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ABSTRACT

Background: Research on individual differences in brain structural features of internet gaming disorder
(IGD) and established addictions such as tobacco use disorder (TUD) is currently limited. This study
utilized normative modeling to analyze the cortical thickness (CT) development patterns of male pa-
tients with IGD and TUD, aiming to provide further insights into whether IGD qualifies as an
addiction. Methods: Surface-based brain morphometry (SBM) was used to calculate CT from T1-
weighted magnetic resonance imaging data of 804 male participants (665 healthy individuals, 68 IGD
and 71 TUD). Gaussian process regression was employed to generate normative models of CT devel-
opment. Deviation maps were produced to depict deviations of IGD and TUD participants from the
typical developmental patterns. Results: Both addiction groups exhibited widespread cortical thinning,
particularly in regions such as the bilateral temporal pole and medial orbitofrontal cortex. The TUD
group demonstrated a higher degree of individualization and limited spatial overlap compared to the
IGD group. Opposite trends in CT changes were observed between the two groups in the bilateral
pericalcarine cortex and pars triangularis. Conclusions: These findings regarding the similarities and
differences between IGD and TUD provide support for the idea that IGD shares common features with
substance-related addictions and contribute to a deeper understanding of the neural mechanisms
underlying IGD.
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INTRODUCTION

Internet gaming disorder (IGD) is defined as a psychiatric condition that manifests as a
struggle to control excessive and disruptive gaming behaviors (Wang et al., 2023). In 2013,
The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) classified
IGD as a potential psychiatric disorder that needs further study (American Psychiatric
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Association, 2013). In 2019, IGD was officially termed as a
mental disorder in the 11th revision of the International
Classification of Diseases (ICD-11) (ICD-11 for Mortality
and Morbidity). Evidence shows that 23% of gamers expe-
rience symptoms of internet gaming addiction (Mathews,
Morrell, & Molle, 2019), characterized by tolerance, with-
drawal, attempts to conceal or lie about gaming activities,
negligence toward important life opportunities, and other
associated features (Dong, Zheng, Wang, Ye, & Dong, 2022;
Wang et al., 2022). Individuals with IGD encounter diffi-
culties in managing their gaming habits, which may have
negative consequences such as poor interpersonal relation-
ships, academic failure, emotional distress, and even physical
health concerns (Dong & Potenza, 2022; Wan et al., 2022;
Ye, Wang, Yang, Dong, & Dong, 2022; Zha et al., 2022).
Epidemiological studies conducted in general population
have revealed the overall prevalence of IGD to be 0.7–15.6%,
with an average proportion of 4.7% over the years (Feng,
Ramo, Chan, & Bourgeois, 2017). Research on IGD has
consistently highlighted significant gender disparities in its
prevalence. Numerous studies have indicated a higher
prevalence of IGD among males compared to females (Fam,
2018; Ko, Yen, Chen, Chen, & Yen, 2005; Rehbein, Kliem,
Baier, Mößle, & Petry, 2015). In 2022, the DSM-5-TR listed
IGD in the section that recommended conditions for further
research (not an official one) (American Psychiatric Asso-
ciation, 2022). Therefore, more evidence is needed to sup-
port the classification of IGD as an addictive disorder.
Investigation of the similarities and differences between IGD
and typical addictive disorders, such as Tobacco Use Dis-
order (TUD), may help researchers better address the
ongoing controversies surrounding this issue.

TUD is a prevalent and persistent substance-related
disorder characterized by a compulsive and uncontrolled use
of tobacco products. Dependency on tobacco products has
been associated with over 7 million deaths worldwide
annually. Smoking has been shown to shorten life expec-
tancy by about 10 years and directly contribute to approx-
imately two-thirds of all smoking-related deaths. The World
Health Organization’s eighth report on global tobacco use
revealed that, in 2019, the smoking rate was 17.5% among
individuals aged 15 years and older. At present, it is esti-
mated that there are 847 million adult male smokers, 153
million adult female smokers, and 24 million smokers aged
13–15 years worldwide. Shen et al.’s longitudinal study on
Chinese smokers revealed that the smoking prevalence
among males (67.9%) is significantly higher than among
females (2.7%) (Shen et al., 2018). Smokers tend to have
overall poorer cognitive function in late adulthood than
non-smokers, with lower scores in several cognitive domains
such as memory and cognitive flexibility (Corley, Gow, Starr,
& Deary, 2012). Smoking has, therefore, become a signifi-
cant public health concern that poses a widespread threat to
the global population (Burki, 2021). The choice to compare
IGD with TUD is multifaceted. Firstly, both IGD and TUD
exhibit similar trends in terms of prevalence and severity
within populations, facilitating participant recruitment for
studies. Secondly, both disorders demonstrate significant

gender disparities, with a higher prevalence among males
than females. This gender discrepancy underscores the
importance of understanding potential gender-specific risk
factors and treatment approaches for these addictive
disorders.

