset construction procedure is as follows: Initially,

a counter is established to ascertain the required number of

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 36

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 5

Fig. 1: Workflow of the proposed methodology.

experiments for the ML model, precisely 20,000 experiments.
The algorithm that is devised tends to produce a numerical
value for each parameter that falls within a predetermined
range. During each experimental assessment, SCReAM is
executed for 100 seconds, during which it gathers a total of
2000 data samples of network queue delay, sRTT, and network
throughput. Subsequently, the mean is computed as depicted
in Equation 1.

x =
1

2000
.
2000∑
i=1

xi, (1)

Where x represents the metric average, and xi is the value
of one metric. Additional details regarding the dataset are
demonstrated in the following subsection.

C. Data Preprocessing

Data preprocessing is a crucial component of the machine
learning pipeline since it involves cleaning and transform-
ing raw data into an understandable structure. This rigorous
preprocessing approach forms the foundation for the subse-
quent data analysis and modeling, ensuring the results are
reliable and replicable. The details of each model’s training,
fine-tuning, and final prediction for each target variable are
discussed in the subsequent sections. The dataset included
in our investigation initially consisted of 20,000 instances
characterized by 10 attributes. Our objective was to construct
predictive models for three target variables: network queue
delay, sRTT, and throughput. A systematic methodology was
employed for data preprocessing. The dataset was initially
partitioned into two segments: a primary dataset consisting
of 16,000 instances employed for model development and a
holdout dataset comprising 4,000 instances reserved for the

Fig. 1: Workflow of the proposed methodology.

INFOCOMMUNICATIONS JOURNAL 5

Fig. 1: Workflow of the proposed methodology.

experiments for the ML model, precisely 20,000 experiments.
The algorithm that is devised tends to produce a numerical
value for each parameter that falls within a predetermined
range. During each experimental assessment, SCReAM is
executed for 100 seconds, during which it gathers a total of
2000 data samples of network queue delay, sRTT, and network
throughput. Subsequently, the mean is computed as depicted
in Equation 1.

x =
1

2000
.
2000∑
i=1

xi, (1)

Where x represents the metric average, and xi is the value
of one metric. Additional details regarding the dataset are
demonstrated in the following subsection.

C. Data Preprocessing

Data preprocessing is a crucial component of the machine
learning pipeline since it involves cleaning and transform-
ing raw data into an understandable structure. This rigorous
preprocessing approach forms the foundation for the subse-
quent data analysis and modeling, ensuring the results are
reliable and replicable. The details of each model’s training,
fine-tuning, and final prediction for each target variable are
discussed in the subsequent sections. The dataset included
in our investigation initially consisted of 20,000 instances
characterized by 10 attributes. Our objective was to construct
predictive models for three target variables: network queue
delay, sRTT, and throughput. A systematic methodology was
employed for data preprocessing. The dataset was initially
partitioned into two segments: a primary dataset consisting
of 16,000 instances employed for model development and a
holdout dataset comprising 4,000 instances reserved for the

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 7

INFOCOMMUNICATIONS JOURNAL 6

Fig. 2: SCReAM architecture (a single media source design)
[21].

TABLE II: A sample from our feature set

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Delay sRTT BW

N 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K

Missing 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.105 0.255 1198 1810 5.51 11.0 0.453 0.263 0.161 0.849 35.2 6.93 31.5

Median 0.105 0.257 1199 1810 6.0 11.1 0.45 0.263 0.161 0.849 31.4 6.63 31.1

S. Dev. 0.0551 0.142 174 851 2.63 5.18 0.26 0.137 0.0795 0.0862 19.2 1.47 8.54

Max. 0.01 0.01 900 327 1 2.0 0.0 0.025 0.025 0.7 1.92 4.42 5.92

Min. 0.2 0.5 1499 3277 10 20.0 0.9 0.5 0.3 1.00 201 22.3 56.8

final testing of the trained and validated model.
The primary dataset underwent several preprocessing trans-

formations to adequately prepare it for model training. The pri-
mary dataset was divided into two subsets: a training set com-
prising 80% (12,800 instances) and a validation set including
20% (3,200 instances). Notwithstanding the transformations,
the overall shape of the data remained consistent with its initial
form, suggesting that no instances were removed during this
stage. The primary dataset comprised ten numerical attributes
and one category attribute. The aforementioned properties
were assessed for the possibility of missing data. In order
to address any missing data, we employed imputation tech-
niques, specifically mean imputation for numerical features
and mode imputation for categorical features. Normalization
was conducted to standardize the numerical feature values to a
uniform range. Min-max normalization was utilized to rescale
the features from 0 to 1 to ensure that the scale of each feature
is aligned (i.e., all features contribute equally to the analysis).

The Min-Max Normalization, denoted by xscaled, can be
calculated through the following Equation:

xscaled =
x− xmin

xmax − xmin
(2)

Where x is the number before normalization, the xmin is
the smallest number in the dataset, and the xmax is the largest
number in the dataset.

The modeling process employed a 10-fold cross-validation
approach generated through the K-Fold algorithm during the
training and fine-tuning stages, where k denotes the number of
groups into which a particular data sample is divided. Cross-
validation is a resampling technique utilized to assess machine
learning models on a constrained data sample by dividing it
into training and testing sets to train and evaluate the data.
This technique helps provide a more robust estimation of
the model’s performance by iteratively validating the model
against different subsets of data.

TABLE II
A sample from our feature set

Fig. 2: SCReAM architecture (a single media source design)
[21].

INFOCOMMUNICATIONS JOURNAL 6

Fig. 2: SCReAM architecture (a single media source design)
[21].

TABLE II: A sample from our feature set

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Delay sRTT BW

N 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K

Missing 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.105 0.255 1198 1810 5.51 11.0 0.453 0.263 0.161 0.849 35.2 6.93 31.5

Median 0.105 0.257 1199 1810 6.0 11.1 0.45 0.263 0.161 0.849 31.4 6.63 31.1

S. Dev. 0.0551 0.142 174 851 2.63 5.18 0.26 0.137 0.0795 0.0862 19.2 1.47 8.54

Max. 0.01 0.01 900 327 1 2.0 0.0 0.025 0.025 0.7 1.92 4.42 5.92

Min. 0.2 0.5 1499 3277 10 20.0 0.9 0.5 0.3 1.00 201 22.3 56.8

final testing of the trained and validated model.
The primary dataset underwent several preprocessing trans-

formations to adequately prepare it for model training. The pri-
mary dataset was divided into two subsets: a training set com-
prising 80% (12,800 instances) and a validation set including
20% (3,200 instances). Notwithstanding the transformations,
the overall shape of the data remained consistent with its initial
form, suggesting that no instances were removed during this
stage. The primary dataset comprised ten numerical attributes
and one category attribute. The aforementioned properties
were assessed for the possibility of missing data. In order
to address any missing data, we employed imputation tech-
niques, specifically mean imputation for numerical features
and mode imputation for categorical features. Normalization
was conducted to standardize the numerical feature values to a
uniform range. Min-max normalization was utilized to rescale
the features from 0 to 1 to ensure that the scale of each feature
is aligned (i.e., all features contribute equally to the analysis).

The Min-Max Normalization, denoted by xscaled, can be
calculated through the following Equation:

xscaled =
x− xmin

xmax − xmin
(2)

Where x is the number before normalization, the xmin is
the smallest number in the dataset, and the xmax is the largest
number in the dataset.

The modeling process employed a 10-fold cross-validation
approach generated through the K-Fold algorithm during the
training and fine-tuning stages, where k denotes the number of
groups into which a particular data sample is divided. Cross-
validation is a resampling technique utilized to assess machine
learning models on a constrained data sample by dividing it
into training and testing sets to train and evaluate the data.
This technique helps provide a more robust estimation of
the model’s performance by iteratively validating the model
against different subsets of data.

INFOCOMMUNICATIONS JOURNAL 6

Fig. 2: SCReAM architecture (a single media source design)
[21].

TABLE II: A sample from our feature set

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Delay sRTT BW

N 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K 20K

Missing 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.105 0.255 1198 1810 5.51 11.0 0.453 0.263 0.161 0.849 35.2 6.93 31.5

Median 0.105 0.257 1199 1810 6.0 11.1 0.45 0.263 0.161 0.849 31.4 6.63 31.1

S. Dev. 0.0551 0.142 174 851 2.63 5.18 0.26 0.137 0.0795 0.0862 19.2 1.47 8.54

Max. 0.01 0.01 900 327 1 2.0 0.0 0.025 0.025 0.7 1.92 4.42 5.92

Min. 0.2 0.5 1499 3277 10 20.0 0.9 0.5 0.3 1.00 201 22.3 56.8

final testing of the trained and validated model.
The primary dataset underwent several preprocessing trans-

formations to adequately prepare it for model training. The pri-
mary dataset was divided into two subsets: a training set com-
prising 80% (12,800 instances) and a validation set including
20% (3,200 instances). Notwithstanding the transformations,
the overall shape of the data remained consistent with its initial
form, suggesting that no instances were removed during this
stage. The primary dataset comprised ten numerical attributes
and one category attribute. The aforementioned properties
were assessed for the possibility of missing data. In order
to address any missing data, we employed imputation tech-
niques, specifically mean imputation for numerical features
and mode imputation for categorical features. Normalization
was conducted to standardize the numerical feature values to a
uniform range. Min-max normalization was utilized to rescale
the features from 0 to 1 to ensure that the scale of each feature
is aligned (i.e., all features contribute equally to the analysis).

The Min-Max Normalization, denoted by xscaled, can be
calculated through the following Equation:

xscaled =
x− xmin

xmax − xmin
(2)

Where x is the number before normalization, the xmin is
the smallest number in the dataset, and the xmax is the largest
number in the dataset.

The modeling process employed a 10-fold cross-validation
approach generated through the K-Fold algorithm during the
training and fine-tuning stages, where k denotes the number of
groups into which a particular data sample is divided. Cross-
validation is a resampling technique utilized to assess machine
learning models on a constrained data sample by dividing it
into training and testing sets to train and evaluate the data.
This technique helps provide a more robust estimation of
the model’s performance by iteratively validating the model
against different subsets of data.

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 38

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 7

We made further efforts to enhance computational efficiency
during model training by utilizing all available CPU cores
and, where possible, GPU resources. While we meticulously
recorded all the processing steps, the experiment’s logs were
not saved for review. After training and validation, the final
model was tested on the holdout dataset. This procedure
ensures the model’s performance is evaluated on unseen data,
offering a more accurate predictive power evaluation. A sam-
ple from our feature set is displayed in Table II, including
SCReAM parameters as input features for our model and
the network metrics (target variables) for prediction. Table II
also determines the number of samples N (collected data set
results), missing samples, mean, median, standard deviation,
minimum, and maximum values.

D. Model Selection and Tuning

Each target variable was assigned an initial model based
on previous performance considerations. The selected models
were LGBM Regressor [28] for predicting network through-
put, CatBoost Regressor [29] for network queue delay and
sRTT. Then, each selected model is fine-tuned using Optuna,
a hyperparameter optimization framework [30]. The goal was
to maximize the R2 score, a standard metric for regression
problems, which measures the proportion of the variance in
the dependent variable that is predictable from the independent
variable(s). The R2 score is a critical metric that is used
to evaluate the performance of a regression-based machine
learning model. The coefficient of determination works by
measuring the amount of variance in the predictions explained
by the dataset. On average, using R2 in the evaluation of the
ML model is one of the most effective techniques that provides
powerful results [31].

R2 = 1− SSR
SST

= 1−
∑

i(xi − x̂i)
2

∑
i(xi − x)2

′ (3)

Where SSR is the sum squared regression, SST is the total
sum of squares, and x̂i is the predicted value for xi. As a
percentage, it will take values between 0 and 1.

LightGBM, also known as Light Gradient Boosting Ma-
chine, gradient boosting system created by Microsoft. The
LGBM Regressor is a specialized version of a gradient boost-
ing model tailored explicitly for regression applications. This
model is classified under ensemble learning techniques, no-
tably boosting, where multiple weak learners (usually decision
trees) are combined sequentially to form a powerful prediction
model. It reduces the total error by optimizing based on the
residuals.

Compared with other boosting algorithms, LightGBM rep-
resents one of the fastest and the most efficient algorithms as
it uses a histogram-based dependent method to deal with large
datasets quickly and as low as possible regarding memory
space, which makes it an optimal solution for scenarios with
large amounts of data.

An essential feature of LightGBM is its capability to mini-
mize overfitting using the L1 and L2 regularization techniques
integrated with the algorithm. In addition, the growing tree
leaf-wise method is used as a tree-based learning algorithm

to enhance accuracy, which helps mitigate loss efficiently and
produce a more accurate LightGBM model.

Using an LGBM Regressor for prediction involves sev-
eral steps, including data preparation, model training using
a training set, and hyperparameters fine-tuning using cross-
validation. Then, the trained model is optimized to start
predicting the output using the unseen new data. To optimize
the performance and avoid overfitting across different tasks,
understanding the features used in LightGMB, such as its
regularization methods and unique tree-building technique, is
essential.

The most crucial benefit of LightGBM is that it efficiently
handles the categorical features that will mitigate the time and
effort needed for excessive preprocessing. LightGBM can be
used directly with categorical data, which is different from the
traditional techniques that need to be encoded and transformed
into other forms before dealing with the categorical data. In
addition, it can implement different methods, such as order
boosting and categorical feature-numerical value transforma-
tion, resulting in enhanced performance and reduced human
interaction.

LightGBM consistently generates multiple decision trees,
and each tree is taught to update the previous one’s error, lead-
ing to increased overall accuracy. The leaf-wise tree growth
method is an essential feature in LightGBM that depends on
minimizing the most significant loss in leaves, resulting in
constructing deeper trees with fewer and faster leaves and
precise outcomes.

CatBoost has built-in support for categorical variables,
which provides a considerable advantage over models that
require specific handling, such as one-hot encoding, for these
types of features. CatBoost incorporates inherent mechanisms,
such as depth restrictions and learning rate shrinkage, to
mitigate the issue of overfitting. The framework additionally
provides cross-validation techniques for optimizing hyperpa-
rameters and assessing model performance. Moreover, Cat-
Boost effectively manages missing data, reducing preprocess-
ing procedures.

CatBoost’s design, which prioritizes efficiency and scal-
ability, makes it well-suited for handling massive datasets.
Utilizing the CatBoost Regressor for prediction generally
includes preparing the data, training the model, modifying
the hyperparameters, and generating predictions on unique or
unobserved data. The direct handling of categorical variables,
the emphasis on preventing overfitting, and the user-friendly
approach to missing data makes CatBoost an attractive option
for regression problems, mainly when working with heteroge-
neous datasets that include numerical and categorical features.

E. Model Improvement

After the fine-tuning stage, we employed ensemble tech-
niques to enhance the performance of each model further.
Bagging methods were initially used, with results indicating
slight improvements in the R2 score. Subsequently, a stacking
regressor was used to combine the predictions of multiple
estimators to generate a final model. Stacked Regressions is a
technique that creates linear combinations of various predictors

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 9

TABLE III
LightGBM parameters specifications – LGBM Regressor

TABLE IV
LightGBM parameters specifications –

Stacking Regressor (network throughput) TABLE VI
Stacking Regressor parameters specifications –

Stacking Regressor (sRTT)

TABLE V
Stacking Regressor parameters specifications –

Stacking Regressor (network queue delay)

INFOCOMMUNICATIONS JOURNAL 8

TABLE III: LightGBM parameters specifications - LGBM
Regressor

Specifications Value
LGBM bagging fraction 0.8088
LGBM bagging freq. 7
LGBM device gpu
LGBM feature fraction 0.6502
LGBM learning rate 0.0512
LGBM min. child samples 52
LGBM Regressor min. split gain 0.5451
LGBM n. estimators 185
LGBM n. leaves 32
LGBM random state 123
LGBM Regressor reg. alpha 5.8939e-07
LGBM reg. lambda 2.2148e-07

TABLE IV: LightGBM parameters specifications - Stacking
Regressor (network throughput)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators LGBM
LGBM device gpu
LGBM random state 123
CatBoost Regressor catboost.core.CatBoost
CatBoost Regressor object 0x0000017C68BE5910
Gradient Boosting Regressor GradientBoosting Regressor
GradientBoosting random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

to enhance prediction accuracy [3]. The three best models for
throughput were the LGBM Regressor, CatBoost Regressor,
and GradientBoosting Regressor. The best three models for
Network Queue Delay and sRTT were the CatBoost Regressor,
LGBM Regressor, and ExtraTrees Regressor. The stacking
regressor models were then validated and evaluated using the
holdout dataset, which offered a more realistic evaluation of
the model’s predictive performance, as it had yet to be exposed
to this data during training.

F. Model Configurations

This part describes the configurations used to optimize
the model, including Optuna, LightGBM parameters speci-
fications, and the Stacking Regressor. A Hyperparameter is
an exterior configuration parameter engineers use to control
machine learning training. The number of nodes and layers in
a neural network and the number of branches in a decision tree
are illustrative examples of hyperparameters. Hyperparameters
define essential model properties such as architecture, learning
speed, and ML model complexity. Training a machine learning
model using multiple sets of variables, analyzing the perfor-
mance of each set, and selecting an optimal set that produces
the best performance are called Hyperparameter tuning. En-
semble learning integrates multiple machine learning models,
known as weak learners, into a single problem. The idea is
that combining these weak learners can create strong learners.
Stacking regressions is a technique that combines various
predictors linearly to enhance the accuracy of predictions [32].

The Optuna configuration settings used in the optimization
process and the LightGBM core parameters with their values

TABLE V: Stacking Regressor parameters specifications -
Stacking Regressor (network queue delay)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017C806D57C0
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

TABLE VI: Stacking Regressor parameters specifications -
Stacking Regressor (sRTT)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017CE14A8F40
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

are described in Table III. The core parameters mentioned
are ranking application parameters, including bagging fraction,
bagging frequency, processing device type, learning rate log-
arithmic value, number of boosting estimators, and maximum
number of leaves in one tree. There are also several learning
control parameters, including minimum child samples per
leaf, minimal gain to perform split, and two regularization
parameters at the regression analysis level (α and λ) [33].

