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ABSTRACT

Background and aims: Gambling activity evolves along a continuum from recreational to Gambling
Disorder (GD) and a particular challenge is to identify whether there are some neurophysiological
particularities already present in gamblers at an early stage. Our main goal was to determine whether, in
the gamblers’ population, neural responses generated during uncertain decisions were different
depending on problematic gambling risk defined by the Canadian Problem Gambling Index (CPGI).
We tested the following hypothesis, that the Problem Gambling group would show a different brain
activity related to outcomes processing than people with low risk. Methods: For this purpose, we
established a relatively homogeneous population of Online Poker Players divided into two groups
according to the CPGI (Low Risk and Problem Gambling). By means of high-density EEG,
we compared the spatio-temporal dynamics generated during the completion of the Iowa Gambling
Task. Results: One specific topographic map was observed between 150-175 ms after a negative
outcome for both groups, whereas it was displayed in the win condition only for the Problem Gambling
group. We found that the Global Field Power of this map was negatively correlated with participants’
adherence to a strategy. Source localization identified Anterior Cingulate Cortex and Temporal regions
as generators of this map. Discussion and conclusions: Reward hypersensitivity EEG responses identified
in the early outcome process could constitute a potential biomarker of problematic gambling.

KEYWORDS
problem gambling, decision-making, high-density EEG, lowa Gambling Task

INTRODUCTION

Gambling Disorder (GD) was the first behavioral addiction to be recognized by international
institutions, in the fifth edition of the Diagnostic and Statistical Manual (DSM-5) (American
Psychiatric Association, 2013). The estimated prevalence in adults worldwide of moderate risk
of gambling is 2.43% and 1.29% for problematic gambling (Gabellini, Lucchini, & Gattoni,
2023). Gambling activity evolves along a continuum from recreational to gambling disorder
and the risk levels between these two extremes are defined as light, moderate and high by the
Canadian Problem Gambling Index (CPGI) (Potenza et al, 2019). The term “problem
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gambling” assimilates within the same group of the moderate
and high risk ranges of CPGI (Vita et al., 2021). Today, we
know that delays in diagnosing GD have a major impact on
the severity of psychosocial damage, leading to additional
pressures that can aggravate the disorder (Mansson et al,
2023). So, one of the challenges we face is to identify people at
risk of developing GD at an early stage (Mansson et al.,, 2023),
and to better understand the processes involved in the tran-
sition from recreational activity to GD.

To identify a neuronal brain activity specific to this risk,
we focused on a known cognitive disability in the GD pop-
ulation. Decision-making deficits in addictive disorders, and
more specifically in GD, have long been recognized (Bechara,
2005; Kovécs, Richman, Janka, Maraz, & Andd, 2017). De-
cision-making ability under conditions of uncertainty can be
evaluated using the Iowa Gambling Task (IGT) (Bechara,
Damasio, Damasio, & Anderson, 1994). In this task, partici-
pants are given a choice between four decks of cards and, via
successive choices, learn to choose the advantageous decks
(Bechara et al., 1994). The development of an appropriate
strategy is reflected by the number of advantageous choices,
and the adhesion to a quick and/or sustainable strategy can be
reflected by the rigidity score (Cabeza et al., 2019).

Although altered performance in this task in individuals
with GD is no longer up for debate (Goudriaan, Oosterlaan,
de Beurs, & van den Brink, 2005; Linnet, Rojskjaer, Nygaard,
& Maher, 2006), contrary data that could be explained by
the type of gambling activity subjects engage in have been
reported (Brevers, Noél, He, Melrose, & Bechara, 2016).

In terms of gambling, there are a wide variety of practices
that we can divide into two categories, non-strategic and
strategic, but also by their mode of delivery (online or land-
based operations) (Potenza et al., 2019). One of the best-
known strategic games of chance is poker, largely thanks to
the advent of online gambling (MacKay, Bard, Bowling, &
Hodgins, 2014). Online poker is associated with a higher risk
of GD than offline gambling (Dufour et al., 2020). However,
playing poker involves knowing the rules, skills, mathe-
matics and psychology to influence the game outcome
(MacKay et al,, 2014). Consequently, assiduous practice can
increase playing ability that contributes in part to the
development of a professionalization of this activity, but an
increase in time spent could also reflect a loss of control over
behavior and entry into a GD (Griffiths, 2012; Slepian,
Young, Rutchick, & Ambady, 2013). Playing poker requires
choosing between the short- and long-term consequences of
an action (Brevers et al., 2016), which involves a variety of
executive (Griffiths, 2012) and emotional controls (Moreau,
Sévigny, Giroux, & Chauchard, 2020), similar to those
required for good IGT performance. Thus, we might expect
poker players to show less impaired performance on the IGT
than other gamblers, even if they suffer from GD. But,
performing the IGT places individuals in decision-making
conditions that generate brain activity that could be suffi-
cient to discriminate between poker players at risk.

