Serum reverse triiodothyronine (rT_3) in children with goitre

By

I. ILYÉS* and F. PÉTER

Buda Children's Hospital, Budapest

Received 13th December, 1979

Serum reverse T_3 , T_4 , T_4 , and TSH concentrations were measured in children with goitre of grade II and III, and in controls of the same age. The average rT_3 level was decreased in both goitrous groups and the difference between them was significant. The rT_3/T_4 ratio in each group changed in a similar way. It seems that in goitre not only the T_3 secretion of the thyroid gland is increased but also the deiodination of T_4 to T_3 increases against rT_3 , or the degradation and metabolic clearance of T_3 and rT_3 change.

Measurement of thyroid hormones and their metabolites in serum is of importance in studies of the pathomechanism of goitre in children, and in addition in investigations of the hypophysis-thyroid axis.

3, 3' 5' triiodothyronine (reverse T_3 , r T_3) is a normal component of the human serum. It is formed by extrathyroidal monodeiodination of thyroxine (T_4) besides an insignificant contribution by thyroidal secretion. Marked elevation of r T_3 in serum has been found in the cord blood of newborns and also in adults in various conditions. Elevation of the serum r T_3 level is frequently accompanied by a decrease in serum T_3 [2].

In patients with goitre the thyroid hormone levels may be affected due to iodine deficiency. This usually manifests itself with an elevation of the serum triiodothyronine (T_3) and a decrease of serum T_3 [6]. It seemed therefore interesting to study the serum rT_3 level in children with goitre, together with a measurement of their serum T_3 , T_4 and thyrotropin (TSH) values.

MATERIAL AND METHODS

Children with goitre living in a slightly iodine deficient area of Hungary were investigated and their data were compared to the results obtained in a group of children without goitre from a non-goitrous area. Patients with goitre of grade II and III were investigated separately (25 and 13 children, respectively). The control group contained 11 subjects. The age of all children ranged from 6 to 10 years.

Serum T_4 and T_3 were measured by radioimmunoassay (RIA) RCC-kit (Amersham),

^{*} Permanent working place: Department of Paediatrics, University Medical School, Debrecen.

RESULTS

The results of the hormone measurements are shown in Table I. The average serum TSH and T_3 levels were elevated, the mean serum T_4 concentration was decreased in both goitrous groups as compared to the controls.

The concentration of rT_3 in the goitrous groups was significantly decreased; a more marked decrease was found in the children with goitre of grade III.

The proportion of rT_3 and T_4 calculated in each patient is seen in Table II. The average ratio was significantly decreased in both goitrous groups, and the difference between them was significant statistically.

DISCUSSION

By means of a specific RIA, it was shown that rT₃ was a normal component of human sera [3]. Much of the T_{A} secreted by the thyroid gland is metabolized by deiodination to T₃ and rT_3 . Most of the T_3 and nearly all of the rT_3 are produced in this way [4, 8]. Several investigators have reported that the serum rT_3 concentration is increased in patients with a variety of non-thyroidal diseases and in several conditions including hepatic cirrhosis, chronic renal failure, acute febrile disease, protein calorie malnutrition, corticosteroid therapy and surgical procedures [2]. The reverse T_3 level is also increased in cord and newborn serum as compared to the normal adult one [5]. An increased level was found in hyperthyroid patients and a decreased one in hypothyroid ones [7].

Groups	(n)	TSH uU/ml	T_4 ug/dl	$T_3 ng/ml$	rT_3 ng/dl
Goitre grade II	25	$5.60 \pm 1.60 * * *$	$7.51 \pm 1.99**$	$2.38 \pm 0.50**$	$13.69 \pm 7.04 ***$
Goitre grade III	13	$5.07 \pm 1.47 **$	$8.48 \pm 1.85^{\circ}$	2.61 ± 0.44 ***	$7.93 \pm 6.36^{***}$
Control	11	3.56 ± 1.03	10.48 ± 1.77	2.04 ± 0.15	24.72 ± 7.25

			TABLE I					
Serum	TSH,	T4, 7	anc	IrT ₃	concentrations	(mean	\pm	S.D.)

t-test: **: p < 0.01; ***: p < 0.001; o: p = 0.054 (as compared to the controls).

