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ABSTRACT

Background: Changes in brain structural connections appear to be important in the pathophysiology of
substance use disorders, but their role in behavioral addictions, such as gambling disorder (GD), is
unclear. GD also offers a model to study addiction mechanisms without pharmacological confounding
factors. Here, we used multimodal MRI data to examine the integrity of white matter connections in
individuals with GD. We hypothesized that the affected areas would be in the fronto-striatal-thalamic
circuit.Methods: Twenty individuals with GD (mean age: 64 years, GD duration: 15.7 years) and 40 age-
and sex-matched healthy controls (HCs) underwent detailed clinical examinations together with brain
3T MRI scans (T1, T2, FLAIR and DWI). White matter (WM) analysis involved fractional anisotropy
and lesion load, while gray matter (GM) analysis included voxel- and surface-based morphometry.
These measures were compared between groups, and correlations with GD-related behavioral char-
acteristics were examined. Results: Individuals with GD showed reduced WM integrity in the left and
right frontal parts of the corona radiata and corpus callosum (pFWE < 0.05). WM gambling symptom
severity (SOGS score) was negatively associated to WM integrity in these areas within the left hemi-
sphere (p < 0.05). Individuals with GD also exhibited higher WM lesion load in the left anterior corona
radiata (pFWE < 0.05). GM volume in the left thalamus and GM thickness in the left orbitofrontal cortex
were reduced in the GD group (pFWE < 0.05). Conclusions: Similar to substance addictions, the fronto-
striatal-thalamic circuit is also affected in GD, suggesting that this circuitry may have a crucial role in
addictions, independent of pharmacological substances.

KEYWORDS

gambling disorder, MRI, neuroimaging

BACKGROUND

Gambling disorder (GD) is a prevalent behavioral addiction affecting 1–3.5% of the adult
population (Shaffer, Hall, & Vander Bilt, 1999; Shaffer & Hall, 2001; Welte, Barnes, Wiec-
zorek, Tidwell, & Parker, 2002). According to the current diagnostic criteria (DSM-5), GD is
a nonsubstance-related addiction disorder characterized by an alteration in reward pro-
cessing, compulsion, withdrawal, and a lack of executive control, among other clinical
characteristics (Koob & Volkow, 2016). Importantly, although GD is a major problem
worldwide and the prevalence is thought to be increasing (Abbott, 2020), there are
no available specific pharmacological or neuromodulation treatments for this disorder.
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However, opioid antagonists such as naltrexone have shown
some promise in treating GD (Di Nicola et al., 2020; Lupi
et al., 2014).

The pathophysiology of GD is largely unknown but
shares many clinical features with substance use disorders
(SUDs) (Koob & Volkow, 2016; Leeman & Potenza, 2012).
The nucleus accumbens (NAcc), located in the ventral
striatum, is known to play an important role in reward
processing involving the neurotransmitter dopamine.
Studies have established extensive alterations of the NAcc in
SUDs, affecting the reward system, such as a blunted
dopamine release (Koob & Volkow, 2010). Furthermore,
SUDs have typically been characterized as a disorder
involving altered cortico-striatal-thalamic circuitry that leads
to compulsive drug use (Goldstein & Volkow, 2002; Huang,
Yang, Luo, Yan, & Liu, 2020; Kalivas, 2008; Koob & Volkow,
2010; W. Wang et al., 2018; Zorlu et al., 2013). In GD, the
NAcc also exhibits abnormalities affecting fronto-striatal
function (Bellmunt-Gil, Majuri, Arponen, Kaasinen, &
Joutsa, 2023; Koehler et al., 2013; Limbrick-Oldfield et al.,
2017; Miedl, Fehr, Meyer, & Herrmann, 2010; Reuter et al.,
2005), but it does not present the same impact on the
dopaminergic response as SUDs, suggesting that GD is
neurobiologically different or, alternatively, that the findings
in SUDs are driven by the pharmacological effects of sub-
stances of abuse (Boileau et al., 2013; Clark et al., 2012;
Joutsa et al., 2012; Majuri et al., 2017). In addition, dopa-
mine-based treatments have not shown promising results for
either SUDs or GD (Álvarez, Pérez-Mañá, Torrens, & Farré,
2013; Fong, Kalechstein, Bernhard, Rosenthal, & Rugle,
2008; McElroy, Nelson, Welge, Kaehler, & Keck, 2008;
Verrico, Haile, Newton, Kosten, & Garza, 2013). Recent
findings in SUDs studies have suggested that the target for
addictions is likely to be at the brain network level rather
than a specific cortical region or neurotransmitter (Joutsa
et al., 2022).