Over and above performance, the IGT places subjects in
a decision-making context which induces brain activity,
enabling certain population groups to be distinguished with

higher sensitivity than can be achieved by performance. The
IGT places subjects in a cognitive situation that generates a
specific brain activity known to be different between GD and
healthy subjects. Brevers et al. formulated a hypothesis that a
hypersensitivity to gain causes altered decision making in
the IGT in GD, translating hypersensitivity of the reward
system (Brevers, Koritzky, Bechara, & Noél, 2014).
Neuroimaging performed during IGT showed contra-
dictory results regarding the neural bases of decisional al-
terations in GD. If some showed hypersensitivity to gain
(Oberg, Christie, & Tata, 2011), others found that this hy-
persensitivity was found for the loss (Linnet, Peterson,
Doudet, Gjedde, & Moller, 2010). Some methodological
differences notably in choice of sample, such as GD severity
or favorite gambling activity, would be the cause of these
differences (Brevers, Bechara, Cleeremans, & Noél, 2013;
Wiehler & Peters, 2015). For example, Online Poker Players
are a specific population whose poker training could atten-
uate impaired IGT performances and information process-
ing (Giustiniani et al.,, 2024). However, even in absence of
impaired IGT performances, Poker players with GD showed
an imbalance in neural activity with an increase in the
striatum (impulsive system) and a decrease in the prefrontal
region (reflective system) (Brevers et al., 2016). In addition,
Brevers et al.,, observed a positive correlation between the
problem gambling severity score and ventral striatal activa-
tion, suggesting that this activity could be a good indicator of
the GD severity (Brevers et al.,, 2016). If its specific brain
activity is also identified in problematic gamblers compared
to recreational, this could be exploited in the future as a
biomarker of the problematic gambling risk. As brain
structures involved in emotion, conflict monitoring, working
memory and motor response inhibition (Bechara & Dam-
asio, 2005) have been identified, and they were activated in a
very short space of time, this makes it difficult to properly
identify the dynamics of the dysfunctional processes.
Methods like electroencephalography (EEG) allow an accu-
rate assessment of the time course of neural activation
during this process (Giustiniani, Gabriel, Nicolier, Monnin,
& Haffen, 2015). The outcome processing is made up of
numerous stages which differ from each other in their la-
tency of onset, and which can be altered independently of
each other, thus revealing a different dysfunction depending
on whether it is early or late (Giustiniani et al., 2024; Oberg
et al., 2011). However, classical event-related potential ana-
lyzes target certain electrodes and time windows of interest
based on previous literature. We hereby propose to use high-
density EEG and functional microstate analysis methods
that take advantage of the large number of electrodes at its
disposal, at least 64. Microstate analysis of EEG is a
powerful, inexpensive, and clinically translatable neuro-
physiological method to study and assess global functional
states of the brain in healthy volunteers and patients
(Khanna, Pascual-Leone, Michel, & Farzan, 2015). The
functional states are assessed by recording topographies of
electric potentials with multichannel EEG over the scalp,
and considering their stability over time. Microstate analysis
has been used in a large number of studies to characterize
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neuropsychiatric disorders (see (Chivu, Pascal, Damborska,
& Tomescu, 2024) for a review in the evaluation of mood
and anxiety disorders). The microstate analysis minimizes
user-dependent biases and a priori assumptions by selecting
topographic maps that remain stable for a certain duration.
Thus, different topographic maps reflect different configu-
rations of electric sources in the brain, which could be
extracted and analyzed. Finally, surface neural activity
recording allows, thanks to the source localization, identifi-
cation of the brain structure involved in its generation
(Chabin, Pazart, & Gabriel, 2022). The application of this
technique will enable us to better understand the neural
temporal pathway taken during a decision, and to compare
what is different or not between gamblers with and without
risk of problematic gambling, in the outcome processing.