TABLE II

Serum rT_3/T_4 ratio (mean \pm S.D.)

rT_3/T_4 (ng/ug)			
1.92 ± 1.03			
1.05 ± 0.80			
2.39 ± 0.68			

Acta Paediatrica Academiae Scientiarum Hungaricae 21, 1980

Co.).

Elevation of rT_3 is frequently accompanied by a decrease in serum T_3 . This reciprocal alteration has led to the theory that the deiodination of T_4 is not a completely random process. The mechanism of this alteration is unknown.

On the other hand, it has been reported that in regions with iodine deficiency, low values of serum protein bound iodine (PBI) or serum T_4 are found together with the elevation in serum TSH [6]. With regard to the elevated serum T_3 concentration, the thyroid has been assumed to secrete preferentially T_3 in iodine deficiency [1]. Thyroid hormone concentration is, however, controlled not only by the regulation of thyroid secretion but also by deiodination of the extrathyroidal T_4 , and this change is reflected by the serum concentration of rT_3 as well as of T₃.

In the present study the serum rT_3 concentration was significantly decreased in both goitrous groups and even more in the group of children with goitre of grade III. As to the cause of the decreased rT_3 level, we may suppose the responsibility of the decreased T_4 level in children with goitre, but a change in the ratio of T_4 deiodination to T_3 and rT_3 is also possible.

To clarify the question, the proportion of serum rT_3 and T_4 was calculated. The average ratio revealed significant alterations in the investigated groups. It seems that not only the T_3 secretion by the thyroid gland is increased in children with goitre developed in consequence of a slight iodine deficiency, but either the deiodination of T_4 to T_3 increases against reverse T_3 , or the degradation and the metabolic clearance of the T_3 and rT_3 are also changed.

References

- 1. ABRAMS, G. M., LARSEN, P. R.: Triiodothyronine and thyroxine in the serum and thyroid gland of iodine deficient rats. J. clin. Invest. **52**, 2522 (1973)
- 2. BURMAN, K. D.: Recent developments in thyroid hormone metabolism: interpretation and significance of measurements of reverse T₃, 3,3'T₂, and thyroglobulin. Metabolism **27**, 615 (1978)
- 3. CHOPRA, I. J.: A radioimmunoassay measurement of 3,3',5'-triiodothyronine (reverse T₃). J. clin. Invest 54, 583 (1970)
- 4. CHOPRA, I. J.: An assessment of daily production and significance of thyroidal secretion of 3,3',5'-triiodothyronine (reverse T_3) in man. J. clin. Invest. 58, 32 (1976)
- 5. CHOPRA, I. J., SACK, J., FISCHER, D. A.: Circulating 3,3'5'-triiodothyronine (reverse T_3) in the human newborn. J. clin. Invest. 55, 1137 (1975)
- DELANGE, F. M., ÈRMANS, A. M.: Endemic goiter and cretinism. Naturally occurring goitrogens. Pharmacol. Ther. 1, 57 (1976)
- 7. KAPLAN, M. M., SCHIMMEL, M., UTIGER, R. D.: Changes in serum 3,3',5'-triiodothyronine (reverse T_3) concentrations with altered thyroid hormone secretion and metabolism. J. clin. Endocr. Metab. 45, 447 (1977)
- 8. SURKS, M. L., SHADLOW, A. R., STOCK, J.M., OPPENHEIMER, J.H.:Determination of iodothyronine absorption and conversion of L-thyroxine (T_4) to L-triiodothyronine (T_3) using turnover techniques. J. clin. Invest. **52**, 803 (1973)

I. ILYÉS, M. D. Pf. 32 H-4012 Debrecen, Hungary

Acta Paediatrica Academiae Scientiarum Hungaricae 21, 1980