Some resting-state functional magnetic resonance im-
aging (fMRI) studies have attempted to conduct comparative
research between the two disorders. A study (Chen et al.,
2023) found that IGD and TUD patients exhibit common
node strength enhancement between the subcortical and
motor networks. In addition, these authors reported com-
mon enhanced resting-state functional connectivity (RSFC)
between the right thalamus and right postcentral gyrus in
both groups of participants. A task-based fMRI study
(Ko, 2013) revealed similar mechanisms in cue-induced
reactivity for the parahippocampus between IGD and TUD
patients. Another RSFC study (Zheng et al., 2022) reported
differences in the thalamus and frontostriatal circuits but
similar changes in the cerebellum and medial prefrontal
cortex regions between the two addiction groups. Despite
fMRI studies providing insights into the commonalities and
differences in functional connectivity and cue-induced
reactivity between IGD and TUD, further exploration of the
structural differences between the two remains relatively
limited. Alterations in brain structure can reflect the long-
term effects of addictive behaviors on brain morphology and
organization and serve as biomarkers for addiction vulner-
ability or treatment response. Therefore, investigating
structural differences between IGD and TUD is crucial for
advancing our understanding of addictive disorders and
providing targeted intervention measures.

Cortical thickness (CT) is a key indicator for measuring
the brain structure. Researchers have focused on revealing the
relationship between addiction and brain structure, particu-
larly the impact on CT. For instance, Hong et al. (2013)
suggested a link between the orbitofrontal cortex (OFC) and
pathology of substance and behavioral addictions. These
authors reported a significant decrease in the CT of the right
lateral OFC, but not that of the left lateral OFC, among IGD
subjects. In contrast, studies conducted by Yuan et al. (2013)
and Wang et al. (2018) demonstrated a decrease in the CT of
the left OFC of IGD subjects as compared to that of healthy
controls (HC). These inconsistent findings highlight the need
for a better understanding of the changes in the patterns of
CT in IGD and reveal the association between alterations in
brain structure and IGD (Weinstein, 2017). Studies on CT in
TUD patients have suggested that smoking may lead to
overall cortical thinning, as primarily observed in lower CT
in the frontal, temporal, and parietal cortices, as well as in the
insular cortex (Durazzo, Meyerhoff, & Yoder, 2018; Karama
et al., 2015; Li et al., 2015). However, a few reports have
suggested no differences in insular cortex thickness among
smokers (Kühn, Schubert, & Gallinat, 2010). Morales,
Ghahremani, Kohno, Hellemann, and London (2014) found
a negative correlation between right insular cortex thickness
and cigarette craving in young smokers. Voxel-based and
surface-based morphometry experiments have enabled pre-
cise and detailed investigations of regional and global
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alterations in CT associated with TUD. Further investigations
are warranted to elucidate the mechanism underlying gray
matter alterations and their functional implications.

Research on cerebral structural differences between IGD
and TUD patients is scarce, and there is no clear under-
standing of the underlying neurobiological mechanisms that
contribute to these addictions and their potential overlap or
distinctiveness in terms of brain structure. Traditional case-
control designs applied thus far have predominantly focused
on group differences while overlooking individual-level
differences. At the individual level, mapping heterogeneous
disease phenotypes is crucial to identify accurate and reliable
biomarkers of mental disorders.