In summary, our study is in the exploratory stage, for
which the main objective was to determine whether neural
responses generated during the IGT performance were
different depending on the severity levels of problematic
gambling in the gambler’s population. For this purpose, we
established a relatively homogeneous population of Online
Poker Players, divided into two groups (Low-Risk and
Problem Gambling) determined by their CPGI, with the
objective of comparing the different configurations of elec-
tric sources generated during the completion of the IGT.
Impulsivity, known to influence the IGT performance and to
be present at a high level in the GD population, was
controlled to avoid interpretation biases (Grassi et al., 2015;
Logge, Morley, Haber, & Baillie, 2023; Ochoa et al., 2013).
We tested the hypothesis that the “problem gambling” group
would show different brain activity related to outcomes
processing than the one with low risk.

METHODS

Participants and recruitment

Forty male volunteers over 18 years old were recruited to
participate in the current study; all of them were right-
handed and had normal or corrected-to-normal vision. For
the recruitment of the gamblers, we focused on the specific
online poker population with communication and an
advertisement displayed in the local press (Besangon;
France). The advertisement asked for participants who
“played poker online” to participate in our study.
Participants were divided into two groups according to
their severity levels of problematic gambling, as assessed by
the Canadian Problem Gambling Index (CPGI) (Ladouceur,
Sylvain, Botin, & Doucet, 2000; Petry, Zajac, & Ginley,
2018). Twenty participants were assigned to the Low-Risk
group (LR group) if their CPGI score was below 3, and
twenty to the Problem Gambling group (PG group) if their
CPGI score was greater than or equal to 3. Sample size
estimation was based on the neuronal activity measured in
one of our previous studies (Giustiniani et al., 2015), where a
difference of 1.348 + 1.365 puV between a gain and a loss was
found in the group of subjects developing a favorable

strategy. A difference of 0.259 + 0.867 was observed in the
undecided group. We hypothesized that these differences
would be the same between the high-risk online gambling
addiction group and the low-risk online gambling addiction
group, with @ = 0.05 and power = 80%.

No participants had any previous medical history of
psychiatric disorders, substance abuse, alcohol abuse,
neurological diseases, traumatic brain injury, or stroke, nor
were any participants taking any medication at the time of
the study.

Prior to participating in the study, participants received
information regarding the aims and procedures of the
experiment and gave their written informed consent to
participate. All participants received €85 at the end of the
experiment in compensation.

Clinical and psychometric measures

Each participant received a hetero-evaluation by a psychi-
atric addictologist confirming the absence of non-inclusion
criteria, and determining the presence of a GD according to
the DSM-5 (American Psychiatric Association, 2013). Then,
volunteers received several self-assessments to check that the
group’s personality profile, drinking and smoking habits,
and sociodemographic data were equivalent, and could not
constitute bias. As tobacco and alcohol consumption were
not excluded, their level of consumption was verified by the
Alcohol Use Disorder Identification Test (AUDIT) (Saun-
ders, Aasland, Babor, de la Fuente, & Grant, 1993) and the
Fagerstrom Test (Meneses-Gaya, Zuardi, Loureiro, &
Crippa, 2009).

The Barratt Impulsiveness Scale (BIS-10) was employed
to control the impulsivity and its subcomponents (cognitive
(BIS-CI), motor (BIS-MI) and non-planning (BIS-NPI))
(Bouvard, 2009). The BIS/BAS (“Behavioral Inhibition Sys-
tem” and “Behavioral Approach System”), which evaluates
the appetitive and aversive motivation, is composed of three
sub-categories of the BAS, the Drive (BAS-D), the Fun
Seeking (BAS-FS) and the Reward Responsiveness (BAS-RR)
(Smillie, Jackson, & Dalgleish, 2006).

Experimental tasks, the lowa Gambling Task (IGT)

The virtual IGT used in this study is an electronic version of
the IGT, adapted for the study of ERPs and the analysis
of brain activity sources (Giustiniani et al., 2015). The aim of
the task is to win as much money as possible by making
successive selections between four decks.

The composition of decks, values, and schedules of
reward/punishment were predetermined identically to the
original form of the IGT. While the back of each deck looked
identical, they differed in composition. Decks A and B were
the disadvantageous decks; they provided immediate re-
wards, but in the long run yielded major economic losses.
Decks C and D were the advantageous decks; they provided
frequent small wins and smaller long-term penalties, which
resulted in long-term gain. The subjects were not informed
of the number of trials they would be playing. To adapt the
IGT to our French population, the money used to play was
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converted from US Dollars to Euros. At the beginning of the
IGT, participants received a virtual loan of €2,000 (Bechara
et al., 1994; Giustiniani et al., 2015).