We used a stacking regressor to improve the result by
stacking the best three regression models (LGBM Regres-
sor, CatBoost Regressor, GradientBoosting Regressor) with
the configuration settings for network throughput, network
queue delay, and sRTT presented in Tables IV, V, and VI
respectively.

Where cv specifies the number of the cross-validation’s
splitting strategy, random state specifies the value we set to
get the same values in train and test datasets whenever we run
the stacking regressor code. Linear regression is the final result
estimator, assuming the relation between the input and output
variables is linear. The n jobs=-1 means that all the CPU
cores will be used during the simulation while specifying the
number; for example, n jobs=1 will specify the exact number
of cores. Finally, the boolean value for the pass-through option
shows that when it is set to false, the estimators’ predictions
will only be used to train the final estimator. In contrast, true
value means the final estimator is trained on the predictions
and the original training data.

INFOCOMMUNICATIONS JOURNAL 8

TABLE III: LightGBM parameters specifications - LGBM
Regressor

Specifications Value
LGBM bagging fraction 0.8088
LGBM bagging freq. 7
LGBM device gpu
LGBM feature fraction 0.6502
LGBM learning rate 0.0512
LGBM min. child samples 52
LGBM Regressor min. split gain 0.5451
LGBM n. estimators 185
LGBM n. leaves 32
LGBM random state 123
LGBM Regressor reg. alpha 5.8939e-07
LGBM reg. lambda 2.2148e-07

TABLE IV: LightGBM parameters specifications - Stacking
Regressor (network throughput)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators LGBM
LGBM device gpu
LGBM random state 123
CatBoost Regressor catboost.core.CatBoost
CatBoost Regressor object 0x0000017C68BE5910
Gradient Boosting Regressor GradientBoosting Regressor
GradientBoosting random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

to enhance prediction accuracy [3]. The three best models for
throughput were the LGBM Regressor, CatBoost Regressor,
and GradientBoosting Regressor. The best three models for
Network Queue Delay and sRTT were the CatBoost Regressor,
LGBM Regressor, and ExtraTrees Regressor. The stacking
regressor models were then validated and evaluated using the
holdout dataset, which offered a more realistic evaluation of
the model’s predictive performance, as it had yet to be exposed
to this data during training.

F. Model Configurations

This part describes the configurations used to optimize
the model, including Optuna, LightGBM parameters speci-
fications, and the Stacking Regressor. A Hyperparameter is
an exterior configuration parameter engineers use to control
machine learning training. The number of nodes and layers in
a neural network and the number of branches in a decision tree
are illustrative examples of hyperparameters. Hyperparameters
define essential model properties such as architecture, learning
speed, and ML model complexity. Training a machine learning
model using multiple sets of variables, analyzing the perfor-
mance of each set, and selecting an optimal set that produces
the best performance are called Hyperparameter tuning. En-
semble learning integrates multiple machine learning models,
known as weak learners, into a single problem. The idea is
that combining these weak learners can create strong learners.
Stacking regressions is a technique that combines various
predictors linearly to enhance the accuracy of predictions [32].

The Optuna configuration settings used in the optimization
process and the LightGBM core parameters with their values

TABLE V: Stacking Regressor parameters specifications -
Stacking Regressor (network queue delay)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017C806D57C0
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

TABLE VI: Stacking Regressor parameters specifications -
Stacking Regressor (sRTT)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017CE14A8F40
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

are described in Table III. The core parameters mentioned
are ranking application parameters, including bagging fraction,
bagging frequency, processing device type, learning rate log-
arithmic value, number of boosting estimators, and maximum
number of leaves in one tree. There are also several learning
control parameters, including minimum child samples per
leaf, minimal gain to perform split, and two regularization
parameters at the regression analysis level (α and λ) [33].

We used a stacking regressor to improve the result by
stacking the best three regression models (LGBM Regres-
sor, CatBoost Regressor, GradientBoosting Regressor) with
the configuration settings for network throughput, network
queue delay, and sRTT presented in Tables IV, V, and VI
respectively.

Where cv specifies the number of the cross-validation’s
splitting strategy, random state specifies the value we set to
get the same values in train and test datasets whenever we run
the stacking regressor code. Linear regression is the final result
estimator, assuming the relation between the input and output
variables is linear. The n jobs=-1 means that all the CPU
cores will be used during the simulation while specifying the
number; for example, n jobs=1 will specify the exact number
of cores. Finally, the boolean value for the pass-through option
shows that when it is set to false, the estimators’ predictions
will only be used to train the final estimator. In contrast, true
value means the final estimator is trained on the predictions
and the original training data.

INFOCOMMUNICATIONS JOURNAL 8

TABLE III: LightGBM parameters specifications - LGBM
Regressor

Specifications Value
LGBM bagging fraction 0.8088
LGBM bagging freq. 7
LGBM device gpu
LGBM feature fraction 0.6502
LGBM learning rate 0.0512
LGBM min. child samples 52
LGBM Regressor min. split gain 0.5451
LGBM n. estimators 185
LGBM n. leaves 32
LGBM random state 123
LGBM Regressor reg. alpha 5.8939e-07
LGBM reg. lambda 2.2148e-07

TABLE IV: LightGBM parameters specifications - Stacking
Regressor (network throughput)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators LGBM
LGBM device gpu
LGBM random state 123
CatBoost Regressor catboost.core.CatBoost
CatBoost Regressor object 0x0000017C68BE5910
Gradient Boosting Regressor GradientBoosting Regressor
GradientBoosting random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

to enhance prediction accuracy [3]. The three best models for
throughput were the LGBM Regressor, CatBoost Regressor,
and GradientBoosting Regressor. The best three models for
Network Queue Delay and sRTT were the CatBoost Regressor,
LGBM Regressor, and ExtraTrees Regressor. The stacking
regressor models were then validated and evaluated using the
holdout dataset, which offered a more realistic evaluation of
the model’s predictive performance, as it had yet to be exposed
to this data during training.

F. Model Configurations

This part describes the configurations used to optimize
the model, including Optuna, LightGBM parameters speci-
fications, and the Stacking Regressor. A Hyperparameter is
an exterior configuration parameter engineers use to control
machine learning training. The number of nodes and layers in
a neural network and the number of branches in a decision tree
are illustrative examples of hyperparameters. Hyperparameters
define essential model properties such as architecture, learning
speed, and ML model complexity. Training a machine learning
model using multiple sets of variables, analyzing the perfor-
mance of each set, and selecting an optimal set that produces
the best performance are called Hyperparameter tuning. En-
semble learning integrates multiple machine learning models,
known as weak learners, into a single problem. The idea is
that combining these weak learners can create strong learners.
Stacking regressions is a technique that combines various
predictors linearly to enhance the accuracy of predictions [32].

The Optuna configuration settings used in the optimization
process and the LightGBM core parameters with their values

TABLE V: Stacking Regressor parameters specifications -
Stacking Regressor (network queue delay)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017C806D57C0
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

TABLE VI: Stacking Regressor parameters specifications -
Stacking Regressor (sRTT)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017CE14A8F40
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

are described in Table III. The core parameters mentioned
are ranking application parameters, including bagging fraction,
bagging frequency, processing device type, learning rate log-
arithmic value, number of boosting estimators, and maximum
number of leaves in one tree. There are also several learning
control parameters, including minimum child samples per
leaf, minimal gain to perform split, and two regularization
parameters at the regression analysis level (α and λ) [33].

We used a stacking regressor to improve the result by
stacking the best three regression models (LGBM Regres-
sor, CatBoost Regressor, GradientBoosting Regressor) with
the configuration settings for network throughput, network
queue delay, and sRTT presented in Tables IV, V, and VI
respectively.

Where cv specifies the number of the cross-validation’s
splitting strategy, random state specifies the value we set to
get the same values in train and test datasets whenever we run
the stacking regressor code. Linear regression is the final result
estimator, assuming the relation between the input and output
variables is linear. The n jobs=-1 means that all the CPU
cores will be used during the simulation while specifying the
number; for example, n jobs=1 will specify the exact number
of cores. Finally, the boolean value for the pass-through option
shows that when it is set to false, the estimators’ predictions
will only be used to train the final estimator. In contrast, true
value means the final estimator is trained on the predictions
and the original training data.

INFOCOMMUNICATIONS JOURNAL 8

TABLE III: LightGBM parameters specifications - LGBM
Regressor

Specifications Value
LGBM bagging fraction 0.8088
LGBM bagging freq. 7
LGBM device gpu
LGBM feature fraction 0.6502
LGBM learning rate 0.0512
LGBM min. child samples 52
LGBM Regressor min. split gain 0.5451
LGBM n. estimators 185
LGBM n. leaves 32
LGBM random state 123
LGBM Regressor reg. alpha 5.8939e-07
LGBM reg. lambda 2.2148e-07

TABLE IV: LightGBM parameters specifications - Stacking
Regressor (network throughput)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators LGBM
LGBM device gpu
LGBM random state 123
CatBoost Regressor catboost.core.CatBoost
CatBoost Regressor object 0x0000017C68BE5910
Gradient Boosting Regressor GradientBoosting Regressor
GradientBoosting random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

to enhance prediction accuracy [3]. The three best models for
throughput were the LGBM Regressor, CatBoost Regressor,
and GradientBoosting Regressor. The best three models for
Network Queue Delay and sRTT were the CatBoost Regressor,
LGBM Regressor, and ExtraTrees Regressor. The stacking
regressor models were then validated and evaluated using the
holdout dataset, which offered a more realistic evaluation of
the model’s predictive performance, as it had yet to be exposed
to this data during training.

F. Model Configurations

This part describes the configurations used to optimize
the model, including Optuna, LightGBM parameters speci-
fications, and the Stacking Regressor. A Hyperparameter is
an exterior configuration parameter engineers use to control
machine learning training. The number of nodes and layers in
a neural network and the number of branches in a decision tree
are illustrative examples of hyperparameters. Hyperparameters
define essential model properties such as architecture, learning
speed, and ML model complexity. Training a machine learning
model using multiple sets of variables, analyzing the perfor-
mance of each set, and selecting an optimal set that produces
the best performance are called Hyperparameter tuning. En-
semble learning integrates multiple machine learning models,
known as weak learners, into a single problem. The idea is
that combining these weak learners can create strong learners.
Stacking regressions is a technique that combines various
predictors linearly to enhance the accuracy of predictions [32].

The Optuna configuration settings used in the optimization
process and the LightGBM core parameters with their values

TABLE V: Stacking Regressor parameters specifications -
Stacking Regressor (network queue delay)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017C806D57C0
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

TABLE VI: Stacking Regressor parameters specifications -
Stacking Regressor (sRTT)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017CE14A8F40
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

are described in Table III. The core parameters mentioned
are ranking application parameters, including bagging fraction,
bagging frequency, processing device type, learning rate log-
arithmic value, number of boosting estimators, and maximum
number of leaves in one tree. There are also several learning
control parameters, including minimum child samples per
leaf, minimal gain to perform split, and two regularization
parameters at the regression analysis level (α and λ) [33].

We used a stacking regressor to improve the result by
stacking the best three regression models (LGBM Regres-
sor, CatBoost Regressor, GradientBoosting Regressor) with
the configuration settings for network throughput, network
queue delay, and sRTT presented in Tables IV, V, and VI
respectively.

Where cv specifies the number of the cross-validation’s
splitting strategy, random state specifies the value we set to
get the same values in train and test datasets whenever we run
the stacking regressor code. Linear regression is the final result
estimator, assuming the relation between the input and output
variables is linear. The n jobs=-1 means that all the CPU
cores will be used during the simulation while specifying the
number; for example, n jobs=1 will specify the exact number
of cores. Finally, the boolean value for the pass-through option
shows that when it is set to false, the estimators’ predictions
will only be used to train the final estimator. In contrast, true
value means the final estimator is trained on the predictions
and the original training data.

INFOCOMMUNICATIONS JOURNAL 8

TABLE III: LightGBM parameters specifications - LGBM
Regressor

Specifications Value
LGBM bagging fraction 0.8088
LGBM bagging freq. 7
LGBM device gpu
LGBM feature fraction 0.6502
LGBM learning rate 0.0512
LGBM min. child samples 52
LGBM Regressor min. split gain 0.5451
LGBM n. estimators 185
LGBM n. leaves 32
LGBM random state 123
LGBM Regressor reg. alpha 5.8939e-07
LGBM reg. lambda 2.2148e-07

TABLE IV: LightGBM parameters specifications - Stacking
Regressor (network throughput)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators LGBM
LGBM device gpu
LGBM random state 123
CatBoost Regressor catboost.core.CatBoost
CatBoost Regressor object 0x0000017C68BE5910
Gradient Boosting Regressor GradientBoosting Regressor
GradientBoosting random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

to enhance prediction accuracy [3]. The three best models for
throughput were the LGBM Regressor, CatBoost Regressor,
and GradientBoosting Regressor. The best three models for
Network Queue Delay and sRTT were the CatBoost Regressor,
LGBM Regressor, and ExtraTrees Regressor. The stacking
regressor models were then validated and evaluated using the
holdout dataset, which offered a more realistic evaluation of
the model’s predictive performance, as it had yet to be exposed
to this data during training.

F. Model Configurations

This part describes the configurations used to optimize
the model, including Optuna, LightGBM parameters speci-
fications, and the Stacking Regressor. A Hyperparameter is
an exterior configuration parameter engineers use to control
machine learning training. The number of nodes and layers in
a neural network and the number of branches in a decision tree
are illustrative examples of hyperparameters. Hyperparameters
define essential model properties such as architecture, learning
speed, and ML model complexity. Training a machine learning
model using multiple sets of variables, analyzing the perfor-
mance of each set, and selecting an optimal set that produces
the best performance are called Hyperparameter tuning. En-
semble learning integrates multiple machine learning models,
known as weak learners, into a single problem. The idea is
that combining these weak learners can create strong learners.
Stacking regressions is a technique that combines various
predictors linearly to enhance the accuracy of predictions [32].

The Optuna configuration settings used in the optimization
process and the LightGBM core parameters with their values

TABLE V: Stacking Regressor parameters specifications -
Stacking Regressor (network queue delay)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017C806D57C0
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

TABLE VI: Stacking Regressor parameters specifications -
Stacking Regressor (sRTT)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017CE14A8F40
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

are described in Table III. The core parameters mentioned
are ranking application parameters, including bagging fraction,
bagging frequency, processing device type, learning rate log-
arithmic value, number of boosting estimators, and maximum
number of leaves in one tree. There are also several learning
control parameters, including minimum child samples per
leaf, minimal gain to perform split, and two regularization
parameters at the regression analysis level (α and λ) [33].

We used a stacking regressor to improve the result by
stacking the best three regression models (LGBM Regres-
sor, CatBoost Regressor, GradientBoosting Regressor) with
the configuration settings for network throughput, network
queue delay, and sRTT presented in Tables IV, V, and VI
respectively.

Where cv specifies the number of the cross-validation’s
splitting strategy, random state specifies the value we set to
get the same values in train and test datasets whenever we run
the stacking regressor code. Linear regression is the final result
estimator, assuming the relation between the input and output
variables is linear. The n jobs=-1 means that all the CPU
cores will be used during the simulation while specifying the
number; for example, n jobs=1 will specify the exact number
of cores. Finally, the boolean value for the pass-through option
shows that when it is set to false, the estimators’ predictions
will only be used to train the final estimator. In contrast, true
value means the final estimator is trained on the predictions
and the original training data.

INFOCOMMUNICATIONS JOURNAL 8

TABLE III: LightGBM parameters specifications - LGBM
Regressor

Specifications Value
LGBM bagging fraction 0.8088
LGBM bagging freq. 7
LGBM device gpu
LGBM feature fraction 0.6502
LGBM learning rate 0.0512
LGBM min. child samples 52
LGBM Regressor min. split gain 0.5451
LGBM n. estimators 185
LGBM n. leaves 32
LGBM random state 123
LGBM Regressor reg. alpha 5.8939e-07
LGBM reg. lambda 2.2148e-07

TABLE IV: LightGBM parameters specifications - Stacking
Regressor (network throughput)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators LGBM
LGBM device gpu
LGBM random state 123
CatBoost Regressor catboost.core.CatBoost
CatBoost Regressor object 0x0000017C68BE5910
Gradient Boosting Regressor GradientBoosting Regressor
GradientBoosting random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

to enhance prediction accuracy [3]. The three best models for
throughput were the LGBM Regressor, CatBoost Regressor,
and GradientBoosting Regressor. The best three models for
Network Queue Delay and sRTT were the CatBoost Regressor,
LGBM Regressor, and ExtraTrees Regressor. The stacking
regressor models were then validated and evaluated using the
holdout dataset, which offered a more realistic evaluation of
the model’s predictive performance, as it had yet to be exposed
to this data during training.

F. Model Configurations

This part describes the configurations used to optimize
the model, including Optuna, LightGBM parameters speci-
fications, and the Stacking Regressor. A Hyperparameter is
an exterior configuration parameter engineers use to control
machine learning training. The number of nodes and layers in
a neural network and the number of branches in a decision tree
are illustrative examples of hyperparameters. Hyperparameters
define essential model properties such as architecture, learning
speed, and ML model complexity. Training a machine learning
model using multiple sets of variables, analyzing the perfor-
mance of each set, and selecting an optimal set that produces
the best performance are called Hyperparameter tuning. En-
semble learning integrates multiple machine learning models,
known as weak learners, into a single problem. The idea is
that combining these weak learners can create strong learners.
Stacking regressions is a technique that combines various
predictors linearly to enhance the accuracy of predictions [32].