Given the apparent structural brain circuitry abnormal-
ities in SUDs (Goldstein & Volkow, 2002; Huang et al., 2020;
Kalivas, 2008; Koob & Volkow, 2010; W. Wang et al., 2018;
Zorlu et al., 2013), we aimed to investigate this issue in a
behavioral addiction (GD). We hypothesized that the same
mechanistic alterations would be observed in both behav-
ioral addictions and SUDs, and thus, potential effective
therapeutic neuromodulation approaches would be similar.
Very few studies have focused on circuit abnormalities in
GD, and only one previous study used multimodal MRI in
individuals with GD (van Timmeren, Jansen, Caan, Gou-
driaan, & van Holst, 2017). Furthermore, previous neuro-
imaging studies on GD have mainly been performed in
young GD subjects and have had relatively small sample
sizes. Here, we recruited a sample of older adults with more
age-related white matter (WM) degeneration, thus
increasing analysis sensitivity, as aging is associated with
variable degrees of brain atrophy and small vessel disease, as
represented by WM lesions (Fjell et al., 2009; Pantoni, 2010).
We hypothesized that, in relation to previous SUDs findings,
a similar circuitry-level abnormality would be present in
older people with GD with aging-related brain changes.

We investigated whole-brain structural abnormalities in GD
using several complementary MRI techniques.

METHODS

Subjects

The sample consisted of 60 subjects: 20 older people with
GD and 40 age- and sex-matched healthy controls (HCs), as
detailed in Table 1. The subjects with GD had diagnoses
confirmed using the DSM-5 criteria. The exclusion criteria
were evidence of serious neurological disorders such as
neurodegenerative diseases, multiple sclerosis, myasthenia
gravis, brain tumors, epilepsy or stroke, as well as other
psychiatric disorders (apart from GD). All participants un-
derwent the same standardized procedure, which comprised
an evaluation of electronic health records and a clinical
interview to assess the following psychiatric comorbidities:
behavioral addictions; current alcohol or other SUDs within
the last 6 months (DSM-5); ADHD; current other Axis I
disorders such as major depressive disorder, bipolar disorder
or psychotic disorder; current treatment with amphetamine
derivatives, methylphenidate, bupropion or other medica-
tions known to interfere with dopamine transporter (DAT)
imaging; and possible psychiatric problems without di-
agnoses. All subjects were clinically examined 3–5 h before
MRI scans. DAT imaging results of the sample have been
reported previously (Kaasinen et al., 2023).

Clinical and behavioral measures

Clinical and behavioral data (including nicotine use, smoking,
alcohol use, and drug use) were collected via clinical in-
terviews and validated questionnaires. Alcohol and nicotine
doses were defined the following way: An alcohol dose was
defined as 330 mL of beer (∼5% alcohol), 150 mL of wine
(∼12% alcohol), or 40 mL of distilled spirit (∼40% alcohol).
A dose of nicotine was defined as one cigarette, one nicotine
pouch, or one nicotine gum. A gambling behavior interview
including the South Oaks Gambling Screen (SOGS) was
completed, and gambling-related variables (gambling hours
per week, gambling euros per week, problematic gambling
years, and SOGS score) were obtained from the GD group.
Other questionnaires administered to participants were the
Mini-Mental State Examination (MMSE), the Barratt
Impulsiveness Scale (BIS-11), the Beck Anxiety Inventory
(BAI), and the Beck Depression Inventory (BDI).