In this study, we applied a quantitative measurement
statistical model called the normative model that maps
population or behavioral variables to the brain. It provides
estimates of within-cohort variability and compares in-
dividuals to normative brain structures within a specific age
range. This approach determines the differences between
individual patients and the range of health, similar to the use
of growth charts in physical medicine. The normative model
assumes that diseases can be regarded as extremes of the
normal range or deviations from specific aspects of normal
functioning. Considering this assumption, the normative
model does not dichotomize the cohort like traditional case-
reference paradigms but studies the disease at the individual
participant level. This technique undoubtedly offers new
perspectives for clinical research (Marquand, Rezek, Buite-
laar, & Beckmann, 2016; Wolfers et al., 2018). We hypoth-
esized that IGD and TUD patients exhibit similarities in the
developmental patterns of CT at the group level while
bearing heterogeneity in certain brain regions and individual
levels. We validated this hypothesis by applying the
normative model to quantitatively estimate regional brain
structural changes in IGD and TUD patients. We examined
the spatial overlap with deviations from the normative
models to quantitatively estimate the regional brain struc-
tural changes in IGD and TUD patients, and to depict
similarities and differences in CT development patterns at
the level of these disorders and individual patients.

To this end, this study aims to expand our knowledge
regarding the neural mechanism of IGD and TUD by
investigating CT development patterns. The findings will
enhance our understanding of the neurobiological basis of
substance-related disorders and non-substance-related dis-
orders and contribute to identify potential brain-based
biomarkers to refine diagnostic criteria. This approach will
also allow more accurate identification and classification of
addiction disorders.

METHODS AND MATERIALS

Participants

78 male individuals with IGD and 80 male individuals with
TUD were enrolled in this study, participants with both IGD
and TUD were excluded by verbal inquiries before

recruitment. The diagnosis of IGD was based on the diag-
nostic criteria outlined in DSM-5 (Petry et al., 2014) and
scores obtained from the Young’s Internet Addiction Test
(IAT). The IGD status is defined as meeting at least 5
DSM-5 criteria and having an IAT score greater than 50.
The standard criteria for TUD diagnosis are same as those
used in our previous study (Zheng et al., 2022): (1) Smoke at
least 10 cigarettes per day continuously for one year or more;
(2) Exhaled carbon monoxide levels were at least 5 ppm;
(3) The scores on Fagerström Test for Nicotine Dependence
(FTND) are higher than 4 (Ghahremani, Faulkner, Cox, &
London, 2018; Loughead et al., 2015); (4) The scores on the
10-item brief Questionnaire on Smoking Urges (QSU-B) are
higher than 15 (Sweitzer et al., 2014). The above criteria are
considered collectively. Prior to recruiting participants with
a particular addiction, we used verbal inquiries to exclude
other types of addictions (such as internet gaming, tobacco,
alcohol, drugs, etc.). In addition, data of 665 male partici-
pants were downloaded from the Brain Genomics
Superstruct Project (GSP), a large-scale, multi-site brain
imaging study (Holmes et al., 2015). Each site participating
in the GSP had obtained informed consent from the
participants (view at https://dataverse.harvard.edu/dataset.
xhtml?persistentId5doi:10.7910/DVN/25833) prior to
their enrolment. Age and education level matching was
performed on the groups using the non-parametric
nearest neighbor matching procedure provided by the
MatchIt package in R (https://cran.r-project.org/web/
packages/MatchIt/index.html), resulting in the exclusion of
2 participants from the TUD group. The quality control
process conducted based on weighted average image quality
rating (IQR) and Euler index yielded a final sample of 68
participants in the IGD group, 71 participants in the TUD
group, and 665 participants in the HC group (Fig. 1A). The
demographic information of participants is presented in
Table 1.

MRI acquisition

High-resolution T1 structural images were acquired on a 3
Tesla Siemens Trio scanner using a fast spoiled gradient-
recalled echo pulse sequence with magnetization prepara-
tion, which encompassed the entire brain (176 slices). The
acquisition parameters were as follows: repetition time (TR),
2,000 ms; echo time (TE), 3 ms; slice thickness, 1.0 mm
without any gap; skip, 0 mm; flip angle, 78; inversion time,
1,100 ms; field of view (FOV), 2563 256 mm; in-plane
resolution, 2563 256.

CT estimation

Raw MRI images were processed and analyzed using sur-
face-based brain morphometry (SBM) pipeline available in
the CAT-12 toolbox (Gaser, Nenadic, Buchsbaum, Hazlett,
& Buchsbaum, 2001). The images were then integrated in
the statistical parametric mapping version 12 (SPM-12)
(Fig. 1B) and subjected to pre-processing steps. The volumes
were subsequently segmented using surface-based and
thickness estimation techniques to analyze specific regions
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Fig. 1. Methodological overview. A) T1 data were collected from both IGD and TUD patients and age-matched with HC data from the GSP
dataset. B) CT data, based on the Desikan-Killiany atlas, were obtained for each participant through cortical surface reconstruction.