The Optuna configuration settings used in the optimization
process and the LightGBM core parameters with their values

TABLE V: Stacking Regressor parameters specifications -
Stacking Regressor (network queue delay)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017C806D57C0
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

TABLE VI: Stacking Regressor parameters specifications -
Stacking Regressor (sRTT)

Specifications Value
Stacking Regressor cv 5
Stacking Regressor estimators CatBoost Regressor
catboost.core.CatBoost Regressor object 0x0000017CE14A8F40
Light Gradient Boosting Machine LGBM Regressor
LGBM Regressor device gpu
LGBM Regressor random state 123
Extra Trees Regressor ExtraTrees Regressor
ExtraTrees Regressor n. jobs -1
ExtraTrees Regressor random state 123
Stacking Regressor final estimator LinearRegression
LinearRegression n. jobs -1
Stacking Regressor n. jobs 1
Stacking Regressor passthrough True

are described in Table III. The core parameters mentioned
are ranking application parameters, including bagging fraction,
bagging frequency, processing device type, learning rate log-
arithmic value, number of boosting estimators, and maximum
number of leaves in one tree. There are also several learning
control parameters, including minimum child samples per
leaf, minimal gain to perform split, and two regularization
parameters at the regression analysis level (α and λ) [33].

We used a stacking regressor to improve the result by
stacking the best three regression models (LGBM Regres-
sor, CatBoost Regressor, GradientBoosting Regressor) with
the configuration settings for network throughput, network
queue delay, and sRTT presented in Tables IV, V, and VI
respectively.

Where cv specifies the number of the cross-validation’s
splitting strategy, random state specifies the value we set to
get the same values in train and test datasets whenever we run
the stacking regressor code. Linear regression is the final result
estimator, assuming the relation between the input and output
variables is linear. The n jobs=-1 means that all the CPU
cores will be used during the simulation while specifying the
number; for example, n jobs=1 will specify the exact number
of cores. Finally, the boolean value for the pass-through option
shows that when it is set to false, the estimators’ predictions
will only be used to train the final estimator. In contrast, true
value means the final estimator is trained on the predictions
and the original training data.

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 310

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 9

G. Model Evaluation

Each model’s performance was evaluated through various
metrics, such as Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), coefficient of determination (R2),
Root Mean Squared Logarithmic Error (RMSLE) and Mean
Absolute Percentage Error (MAPE). R2 will be the main focus
of our discussions. Mean Absolute Error (MAE) is a metric
used to measure the average absolute difference between
the predicted and actual values. It represents the average
magnitude of the errors without considering their direction
and is calculated by summing up the absolute differences and
dividing by the total number of samples.

RMSE is a commonly used metric to evaluate the perfor-
mance of a predictive model and measure the square root of
the average squared differences between the predicted and
actual values. It is calculated by taking the square root of
the average of the squared differences between predicted and
actual values. RMSLE is a metric commonly used in tasks
where the predicted variable and actual values span a wide
range and are skewed. It calculates the RMS of the logarithmic
differences between the predicted and actual values. It is
calculated by taking the square root of the average of the
squared logarithmic differences between predicted and actual
values.

MAPE is a metric used to measure the average percentage
difference between predicted and actual values. MAPE is
commonly used in forecasting and demand planning tasks.
However, it has some limitations, such as being sensitive to
zero values and unbounded, meaning it can produce infinite
values. To visualize and better comprehend the performance of
each model, we also generated residual and prediction error
plots. Additionally, scatter plots were used to compare the
actual and predicted values of the target variables.

The methodology applied in this study ensures a robust
and comprehensive approach toward model development and
evaluation, aiding the reliable and replicable prediction of the
target variables.

IV. RESULTS AND DISCUSSION

In this study, we performed rigorous data preprocessing
and utilized various machine-learning models to predict three
target attributes: network queue delay, sRTT, and network
throughput. We employed diverse techniques to enhance the
model’s prediction quality, including hyperparameter tuning,
ensemble learning, and stacking regressors.

As previously mentioned, we calculated five different out-
puts (MAE, RMSE, R2, RMSLE, and MAPE) values for
each metric. Further experiments are performed during four
subsequent stages. The reason for involving each stage in this
phase is as follows:

• Fine-tuning with Optuna: During this stage, hyperpa-
rameter optimization occurs. Optuna examines various
possible combinations to identify the most suitable set
of hyperparameters. This process leads to a better fitting
between the model and data, which improves R2.

• Applying the bagging method: This method ensures
more reliable and stable predictions by reducing variance

and overfitting. It calculates the average prediction values
of multiple models trained on different training data
subsets. As a result, it will increase the model’s ability
to identify the underlying data patterns, which in turn
increases R2.

• Deployment of stacking regressor: Multiple base mod-
els can be trained simultaneously and later achieve a
meta-model that combines the strengths of their predic-
tions, mitigating their weaknesses. The realized meta-
model can eventually enhance R2 by capturing more com-
plex relationships by learning to assign proper weights to
the model’s prediction values.

• Using holdout data: The final stage of our improvements
handles the unseen data and ensures that the stacking
regressor generalizes well to them. Capturing the un-
derlying data distribution is indicated by the model’s
performance on the holdout data. Better performance
leads to higher R2 values. This step realizes the accuracy
and robustness of the model.

A. Summary of Improvements: Tabular Data

A.1 Network Throughput

We implemented multiple regression models and applied a
comparative analysis to demonstrate the best initial predic-
tion performance. Table VII indicates that LightGBM outper-
formed all other models. It achieved the highest R2 (0.7805)
and lowest MAE, RMSE, RMSLE, and MAPE values. It is
expected that LightGBM will outperform other models due
to its speed, accuracy, and capability to capture complex data
patterns.

A minor improvement in R2 value was observed when fine-
tuning the model, as shown in Table VIII, where R2 increased
to 0.7814. The improvement process indicates that the hy-
perparameters are close to optimal values. It is noticed that
there are standard deviations for MAE and RMSE, indicating
a moderate variability in the folds.

As demonstrated in Table IX, a slight improvement in
the R2 value with a performance gain of 0.32%, where the
bagging fits several independent models and averaged their
predictions to get a lower variance model. By applying the
bagging method, we realized a more consistent performance
and lower standard deviations across different folds compared
to Table VIII.

Subsequently, a stacking regressor was deployed, utilizing
the three best regression models (LGBM Regressor, CatBoost
Regressor, and GradientBoosting Regressor), resulting in fur-
ther performance gain of 0.397%, as shown in Table X.
This combination produces a linear regression scheme that
accurately predicts target variables with approximately low
errors across different folds. Based on the standard deviation
(std) values across multiple subsets of data, the performance
of this model is reasonably stable. Among all tested methods,
stacking resulted in the lowest variability, which indicates its
efficiency in improving the consistency and accuracy of the
model’s predictions.

Finally, we utilized the holdout data (4000 rows) to evaluate
the performance. As demonstrated in Table XI, which exhibits

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 11

INFOCOMMUNICATIONS JOURNAL 10

TABLE VII: Initial prediction of network throughput

Model MAE RMSE R2 RMSLE MAPE
LightGBM Light Gradient Boosting Machine 3.1541 3.9967 0.7805 0.1311 0.1074
CatBoost CatBoost Regressor 3.1763 4.0272 0.7771 0.1317 0.1077
GBR Gradient Boosting Regressor 3.3041 4.1592 0.7623 0.1352 0.1122
RF Random Forest Regressor 3.3348 4.1945 0.7581 0.1383 0.1144
XGBoost Extreme Gradient Boosting 3.3235 4.2104 0.7564 0.1385 0.1129
ET Extra Trees Regressor 3.3771 4.2454 0.7523 0.1391 0.1156
Ada AdaBoost Regressor 3.9693 4.8661 0.6745 0.1629 0.1417
Ridge Ridge Regression 4.2362 5.3658 0.6040 0.1738 0.1456
LR Linear Regression 4.2360 5.3658 0.6040 0.1738 0.1456
BR Bayesian Ridge 4.2361 5.3658 0.6040 0.1738 0.1456
LAR Least Angle Regression 4.2360 5.3658 0.6040 0.1738 0.1456
Huber Huber Regressor 4.2241 5.3736 0.6029 0.1732 0.1440
KNN K Neighbors Regressor 4.4880 5.6626 0.5591 0.1884 0.1596
DT Decision Tree Regressor 4.7010 5.9827 0.5078 0.1960 0.1599
PAR Passive Aggressive Regressor 4.7495 5.9758 0.5061 0.1934 0.1678
OMP Orthogonal Matching Pursuit 5.0106 6.3742 0.4416 0.2058 0.1753
Lasso Lasso Regression 5.8857 7.2623 0.2755 0.2406 0.2125
LLAR Lasso Least Angle Regression 5.8857 7.2623 0.2755 0.2406 0.2125
EN Elastic Net 6.6885 8.1526 0.0870 0.2689 0.2426
Dummy Dummy Regressor 7.0298 8.5365 -0.0011 0.2807 0.2551

TABLE VIII: Fine-tuning the model using Optuna hyperpa-
rameter optimization framework (network throughput)

Fold MAE RMSE R2 RMSLE MAPE
0 3.0699 3.8816 0.7950 0.1261 0.1037
1 3.2399 4.1004 0.7730 0.1346 0.1103
2 3.1861 4.0244 0.7806 0.1299 0.1073
3 3.1018 3.9078 0.7767 0.1305 0.1080
4 3.2980 4.1863 0.7624 0.1376 0.1110
5 3.0754 3.8856 0.7850 0.1265 0.1044
6 3.1419 3.9216 0.7917 0.1282 0.1068
7 3.1594 4.0331 0.7860 0.1331 0.1082
8 3.0894 3.9551 0.7800 0.1281 0.1030
9 3.1522 3.9895 0.7832 0.1334 0.1100
Mean 3.1514 3.9885 0.7814 0.1308 0.1073
Std 0.0703 0.0944 0.0089 0.0036 0.0027

TABLE IX: Boosting the model’s performance by applying the
ensemble model with bagging method for network throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0789 3.8773 0.7954 0.1263 0.1042
1 3.2117 4.0543 0.7781 0.1332 0.1095
2 3.1782 4.0129 0.7819 0.1298 0.1073
3 3.1114 3.9120 0.7762 0.1311 0.1087
4 3.2795 4.1621 0.7651 0.1364 0.1105
5 3.0912 3.8833 0.7852 0.1263 0.1049
6 3.1455 3.9302 0.7908 0.1283 0.1068
7 3.1372 3.9782 0.7918 0.1315 0.1078
8 3.1239 3.9693 0.7784 0.1285 0.1042
9 3.1449 3.9582 0.7866 0.1324 0.1099
Mean 3.1502 3.9738 0.7830 0.1304 0.1074
Std 0.0568 0.0818 0.0085 0.0030 0.0022

a proper approximation to the actual values, we achieved a
performance gain of 0.78%. This confirms that the model has
robust stability and predictive capabilities and can generalize
properly to unseen data, maintaining a high R2 value and low
error rates.

Although the percentage of performance gains is relatively
small, they reflect a significant performance improvement and
impactful enhancement in the model’s predictive capabilities.

TABLE X: Deployment of the stacking regressor by uti-
lizing the three best regression models (LGBM Regressor,
CatBoost Regressor, and GradientBoosting Regressor) for net-
work throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0672 3.8710 0.7961 0.1260 0.1034
1 3.1789 4.0474 0.7788 0.1325 0.1077
2 3.1605 4.0033 0.7829 0.1296 0.1065
3 3.0487 3.8751 0.7804 0.1295 0.1060
4 3.2392 4.1453 0.7670 0.1349 0.1084
5 3.1006 3.9183 0.7813 0.1272 0.1048
6 3.0906 3.8900 0.7951 0.1266 0.1044
7 3.1404 3.9928 0.7903 0.1318 0.1075
8 3.1016 3.9701 0.7783 0.1281 0.1027
9 3.1259 3.9649 0.7859 0.1321 0.1089
Mean 3.1254 3.9678 0.7836 0.1298 0.1060
Std 0.0538 0.0814 0.0082 0.0028 0.0020

TABLE XI: Prediction of network throughput using the hold-
out data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
3.1061 3.9364 0.7866 0.1304 0.1060

A.2 Network Queue Delay

Among twenty models, the CatBoost regressor was the top
model that offered the best possible initial performance for
predicting the network queue delay regarding R2 (0.6935) as
shown in Table XII.

Optimization techniques such as scikit-learn [34], scikit-
optimize [35], and optuna [34] were utilized during the fine-
tuning process. However, the results in Table XIII show
that implementing the mentioned techniques along with the
CatBoost regressor results in performance degradation, as
indicated by the 2.90% drop in R2. These negative impacts
on model performance imply that hyperparameter choices
could have generalized better across the cross-validation folds
related to many possible problems, such as data variability,
unbalanced data, or hyperparameter sensitivity to some val-
ues. In addition, the overfitting problems, noise, and minor
fluctuations that do not reflect the basic patterns in the data

INFOCOMMUNICATIONS JOURNAL 10

TABLE VII: Initial prediction of network throughput

Model MAE RMSE R2 RMSLE MAPE
LightGBM Light Gradient Boosting Machine 3.1541 3.9967 0.7805 0.1311 0.1074
CatBoost CatBoost Regressor 3.1763 4.0272 0.7771 0.1317 0.1077
GBR Gradient Boosting Regressor 3.3041 4.1592 0.7623 0.1352 0.1122
RF Random Forest Regressor 3.3348 4.1945 0.7581 0.1383 0.1144
XGBoost Extreme Gradient Boosting 3.3235 4.2104 0.7564 0.1385 0.1129
ET Extra Trees Regressor 3.3771 4.2454 0.7523 0.1391 0.1156
Ada AdaBoost Regressor 3.9693 4.8661 0.6745 0.1629 0.1417
Ridge Ridge Regression 4.2362 5.3658 0.6040 0.1738 0.1456
LR Linear Regression 4.2360 5.3658 0.6040 0.1738 0.1456
BR Bayesian Ridge 4.2361 5.3658 0.6040 0.1738 0.1456
LAR Least Angle Regression 4.2360 5.3658 0.6040 0.1738 0.1456
Huber Huber Regressor 4.2241 5.3736 0.6029 0.1732 0.1440
KNN K Neighbors Regressor 4.4880 5.6626 0.5591 0.1884 0.1596
DT Decision Tree Regressor 4.7010 5.9827 0.5078 0.1960 0.1599
PAR Passive Aggressive Regressor 4.7495 5.9758 0.5061 0.1934 0.1678
OMP Orthogonal Matching Pursuit 5.0106 6.3742 0.4416 0.2058 0.1753
Lasso Lasso Regression 5.8857 7.2623 0.2755 0.2406 0.2125
LLAR Lasso Least Angle Regression 5.8857 7.2623 0.2755 0.2406 0.2125
EN Elastic Net 6.6885 8.1526 0.0870 0.2689 0.2426
Dummy Dummy Regressor 7.0298 8.5365 -0.0011 0.2807 0.2551

TABLE VIII: Fine-tuning the model using Optuna hyperpa-
rameter optimization framework (network throughput)

Fold MAE RMSE R2 RMSLE MAPE
0 3.0699 3.8816 0.7950 0.1261 0.1037
1 3.2399 4.1004 0.7730 0.1346 0.1103
2 3.1861 4.0244 0.7806 0.1299 0.1073
3 3.1018 3.9078 0.7767 0.1305 0.1080
4 3.2980 4.1863 0.7624 0.1376 0.1110
5 3.0754 3.8856 0.7850 0.1265 0.1044
6 3.1419 3.9216 0.7917 0.1282 0.1068
7 3.1594 4.0331 0.7860 0.1331 0.1082
8 3.0894 3.9551 0.7800 0.1281 0.1030
9 3.1522 3.9895 0.7832 0.1334 0.1100
Mean 3.1514 3.9885 0.7814 0.1308 0.1073
Std 0.0703 0.0944 0.0089 0.0036 0.0027

TABLE IX: Boosting the model’s performance by applying the
ensemble model with bagging method for network throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0789 3.8773 0.7954 0.1263 0.1042
1 3.2117 4.0543 0.7781 0.1332 0.1095
2 3.1782 4.0129 0.7819 0.1298 0.1073
3 3.1114 3.9120 0.7762 0.1311 0.1087
4 3.2795 4.1621 0.7651 0.1364 0.1105
5 3.0912 3.8833 0.7852 0.1263 0.1049
6 3.1455 3.9302 0.7908 0.1283 0.1068
7 3.1372 3.9782 0.7918 0.1315 0.1078
8 3.1239 3.9693 0.7784 0.1285 0.1042
9 3.1449 3.9582 0.7866 0.1324 0.1099
Mean 3.1502 3.9738 0.7830 0.1304 0.1074
Std 0.0568 0.0818 0.0085 0.0030 0.0022

a proper approximation to the actual values, we achieved a
performance gain of 0.78%. This confirms that the model has
robust stability and predictive capabilities and can generalize
properly to unseen data, maintaining a high R2 value and low
error rates.

Although the percentage of performance gains is relatively
small, they reflect a significant performance improvement and
impactful enhancement in the model’s predictive capabilities.

TABLE X: Deployment of the stacking regressor by uti-
lizing the three best regression models (LGBM Regressor,
CatBoost Regressor, and GradientBoosting Regressor) for net-
work throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0672 3.8710 0.7961 0.1260 0.1034
1 3.1789 4.0474 0.7788 0.1325 0.1077
2 3.1605 4.0033 0.7829 0.1296 0.1065
3 3.0487 3.8751 0.7804 0.1295 0.1060
4 3.2392 4.1453 0.7670 0.1349 0.1084
5 3.1006 3.9183 0.7813 0.1272 0.1048
6 3.0906 3.8900 0.7951 0.1266 0.1044
7 3.1404 3.9928 0.7903 0.1318 0.1075
8 3.1016 3.9701 0.7783 0.1281 0.1027
9 3.1259 3.9649 0.7859 0.1321 0.1089
Mean 3.1254 3.9678 0.7836 0.1298 0.1060
Std 0.0538 0.0814 0.0082 0.0028 0.0020

TABLE XI: Prediction of network throughput using the hold-
out data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
3.1061 3.9364 0.7866 0.1304 0.1060

A.2 Network Queue Delay

Among twenty models, the CatBoost regressor was the top
model that offered the best possible initial performance for
predicting the network queue delay regarding R2 (0.6935) as
shown in Table XII.