A few changes had to be made to adapt the original IGT
task to work with the EEG, such as increasing the number of
trials to 200, and the delay between the choice and
displaying the result (see (Giustiniani et al., 2015) for a
complete description of modifications).

EEG recording

EEG signals were recorded using a 256 channel Geodesic
Sensor Net (Electrical Geodesics Inc.; EGI, Eugene, OR)
during the IGT. Continuous recordings were performed
with a high-pass set at 0.1 Hz and a sampling rate of 1,000
Hz. All channels were referenced to the vertex (Cz) and
collected with a high impedance amplifier (Net Amp 300
amplifier, Electrical Geodesics) using Net Station 4.5 soft-
ware (Electrical Geodesics). Data were continuously recor-
ded at a sampling rate of 1,000 Hz. Subjects were instructed
to limit body movements, eye blinks, and muscular con-
tractions during task selection and reward feedback (Gius-
tiniani et al., 2015).

Data analysis

Behavioral data analysis. The 200 trials of the task were
divided into 10 blocks of 20 trials. The individual net score
was calculated by subtracting the number of disadvanta-
geous decks from the number of advantageous decks ob-
tained for each block. We evaluated the adherence to a
strategy, also called rigidity score, by calculating how many
times the same deck had been chosen (Cabeza et al., 2019).

EEG data analysis. Microstate analysis was performed us-
ing Cartool Software 3.551. Raw EEG data were re-refer-
enced offline to a common average reference. Data were
bandpass filtered between 1 and 30 Hz (Butterworth), and a
notch filter fixed at 50 Hz was applied to remove environ-
mental artifacts.

The main interval of interest in the IGT came following
the reward screen. Epochs of 700 ms (100 ms prior to reward
feedback - 600 ms following reward feedback) were extrac-
ted from the raw data and analyzed, with a baseline
correction applied prior to feedback on the onset of the
feedback (100-0ms). A semi-automatic artifact rejection
method was used, with a fixed criterion of 100 pV.
Remaining epochs were visually inspected, manually
removing any containing blinks, eye movements, or other
sources of transient noise from the analysis. Electrodes with
an aberrant signal (e.g., excessive noise due to malfunc-
tioning or a bad signal during data collection) were inter-
polated using a 3-dimensional spline algorithm.

A microstate analysis was performed to determine
whether the four conditions (win or loss in the IGT for LR-
group and PG-group) differ in global electric fields (Michel
& Murray, 2012). The spatiotemporal segmentation was
performed on the group-averaged responses from the dis-
played result to 600 ms after for each condition. Changes in

electric fields occur when the configuration of the underlying
generator has changed and suggest the activation of different
brain networks. A k-means cluster analysis on topographic
dissimilarities was applied to determine which topographic
template (‘map’) best explains the participants’ neural
responses to each experimental condition. This iterative
procedure started with an initial guess of maps and
terminated when successive iterations differ negligibly.
This automatically resulted in a certain number of topog-
raphy maps that best represent the whole data set.

Following the microstate procedure, one type of analysis
was then performed: a fitting procedure comparing the
group-averaged data with the scalp topography of ERPs at
the individual level. For each condition of each subject, we
could then extract various parameters, such as the number
of time frames for the maximum global field power
(TFmaxGFP), the mean GFP, and the maximum GFP
(maxGFP) for each map (Khanna et al., 2015).

Finally, a source localization procedure was also performed
by using a distributed linear inverse solution based on a local
auto-regressive average (Loreta) model for the maps resulting
from the segmentation analysis and showing differences be-
tween LR-group and PG-group. These source estimations were
computed from the averages of ERPs at all 256 electrodes into a
solution space represented by a 3D grid composed of 5,018
nodes. These 5,018 nodes were selected from a grid equally
distributed over the gray matter of the average brain provided
by the Montreal Neurological Institute.

Statistical analysis. Statistics were performed with Statistica
(StatSoft Europe, Hamburg, Germany) and R 3.4.1
(R Development Core Team) software. For the psychometric
statistics, t-test was used to test potential differences in
psychometric scale between the two groups.