Image acquisition

MRI data were acquired with a Siemens 3T Skyra Fit scanner
(Siemens Medical Imaging, Erlangen, Germany), and the
imaging protocol involved three-dimensional T1, T2 and
FLAIR images. For T1w images, a repetition time (TR) of
2,300.0 ms and an echo time (TE) of 2.98 ms were used.
T2 images were acquired with a TR of 5,000 ms and a TE
of 386 ms. Additionally, FLAIR imaging utilized a TR of
3,200 ms and a TE of 408 ms. Common parameters across
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all sequences included a voxel size of 1 3 1 3 1 mm, a field
of view of 256 mm, and a slice thickness of 1 mm. DWI data
were collected with a single-shot spin‒echo echo-planar
sequence using TR/TE 5 7,600/85 ms, voxel size of 2 mm3,
matrix size of 1163 1163 80, and 60 gradient directions.
For each participant, 60 DWI images with a b-value of
1,000 s mm�2, 9 null images (b 5 0 s mm�2) and 8 inverse
phase-encoding null images were acquired. The DWI data
from 39 controls and 20 GD participants were analyzed. One
control subject was excluded due to technical difficulties.

White matter integrity

The DWI images were denoised and Gibbs ringing artifacts
were removed with MRTrix3 (https://www.mrtrix.org),
corrected for eddy current, head motion, and phase-related
distortions within a brain mask using FMRIB Software Li-
brary (FSL, v.6.0.4) software (www.fmrib.ox.ac.uk/fsl), and
corrected for B1 field inhomogeneity using the ANTs
toolbox (https://www.nitrc.org/projects/ants). The diffusion
tensor voxelwise model was fitted, and the individual frac-
tional anisotropy (FA) maps were calculated using FSL’s
“dtifit” algorithm.

The tract-based spatial statistics (TBSS) procedure
(Smith et al., 2004, 2006) implemented in FSL was used to
map individual FA data on a WM skeleton (centers of WM
tracts) and spatially transform the images to the
FMRIB58_FA template in the Montreal Neurological Insti-
tute (MNI) standard space.

The group difference was estimated in a voxelwise manner
on the skeletonized FA data using FSL’s “randomize”
nonparametric algorithm with 5,000 permutations. Age, sex,
and the ratio between cerebrospinal fluid volume and total
intracranial volume (CSF/TIV) were included as nuisance
covariates. The analysis volume was constrained by the main
WM pathways using a mask created from the “JHU ICBM-
DTI-81 White-Matter Labels” atlas of 48 WM tracts.
Threshold-free cluster enhancement (TFCE) (Smith &
Nichols, 2009) and familywise error (FWE)-corrected p < 0.05
thresholds were used to determine significant effects. To
better explain the nature of between-group differences in
relation to GD, individual mean FA values for each cluster
with significant group differences were extracted for the GD
group and analyzed in JMP Pro (SAS Institute Inc., Cary, NC)
using regression models that included nuisance covariates
(age, sex, and CSF/TIV) and predictors of interest related to
gambling behavior: the duration of problem gambling (years),
SOGS score, BDI score, BIS score, MMSE score, average total
duration of gambling per week (hours) and average monetary
loss due to gambling per week (V).

As there were 10 possible predictors and 20 observations
in the GD group, we first applied data-driven variable se-
lection based on a generalized regression model with an
adaptive version of the least absolute shrinkage and selection
operator (LASSO) (Zou, 2006) along with the corrected
Akaike information criterion for model validation (Sugiura,
1978). The resulting set of predictors was included in a
multiple linear regression model with the standard least

squares method, and significant (p < 0.05) effects were
identified with two-tailed t tests (Table 1S). This variable
selection algorithm resembled the “screen and clean” pro-
cedure (Wu, Devlin, Ringquist, Trucco, & Roeder, 2010).