Optimization techniques such as scikit-learn [34], scikit-
optimize [35], and optuna [34] were utilized during the fine-
tuning process. However, the results in Table XIII show
that implementing the mentioned techniques along with the
CatBoost regressor results in performance degradation, as
indicated by the 2.90% drop in R2. These negative impacts
on model performance imply that hyperparameter choices
could have generalized better across the cross-validation folds
related to many possible problems, such as data variability,
unbalanced data, or hyperparameter sensitivity to some val-
ues. In addition, the overfitting problems, noise, and minor
fluctuations that do not reflect the basic patterns in the data

INFOCOMMUNICATIONS JOURNAL 10

TABLE VII: Initial prediction of network throughput

Model MAE RMSE R2 RMSLE MAPE
LightGBM Light Gradient Boosting Machine 3.1541 3.9967 0.7805 0.1311 0.1074
CatBoost CatBoost Regressor 3.1763 4.0272 0.7771 0.1317 0.1077
GBR Gradient Boosting Regressor 3.3041 4.1592 0.7623 0.1352 0.1122
RF Random Forest Regressor 3.3348 4.1945 0.7581 0.1383 0.1144
XGBoost Extreme Gradient Boosting 3.3235 4.2104 0.7564 0.1385 0.1129
ET Extra Trees Regressor 3.3771 4.2454 0.7523 0.1391 0.1156
Ada AdaBoost Regressor 3.9693 4.8661 0.6745 0.1629 0.1417
Ridge Ridge Regression 4.2362 5.3658 0.6040 0.1738 0.1456
LR Linear Regression 4.2360 5.3658 0.6040 0.1738 0.1456
BR Bayesian Ridge 4.2361 5.3658 0.6040 0.1738 0.1456
LAR Least Angle Regression 4.2360 5.3658 0.6040 0.1738 0.1456
Huber Huber Regressor 4.2241 5.3736 0.6029 0.1732 0.1440
KNN K Neighbors Regressor 4.4880 5.6626 0.5591 0.1884 0.1596
DT Decision Tree Regressor 4.7010 5.9827 0.5078 0.1960 0.1599
PAR Passive Aggressive Regressor 4.7495 5.9758 0.5061 0.1934 0.1678
OMP Orthogonal Matching Pursuit 5.0106 6.3742 0.4416 0.2058 0.1753
Lasso Lasso Regression 5.8857 7.2623 0.2755 0.2406 0.2125
LLAR Lasso Least Angle Regression 5.8857 7.2623 0.2755 0.2406 0.2125
EN Elastic Net 6.6885 8.1526 0.0870 0.2689 0.2426
Dummy Dummy Regressor 7.0298 8.5365 -0.0011 0.2807 0.2551

TABLE VIII: Fine-tuning the model using Optuna hyperpa-
rameter optimization framework (network throughput)

Fold MAE RMSE R2 RMSLE MAPE
0 3.0699 3.8816 0.7950 0.1261 0.1037
1 3.2399 4.1004 0.7730 0.1346 0.1103
2 3.1861 4.0244 0.7806 0.1299 0.1073
3 3.1018 3.9078 0.7767 0.1305 0.1080
4 3.2980 4.1863 0.7624 0.1376 0.1110
5 3.0754 3.8856 0.7850 0.1265 0.1044
6 3.1419 3.9216 0.7917 0.1282 0.1068
7 3.1594 4.0331 0.7860 0.1331 0.1082
8 3.0894 3.9551 0.7800 0.1281 0.1030
9 3.1522 3.9895 0.7832 0.1334 0.1100
Mean 3.1514 3.9885 0.7814 0.1308 0.1073
Std 0.0703 0.0944 0.0089 0.0036 0.0027

TABLE IX: Boosting the model’s performance by applying the
ensemble model with bagging method for network throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0789 3.8773 0.7954 0.1263 0.1042
1 3.2117 4.0543 0.7781 0.1332 0.1095
2 3.1782 4.0129 0.7819 0.1298 0.1073
3 3.1114 3.9120 0.7762 0.1311 0.1087
4 3.2795 4.1621 0.7651 0.1364 0.1105
5 3.0912 3.8833 0.7852 0.1263 0.1049
6 3.1455 3.9302 0.7908 0.1283 0.1068
7 3.1372 3.9782 0.7918 0.1315 0.1078
8 3.1239 3.9693 0.7784 0.1285 0.1042
9 3.1449 3.9582 0.7866 0.1324 0.1099
Mean 3.1502 3.9738 0.7830 0.1304 0.1074
Std 0.0568 0.0818 0.0085 0.0030 0.0022

a proper approximation to the actual values, we achieved a
performance gain of 0.78%. This confirms that the model has
robust stability and predictive capabilities and can generalize
properly to unseen data, maintaining a high R2 value and low
error rates.

Although the percentage of performance gains is relatively
small, they reflect a significant performance improvement and
impactful enhancement in the model’s predictive capabilities.

TABLE X: Deployment of the stacking regressor by uti-
lizing the three best regression models (LGBM Regressor,
CatBoost Regressor, and GradientBoosting Regressor) for net-
work throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0672 3.8710 0.7961 0.1260 0.1034
1 3.1789 4.0474 0.7788 0.1325 0.1077
2 3.1605 4.0033 0.7829 0.1296 0.1065
3 3.0487 3.8751 0.7804 0.1295 0.1060
4 3.2392 4.1453 0.7670 0.1349 0.1084
5 3.1006 3.9183 0.7813 0.1272 0.1048
6 3.0906 3.8900 0.7951 0.1266 0.1044
7 3.1404 3.9928 0.7903 0.1318 0.1075
8 3.1016 3.9701 0.7783 0.1281 0.1027
9 3.1259 3.9649 0.7859 0.1321 0.1089
Mean 3.1254 3.9678 0.7836 0.1298 0.1060
Std 0.0538 0.0814 0.0082 0.0028 0.0020

TABLE XI: Prediction of network throughput using the hold-
out data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
3.1061 3.9364 0.7866 0.1304 0.1060

A.2 Network Queue Delay

Among twenty models, the CatBoost regressor was the top
model that offered the best possible initial performance for
predicting the network queue delay regarding R2 (0.6935) as
shown in Table XII.

Optimization techniques such as scikit-learn [34], scikit-
optimize [35], and optuna [34] were utilized during the fine-
tuning process. However, the results in Table XIII show
that implementing the mentioned techniques along with the
CatBoost regressor results in performance degradation, as
indicated by the 2.90% drop in R2. These negative impacts
on model performance imply that hyperparameter choices
could have generalized better across the cross-validation folds
related to many possible problems, such as data variability,
unbalanced data, or hyperparameter sensitivity to some val-
ues. In addition, the overfitting problems, noise, and minor
fluctuations that do not reflect the basic patterns in the data

INFOCOMMUNICATIONS JOURNAL 10

TABLE VII: Initial prediction of network throughput

Model MAE RMSE R2 RMSLE MAPE
LightGBM Light Gradient Boosting Machine 3.1541 3.9967 0.7805 0.1311 0.1074
CatBoost CatBoost Regressor 3.1763 4.0272 0.7771 0.1317 0.1077
GBR Gradient Boosting Regressor 3.3041 4.1592 0.7623 0.1352 0.1122
RF Random Forest Regressor 3.3348 4.1945 0.7581 0.1383 0.1144
XGBoost Extreme Gradient Boosting 3.3235 4.2104 0.7564 0.1385 0.1129
ET Extra Trees Regressor 3.3771 4.2454 0.7523 0.1391 0.1156
Ada AdaBoost Regressor 3.9693 4.8661 0.6745 0.1629 0.1417
Ridge Ridge Regression 4.2362 5.3658 0.6040 0.1738 0.1456
LR Linear Regression 4.2360 5.3658 0.6040 0.1738 0.1456
BR Bayesian Ridge 4.2361 5.3658 0.6040 0.1738 0.1456
LAR Least Angle Regression 4.2360 5.3658 0.6040 0.1738 0.1456
Huber Huber Regressor 4.2241 5.3736 0.6029 0.1732 0.1440
KNN K Neighbors Regressor 4.4880 5.6626 0.5591 0.1884 0.1596
DT Decision Tree Regressor 4.7010 5.9827 0.5078 0.1960 0.1599
PAR Passive Aggressive Regressor 4.7495 5.9758 0.5061 0.1934 0.1678
OMP Orthogonal Matching Pursuit 5.0106 6.3742 0.4416 0.2058 0.1753
Lasso Lasso Regression 5.8857 7.2623 0.2755 0.2406 0.2125
LLAR Lasso Least Angle Regression 5.8857 7.2623 0.2755 0.2406 0.2125
EN Elastic Net 6.6885 8.1526 0.0870 0.2689 0.2426
Dummy Dummy Regressor 7.0298 8.5365 -0.0011 0.2807 0.2551

TABLE VIII: Fine-tuning the model using Optuna hyperpa-
rameter optimization framework (network throughput)

Fold MAE RMSE R2 RMSLE MAPE
0 3.0699 3.8816 0.7950 0.1261 0.1037
1 3.2399 4.1004 0.7730 0.1346 0.1103
2 3.1861 4.0244 0.7806 0.1299 0.1073
3 3.1018 3.9078 0.7767 0.1305 0.1080
4 3.2980 4.1863 0.7624 0.1376 0.1110
5 3.0754 3.8856 0.7850 0.1265 0.1044
6 3.1419 3.9216 0.7917 0.1282 0.1068
7 3.1594 4.0331 0.7860 0.1331 0.1082
8 3.0894 3.9551 0.7800 0.1281 0.1030
9 3.1522 3.9895 0.7832 0.1334 0.1100
Mean 3.1514 3.9885 0.7814 0.1308 0.1073
Std 0.0703 0.0944 0.0089 0.0036 0.0027

TABLE IX: Boosting the model’s performance by applying the
ensemble model with bagging method for network throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0789 3.8773 0.7954 0.1263 0.1042
1 3.2117 4.0543 0.7781 0.1332 0.1095
2 3.1782 4.0129 0.7819 0.1298 0.1073
3 3.1114 3.9120 0.7762 0.1311 0.1087
4 3.2795 4.1621 0.7651 0.1364 0.1105
5 3.0912 3.8833 0.7852 0.1263 0.1049
6 3.1455 3.9302 0.7908 0.1283 0.1068
7 3.1372 3.9782 0.7918 0.1315 0.1078
8 3.1239 3.9693 0.7784 0.1285 0.1042
9 3.1449 3.9582 0.7866 0.1324 0.1099
Mean 3.1502 3.9738 0.7830 0.1304 0.1074
Std 0.0568 0.0818 0.0085 0.0030 0.0022

a proper approximation to the actual values, we achieved a
performance gain of 0.78%. This confirms that the model has
robust stability and predictive capabilities and can generalize
properly to unseen data, maintaining a high R2 value and low
error rates.

Although the percentage of performance gains is relatively
small, they reflect a significant performance improvement and
impactful enhancement in the model’s predictive capabilities.

TABLE X: Deployment of the stacking regressor by uti-
lizing the three best regression models (LGBM Regressor,
CatBoost Regressor, and GradientBoosting Regressor) for net-
work throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0672 3.8710 0.7961 0.1260 0.1034
1 3.1789 4.0474 0.7788 0.1325 0.1077
2 3.1605 4.0033 0.7829 0.1296 0.1065
3 3.0487 3.8751 0.7804 0.1295 0.1060
4 3.2392 4.1453 0.7670 0.1349 0.1084
5 3.1006 3.9183 0.7813 0.1272 0.1048
6 3.0906 3.8900 0.7951 0.1266 0.1044
7 3.1404 3.9928 0.7903 0.1318 0.1075
8 3.1016 3.9701 0.7783 0.1281 0.1027
9 3.1259 3.9649 0.7859 0.1321 0.1089
Mean 3.1254 3.9678 0.7836 0.1298 0.1060
Std 0.0538 0.0814 0.0082 0.0028 0.0020

TABLE XI: Prediction of network throughput using the hold-
out data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
3.1061 3.9364 0.7866 0.1304 0.1060

A.2 Network Queue Delay

Among twenty models, the CatBoost regressor was the top
model that offered the best possible initial performance for
predicting the network queue delay regarding R2 (0.6935) as
shown in Table XII.

Optimization techniques such as scikit-learn [34], scikit-
optimize [35], and optuna [34] were utilized during the fine-
tuning process. However, the results in Table XIII show
that implementing the mentioned techniques along with the
CatBoost regressor results in performance degradation, as
indicated by the 2.90% drop in R2. These negative impacts
on model performance imply that hyperparameter choices
could have generalized better across the cross-validation folds
related to many possible problems, such as data variability,
unbalanced data, or hyperparameter sensitivity to some val-
ues. In addition, the overfitting problems, noise, and minor
fluctuations that do not reflect the basic patterns in the data

INFOCOMMUNICATIONS JOURNAL 10

TABLE VII: Initial prediction of network throughput

Model MAE RMSE R2 RMSLE MAPE
LightGBM Light Gradient Boosting Machine 3.1541 3.9967 0.7805 0.1311 0.1074
CatBoost CatBoost Regressor 3.1763 4.0272 0.7771 0.1317 0.1077
GBR Gradient Boosting Regressor 3.3041 4.1592 0.7623 0.1352 0.1122
RF Random Forest Regressor 3.3348 4.1945 0.7581 0.1383 0.1144
XGBoost Extreme Gradient Boosting 3.3235 4.2104 0.7564 0.1385 0.1129
ET Extra Trees Regressor 3.3771 4.2454 0.7523 0.1391 0.1156
Ada AdaBoost Regressor 3.9693 4.8661 0.6745 0.1629 0.1417
Ridge Ridge Regression 4.2362 5.3658 0.6040 0.1738 0.1456
LR Linear Regression 4.2360 5.3658 0.6040 0.1738 0.1456
BR Bayesian Ridge 4.2361 5.3658 0.6040 0.1738 0.1456
LAR Least Angle Regression 4.2360 5.3658 0.6040 0.1738 0.1456
Huber Huber Regressor 4.2241 5.3736 0.6029 0.1732 0.1440
KNN K Neighbors Regressor 4.4880 5.6626 0.5591 0.1884 0.1596
DT Decision Tree Regressor 4.7010 5.9827 0.5078 0.1960 0.1599
PAR Passive Aggressive Regressor 4.7495 5.9758 0.5061 0.1934 0.1678
OMP Orthogonal Matching Pursuit 5.0106 6.3742 0.4416 0.2058 0.1753
Lasso Lasso Regression 5.8857 7.2623 0.2755 0.2406 0.2125
LLAR Lasso Least Angle Regression 5.8857 7.2623 0.2755 0.2406 0.2125
EN Elastic Net 6.6885 8.1526 0.0870 0.2689 0.2426
Dummy Dummy Regressor 7.0298 8.5365 -0.0011 0.2807 0.2551

TABLE VIII: Fine-tuning the model using Optuna hyperpa-
rameter optimization framework (network throughput)

Fold MAE RMSE R2 RMSLE MAPE
0 3.0699 3.8816 0.7950 0.1261 0.1037
1 3.2399 4.1004 0.7730 0.1346 0.1103
2 3.1861 4.0244 0.7806 0.1299 0.1073
3 3.1018 3.9078 0.7767 0.1305 0.1080
4 3.2980 4.1863 0.7624 0.1376 0.1110
5 3.0754 3.8856 0.7850 0.1265 0.1044
6 3.1419 3.9216 0.7917 0.1282 0.1068
7 3.1594 4.0331 0.7860 0.1331 0.1082
8 3.0894 3.9551 0.7800 0.1281 0.1030
9 3.1522 3.9895 0.7832 0.1334 0.1100
Mean 3.1514 3.9885 0.7814 0.1308 0.1073
Std 0.0703 0.0944 0.0089 0.0036 0.0027

TABLE IX: Boosting the model’s performance by applying the
ensemble model with bagging method for network throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0789 3.8773 0.7954 0.1263 0.1042
1 3.2117 4.0543 0.7781 0.1332 0.1095
2 3.1782 4.0129 0.7819 0.1298 0.1073
3 3.1114 3.9120 0.7762 0.1311 0.1087
4 3.2795 4.1621 0.7651 0.1364 0.1105
5 3.0912 3.8833 0.7852 0.1263 0.1049
6 3.1455 3.9302 0.7908 0.1283 0.1068
7 3.1372 3.9782 0.7918 0.1315 0.1078
8 3.1239 3.9693 0.7784 0.1285 0.1042
9 3.1449 3.9582 0.7866 0.1324 0.1099
Mean 3.1502 3.9738 0.7830 0.1304 0.1074
Std 0.0568 0.0818 0.0085 0.0030 0.0022

a proper approximation to the actual values, we achieved a
performance gain of 0.78%. This confirms that the model has
robust stability and predictive capabilities and can generalize
properly to unseen data, maintaining a high R2 value and low
error rates.

Although the percentage of performance gains is relatively
small, they reflect a significant performance improvement and
impactful enhancement in the model’s predictive capabilities.

TABLE X: Deployment of the stacking regressor by uti-
lizing the three best regression models (LGBM Regressor,
CatBoost Regressor, and GradientBoosting Regressor) for net-
work throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0672 3.8710 0.7961 0.1260 0.1034
1 3.1789 4.0474 0.7788 0.1325 0.1077
2 3.1605 4.0033 0.7829 0.1296 0.1065
3 3.0487 3.8751 0.7804 0.1295 0.1060
4 3.2392 4.1453 0.7670 0.1349 0.1084
5 3.1006 3.9183 0.7813 0.1272 0.1048
6 3.0906 3.8900 0.7951 0.1266 0.1044
7 3.1404 3.9928 0.7903 0.1318 0.1075
8 3.1016 3.9701 0.7783 0.1281 0.1027
9 3.1259 3.9649 0.7859 0.1321 0.1089
Mean 3.1254 3.9678 0.7836 0.1298 0.1060
Std 0.0538 0.0814 0.0082 0.0028 0.0020

TABLE XI: Prediction of network throughput using the hold-
out data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
3.1061 3.9364 0.7866 0.1304 0.1060

A.2 Network Queue Delay

Among twenty models, the CatBoost regressor was the top
model that offered the best possible initial performance for
predicting the network queue delay regarding R2 (0.6935) as
shown in Table XII.