A behavioral analysis was performed on the subjects’
performances. Net scores obtained for each block were
submitted to a General Linear Model (GLM), with the factor
group (LR or PG), and the blocks as repeated measures
(1-10). If significant, a post hoc Bonferroni test was used to
assess the differences. A t-test was used to assess potential
differences in IGT performance between the two groups. To
determine whether there was a relationship between deci-
sion-making in the IGT and gambling habits, we performed
a Pearson two-tailed correlation between net score during
the conceptual phase and CPGI score on the whole group.

In the fitting procedure, each topographic maps, or
cluster, were analyzed separately. The topographic maps
specific to either group (LR-group versus PG-group) or
results were analyzed with a second GLM, including
Group X Results. The dependent variables were the number
of time frames for the max GFP, the mean GFP, and the
maxGFP. For both GLMs, a Bonferroni post hoc correction
was applied when necessary.

Ethics

All methods were performed in accordance with the relevant
guidelines and regulations and all methods were approved
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by the Ethics Committee of Besancon University Hospital
(authorized by the General Health Administration (ANSM
2016-A00870-51)), and were carried out in accordance with
the protocol and with principles set out in the Declaration of
Helsinki.

The study was
(NCT02873572).

registered on ClinicalTrials.gov

RESULTS

Sociodemographic and psychometric data

Concerning the sociodemographic data, the PG group ap-
pears to have less graduates than the LR group. No signifi-
cant psychometric variations were observed between the two
groups in the BIS-10, BIS/BAS, AUDIT and Fagerstrom test
(Table 1).

Behavioral results in the IGT

An increase of performances was observed, subjects playing
more and more advantageous cards during the IGT
(Fro.342) = 6.1869; p < 0.001). Post-hoc analysis revealed that
the net score on blocks 4 to 10 was significantly superior to
the first block (p < 0.05) (Fig. 1).

We observed the worst performance on the IGT for the
PG group, but this was not significantly different from the
LR group. No correlation was found between CPGI and final
or total net score.

Microstate analysis

The microstate segmentation on the grand mean data
revealed five different clusters, or topographic maps, best
representing the EEG dataset. The result of the microstate
analysis is shown in Fig. 2. One topographic map, time
window 1 [TW1], was observed in the loss condition be-
tween 150 and 175 ms after the outcome for both groups,
whereas it was displayed in the win condition only for the
PG group. Another topographic map (Time window 5:
TW5) was selected as a period of interest close to P300, in
the period that occurs between 290 and 440 ms after the
outcome, known to reflect cognitive processes related to the
outcome evaluation (Giustiniani et al., 2015).

The cluster maps from the microstate segmentation were
then fitted to the individual ERPs of each subject and each
condition. For TW1, an interaction was found between the
outcome and the number of time frames for the maximum
Global Field Power (F(1,38) = 4.12, p = 0.049), as well as
between the outcome and the mean Global Field Power
(mean GFP: F(1,38) = 5.63; p = 0.02). A win resulted in a
reduction of TFmaxGFP (p = 0.04) and meanGFP (mean
GFP, p = 0.03) in the LR group only (Fig. 3). A negative
correlation between the meanGFP and the rigidity score was
observed (Spearman p = —0.355, p = 0.024).

For TW5, the time frame of the peak of GFP
(TFmaxGFP) for the loss condition showed no differences in
the PG group compared to the LR group (TFmax GFP:
F(1,38) = 4.0.5, p = 0.051).

Table 1. Sociodemographic and psychometric data

LR- group AR- group
(Low-Risk (Problem Gambling
group) group)
Mean (SD) Mean (SD) p-value
Sociodemographic data
Age 30.2 (6.35) 29.2 (6.87) 0.6185
Partnership 25% 55% 0.053
(%)
Employment 0.33
status (%)
e Unemployed 10% 5% -
e Student 35% 25% -
® Employed 55% 70% -
Children (%) 20% 45% 0.091
Graduates (%) 0.042
® Less than 2 (10%) 5 (25%) -
high school
e High school 2 (10%) 7 (35%) -
graduates
e College or 16 (80%) 8 (40%) -
higher
Addictive habits
CPGI 0.95 (0.887) 6.6 (3.50) <0.0001
DSM-5 0.35 (0.671 3.55 (1.70) <0.0001
(Gambling
Disorder)
AUDIT 6.25 (5.02) 6.55 (3.75) 0.8318
Fagerstrom 0.95 (1.57) 1.15 (1.79) 0.709
Psychometric data
BIS total 48.4 (14.2) 49.0 (15.4) 0.8822
e BIS-CI 15.0 (4.87) 17 (6.59) 0.2947
e BIS-NPI 182 (6.66) 17.3 (5.10) 0.6158
e BIS-MI 15.0 (7.07) 14.8 (7.64) 0.8981
BIS/BAS 38.4 (3.95) 39.1 (4.23) 0.5656
e BAS-D 9.35 (1.57) 9.85 (2.30) 0.4273
e BAS-FS 12.0 (1.54) 12.0 (1.73) 1
e BAS-RR 17.0 (1.93) 17.3 (1.22) 0.6279
o BIS 19.8 (3.14) 19.6 (2.01) 0.9053