White matter lesion locations

WM lesions were segmented on FLAIR images using an
automated multistage segmentation method (Y. Wang et al.,
2012) based on the expectation-maximization algorithm
(Koikkalainen et al., 2016). The total lesion volume was
normalized for intracranial volume (Buckner et al., 2004),
age, and sex (Cole & Green, 1992).

The T1 images were normalized to the MNI
template using the default normalization pipeline in SPM12
(http://www.fil.ion.ucl.ac.uk/spm/) using a MATLAB 2021b
platform (MathWorks, Natick, MA, USA). Since WM le-
sions were not visible in the T1 images, they were not
included in the normalization pipeline and therefore did
not affect T1 image normalization. Transformations from
the native T1 images to MNI space were applied to the
lesions, which were then resampled to a voxel size of
3 3 3 3 3 mm. A between-groups comparison of the
number and locations of the normalized lesions was per-
formed in a voxelwise manner over the whole brain with
NiiStat software (www.nitrc.org/projects/niistat/). Age and
sex were included as nuisance covariates. In addition, these
findings were confirmed by controlling for the potential
effect of the cardiovascular diseases present in both groups.
The Freedman-Lane method was used with 2 000 permu-
tations and a corrected p threshold of 0.05. The total lesion
volume was calculated from the ROI (the left anterior
corona radiata, JHU ICBM-DTI-81 White-Matter Labels),
where a significant group difference was observed, to verify
the findings at the tract level. A one-tailed Mann‒Whitney
U test was used to compare the WM lesion load between
groups within this ROI, as the GD group was hypothesized
to have more WM lesions than the control group.

Voxel-based and surface-based morphometry

Voxel-based morphometry (VBM) and surface-based
morphometry (SBM) analyses were conducted with the
Computational Anatomy Toolbox 12 (CAT12) (http://www.
neuro.uni-jena.de/cat/) (Gaser et al., 2022) implemented in
SPM12. The default preprocessing pipeline for both analyses
was used (http://www.neuro.uni-jena.de/cat12/CAT12-Manual.
pdf). Briefly, for VBM, the 3D T1 volumes were segmented
in the subjects’ native space, which produced separate files
for GM, WM, and CSF. Then, images were spatially normal-
ized using the DARTEL algorithm. Finally, images were
smoothed by an isotropic Gaussian kernel of 8mm full-
width at half-maximum (FWHM). The resulting images
were inspected visually. Age, sex and total intracranial
volume (TIV) were included as covariates in the model for
group analyses. As cortical analyses were conducted
separately, volumetric analyses were restricted to subcortical
areas using a mask created with the WFU Pickatlas toolbox
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(https://www.nitrc.org/projects/wfu_pickatlas/), dilated 31.
The mask included the bilateral caudate, putamen, accum-
bens, globus pallidus, thalamus, amygdala and hippocampus.

For surface-based morphometry (SBM), the default proto-
col from CAT12 was again used. This included surface and
thickness estimation, in which projection-based thickness was
used to estimate cortical thickness and to create the central
cortical surface for the left and right hemispheres, and surface
resampling, which included smoothing with a 12mm FWHM
filter. In this between-group analysis, age and sex were included
as covariates. Effects with Family-Wise Error (FWE)-corrected
p values < 0.05 were considered significant for both VBM and
SBM analyses.

Statistical analyses

Statistical analyses of demographic and clinical data were
performed with SPSS (IBM SPSS Statistics, version 27,
Armonk, NY, USA). Independent-sample t tests, Fisher’s
exact tests and Mann-Whitney tests were used to identify
group differences, as appropriate. To investigate relation-
ships between behavioral/clinical data and imaging data,
Pearson and Spearman correlation analyses were used.

Ethics

Written informed consent was obtained from all partici-
pants. The study was approved by the local ethics committee
and was conducted according to the Declaration of Helsinki
at Turku University Hospital, Finland.