Optimization techniques such as scikit-learn [34], scikit-
optimize [35], and optuna [34] were utilized during the fine-
tuning process. However, the results in Table XIII show
that implementing the mentioned techniques along with the
CatBoost regressor results in performance degradation, as
indicated by the 2.90% drop in R2. These negative impacts
on model performance imply that hyperparameter choices
could have generalized better across the cross-validation folds
related to many possible problems, such as data variability,
unbalanced data, or hyperparameter sensitivity to some val-
ues. In addition, the overfitting problems, noise, and minor
fluctuations that do not reflect the basic patterns in the data

INFOCOMMUNICATIONS JOURNAL 10

TABLE VII: Initial prediction of network throughput

Model MAE RMSE R2 RMSLE MAPE
LightGBM Light Gradient Boosting Machine 3.1541 3.9967 0.7805 0.1311 0.1074
CatBoost CatBoost Regressor 3.1763 4.0272 0.7771 0.1317 0.1077
GBR Gradient Boosting Regressor 3.3041 4.1592 0.7623 0.1352 0.1122
RF Random Forest Regressor 3.3348 4.1945 0.7581 0.1383 0.1144
XGBoost Extreme Gradient Boosting 3.3235 4.2104 0.7564 0.1385 0.1129
ET Extra Trees Regressor 3.3771 4.2454 0.7523 0.1391 0.1156
Ada AdaBoost Regressor 3.9693 4.8661 0.6745 0.1629 0.1417
Ridge Ridge Regression 4.2362 5.3658 0.6040 0.1738 0.1456
LR Linear Regression 4.2360 5.3658 0.6040 0.1738 0.1456
BR Bayesian Ridge 4.2361 5.3658 0.6040 0.1738 0.1456
LAR Least Angle Regression 4.2360 5.3658 0.6040 0.1738 0.1456
Huber Huber Regressor 4.2241 5.3736 0.6029 0.1732 0.1440
KNN K Neighbors Regressor 4.4880 5.6626 0.5591 0.1884 0.1596
DT Decision Tree Regressor 4.7010 5.9827 0.5078 0.1960 0.1599
PAR Passive Aggressive Regressor 4.7495 5.9758 0.5061 0.1934 0.1678
OMP Orthogonal Matching Pursuit 5.0106 6.3742 0.4416 0.2058 0.1753
Lasso Lasso Regression 5.8857 7.2623 0.2755 0.2406 0.2125
LLAR Lasso Least Angle Regression 5.8857 7.2623 0.2755 0.2406 0.2125
EN Elastic Net 6.6885 8.1526 0.0870 0.2689 0.2426
Dummy Dummy Regressor 7.0298 8.5365 -0.0011 0.2807 0.2551

TABLE VIII: Fine-tuning the model using Optuna hyperpa-
rameter optimization framework (network throughput)

Fold MAE RMSE R2 RMSLE MAPE
0 3.0699 3.8816 0.7950 0.1261 0.1037
1 3.2399 4.1004 0.7730 0.1346 0.1103
2 3.1861 4.0244 0.7806 0.1299 0.1073
3 3.1018 3.9078 0.7767 0.1305 0.1080
4 3.2980 4.1863 0.7624 0.1376 0.1110
5 3.0754 3.8856 0.7850 0.1265 0.1044
6 3.1419 3.9216 0.7917 0.1282 0.1068
7 3.1594 4.0331 0.7860 0.1331 0.1082
8 3.0894 3.9551 0.7800 0.1281 0.1030
9 3.1522 3.9895 0.7832 0.1334 0.1100
Mean 3.1514 3.9885 0.7814 0.1308 0.1073
Std 0.0703 0.0944 0.0089 0.0036 0.0027

TABLE IX: Boosting the model’s performance by applying the
ensemble model with bagging method for network throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0789 3.8773 0.7954 0.1263 0.1042
1 3.2117 4.0543 0.7781 0.1332 0.1095
2 3.1782 4.0129 0.7819 0.1298 0.1073
3 3.1114 3.9120 0.7762 0.1311 0.1087
4 3.2795 4.1621 0.7651 0.1364 0.1105
5 3.0912 3.8833 0.7852 0.1263 0.1049
6 3.1455 3.9302 0.7908 0.1283 0.1068
7 3.1372 3.9782 0.7918 0.1315 0.1078
8 3.1239 3.9693 0.7784 0.1285 0.1042
9 3.1449 3.9582 0.7866 0.1324 0.1099
Mean 3.1502 3.9738 0.7830 0.1304 0.1074
Std 0.0568 0.0818 0.0085 0.0030 0.0022

a proper approximation to the actual values, we achieved a
performance gain of 0.78%. This confirms that the model has
robust stability and predictive capabilities and can generalize
properly to unseen data, maintaining a high R2 value and low
error rates.

Although the percentage of performance gains is relatively
small, they reflect a significant performance improvement and
impactful enhancement in the model’s predictive capabilities.

TABLE X: Deployment of the stacking regressor by uti-
lizing the three best regression models (LGBM Regressor,
CatBoost Regressor, and GradientBoosting Regressor) for net-
work throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0672 3.8710 0.7961 0.1260 0.1034
1 3.1789 4.0474 0.7788 0.1325 0.1077
2 3.1605 4.0033 0.7829 0.1296 0.1065
3 3.0487 3.8751 0.7804 0.1295 0.1060
4 3.2392 4.1453 0.7670 0.1349 0.1084
5 3.1006 3.9183 0.7813 0.1272 0.1048
6 3.0906 3.8900 0.7951 0.1266 0.1044
7 3.1404 3.9928 0.7903 0.1318 0.1075
8 3.1016 3.9701 0.7783 0.1281 0.1027
9 3.1259 3.9649 0.7859 0.1321 0.1089
Mean 3.1254 3.9678 0.7836 0.1298 0.1060
Std 0.0538 0.0814 0.0082 0.0028 0.0020

TABLE XI: Prediction of network throughput using the hold-
out data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
3.1061 3.9364 0.7866 0.1304 0.1060

A.2 Network Queue Delay

Among twenty models, the CatBoost regressor was the top
model that offered the best possible initial performance for
predicting the network queue delay regarding R2 (0.6935) as
shown in Table XII.

Optimization techniques such as scikit-learn [34], scikit-
optimize [35], and optuna [34] were utilized during the fine-
tuning process. However, the results in Table XIII show
that implementing the mentioned techniques along with the
CatBoost regressor results in performance degradation, as
indicated by the 2.90% drop in R2. These negative impacts
on model performance imply that hyperparameter choices
could have generalized better across the cross-validation folds
related to many possible problems, such as data variability,
unbalanced data, or hyperparameter sensitivity to some val-
ues. In addition, the overfitting problems, noise, and minor
fluctuations that do not reflect the basic patterns in the data

INFOCOMMUNICATIONS JOURNAL 10

TABLE VII: Initial prediction of network throughput

Model MAE RMSE R2 RMSLE MAPE
LightGBM Light Gradient Boosting Machine 3.1541 3.9967 0.7805 0.1311 0.1074
CatBoost CatBoost Regressor 3.1763 4.0272 0.7771 0.1317 0.1077
GBR Gradient Boosting Regressor 3.3041 4.1592 0.7623 0.1352 0.1122
RF Random Forest Regressor 3.3348 4.1945 0.7581 0.1383 0.1144
XGBoost Extreme Gradient Boosting 3.3235 4.2104 0.7564 0.1385 0.1129
ET Extra Trees Regressor 3.3771 4.2454 0.7523 0.1391 0.1156
Ada AdaBoost Regressor 3.9693 4.8661 0.6745 0.1629 0.1417
Ridge Ridge Regression 4.2362 5.3658 0.6040 0.1738 0.1456
LR Linear Regression 4.2360 5.3658 0.6040 0.1738 0.1456
BR Bayesian Ridge 4.2361 5.3658 0.6040 0.1738 0.1456
LAR Least Angle Regression 4.2360 5.3658 0.6040 0.1738 0.1456
Huber Huber Regressor 4.2241 5.3736 0.6029 0.1732 0.1440
KNN K Neighbors Regressor 4.4880 5.6626 0.5591 0.1884 0.1596
DT Decision Tree Regressor 4.7010 5.9827 0.5078 0.1960 0.1599
PAR Passive Aggressive Regressor 4.7495 5.9758 0.5061 0.1934 0.1678
OMP Orthogonal Matching Pursuit 5.0106 6.3742 0.4416 0.2058 0.1753
Lasso Lasso Regression 5.8857 7.2623 0.2755 0.2406 0.2125
LLAR Lasso Least Angle Regression 5.8857 7.2623 0.2755 0.2406 0.2125
EN Elastic Net 6.6885 8.1526 0.0870 0.2689 0.2426
Dummy Dummy Regressor 7.0298 8.5365 -0.0011 0.2807 0.2551

TABLE VIII: Fine-tuning the model using Optuna hyperpa-
rameter optimization framework (network throughput)

Fold MAE RMSE R2 RMSLE MAPE
0 3.0699 3.8816 0.7950 0.1261 0.1037
1 3.2399 4.1004 0.7730 0.1346 0.1103
2 3.1861 4.0244 0.7806 0.1299 0.1073
3 3.1018 3.9078 0.7767 0.1305 0.1080
4 3.2980 4.1863 0.7624 0.1376 0.1110
5 3.0754 3.8856 0.7850 0.1265 0.1044
6 3.1419 3.9216 0.7917 0.1282 0.1068
7 3.1594 4.0331 0.7860 0.1331 0.1082
8 3.0894 3.9551 0.7800 0.1281 0.1030
9 3.1522 3.9895 0.7832 0.1334 0.1100
Mean 3.1514 3.9885 0.7814 0.1308 0.1073
Std 0.0703 0.0944 0.0089 0.0036 0.0027

TABLE IX: Boosting the model’s performance by applying the
ensemble model with bagging method for network throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0789 3.8773 0.7954 0.1263 0.1042
1 3.2117 4.0543 0.7781 0.1332 0.1095
2 3.1782 4.0129 0.7819 0.1298 0.1073
3 3.1114 3.9120 0.7762 0.1311 0.1087
4 3.2795 4.1621 0.7651 0.1364 0.1105
5 3.0912 3.8833 0.7852 0.1263 0.1049
6 3.1455 3.9302 0.7908 0.1283 0.1068
7 3.1372 3.9782 0.7918 0.1315 0.1078
8 3.1239 3.9693 0.7784 0.1285 0.1042
9 3.1449 3.9582 0.7866 0.1324 0.1099
Mean 3.1502 3.9738 0.7830 0.1304 0.1074
Std 0.0568 0.0818 0.0085 0.0030 0.0022

a proper approximation to the actual values, we achieved a
performance gain of 0.78%. This confirms that the model has
robust stability and predictive capabilities and can generalize
properly to unseen data, maintaining a high R2 value and low
error rates.

Although the percentage of performance gains is relatively
small, they reflect a significant performance improvement and
impactful enhancement in the model’s predictive capabilities.

TABLE X: Deployment of the stacking regressor by uti-
lizing the three best regression models (LGBM Regressor,
CatBoost Regressor, and GradientBoosting Regressor) for net-
work throughput

Fold MAE RMSE R2 RMSLE MAPE
0 3.0672 3.8710 0.7961 0.1260 0.1034
1 3.1789 4.0474 0.7788 0.1325 0.1077
2 3.1605 4.0033 0.7829 0.1296 0.1065
3 3.0487 3.8751 0.7804 0.1295 0.1060
4 3.2392 4.1453 0.7670 0.1349 0.1084
5 3.1006 3.9183 0.7813 0.1272 0.1048
6 3.0906 3.8900 0.7951 0.1266 0.1044
7 3.1404 3.9928 0.7903 0.1318 0.1075
8 3.1016 3.9701 0.7783 0.1281 0.1027
9 3.1259 3.9649 0.7859 0.1321 0.1089
Mean 3.1254 3.9678 0.7836 0.1298 0.1060
Std 0.0538 0.0814 0.0082 0.0028 0.0020

TABLE XI: Prediction of network throughput using the hold-
out data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
3.1061 3.9364 0.7866 0.1304 0.1060

A.2 Network Queue Delay

Among twenty models, the CatBoost regressor was the top
model that offered the best possible initial performance for
predicting the network queue delay regarding R2 (0.6935) as
shown in Table XII.

Optimization techniques such as scikit-learn [34], scikit-
optimize [35], and optuna [34] were utilized during the fine-
tuning process. However, the results in Table XIII show
that implementing the mentioned techniques along with the
CatBoost regressor results in performance degradation, as
indicated by the 2.90% drop in R2. These negative impacts
on model performance imply that hyperparameter choices
could have generalized better across the cross-validation folds
related to many possible problems, such as data variability,
unbalanced data, or hyperparameter sensitivity to some val-
ues. In addition, the overfitting problems, noise, and minor
fluctuations that do not reflect the basic patterns in the data

TABLE VII
 Initial prediction of network throughput

TABLE VIII
Fine-tuning the model using Optuna hyperparameter

optimization framework (network throughput)

TABLE X
Deployment of the stacking regressor by utilizing the three

best regression models (LGBM Regressor, CatBoost Regressor,
and GradientBoosting Regressor) for network throughput

TABLE XI
 Prediction of network throughput using the holdout data

TABLE IX
Boosting the model’s performance by applying the ensemble

model with bagging method for network throughput

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 312

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

INFOCOMMUNICATIONS JOURNAL 11

TABLE XII: Initial prediction of network queue delay

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 8.0329 10.6084 0.6935 0.3172 0.2861
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.4458 11.1594 0.6766 0.3340 0.2995
1 7.9667 10.4933 0.7068 0.3215 0.2886
2 8.2689 10.8947 0.6689 0.3198 0.2937
3 7.9070 10.1855 0.6783 0.3144 0.2839
4 8.1358 10.9003 0.6818 0.3199 0.2854
5 8.6920 11.6559 0.6617 0.3288 0.2986
6 8.5120 11.3981 0.6458 0.3434 0.3068
7 8.1917 10.7129 0.6848 0.3288 0.3036
8 8.5099 11.2010 0.6709 0.3272 0.2854
9 8.3884 10.9274 0.6579 0.3382 0.3154
Mean 8.3018 10.9529 0.6734 0.3276 0.2961
Std 0.2402 0.4076 0.0159 0.0086 0.01

TABLE XIV: Boosting the model’s performance by applying
the ensemble model with bagging method for network queue
delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.1623 10.7612 0.6993 0.3182 0.2870
1 7.6904 10.1587 0.7252 0.3126 0.2817
2 8.0452 10.5875 0.6873 0.3149 0.2871
3 7.6154 9.8059 0.7018 0.3024 0.2745
4 7.9544 10.6952 0.6937 0.3121 0.2775
5 8.3519 11.2046 0.6874 0.3184 0.2879
6 8.2851 11.0772 0.6655 0.3244 0.2951
7 7.9299 10.3298 0.7069 0.3171 0.2941
8 8.1255 10.6942 0.7001 0.3136 0.2743
9 8.1274 10.6497 0.6750 0.3308 0.3085
Mean 8.0288 10.5964 0.6942 0.3165 0.2868
Std 0.2254 0.3922 0.0159 0.0072 0.0101

might be caused by several factors, such as poor generalization
and increased error on test data, which fail to make accurate
predictions on unseen data and affect its generalization ability.

As depicted in Table XIV, the results are improved when
the ensemble model is incorporated, and R2 slightly increased
compared to the initial value. However, it can be noticed that
R2 increased by 3.09% compared to the previous stage, as the
variance is reduced by averaging the predictions of multiple
models trained on different subsets of data.

TABLE XV: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for for network queue delay

Fold MAE RMSE R2 RMSLE MAPE
0 8.0436 10.6636 0.7047 0.3152 0.2814
1 7.6167 10.1162 0.7275 0.3083 0.2756
2 7.9972 10.5298 0.6907 0.3143 0.2860
3 7.5196 9.6959 0.7085 0.2990 0.2686
4 7.8449 10.6083 0.6986 0.3112 0.2724
5 8.2504 11.0529 0.6958 0.3149 0.2828
6 8.2262 10.9737 0.6717 0.3213 0.2920
7 7.8528 10.2175 0.7133 0.3177 0.2931
8 8.0982 10.6163 0.7044 0.3126 0.2729
9 8.1028 10.6499 0.6750 0.3302 0.3069
Mean 7.9552 10.5124 0.6990 0.3145 0.2831
Std 0.2323 0.3844 0.0160 0.0077 0.0111

TABLE XVI: Prediction of network queue delay using the
holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
7.8795 10.4409 0.7127 0.3109 0.2813

The results of incorporating a stacking regressor are pre-
sented in Table XV. R2 increased by 0.79% and 0.69% com-
pared to the initial and ensemble method values, respectively.
Such an increase in R2 indicates that combined predictive
power enhanced the stacked model and improved generaliza-
tion and accuracy. When the holdout data is used, the results
demonstrated in Table XVI imply that this method achieved
the highest R2 value (0.7127), Where the performance gain
is 2.77% and 1.96% compared to the initial and stacking
regressor values, respectively. The combined predictive power
of utilized models allowed more generalization to unseen data.
Each stage demonstrated a progressive improvement across all
metrics (MAE, RMSE, RMSLE, and MAPE) according to the
results in each table.