Canadian Problem Gambling Index (CPGI); Alcohol Use Disorder
Identification Test (AUDIT); Barratt Impulsiveness Scale (BIS-10):
cognitive impulsiveness (CI), motor impulsiveness (MI), and non-
planning impulsiveness (NPI); BIS/BAS: BIS “Behavioral Inhibition
System” and BAS “Behavioral Approach System”, Drive (BAS-D),
Fun Seeking (BAS-FS) and Reward Responsiveness (BAS-RR).

Source localization

Source localization applied on the TW1 identified Anterior
Cingulate Cortex and Temporal regions as generators of this
activity. Source localization performed on the TW5 identi-
fied the inferior frontal gyri and the right temporal lobe as
generators of the neural activity in this time window (Fig. 4).

DISCUSSION

The aim of the current study was to identify differences in
neural activity generated during IGT performance between
two groups of online poker players, LR group and PG
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Fig. 4. A/Source localization of the TW1 and TW5 generators

IGT performances

No significant difference in IGT performances were observed
between our two groups. Usually, studies which compared
behavioral performance compared one clinical population,
gambling disorder, to a healthy population (Goudriaan et al.,
2005; Oberg et al, 2011). In our study, the population
enrolled was not a clinical sample selected from a healthcare
center, which is a significant difference from other studies.
We can assume that the difference in IGT performance is
higher when two opposite groups are compared (GD versus
healthy control) (Wiehler & Peters, 2015). IGT performance
is influenced by the type of gambling and the severity of the
disorder (Brevers et al., 2016; Giustiniani et al., 2024; Wiehler
& Peters, 2015). The type of gambling, including Online
practice, has a significant impact on behavior. Online

gambling in particular engenders a habit of apprehending
virtual worlds, so online players are accustomed to making
choices and acting in a virtual environment (Brevers et al.,
2016; Giustiniani et al., 2024). The absence of a significant
difference is probably due to the fact that our two groups are
essentially distinguished by their CPGI score.

Early outcome processing

For TW1 early outcome processing, the PG group showed
persistent gain processing compared to the LR group. Source
localization identified a region encompassing the Anterior
Cingulate Cortex (ACC) and the medial frontal lobe, and the
temporal lobe as generators.

ACC is well-known to be related to the early outcome
processing that reflects an underlying cognitive process
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(Bland & Schaefer, 2011; Glazer, Kelley, Pornpattana-
nangkul, Mittal, & Nusslock, 2018). This early activity was
previously associated with the reward prediction errors with
a phasic activity of the mesencephalic dopamine signaling
that tracks violation of reward expectations, and whose ac-
tivity is localized to striatal reward regions (Glazer et al.,
2018). More precisely, the Reinforcement Learning theory
states that the neural activity is generated by the disinhibi-
tion of neurons in the ACC caused by a phasic decrease in
dopaminergic input from striatum when outcomes are worse
than expected (Arbel, Hong, Baker, & Holroyd, 2017). The
ACC is known to be activated during feedback processing,
monitoring, error detection and conflict management
(Fellows & Farah, 2005). Neural activity generated by the
ACC is recognized to be sensitive of information occurrence
(Krigolson, 2018). The latency and the TW1 generators
could suggest that this brain activity could be linked to the
feedback-related negativity (FRN) (Glazer et al, 2018).
In addition, on the TW1, GFP was negatively correlated with
their adhesion to a strategy. Moreover, neural activity
usually related to this time window is proposed to reflect
processes involved in selective attention, executive attention,
stimulus  classification (Wongupparaj, Sumich, Wickens,
Kumari, & Morris, 2018), but above all, its amplitude was
correlated to the perception that the outcome was unpredict-
able (Schuermann, Endrass, & Kathmann, 2012) with a certain
degree of uncertainty (Kiat, Straley, & Cheadle, 2016). In the
light of these data, we can hypothesize that subjects with low
GFP on TW1 would show faster learning skills in the IGT and
that consequently the uncertainty phase would be shorter with
earlier entry into the conceptual phase of the IGT.