RESULTS

Demographic and clinical data

The demographic and clinical data are presented in Table 1.
No group differences were observed in age, sex proportion,

or general cognitive capacity (MMSE scores). Along with
differences in gambling-related variables, GD subjects
consumed more alcohol and nicotine per week and had
higher BDI scores than HCs. The prevalence of cardiovas-
cular diagnoses (hypertension, type 2 diabetes, hypercho-
lesterolemia, and coronary heart disease) was higher in the
GD group compared to controls (p 5 0.01, Table 1).

White matter integrity

Individuals with GD had lower FA values in three clusters
containing the right and left genu of the corpus callosum,
right and left anterior corona radiata (CR), right superior CR,
and right body of the corpus callosum (Fig. 1A, Table 2). FA
values in the left anterior CR cluster were higher in smokers
compared to non-smokers (p 5 0.02) and not significantly
associated with alcohol use or BDI scores, indicating that the
lower FA in GD compared to HC were not driven by these
factors. The other 2 clusters were not significantly associated
with smoking, alcohol use or BDI scores. Of gambling-related
variables, SOGS scores were negatively correlated with FA
values in the anterior CR (Cluster 2) (r 5 �0.51, p 5 0.02)
(Fig. 1B) but not with FA values of the other clusters.

White matter lesion locations

In the voxel-level analysis, individuals with GD had more
WM lesions than HC subjects in the left anterior CR (peak
at �21, 30, 0; p < 0.05). This result remained when con-
trolling for cardiovascular diseases, showing also a difference
in the right anterior CR and right superior CR (Fig. 1S). This
was also supported by the ROI analysis results, in which
individuals with GD showed an increase in lesion load in
the left anterior CR (p < 0.05) (Fig. 2). No correlation was
found between the anterior CR WM lesion load and
gambling-related variables. In addition, these results were
not significantly associated with smoking, alcohol use or
BDI scores.

Table 1. Demographic and clinical data

Variables (mean ± SD or median[IQR]
or n)

GD
(n 5 20)

HC
(n 5 40) p-value

Age (years) 64.0 ± 5.7 66.8 ± 9.0 0.20
Sex (male/female) 12/8 21/19 0.78
Gambling hours per week 9.5 ± 9.3 n.a. –
Gambling euros per week 262 ± 328 n.a. –
Problematic gambling years 15.7 ± 14.3 n.a. –
SOGS 9.2 ± 2.9 n.a. –
MMSE 27.7 ± 2.1 28.0 ± 2.1 0.54
BIS score 66.8 ± 8.7 57.4 ± 6.4 <0.001
Smoking (smoker/non-smoker) 5/15 2/38 0.04
Nicotine use (doses per week) 0 [8] 0 [0] 0.04
Alcohol use (doses per week) 6.2 ± 9.2 2.8 ± 3.1 0.04
BDI 7.5 ± 9.3 2.5 ± 3.8 <0.001
Subjects with cardiovascular risk factors 16 18 0.01

SD: Standard Deviation; GD: Gambling Disorder; HC: Healthy Controls; SOGS: South Oaks Gambling Screen; MMSE: Mini-Mental State
Examination; BIS: Barratt Impulsiveness Scale; BDI: Beck Depression Inventory. p-values are from independent samples t-tests, Mann-
Whitney and Fisher’s exact tests. IQR: Interquartile Range.
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Voxel-based and surface-based morphometry

Within the fronto-striatal-thalamic areas, the GD group
showed regional reduced cortical thickness with the largest
cluster in the left orbitofrontal cortex and frontal operculum
than the HC group (pFWE < 0.001) (Fig. 3A); and lower gray
matter volume in the left thalamus (pFWE 5 0.042) (Fig. 3B).

No correlation was found between any of these cluster values
and gambling-related variables. In addition, these clusters
did not show significant associations with smoking, alcohol
or BDI scores, except for the intracalcarine cortex cluster in
the surface-based analysis, which was thicker in smokers
compared to non-smokers (p 5 0.02) and therefore unlikely
to bias the observed group differences.