A.3 sRTT

In the initial prediction of sRTT, the CatBoost regressor
provided the best performance (in terms of MAE, MAPE, and

TABLE XII
 Prediction of network throughput using the holdout data

TABLE XIII
Fine-tuning the CatBoost regressor using the scikit-learn,

scikit-optimize, and optuna hyperparameter optimization
techniques for network queue delay

TABLE XIV
Boosting the model’s performance by applying the ensemble

model with bagging method for network queue delay

TABLE XV
Deployment of the stacking regressor by utilizing the three

best regression models (CatBoost Regressor, LGBM Regressor’,
ExtraTrees Regressor) for for network queue delay

TABLE XVI
Prediction of network queue delay using the holdout data

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 13

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

INFOCOMMUNICATIONS JOURNAL 12

TABLE XVII: Initial prediction of sRTT

Model MAE RMSE R2 RMSLE MAPE
CatBoost Regressor 0.6115 0.8652 0.6495 0.0977 0.0853
Light Gradient Boosting Machine 8.0742 10.6451 0.6914 0.3198 0.2908
Extra Trees Regressor 8.2559 10.8737 0.6778 0.3285 0.3038
Random Forest Regressor 8.2610 10.8897 0.6769 0.3273 0.3015
Extreme Gradient Boosting 8.5795 11.2772 0.6536 0.3435 0.3074
Gradient Boosting Regressor 8.5462 11.3707 0.6480 0.3364 0.3057
K Neighbors Regressor 10.0073 13.1048 0.5321 0.3959 0.3837
Ridge Regression 10.4444 13.7138 0.4878 0.4348 0.3917
Linear Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Bayesian Ridge 10.4445 13.7138 0.4878 0.4349 0.3917
Least Angle Regression 10.4454 13.7138 0.4878 0.4351 0.3917
Huber Regressor 10.3333 13.8146 0.4804 0.4156 0.3781
Passive Aggressive Regressor 10.8379 14.5355 0.4218 0.4567 0.3740
AdaBoost Regressor 12.3687 15.0337 0.3839 0.4919 0.5649
Lasso Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Lasso Least Angle Regression 11.6777 15.7865 0.3219 0.4498 0.4595
Decision Tree Regressor 11.7606 15.7883 0.3200 0.4562 0.4032
Orthogonal Matching Pursuit 12.3014 16.6105 0.2490 0.4713 0.4855
Elastic Net 13.7800 18.2671 0.0921 0.5235 0.5597
Dummy Regressor 14.5472 19.1787 -0.0009 0.5480 0.5923

TABLE XVIII: Fine-tuning the CatBoost regressor using the
scikit-learn, scikit-optimize, and optuna hyperparameter opti-
mization techniques for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.8619 1.1640 0.3796 0.1326 0.1226
1 0.8455 1.1465 0.3971 0.1310 0.1199
2 0.8427 1.1433 0.3840 0.1306 0.1194
3 0.8041 1.0681 0.3977 0.1245 0.1152
4 0.8407 1.1999 0.3627 0.1317 0.1187
5 0.8640 1.2722 0.3648 0.1355 0.1196
6 0.7882 1.0941 0.3824 0.1247 0.1125
7 0.8288 1.1383 0.3763 0.1300 0.1195
8 0.8306 1.1673 0.3853 0.1294 0.1174
9 0.8373 1.1182 0.3719 0.1297 0.1210
Mean 0.8344 1.1512 0.3802 0.1300 0.1186
Std 0.0223 0.0538 0.0112 0.0032 0.0027

TABLE XIX: Boosting the model’s performance by applying
the ensemble model with bagging method for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6218 0.8768 0.6480 0.0992 0.0868
1 0.6213 0.8602 0.6606 0.0973 0.0860
2 0.6122 0.8653 0.6471 0.0983 0.0851
3 0.5819 0.7895 0.6709 0.0928 0.0825
4 0.6056 0.8927 0.6472 0.0976 0.0838
5 0.6570 0.9687 0.6317 0.1037 0.0893
6 0.6175 0.8522 0.6253 0.0973 0.0869
7 0.6055 0.8447 0.6565 0.0965 0.0856
8 0.5916 0.8443 0.6784 0.0940 0.0824
9 0.6162 0.8652 0.6239 0.0993 0.0872
Mean 0.6131 0.8660 0.6490 0.0976 0.0856
Std 0.0191 0.0429 0.0174 0.0028 0.0021

R2) compared to the other tested regression models, as shown
in Table XVII.

The results of the fine-tuning process are presented in Table
XVIII, it shows that R2 is significantly decreased by -41.47%
compared to the initial value. This is caused by sub-optimal
parameter selection or an overfitting issue. As demonstrated
in Table XIX, applying the bagging method does not seem
to affect R2, where the values are almost similar. However,
it indicates a significant increase (70.67%) compared to the
previous stage value, which indicates the effectiveness of this

TABLE XX: Deployment of the stacking regressor by utilizing
the three best regression models (CatBoost Regressor, LGBM
Regressor’, ExtraTrees Regressor) for sRTT

Fold MAE RMSE R2 RMSLE MAPE
0 0.6180 0.8680 0.6550 0.0986 0.0862
1 0.6221 0.8665 0.6556 0.0975 0.0858
2 0.6061 0.8603 0.6512 0.0976 0.0842
3 0.5711 0.7751 0.6828 0.0914 0.0810
4 0.6027 0.8845 0.6537 0.0973 0.0833
5 0.6528 0.9592 0.6389 0.1031 0.0888
6 0.6130 0.8513 0.6261 0.0970 0.0860
7 0.6027 0.8353 0.6642 0.0960 0.0853
8 0.5835 0.8321 0.6876 0.0929 0.0813
9 0.6118 0.8692 0.6205 0.0993 0.0866
Mean 0.6084 0.8601 0.6536 0.0971 0.0848
Std 0.0209 00.0439 0.0205 0.0031 0.0023

TABLE XXI: Prediction of sRTT using the holdout data

Fold Model MAE RMSE R2 RMSLE MAPE
0 Stacking

Regressor
0.6107 0.8673 0.6560 0.0971 0.0848

stage in enhancing robustness and reducing variance.
Later, when the stacking regressor is deployed as depicted in

Table XX, R2 increased by 0.63% and 0.71% compared to the
initial and previous stage values, respectively. This indicates
that the performance gains are marginal but consistent, lever-
aging multiple models’ strengths. Finally, the highest achieved
R2 is 0.6560 when the holdout data is employed, as depicted
in Table XXI. R2 increased by 1% and 0.37% compared to
the initial and previous stage values, respectively.

A.4 Predicted Performance Metrics

A sample of predicted network throughput, network queue
delay, and sRTT is presented in Table XXII. It shows the
network throughput (BW), network queue delay (NQD), sRTT,
their corresponding predicted values, and parameter sets.

The predicted values of network throughput are relatively
close to the actual values, which indicates that the model
can effectively learn from the given features. However, the
distinctions between the actual and predicted values normally

TABLE XVII
 Initial prediction of sRTT

TABLE XVIII
Fine-tuning the CatBoost regressor using the scikit-learn,

scikit-optimize, and optuna hyperparameter optimization
techniques for sRTT

TABLE XIX
Boosting the model’s performance by applying the ensemble

model with bagging method for sRTT

TABLE XX
Deployment of the stacking regressor by utilizing the three

best regression models (CatBoost Regressor, LGBM Regressor’,
ExtraTrees Regressor) for sRTT

TABLE XXI
Prediction of sRTT using the holdout data

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 314

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

TABLE XXII
 Sample of predicted performance metrics

INFOCOMMUNICATIONS JOURNAL 13

TABLE XXII: Sample of predicted performance metrics

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 BW P-BW NQD P-NQD sRTT P-sRTT
10650 0.083 0.014 1016 1752 5 9.5 0.10 0.223 0.266 0.764 25.965 31.357 27.25 29.74 6.240 6.240
2041 0.054 0.424 1212 3223 6 9.1 0.79 0.133 0.094 0.733 29.714 31.558 23.41 23.27 6.233 6.410
8668 0.063 0.188 1175 1396 9 9.5 0.05 0.122 0.069 0.924 26.323 29.110 23.59 32.93 6.311 7.149
1114 0.136 0.491 944 2461 4 14.5 0.72 0.163 0.223 0.788 44.374 42.88 49.88 36.84 7.153 6.250
13902 0.067 0.127 1470 2443 8 6.7 0.42 0.31 0.252 0.742 33.585 28.889 42.08 25.81 7.271 6.228

occur in predictive modeling. These differences can be ana-
lyzed and utilized for further research to improve the model.
Based on the samples given in the table, the achieved accuracy
is 79.23% (ID number: 10650), 93.8% (ID number: 2041),
89.39% (ID number: 8668), 96.64% (ID number: 1114), and
86% (ID number: 13902).

For network queue delay, it can be observed that the R2

value increased by 2.76% compared to Table XII. By com-
paring the predicted and actual values, we can notice that the
prediction accuracy is as follows: Based on the samples given
in the table, the achieved accuracy is 90.86% (ID number:
10650), 99.4% (ID number: 2041), 60.4% (ID number: 8668),
73.85% (ID number: 1114), and 61.33% (ID number: 13902).

In terms of sRTT, by comparing the predicted and actual
values, we can notice that the prediction accuracy is as follows:
Based on the samples given in the table, the achieved accuracy
is 100% (ID number: 10650), 97.17% (ID number: 2041),
86.72% (ID number: 8668), 87.37% (ID number: 1114), and
85.42% (ID number: 13902).

B. Prediction Insights: Visual Analysis

B.1 Residuals Plot

This part describes the residuals plot of the stacking regres-
sor for network throughput, network queue delay, and sRTT
demonstrated in Figures 3, 4, and 5, respectively. Blue points
represent training data, while green points represent testing
data. Also, the density of residuals is shown on the right side
of each figure.

Figure 3 illustrates that the residuals are mainly distributed
around the x-axis at zero, indicating potential improvement,
and the model does not have a significant bias. The model
provided a consistent performance as the residuals are spread
relatively uniformly across the margins of predicted values.
Furthermore, the model shows a proper fit for testing and
training data, even though the predicted R2 value is less
than the training value by 6.7%, which usually occurs due
to overfitting. Although the testing value of R2 is lower than
the training value, it still assures fairly efficient prediction.

For network queue delay, the residuals are centered around
zero. A noticeable spread of residuals is seen at higher
predicted values, which denotes that the model might struggle
at higher delay predictions. The predicted value of R2 is
lower than the trained data by 16.7%, suggesting potential
overfitting.

For sRTT, a training R2 value of 0.857 indicates that the
training data fits the model. However, testing R2 is lower by
24.6%, which might refer to overfitting, performance issues
on unseen data, or the model is not well generalized for sRTT
predictions. Similar to network queue delay, the model has

Fig. 3: Residuals plot of the stacking regressor model (network
throughput)

Fig. 4: Residuals plot of the stacking regressor model (network
queue delay)

difficulties with high sRTT predictions, which are observed
through a wider spread of residuals at high prediction values.

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

B.2 Prediction Error Plot

Prediction error for network throughput, network queue
delay, and sRTT demonstrated in Figures 6, 7, and 8, respec-

INFOCOMMUNICATIONS JOURNAL 14

Fig. 6: Prediction error plot of the stacking regressor (network
throughput)

Fig. 7: Prediction error plot of the stacking regressor (network
queue delay)

Fig. 8: Prediction error plot of the stacking regressor (sRTT)

tively. The best-fit line describes the median prediction trend,
while the identity represents the variance of predicted values
compared to the actual values. Predictions are accurate when
the best fit and identity lines are closer.

For network throughput, although most points cluster
around the best-fit line, a small linear trend is noticed. How-
ever, the R2 value of 0.779 implies that our prediction accuracy
is good and suggests a decent model fit. A little deviation from
the identity line is noticed at high predicted values, which
denotes possible difficulties in predicting high throughput.

R2 value of 0.714 indicates a moderate accuracy level
for network queue delay. Like the previous case, the model
presents some limitations in predicting higher values. The
model overestimates or underestimates delay in some scenar-
ios, shown through points distant from the identity line. The
model delivered weaker prediction capabilities when predict-
ing sRTT values based on the achieved R2 value (0.646). At
the lower part, the predictions are closer to the actual values;
however, when values increase, the predictions deviate from
the actual results, which suggests that the model’s reliability
and consistency decrease at specific parts.

B.3 Scatter Plot

Figures 9, 10, and 11 depict the scatter plot of the network
throughput, network queue delay, and sRTT, respectively.
The x-axis represents the experiment number and the y-axis
denotes the output metric value. The actual values are in red,
and the predicted ones are in blue.

The dense clustering of actual and predicted measurements
for network throughput demonstrates a good performance of
the utilized model. As the measurements spread further at
higher values, higher variance in prediction accuracy is carried
out, which means that the prediction model operates more
efficiently at lower values. The model can generalize well for
measuring network throughput while maintaining a consistent
accuracy as no significant deviations are displayed.

For network queue delay, the displayed data reveals that
most predictions fall at the lower end, along with the actual
values, which implies that accuracy is higher in this range.
However, there is a wide variance in the actual values that the
model could not capture, indicating that the utilized model
is not sensitive to such outliers, or the prediction range is
insufficient.

Compared to the previous cases, the prediction performance
for the sRTT is lower because the alignment is less accurate,
and the actual values have more variation, while the predicted
values are more concentrated around a particular range. Over-
all, the predicted values are clustered below the actual values,
which shows some underestimation in some cases.

V. CONCLUSION

This study presents a rigorous and systematic scheme that
led to the development of robust machine-learning models
utilized in SCReAM for predicting the network throughput,
network queue delay, and sRTT. Despite facing challenges, the
final models demonstrated promising results, implying their
potential utility in future applications.

Fig. 3: Residuals plot of the stacking regressor model (network throughput)

Fig. 4: Residuals plot of the stacking regressor model (network queue
delay)

Fig. 5: Residuals plot of the stacking regressor model (sRTT)

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 15

INFOCOMMUNICATIONS JOURNAL 14

Fig. 6: Prediction error plot of the stacking regressor (network
throughput)

Fig. 7: Prediction error plot of the stacking regressor (network
queue delay)

Fig. 8: Prediction error plot of the stacking regressor (sRTT)

tively. The best-fit line describes the median prediction trend,
while the identity represents the variance of predicted values
compared to the actual values. Predictions are accurate when
the best fit and identity lines are closer.

For network throughput, although most points cluster
around the best-fit line, a small linear trend is noticed. How-
ever, the R2 value of 0.779 implies that our prediction accuracy
is good and suggests a decent model fit. A little deviation from
the identity line is noticed at high predicted values, which
denotes possible difficulties in predicting high throughput.

R2 value of 0.714 indicates a moderate accuracy level
for network queue delay. Like the previous case, the model
presents some limitations in predicting higher values. The
model overestimates or underestimates delay in some scenar-
ios, shown through points distant from the identity line. The
model delivered weaker prediction capabilities when predict-
ing sRTT values based on the achieved R2 value (0.646). At
the lower part, the predictions are closer to the actual values;
however, when values increase, the predictions deviate from
the actual results, which suggests that the model’s reliability
and consistency decrease at specific parts.

B.3 Scatter Plot

Figures 9, 10, and 11 depict the scatter plot of the network
throughput, network queue delay, and sRTT, respectively.
The x-axis represents the experiment number and the y-axis
denotes the output metric value. The actual values are in red,
and the predicted ones are in blue.

The dense clustering of actual and predicted measurements
for network throughput demonstrates a good performance of
the utilized model. As the measurements spread further at
higher values, higher variance in prediction accuracy is carried
out, which means that the prediction model operates more
efficiently at lower values. The model can generalize well for
measuring network throughput while maintaining a consistent
accuracy as no significant deviations are displayed.

For network queue delay, the displayed data reveals that
most predictions fall at the lower end, along with the actual
values, which implies that accuracy is higher in this range.
However, there is a wide variance in the actual values that the
model could not capture, indicating that the utilized model
is not sensitive to such outliers, or the prediction range is
insufficient.

Compared to the previous cases, the prediction performance
for the sRTT is lower because the alignment is less accurate,
and the actual values have more variation, while the predicted
values are more concentrated around a particular range. Over-
all, the predicted values are clustered below the actual values,
which shows some underestimation in some cases.

V. CONCLUSION

This study presents a rigorous and systematic scheme that
led to the development of robust machine-learning models
utilized in SCReAM for predicting the network throughput,
network queue delay, and sRTT. Despite facing challenges, the
final models demonstrated promising results, implying their
potential utility in future applications.

INFOCOMMUNICATIONS JOURNAL 14

Fig. 6: Prediction error plot of the stacking regressor (network
throughput)

Fig. 7: Prediction error plot of the stacking regressor (network
queue delay)

Fig. 8: Prediction error plot of the stacking regressor (sRTT)

tively. The best-fit line describes the median prediction trend,
while the identity represents the variance of predicted values
compared to the actual values. Predictions are accurate when
the best fit and identity lines are closer.

For network throughput, although most points cluster
around the best-fit line, a small linear trend is noticed. How-
ever, the R2 value of 0.779 implies that our prediction accuracy
is good and suggests a decent model fit. A little deviation from
the identity line is noticed at high predicted values, which
denotes possible difficulties in predicting high throughput.

R2 value of 0.714 indicates a moderate accuracy level
for network queue delay. Like the previous case, the model
presents some limitations in predicting higher values. The
model overestimates or underestimates delay in some scenar-
ios, shown through points distant from the identity line. The
model delivered weaker prediction capabilities when predict-
ing sRTT values based on the achieved R2 value (0.646). At
the lower part, the predictions are closer to the actual values;
however, when values increase, the predictions deviate from
the actual results, which suggests that the model’s reliability
and consistency decrease at specific parts.

B.3 Scatter Plot

Figures 9, 10, and 11 depict the scatter plot of the network
throughput, network queue delay, and sRTT, respectively.
The x-axis represents the experiment number and the y-axis
denotes the output metric value. The actual values are in red,
and the predicted ones are in blue.

The dense clustering of actual and predicted measurements
for network throughput demonstrates a good performance of
the utilized model. As the measurements spread further at
higher values, higher variance in prediction accuracy is carried
out, which means that the prediction model operates more
efficiently at lower values. The model can generalize well for
measuring network throughput while maintaining a consistent
accuracy as no significant deviations are displayed.

For network queue delay, the displayed data reveals that
most predictions fall at the lower end, along with the actual
values, which implies that accuracy is higher in this range.
However, there is a wide variance in the actual values that the
model could not capture, indicating that the utilized model
is not sensitive to such outliers, or the prediction range is
insufficient.

Compared to the previous cases, the prediction performance
for the sRTT is lower because the alignment is less accurate,
and the actual values have more variation, while the predicted
values are more concentrated around a particular range. Over-
all, the predicted values are clustered below the actual values,
which shows some underestimation in some cases.