Medial temporal lobe is known to be activated when the
outcome is delayed. Its activation allows information to be
collected and bound in order to create and store correct
associations (Arbel et al, 2017). Thus, in our study, this
temporal activation appears to be relevant in regard to our
IGT modification for the ERP recording. Indeed, there is a
delay between the deck selection and the outcomes displayed
that could explain this activation. Moreover, this activity
generated after a gain is associated with more errors, a
longer learning threshold to reach and to the subjective
sensation of a difficulty (Arbel, Goforth, & Donchin, 2013).
These could provide another explanation of the negative
correlation observation between GFP and rigidity score, for
which the lesser reward processing in the LR group could be
associated with faster learning.

Generally speaking, all these data point in the direction
of gains chasing for the PG group. Chasing, defined as the
gambler’s willingness to recover from losses, is a central
feature of GD. But above all, chasing is a behavioral marker
of the risk of transitioning to severe gambling problem
(Sleczka & Romild, 2021). For many years, it has also been
noted that chasing wins was a driving force and that high-
risk online gamblers reported higher chasing wins than
chasing losses (Zhang, Rights, Deng, Lesch, & Clark, 2024).
Thus, the fact that our “Problem Gambling” online poker
players have a higher early win processing than our recre-
ational players seems particularly consistent with these data.

We confirmed that the microstate analysis allowing the
recording of brain activity testifying a higher early reward
processing in the PG group has already been observed in
GDs (Oberg et al,, 2011). In addition, we hypothesize that
early reward processing could be a neurological marker of
chasing wins, a well-known behavioral marker.

Late outcome processing

We failed to observe differences in late outcome processing.
Source localization identified the inferior frontal gyrus
(IFG) and the right temporal as generators of this TW5.
Decision-making activity generated by IGT was associated
with activation in prefrontal areas such as the IFG (Brevers
et al., 2016). IFG encompasses a part of the orbitofrontal
cortex (OFC) well known for its role in decision-making
processes (Mavrogiorgou et al., 2017). Indeed, OFC plays a
crucial role in the cognitive flexibility and impulsivity
control (Barlow et al., 2015). More precisely, IFG activity
was associated with GD and the perception of urge to
gamble (Goldstein & Volkow, 2011; Goudriaan, de Ruiter,
van den Brink, Oosterlaan, & Veltman, 2010). The identi-
fication of the right temporal area as generator of the TW5
is consistent with the literature which found that its activity
is related to the visuo-spatial memory (Luelsberg et al.,
2022), and is in agreement with the theory of emotional
asymmetry, in which the right side is related to negative
emotion, here the loss (Cui, Chen, Wang, Shum, & Chan,
2013). With regard to the time window and the generators,
it is very likely that the observed activity can be associated
with a P300 (Polich, 2007). P300 is well known for being
engaged in the cognitive task, with attentional, memory
and motivational significance (Vuillier, Whitebread, &
Szucs, 2015), the absence of statistical difference on the
TW5 may reflect a similar interest in its successful
completion.

Limits

Our groups appear comparable in many ways, however we
observed a difference in the level of graduates with fewer
years of study for the PG group, which may have a negative
impact on their IGT performance (Davis et al.,, 2008). In
addition, our population showed heterogeneity in risk level
in the CPGI, which can have a negative impact on the
observation of differences caused by the onset of the disor-
der. Continuing investigations on a more homogeneous
population and comparing gamblers with moderate risk to

those with high risk would clarify whether a specific
neuronal activity occurs in different stages of severity.

CONCLUSION

Our results are promising in two different ways. From a
fundamental point of view, the temporal dynamics view of the
EEG allows us to identify brain activity that is associated
with reward hypersensitivity, similarly to what has been
observed with more complex methods such as fMRI
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(Brevers et al., 2016). Future research should focus on
reproducibility and on simplifying the procedure to develop a
biomarker of GD.
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