Table 2. Clusters showing lower fractional anisotropy in individuals with GD compared to controls

Cluster size
(voxels) WM atlas structure

Cluster/atlas overlap
(voxels)

peak
p-value
(TFCE)

x
(mm)

y
(mm)

z
(mm)

Cluster
index

295 R. Genu of Corpus Callosum 145 0.039 17 24 22 1
R. Anterior Corona Radiata 118
R. Body of Corpus Callosum 32

219 L. Anterior Corona Radiata 210 0.039 �19 39 5 2
L. Genu of Corpus Callosum 9

33 R. Superior Corona Radiata 33 0.049 21 �25 40 3

WM: White matter. TFCE: Threshold-free cluster enhancement. p-values are Family-Wise Error (FWE)-corrected. R: right. L: left.

Fig. 1. FA differences between groups and correlation with SOGS scores
Location of the three clusters with lower FA values in GD group than in the HC group. The cluster indices are the same as in Table 2. The
mean FA value in Cluster 2 (the left corona radiata) was negatively correlated with SOGS scores (gambling severity), as illustrated by the plot

of the partial regression (corrected for confounding effects of age and CSF/TIV).
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DISCUSSION

The present study employed a multimodal neuroimaging
approach to investigate possible circuitry abnormalities in
GD. The results across multiple methods converged on the
fronto-striatal-thalamic circuit, involving the orbitofrontal
cortex, frontal operculum, anterior CR and thalamus. This is
one of the very few multimodal MRI studies in GD, showing
converging findings across different modalities, highlighting
the involvement of the fronto-striatal-thalamic circuitry.
This circuitry has thalamic projections from the internal
capsule that relay information to areas of the prefrontal

cortex and has been implicated in inhibitory control and
reward seeking (Feltenstein & See, 2013; Kalivas & Vol-
kow, 2005).

Previous studies have suggested involvement of multiple
different brain structures in GD but the results vary study-
by-study (Balodis et al., 2012; Choi et al., 2012; De Ruiter
et al., 2009; Fuentes et al., 2015; Grant, Odlaug, &
Chamberlain, 2015; Koehler et al., 2013; Miedl et al., 2010;
Reuter et al., 2005; Tanabe et al., 2009; van Holst, Veltman,
Büchel, van den Brink, & Goudriaan, 2012; Yip et al., 2018;
Zois et al., 2017). However, most of the previous work has
focused on findings with single imaging modalities. The
findings of the present study show converging evidence from

Fig. 2. Group-differences in white matter lesion load. A. Total lesion load in each group, representing the number of subjects with lesions
in each voxel. B. Lesion locations associated with gambling disorder in the voxelwise analysis (1 significant voxel at �21 30 0 mm). The
number of lesioned voxels in the left anterior corona radiata was higher in the GD group compared to the control group (right panel). The

result remained significant even without 3 subjects with the highest values (p 5 0.04)
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several different MRI modalities, converging on the fronto-
striatal-thalamic circuitry. In agreement with our findings,
prior fMRI studies have demonstrated abnormal function in
regions associated with this circuit (Balodis et al., 2012;
Choi et al., 2012; De Ruiter et al., 2009; Fuentes et al., 2015;
Grant et al., 2015; Koehler et al., 2013; Miedl et al., 2010;
Power, Goodyear, & Crockford, 2012; Reuter et al., 2005;
van Holst et al., 2012; Yip et al., 2018; Zois et al., 2017).
Our findings support GD as a condition associated
with disruption of the fronto-striatal-thalamic circuit,
highlighting the involvement of the left anterior CR.
Decreased integrity in the anterior CR has also previously
been associated with SUDs, such as alcohol or cocaine
dependence (Lane et al., 2010; Smith et al., 2006; Yeh,
Simpson, Durazzo, Gazdzinski, & Meyerhoff, 2009; Yip

et al., 2017). Furthermore, while the fronto-striatal-thalamic
circuitry was primarily impacted in our findings, additional
regions in the brain demonstrated differences in the surface-
based analysis.