V. CONCLUSION

This study presents a rigorous and systematic scheme that
led to the development of robust machine-learning models
utilized in SCReAM for predicting the network throughput,
network queue delay, and sRTT. Despite facing challenges, the
final models demonstrated promising results, implying their
potential utility in future applications.

INFOCOMMUNICATIONS JOURNAL 14

Fig. 6: Prediction error plot of the stacking regressor (network
throughput)

Fig. 7: Prediction error plot of the stacking regressor (network
queue delay)

Fig. 8: Prediction error plot of the stacking regressor (sRTT)

tively. The best-fit line describes the median prediction trend,
while the identity represents the variance of predicted values
compared to the actual values. Predictions are accurate when
the best fit and identity lines are closer.

For network throughput, although most points cluster
around the best-fit line, a small linear trend is noticed. How-
ever, the R2 value of 0.779 implies that our prediction accuracy
is good and suggests a decent model fit. A little deviation from
the identity line is noticed at high predicted values, which
denotes possible difficulties in predicting high throughput.

R2 value of 0.714 indicates a moderate accuracy level
for network queue delay. Like the previous case, the model
presents some limitations in predicting higher values. The
model overestimates or underestimates delay in some scenar-
ios, shown through points distant from the identity line. The
model delivered weaker prediction capabilities when predict-
ing sRTT values based on the achieved R2 value (0.646). At
the lower part, the predictions are closer to the actual values;
however, when values increase, the predictions deviate from
the actual results, which suggests that the model’s reliability
and consistency decrease at specific parts.

B.3 Scatter Plot

Figures 9, 10, and 11 depict the scatter plot of the network
throughput, network queue delay, and sRTT, respectively.
The x-axis represents the experiment number and the y-axis
denotes the output metric value. The actual values are in red,
and the predicted ones are in blue.

The dense clustering of actual and predicted measurements
for network throughput demonstrates a good performance of
the utilized model. As the measurements spread further at
higher values, higher variance in prediction accuracy is carried
out, which means that the prediction model operates more
efficiently at lower values. The model can generalize well for
measuring network throughput while maintaining a consistent
accuracy as no significant deviations are displayed.

For network queue delay, the displayed data reveals that
most predictions fall at the lower end, along with the actual
values, which implies that accuracy is higher in this range.
However, there is a wide variance in the actual values that the
model could not capture, indicating that the utilized model
is not sensitive to such outliers, or the prediction range is
insufficient.

Compared to the previous cases, the prediction performance
for the sRTT is lower because the alignment is less accurate,
and the actual values have more variation, while the predicted
values are more concentrated around a particular range. Over-
all, the predicted values are clustered below the actual values,
which shows some underestimation in some cases.

V. CONCLUSION

This study presents a rigorous and systematic scheme that
led to the development of robust machine-learning models
utilized in SCReAM for predicting the network throughput,
network queue delay, and sRTT. Despite facing challenges, the
final models demonstrated promising results, implying their
potential utility in future applications.

INFOCOMMUNICATIONS JOURNAL 14

Fig. 6: Prediction error plot of the stacking regressor (network
throughput)

Fig. 7: Prediction error plot of the stacking regressor (network
queue delay)

Fig. 8: Prediction error plot of the stacking regressor (sRTT)

tively. The best-fit line describes the median prediction trend,
while the identity represents the variance of predicted values
compared to the actual values. Predictions are accurate when
the best fit and identity lines are closer.

For network throughput, although most points cluster
around the best-fit line, a small linear trend is noticed. How-
ever, the R2 value of 0.779 implies that our prediction accuracy
is good and suggests a decent model fit. A little deviation from
the identity line is noticed at high predicted values, which
denotes possible difficulties in predicting high throughput.

R2 value of 0.714 indicates a moderate accuracy level
for network queue delay. Like the previous case, the model
presents some limitations in predicting higher values. The
model overestimates or underestimates delay in some scenar-
ios, shown through points distant from the identity line. The
model delivered weaker prediction capabilities when predict-
ing sRTT values based on the achieved R2 value (0.646). At
the lower part, the predictions are closer to the actual values;
however, when values increase, the predictions deviate from
the actual results, which suggests that the model’s reliability
and consistency decrease at specific parts.

B.3 Scatter Plot

Figures 9, 10, and 11 depict the scatter plot of the network
throughput, network queue delay, and sRTT, respectively.
The x-axis represents the experiment number and the y-axis
denotes the output metric value. The actual values are in red,
and the predicted ones are in blue.

The dense clustering of actual and predicted measurements
for network throughput demonstrates a good performance of
the utilized model. As the measurements spread further at
higher values, higher variance in prediction accuracy is carried
out, which means that the prediction model operates more
efficiently at lower values. The model can generalize well for
measuring network throughput while maintaining a consistent
accuracy as no significant deviations are displayed.

For network queue delay, the displayed data reveals that
most predictions fall at the lower end, along with the actual
values, which implies that accuracy is higher in this range.
However, there is a wide variance in the actual values that the
model could not capture, indicating that the utilized model
is not sensitive to such outliers, or the prediction range is
insufficient.

Compared to the previous cases, the prediction performance
for the sRTT is lower because the alignment is less accurate,
and the actual values have more variation, while the predicted
values are more concentrated around a particular range. Over-
all, the predicted values are clustered below the actual values,
which shows some underestimation in some cases.

V. CONCLUSION

This study presents a rigorous and systematic scheme that
led to the development of robust machine-learning models
utilized in SCReAM for predicting the network throughput,
network queue delay, and sRTT. Despite facing challenges, the
final models demonstrated promising results, implying their
potential utility in future applications.

INFOCOMMUNICATIONS JOURNAL 14

Fig. 6: Prediction error plot of the stacking regressor (network
throughput)

Fig. 7: Prediction error plot of the stacking regressor (network
queue delay)

Fig. 8: Prediction error plot of the stacking regressor (sRTT)

tively. The best-fit line describes the median prediction trend,
while the identity represents the variance of predicted values
compared to the actual values. Predictions are accurate when
the best fit and identity lines are closer.

For network throughput, although most points cluster
around the best-fit line, a small linear trend is noticed. How-
ever, the R2 value of 0.779 implies that our prediction accuracy
is good and suggests a decent model fit. A little deviation from
the identity line is noticed at high predicted values, which
denotes possible difficulties in predicting high throughput.

R2 value of 0.714 indicates a moderate accuracy level
for network queue delay. Like the previous case, the model
presents some limitations in predicting higher values. The
model overestimates or underestimates delay in some scenar-
ios, shown through points distant from the identity line. The
model delivered weaker prediction capabilities when predict-
ing sRTT values based on the achieved R2 value (0.646). At
the lower part, the predictions are closer to the actual values;
however, when values increase, the predictions deviate from
the actual results, which suggests that the model’s reliability
and consistency decrease at specific parts.

B.3 Scatter Plot

Figures 9, 10, and 11 depict the scatter plot of the network
throughput, network queue delay, and sRTT, respectively.
The x-axis represents the experiment number and the y-axis
denotes the output metric value. The actual values are in red,
and the predicted ones are in blue.

The dense clustering of actual and predicted measurements
for network throughput demonstrates a good performance of
the utilized model. As the measurements spread further at
higher values, higher variance in prediction accuracy is carried
out, which means that the prediction model operates more
efficiently at lower values. The model can generalize well for
measuring network throughput while maintaining a consistent
accuracy as no significant deviations are displayed.

For network queue delay, the displayed data reveals that
most predictions fall at the lower end, along with the actual
values, which implies that accuracy is higher in this range.
However, there is a wide variance in the actual values that the
model could not capture, indicating that the utilized model
is not sensitive to such outliers, or the prediction range is
insufficient.

Compared to the previous cases, the prediction performance
for the sRTT is lower because the alignment is less accurate,
and the actual values have more variation, while the predicted
values are more concentrated around a particular range. Over-
all, the predicted values are clustered below the actual values,
which shows some underestimation in some cases.

V. CONCLUSION

This study presents a rigorous and systematic scheme that
led to the development of robust machine-learning models
utilized in SCReAM for predicting the network throughput,
network queue delay, and sRTT. Despite facing challenges, the
final models demonstrated promising results, implying their
potential utility in future applications.

INFOCOMMUNICATIONS JOURNAL 15

Fig. 9: Scatter plot comparing the actual and predicted values
(network throughput (Mbps))

Fig. 10: Scatter plot comparing the actual and predicted values
(network queue delay (ms))

Fig. 11: Scatter plot comparing the actual and predicted values
(sRTT (ms))

The ML models leveraged our constructed dataset, resulting
in enhanced prediction capabilities. The coefficient of determi-
nation R2 is used as one of the numerical performance metrics
to evaluate the models. Several regression models were used
to predict the network metrics for the SCReAM algorithm,
followed by a comparative analysis to find the best initial
prediction performance.

Among the tested models, the LightGBM and CatBoost
regressors significantly outperformed others in predicting per-
formance metrics. Fine-tuning with Optuna and ensemble
methods significantly improved the prediction accuracy of
R22, indicating the effectiveness of these techniques. The
achieved accuracy for network throughput ranges from 79.23%
to 96.64%. For network queue delay, the prediction accuracy
is from 60.4% to 99.4%. While ranging from 85.42% to 100%
for sRTT.

Our work demonstrated an effective scheme for detecting
several performance metrics based on the given features.
Although we were able to improve the accuracy (or R2)
when integrating further methods, some experiments led to
decreased R2 value, which can be exploited and improved
in future research. Furthermore, the model’s performance
can be further improved with more extensive hyperparameter
tuning. Advanced ensemble techniques can also be employed
to increase the accuracy of the prediction model.

It is essential to acknowledge that relatively minor differ-
ences in performance between the top ensemble methods can
be caused by noise rather than actual performance improve-
ments. Thus, in the future, it is crucial to perform rigorous
statistical significance tests to determine if such differences fall
within the expected variability caused by a random change.

REFERENCES

[1] V. Kushwaha and R. Gupta, “Congestion control for high-speed wired
network: A systematic literature review,” Journal of Network and
Computer Applications, vol. 45, pp. 62–78, 2014.

[2] B. Subramani and E. Chandra, “A Survey on Congestion Control,”
Global Journal of Computer Science and Technology, 2010.

[3] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” in IEEE INFOCOM 2018-IEEE conference on computer
communications. IEEE, 2018, pp. 1871–1879.

[4] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart Congestion
Control Based on Deep Reinforcement Learning,” IEEE Access, vol. 7,
pp. 11 892–11 904, 2019.

[5] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
Generated Congestion Control,” ACM SIGCOMM Computer Commu-
nication Review, vol. 43, no. 4, pp. 123–134, 2013.

[6] W. Wei, H. Gu, and B. Li, “Congestion control: A renaissance with
machine learning,” IEEE network, vol. 35, no. 4, pp. 262–269, 2021.

[7] A. Elbery, Y. Lian, and G. Li, “Toward Fair and Efficient Congestion
Control: Machine Learning Aided Congestion Control (MLACC),” in
Proceedings of the 7th Asia-Pacific Workshop on Networking, 2023, pp.
88–94.

[8] S.-J. Seo and Y.-Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” in 2022 International Con-
ference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2022, pp. 288–291.

[9] A. Sha, S. Madhan, S. Neemkar, V. B. C. Varma, and L. S. Nair,
“Machine learning integrated software defined networking architecture
for congestion control,” in 2023 International Conference On Distributed
Computing And Electrical Circuits And Electronics (ICDCECE). IEEE,
2023, pp. 1–5.

[10] C.-Y. Yen, S. Abbasloo, and H. J. Chao, “Computers can learn from the
heuristic designs and master internet congestion control,” in Proceedings
of the ACM SIGCOMM 2023 Conference, 2023, pp. 255–274.

Fig. 6: Prediction error plot of the stacking regressor (network throughput)

Fig. 7: Prediction error plot of the stacking regressor (network queue delay)

Fig. 8: Prediction error plot of the stacking regressor (sRTT)

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

SEPTEMBER 2024 • VOLUME XVI • NUMBER 316

INFOCOMMUNICATIONS JOURNAL

	 [1]	 V. Kushwaha and R. Gupta, “Congestion control for high-speed wired
network: A systematic literature review,” Journal of Network and
Computer Applications, vol. 45, pp. 62–78, 2014.

	 [2]	 B. Subramani and E. Chandra, “A Survey on Congestion Control,”
Global Journal of Computer Science and Technology, 2010.

	 [3]	 Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning
based Approach,” in IEEE INFOCOM 2018-IEEE conference on
computer communications. IEEE, 2018, pp. 1871–1879.

	 [4]	 K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart Congestion
Control Based on Deep Reinforcement Learning,” IEEE Access, vol.
7, pp. 11 892–11 904, 2019.

	 [5]	 K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
Generated Congestion Control,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 123–134, 2013.

	 [6]	 W. Wei, H. Gu, and B. Li, “Congestion control: A renaissance with
machine learning,” IEEE network, vol. 35, no. 4, pp. 262–269, 2021.

	 [7]	 A. Elbery, Y. Lian, and G. Li, “Toward Fair and Efficient Congestion
Control: Machine Learning Aided Congestion Control (MLACC),” in
Proceedings of the 7th Asia-Pacific Workshop on Networking, 2023,
pp. 88–94.

	 [8]	 S.-J. Seo and Y.-Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” in 2022 International Con-
ference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2022, pp. 288–291.

	 [9]	 A. Sha, S. Madhan, S. Neemkar, V. B. C. Varma, and L. S. Nair,
“Machine learning integrated software defined networking
architecture for congestion control,” in 2023 International Conference
On Distributed Computing And Electrical Circuits And Electronics
(ICDCECE). IEEE, 2023, pp. 1–5.

	[10]	 C.-Y. Yen, S. Abbasloo, and H. J. Chao, “Computers can learn from
the heuristic designs and master internet congestion control,” in
Proceedings of the ACM SIGCOMM 2023 Conference, 2023, pp.
255–274.

	[11]	 H. Naqvi and B. Anggorojati, “Ablation study of deep reinforcement
learning congestion control in cellular network settings,” in 2022
25th International Symposium on Wireless Personal Multimedia
Communications (WPMC). IEEE, 2022, pp. 80–85.

	[12]	 V. Tong, S. Souihi, H. A. Tran, and A. Mellouk, “Troubleshooting
solution for traffic congestion control,” Journal of Network and
Computer Applications, p. 103 923, 2024.

References

INFOCOMMUNICATIONS JOURNAL 15

Fig. 9: Scatter plot comparing the actual and predicted values
(network throughput (Mbps))

Fig. 10: Scatter plot comparing the actual and predicted values
(network queue delay (ms))

Fig. 11: Scatter plot comparing the actual and predicted values
(sRTT (ms))

The ML models leveraged our constructed dataset, resulting
in enhanced prediction capabilities. The coefficient of determi-
nation R2 is used as one of the numerical performance metrics
to evaluate the models. Several regression models were used
to predict the network metrics for the SCReAM algorithm,
followed by a comparative analysis to find the best initial
prediction performance.

Among the tested models, the LightGBM and CatBoost
regressors significantly outperformed others in predicting per-
formance metrics. Fine-tuning with Optuna and ensemble
methods significantly improved the prediction accuracy of
R22, indicating the effectiveness of these techniques. The
achieved accuracy for network throughput ranges from 79.23%
to 96.64%. For network queue delay, the prediction accuracy
is from 60.4% to 99.4%. While ranging from 85.42% to 100%
for sRTT.

Our work demonstrated an effective scheme for detecting
several performance metrics based on the given features.
Although we were able to improve the accuracy (or R2)
when integrating further methods, some experiments led to
decreased R2 value, which can be exploited and improved
in future research. Furthermore, the model’s performance
can be further improved with more extensive hyperparameter
tuning. Advanced ensemble techniques can also be employed
to increase the accuracy of the prediction model.

It is essential to acknowledge that relatively minor differ-
ences in performance between the top ensemble methods can
be caused by noise rather than actual performance improve-
ments. Thus, in the future, it is crucial to perform rigorous
statistical significance tests to determine if such differences fall
within the expected variability caused by a random change.

REFERENCES

[1] V. Kushwaha and R. Gupta, “Congestion control for high-speed wired
network: A systematic literature review,” Journal of Network and
Computer Applications, vol. 45, pp. 62–78, 2014.

[2] B. Subramani and E. Chandra, “A Survey on Congestion Control,”
Global Journal of Computer Science and Technology, 2010.

[3] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” in IEEE INFOCOM 2018-IEEE conference on computer
communications. IEEE, 2018, pp. 1871–1879.

[4] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart Congestion
Control Based on Deep Reinforcement Learning,” IEEE Access, vol. 7,
pp. 11 892–11 904, 2019.

[5] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
Generated Congestion Control,” ACM SIGCOMM Computer Commu-
nication Review, vol. 43, no. 4, pp. 123–134, 2013.

[6] W. Wei, H. Gu, and B. Li, “Congestion control: A renaissance with
machine learning,” IEEE network, vol. 35, no. 4, pp. 262–269, 2021.

[7] A. Elbery, Y. Lian, and G. Li, “Toward Fair and Efficient Congestion
Control: Machine Learning Aided Congestion Control (MLACC),” in
Proceedings of the 7th Asia-Pacific Workshop on Networking, 2023, pp.
88–94.

[8] S.-J. Seo and Y.-Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” in 2022 International Con-
ference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2022, pp. 288–291.

[9] A. Sha, S. Madhan, S. Neemkar, V. B. C. Varma, and L. S. Nair,
“Machine learning integrated software defined networking architecture
for congestion control,” in 2023 International Conference On Distributed
Computing And Electrical Circuits And Electronics (ICDCECE). IEEE,
2023, pp. 1–5.

[10] C.-Y. Yen, S. Abbasloo, and H. J. Chao, “Computers can learn from the
heuristic designs and master internet congestion control,” in Proceedings
of the ACM SIGCOMM 2023 Conference, 2023, pp. 255–274.

INFOCOMMUNICATIONS JOURNAL 15

Fig. 9: Scatter plot comparing the actual and predicted values
(network throughput (Mbps))

Fig. 10: Scatter plot comparing the actual and predicted values
(network queue delay (ms))

Fig. 11: Scatter plot comparing the actual and predicted values
(sRTT (ms))

The ML models leveraged our constructed dataset, resulting
in enhanced prediction capabilities. The coefficient of determi-
nation R2 is used as one of the numerical performance metrics
to evaluate the models. Several regression models were used
to predict the network metrics for the SCReAM algorithm,
followed by a comparative analysis to find the best initial
prediction performance.

Among the tested models, the LightGBM and CatBoost
regressors significantly outperformed others in predicting per-
formance metrics. Fine-tuning with Optuna and ensemble
methods significantly improved the prediction accuracy of
R22, indicating the effectiveness of these techniques. The
achieved accuracy for network throughput ranges from 79.23%
to 96.64%. For network queue delay, the prediction accuracy
is from 60.4% to 99.4%. While ranging from 85.42% to 100%
for sRTT.

Our work demonstrated an effective scheme for detecting
several performance metrics based on the given features.
Although we were able to improve the accuracy (or R2)
when integrating further methods, some experiments led to
decreased R2 value, which can be exploited and improved
in future research. Furthermore, the model’s performance
can be further improved with more extensive hyperparameter
tuning. Advanced ensemble techniques can also be employed
to increase the accuracy of the prediction model.

It is essential to acknowledge that relatively minor differ-
ences in performance between the top ensemble methods can
be caused by noise rather than actual performance improve-
ments. Thus, in the future, it is crucial to perform rigorous
statistical significance tests to determine if such differences fall
within the expected variability caused by a random change.

REFERENCES

[1] V. Kushwaha and R. Gupta, “Congestion control for high-speed wired
network: A systematic literature review,” Journal of Network and
Computer Applications, vol. 45, pp. 62–78, 2014.

[2] B. Subramani and E. Chandra, “A Survey on Congestion Control,”
Global Journal of Computer Science and Technology, 2010.

[3] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” in IEEE INFOCOM 2018-IEEE conference on computer
communications. IEEE, 2018, pp. 1871–1879.

[4] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart Congestion
Control Based on Deep Reinforcement Learning,” IEEE Access, vol. 7,
pp. 11 892–11 904, 2019.

[5] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
Generated Congestion Control,” ACM SIGCOMM Computer Commu-
nication Review, vol. 43, no. 4, pp. 123–134, 2013.

[6] W. Wei, H. Gu, and B. Li, “Congestion control: A renaissance with
machine learning,” IEEE network, vol. 35, no. 4, pp. 262–269, 2021.

[7] A. Elbery, Y. Lian, and G. Li, “Toward Fair and Efficient Congestion
Control: Machine Learning Aided Congestion Control (MLACC),” in
Proceedings of the 7th Asia-Pacific Workshop on Networking, 2023, pp.
88–94.

[8] S.-J. Seo and Y.-Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” in 2022 International Con-
ference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2022, pp. 288–291.

[9] A. Sha, S. Madhan, S. Neemkar, V. B. C. Varma, and L. S. Nair,
“Machine learning integrated software defined networking architecture
for congestion control,” in 2023 International Conference On Distributed
Computing And Electrical Circuits And Electronics (ICDCECE). IEEE,
2023, pp. 1–5.

[10] C.-Y. Yen, S. Abbasloo, and H. J. Chao, “Computers can learn from the
heuristic designs and master internet congestion control,” in Proceedings
of the ACM SIGCOMM 2023 Conference, 2023, pp. 255–274.

INFOCOMMUNICATIONS JOURNAL 15

Fig. 9: Scatter plot comparing the actual and predicted values
(network throughput (Mbps))

Fig. 10: Scatter plot comparing the actual and predicted values
(network queue delay (ms))

Fig. 11: Scatter plot comparing the actual and predicted values
(sRTT (ms))

The ML models leveraged our constructed dataset, resulting
in enhanced prediction capabilities. The coefficient of determi-
nation R2 is used as one of the numerical performance metrics
to evaluate the models. Several regression models were used
to predict the network metrics for the SCReAM algorithm,
followed by a comparative analysis to find the best initial
prediction performance.

Among the tested models, the LightGBM and CatBoost
regressors significantly outperformed others in predicting per-
formance metrics. Fine-tuning with Optuna and ensemble
methods significantly improved the prediction accuracy of
R22, indicating the effectiveness of these techniques. The
achieved accuracy for network throughput ranges from 79.23%
to 96.64%. For network queue delay, the prediction accuracy
is from 60.4% to 99.4%. While ranging from 85.42% to 100%
for sRTT.

Our work demonstrated an effective scheme for detecting
several performance metrics based on the given features.
Although we were able to improve the accuracy (or R2)
when integrating further methods, some experiments led to
decreased R2 value, which can be exploited and improved
in future research. Furthermore, the model’s performance
can be further improved with more extensive hyperparameter
tuning. Advanced ensemble techniques can also be employed
to increase the accuracy of the prediction model.

It is essential to acknowledge that relatively minor differ-
ences in performance between the top ensemble methods can
be caused by noise rather than actual performance improve-
ments. Thus, in the future, it is crucial to perform rigorous
statistical significance tests to determine if such differences fall
within the expected variability caused by a random change.

REFERENCES

[1] V. Kushwaha and R. Gupta, “Congestion control for high-speed wired
network: A systematic literature review,” Journal of Network and
Computer Applications, vol. 45, pp. 62–78, 2014.

[2] B. Subramani and E. Chandra, “A Survey on Congestion Control,”
Global Journal of Computer Science and Technology, 2010.

[3] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” in IEEE INFOCOM 2018-IEEE conference on computer
communications. IEEE, 2018, pp. 1871–1879.

[4] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart Congestion
Control Based on Deep Reinforcement Learning,” IEEE Access, vol. 7,
pp. 11 892–11 904, 2019.

[5] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
Generated Congestion Control,” ACM SIGCOMM Computer Commu-
nication Review, vol. 43, no. 4, pp. 123–134, 2013.

[6] W. Wei, H. Gu, and B. Li, “Congestion control: A renaissance with
machine learning,” IEEE network, vol. 35, no. 4, pp. 262–269, 2021.

[7] A. Elbery, Y. Lian, and G. Li, “Toward Fair and Efficient Congestion
Control: Machine Learning Aided Congestion Control (MLACC),” in
Proceedings of the 7th Asia-Pacific Workshop on Networking, 2023, pp.
88–94.

[8] S.-J. Seo and Y.-Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” in 2022 International Con-
ference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2022, pp. 288–291.

[9] A. Sha, S. Madhan, S. Neemkar, V. B. C. Varma, and L. S. Nair,
“Machine learning integrated software defined networking architecture
for congestion control,” in 2023 International Conference On Distributed
Computing And Electrical Circuits And Electronics (ICDCECE). IEEE,
2023, pp. 1–5.

[10] C.-Y. Yen, S. Abbasloo, and H. J. Chao, “Computers can learn from the
heuristic designs and master internet congestion control,” in Proceedings
of the ACM SIGCOMM 2023 Conference, 2023, pp. 255–274.

INFOCOMMUNICATIONS JOURNAL 15

Fig. 9: Scatter plot comparing the actual and predicted values
(network throughput (Mbps))

Fig. 10: Scatter plot comparing the actual and predicted values
(network queue delay (ms))

Fig. 11: Scatter plot comparing the actual and predicted values
(sRTT (ms))

The ML models leveraged our constructed dataset, resulting
in enhanced prediction capabilities. The coefficient of determi-
nation R2 is used as one of the numerical performance metrics
to evaluate the models. Several regression models were used
to predict the network metrics for the SCReAM algorithm,
followed by a comparative analysis to find the best initial
prediction performance.

Among the tested models, the LightGBM and CatBoost
regressors significantly outperformed others in predicting per-
formance metrics. Fine-tuning with Optuna and ensemble
methods significantly improved the prediction accuracy of
R22, indicating the effectiveness of these techniques. The
achieved accuracy for network throughput ranges from 79.23%
to 96.64%. For network queue delay, the prediction accuracy
is from 60.4% to 99.4%. While ranging from 85.42% to 100%
for sRTT.

Our work demonstrated an effective scheme for detecting
several performance metrics based on the given features.
Although we were able to improve the accuracy (or R2)
when integrating further methods, some experiments led to
decreased R2 value, which can be exploited and improved
in future research. Furthermore, the model’s performance
can be further improved with more extensive hyperparameter
tuning. Advanced ensemble techniques can also be employed
to increase the accuracy of the prediction model.

It is essential to acknowledge that relatively minor differ-
ences in performance between the top ensemble methods can
be caused by noise rather than actual performance improve-
ments. Thus, in the future, it is crucial to perform rigorous
statistical significance tests to determine if such differences fall
within the expected variability caused by a random change.

REFERENCES

[1] V. Kushwaha and R. Gupta, “Congestion control for high-speed wired
network: A systematic literature review,” Journal of Network and
Computer Applications, vol. 45, pp. 62–78, 2014.

[2] B. Subramani and E. Chandra, “A Survey on Congestion Control,”
Global Journal of Computer Science and Technology, 2010.

[3] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” in IEEE INFOCOM 2018-IEEE conference on computer
communications. IEEE, 2018, pp. 1871–1879.

[4] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-Drinc: Smart Congestion
Control Based on Deep Reinforcement Learning,” IEEE Access, vol. 7,
pp. 11 892–11 904, 2019.

[5] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
Generated Congestion Control,” ACM SIGCOMM Computer Commu-
nication Review, vol. 43, no. 4, pp. 123–134, 2013.

[6] W. Wei, H. Gu, and B. Li, “Congestion control: A renaissance with
machine learning,” IEEE network, vol. 35, no. 4, pp. 262–269, 2021.

[7] A. Elbery, Y. Lian, and G. Li, “Toward Fair and Efficient Congestion
Control: Machine Learning Aided Congestion Control (MLACC),” in
Proceedings of the 7th Asia-Pacific Workshop on Networking, 2023, pp.
88–94.

[8] S.-J. Seo and Y.-Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” in 2022 International Con-
ference on Artificial Intelligence in Information and Communication
(ICAIIC). IEEE, 2022, pp. 288–291.

[9] A. Sha, S. Madhan, S. Neemkar, V. B. C. Varma, and L. S. Nair,
“Machine learning integrated software defined networking architecture
for congestion control,” in 2023 International Conference On Distributed
Computing And Electrical Circuits And Electronics (ICDCECE). IEEE,
2023, pp. 1–5.

[10] C.-Y. Yen, S. Abbasloo, and H. J. Chao, “Computers can learn from the
heuristic designs and master internet congestion control,” in Proceedings
of the ACM SIGCOMM 2023 Conference, 2023, pp. 255–274.

Fig. 9: Scatter plot comparing the actual and predicted values
(network throughput (Mbps))

Fig. 10: Scatter plot comparing the actual and predicted values
(network queue delay (ms))

Fig. 11: Scatter plot comparing the actual and predicted values (sRTT (ms))

Utilizing Machine Learning as a Prediction Scheme for Network
Performance Metrics of Self-Clocked Congestion Control Algorithm

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2024 • VOLUME XVI • NUMBER 3 17

Ahmed Samir Jagmagji received his B.Eng. degree
in Computer Technology Engineering from the Tech-
nical College of Mosul, Iraq, in 2005 and his M.Sc.
degree in Computer Engineering from the University
of Missouri – Columbia, United States, in 2016. He is
currently a Ph.D. candidate in the Telecommunications
And Media Informatics department, Faculty of Electri-
cal Engineering and Informatics, Budapest University
of Technology and Economics, Hungary. His research
interests include Computer Networking, the Internet of

Things (IoT), Eldercare technology, and Congestion Control Algorithms.

Haider Dhia Zubaydi received a B.Sc. degree in In-
formation and Communication Engineering from the
University of Baghdad, Iraq, in 2014 and an M.Sc.
in Internet Engineering from the National Advanced
IPv6 Center at Universiti Sains Malaysia in 2018. He
is pursuing a Ph.D. in Computer Engineering at the
High-Speed Networks Laboratory (HSN LAB) at the
Budapest University of Technology and Economics,
Hungary. His research interests include network se-
curity, SDN, blockchain technology, and congestion

control algorithms.

Sándor Molnár received his M.Sc., Ph.D. and Habili-
tation in Electrical Engineering and Computer Science
from the Budapest University of Technology and Eco-
nomics (BME), Budapest, Hungary, in 1991, 1996 and
2013, respectively. In 1995 he joined the Department
of Telecommunications and Media Informatics, BME.
He is now an Associate Professor and the principal
investigator of the tele-traffic research program of the
High-Speed Networks Laboratory.

Mahmood Alzubaidi completed his Master’s degree
in 2018 in Internet Engineering from the National
Advanced IPv6 Center at Universiti Sains Malaysia.
He then pursued and received his PhD in 2023 from
Hamad Bin Khalifa University, Qatar, where he con-
tinues to contribute to the field as a researcher. His re-
search interests are broad, spanning across the Internet
of Things (IoT), deep learning, and machine learning.

	[13]	 N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A Deep
Reinforcement Learning Perspective on Internet Congestion Control,”
in International Conference on Machine Learning. PMLR, 2019, pp.
3050–3059.

	[14]	 N. Jay, N. H. Rotman, P. Godfrey, M. Schapira, and A. Tamar,
“Internet Congestion Control via Deep Reinforcement Learning,”
arXiv preprint arXiv:1810.03259, 2018.

	[15]	 Y. Kong, H. Zang, and X. Ma, “Improving TCP Congestion Control
with Machine Intelligence,” in Proceedings of the 2018 Workshop on
Network Meets AI & ML, 2018, pp. 60–66.

	[16]	 M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC Vivace: Online-Learning Congestion Control,”
in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), 2018, pp. 343–356.

	[17]	 M. Schapira and K. Winstein, “Congestion-Control Throwdown,” in
Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
2017, pp. 122–128.

	[18]	 R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, pp. 1–99, 2018.

	[19]	 A. Farchi, M. Bocquet, P. Laloyaux, M. Bonavita, and Q. Malartic,
“A comparison of combined data assimilation and machine learning
methods for offline and online model error correction,” Journal
of Computational Science, vol. 55, p. 101 468, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1877750321001435

	[20]	 J. Schrittwieser, T. Hubert, A. Mandhane, M. Barekatain, I. Antonoglou,
and D. Silver, “Online and Offline Reinforcement Learning by
Planning with a Learned Model,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.
Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021,
pp. 27 580–27 591. [Online]. Available: https://proceedings.neurips.
cc/paper_files/paper/2021/file/e8258e5140317ff36c7f8225a3bf9590-
Paper.pdf

	[21]	 H. D. Zubaydi, A. S. Jagmagji, and S. Molnár, “Experimental Analysis
and Optimization Approach of Self-Clocked Rate Adaptation
for Multimedia Congestion Control Algorithm in Emulated 5G
Environment,” Sensors, vol. 23, no. 22, p. 9148, 2023.

	[22]	 I. Johansson, “Self-clocked rate adaptation for conversational video
in LTE,” in Proceedings of the 2014 ACM SIGCOMM workshop on
Capacity sharing workshop, 2014, pp. 51–56.

	[23]	 I. Johansson and Z. S. (2017)., “IETF RFC8298,” [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8298.html.

	[24]	 A. S. Jagmagji, H. D. Zubaydi, and S. Molnar, “Exploration
and Evaluation of Self-Clocked Rate Adaptation for Multimedia
(SCReAM) Congestion Control Algorithm in 5G Networks,” in 2022
45th International Conference on Telecommunications and Signal
Processing (TSP). IEEE, 2022, pp. 230–237.

	[25]	 H. D. Zubaydi, A. S. Jagmagji, and S. Molnár, “Squeezing the
Most Out of Congestion Window for Self-Clocked Rate Adaptation
Algorithm in a 5G Environment,” in 2023 17th International
Conference on Telecommunications (ConTEL). IEEE, 2023, pp. 1–8.

	[26]	 S. H. Choi and M. Handley, “Fairer TCP-Friendly Congestion Control
Protocol for Multimedia Streaming Applications,” in Proceedings of
the 2007 ACM CoNEXT conference, 2007, pp. 1–2.

	[27]	 V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM
computer communication review, vol. 18, no. 4, pp. 314–329, 1988.

	[28]	 G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “LightGBM: A Highly Efficient Gradient Boosting Decision
Tree,” Advances in neural information processing systems, vol. 30,
2017.

	[29]	 L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A.
Gulin, “CatBoost: unbiased boosting with categorical features,”
Advances in neural information processing systems, vol. 31, 2018.

	[30]	 T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A Next-generation Hyperparameter Optimization Framework,” in
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

	[31]	 M. Spüler, A. Sarasola-Sanz, N. Birbaumer, W. Rosenstiel, and A.
Ramos-Murguialday, “Comparing metrics to evaluate performance
of regression methods for decoding of neural signals,” in 2015
37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, 2015, pp. 1083–1086.

	[32]	 L. Breiman, “Stacked Regressions,” Machine learning, vol. 24, pp.
49–64, 1996.

	[33]	 L. (2023)., “Welcome to LightGBM’s documentation,” [Online].
Available: https://lightgbm.readthedocs.io/en/latest/Parameters.html.

	[34]	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

	[35]	 T. Head, M. Pak, I. Shcherbatyi, K. Lomax, T. Fan, A. V. del Moral,
B. Bossan, Z. Vinícius, and A. Popov, “Scikit-Optimize: Efficient
and user-friendly optimization library in Python,” 2018. [Online].
Available: https://github.com/scikit-optimize/scikit-optimize/tree/
v0.5.2

https://arxiv.org/abs/1810.03259
https://www.sciencedirect.com/science/article/pii/S1877750321001435
https://www.sciencedirect.com/science/article/pii/S1877750321001435
https://proceedings.neurips.cc/paper_files/paper/2021/file/e8258e5140317ff36c7f8225a3bf9590-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e8258e5140317ff36c7f8225a3bf9590-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e8258e5140317ff36c7f8225a3bf9590-Paper.pdf
https://www.rfc-editor.org/rfc/rfc8298.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://github.com/scikit-optimize/scikit-optimize/tree/v0.5.2
https://github.com/scikit-optimize/scikit-optimize/tree/v0.5.2