There are few previous studies on older adults with GD
(Kaasinen et al., 2023). This is notable, particularly regarding
the results on WM lesions associated with aging. Here, we
showed that individuals with GD had more WM lesions in
the anterior CR than controls. Our results differ from some
of the results reported on WM integrity in younger gamblers
(Chamberlain et al., 2016; Joutsa, Saunavaara, Parkkola,
Niemelä, & Kaasinen, 2011; van Timmeren et al., 2017; Yip
et al., 2013), possibly due to improved power to detect age-
related WM abnormalities or age-related differences in GD
neurobiology between early- and late-onset GD. Our

Fig. 3. Cortical surface thickness and subcortical volumetric differences between groups. A) Clusters where individuals with GD had
significantly (pFWE < 0.05) lower cortical thickness than healthy controls: Left orbitofrontal cortex and frontal operculum (peak coordinates
at �39 21 �12 mm, cluster size 169 voxels)/Right medial temporal gyrus (peak coordinates at 48 �15 �13 mm, cluster size 140 voxels)/
Intracalcarine cortex (peak coordinates at �14 �66 8 mm, cluster size 128 voxels)/Left superior temporal gyrus (peak coordinates at �43
�20 1 mm, cluster size 112 voxels)/Right temporoparietal junction (peak coordinates at 48 �34 25 mm, cluster size 98 voxels)/Right

superior temporal gyrus (peak coordinates at 59 7 �15 mm, cluster size 84 voxels). B) Left thalamic cluster in which individuals with GD
had lower gray matter volume than healthy controls (peak coordinates at �8 �6 8 mm, cluster size 433 voxels, pFWE < 0.05. Gamblers (GD)
0.33(0.046) vs Healthy controls (HC) 0.38 (0.045), 95% CI [0.023, 0.072]. The bar charts show the group mean, SD and individual cluster mean
values for the left orbitofrontal-frontal operculum (Gamblers (GD) 0.33(0.046) vs Healthy controls (HC) 0.38 (0.045), 95% CI [0.023, 0.072])

(A) and for the left thalamus (Gamblers (GD) 2.56(0.21) vs Healthy controls (HC) 2.8 (0.16), 95% CI [0.14, 0.33]) (B).
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findings align with the recently identified circuit mediating
addiction remission and the targets of noninvasive brain
stimulation that have been demonstrated to treat SUDs
(Harel et al., 2022; Joutsa et al., 2022; Zangen et al., 2021). It
is therefore possible that addictive behaviors are regulated
and modulated by the same circuitry in both substance and
behavioral addictions. Based on the clear involvement of the
fronto-striatal-thalamic regions across addictive behaviors,
an intervention targeting this circuit (e.g. indirectly modu-
lating the circuit by targeting the frontal cortex) may effec-
tively rebalance the network. Further clinical trials are
needed, also including functional connectivity
measurements.

There are certain limitations to consider when inter-
preting the results. First, although other research using
similar methodology included a comparable or even lower
number of subjects, the present total sample (n 5 60) can
be considered small for a structural MRI study; thus, we
may have lacked the power to detect more subtle differ-
ences between the groups or correlations with behavioral
variables. Second, this was a cross-sectional study;
therefore, we cannot determine causality and further
longitudinal neuroimaging studies are needed. Third, the
GD group had more cardiovascular diagnoses, consistent
with prior findings linking gambling to increased cardio-
vascular disease risk, often associated with white
matter hyperintensities and their distribution in the
brain (Habes et al., 2018; Pilver & Potenza, 2013). Our
findings remained the same when controlling for the
prevalence of cardiovascular risk factors, suggesting that
the findings are not driven by underlying differences in
these factors. However, due to the available data and small
sample size, we could not explore the effect of how different
vascular risk factors are associated with specific patterns of
white matter hyperintensities (Habes et al., 2018).

In summary, the results of the present study revealed
disrupted fronto-striatal-thalamic circuit structure in GD, as
demonstrated by a multimodal approach investigating WM
integrity, WM lesion load and GM structure. The similarity
of our findings in GD to those of studies on SUDs may
indicate a shared mechanism between behavioral and sub-
stance addictions and highlights the role of the frontal cortex
and its connections in GD.
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