C) Gaussian process regression was applied, and CT normative models were computed using 10-fold cross-validation. The models were
applied to each group of participants. D) NPMs were created for quantifying the deviation (Z-scores) of each participant from the normative
models. E) A threshold of z 5 ±2.6 was used to define extreme values, and its proportion served as an subject-level abnormality index.

F) Statistical analyses of various metrics

844 Journal of Behavioral Addictions 13 (2024) 3, 841–853

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 11/25/24 12:23 PM UTC



of interest. Cortical parcellation was conducted using the
Desikan-Killiany atlas (Desikan et al., 2006). The quality
control process was performed by referring to the weighted
average IQR assessed by the CAT-12 toolbox, which pro-
vides a comprehensive evaluation of the cortical surface
reconstruction quality. All participants with IQR ratings
below ‘C-’ were excluded (no participants were excluded in
HC, while 8 were excluded in the IGD and 1 in the TUD).
CAT-12 also calculates the Euler index, which tallies the
instances when the toolbox has interpolated surface gaps
during the process of reconstruction to ensure a continuous
outcome surface. The index serves as a measure of the
reliability of the surface reconstruction and the resulting
CT estimates. As the Euler index is closely related to the
scanning site, we followed the approach proposed by
Rutherford et al. to apply a consistent exclusion threshold
across different sites. In this approach, we subtracted the
median Euler index of each site from every participant
within it, then took the square root and multiplied by �1,
and excluded participants with square roots greater than 10.
Finally, we manually examined participants that exceeded
the Euler index threshold to confirm their exclusion from
further processing (no participants were excluded in HC,
while 2 were excluded in the IGD and 6 in the TUD).

Normative modeling

The Predictive Clinical Neuroscience toolkit (PCNtoolkit)
(https://github.com/predictive-clinical-neuroscience/PCNtool
kit-demo.git) was used to estimate a normative model of CT
and predict the entire brain based on participants’ age and
euler index as covariates. The model estimated using Gaussian
process regression (GPR) generated, in addition to point es-
timates, coherent measures of prediction confidence (Mar-
quand et al., 2016). The normative range of the model in the
HC group was estimated through 10-fold cross-validation and
then applied to patients (Fig. 1C). A normative probability
map (NPM) was then created and applied to each subject by
quantifying the deviation of mean CT at each region of in-
terest (ROI) from the normative model and estimating a
subject-specific Z score. This allowed us to estimate patterns
of regional deviation from typical CT for each participant
(Fig. 1D). The z-score takes into account the predicted un-
certainty, and reflects the difference between predicted and
actual values. To directly compare the deviations of the

cohorts, parameters were estimated using training data with
empirical Bayesian estimation (Marquand et al., 2016). Cross-
validation ensured the unbiased estimation across different
cohorts. Therefore, the mean group differences were deter-
mined by performing ROI-level t-tests on the z-scores of the
three cohorts. Bonferroni-Holm correction was applied for
multiple comparisons (p < 0.05).

Mapping regional extreme deviations

The z-scores within the ROIs were averaged for each cohort,
and the brain regions with larger mean deviations from the
normative model were visualized. Different patterns of
changes in CT in different regions of the brain were deter-
mined from comparison of mean deviations, which revealed
specific characteristics of each addiction group. The spatial
overlap of individuals in extreme deviations was demon-
strated by defining extreme positive and negative deviations
from the norm at a threshold of z 5 ±2.6 (i.e., p < 0.005).
A fixed statistical significance threshold was chosen to
simplify comparisons across individuals and to be less sen-
sitive to overall changes in individual deviation from the
norm as compared to methods such as false discovery rate
(FDR) correction (Wolfers et al., 2018). The spatial overlap
of extreme deviations across groups was investigated by
calculating the overlap maps from the proportion of extreme
positive and negative deviations within each ROI.
This resulted in brain regions where each group exhibited
significant increases or decreases relative to normative CT.
This method provides a more intuitive representation of the
distribution of extreme regional deviations in the brain
(Fig. 1E).

Construction of subject-level abnormality index

Normative models can provide probabilistic interpretations
of deviations in all participants. Therefore, normative
probabilistic maps (NPMs) provide multivariate measure-
ments of all brain regions that deviate from the normative
range (Zabihi et al., 2019). The percentage of extreme de-
viations in each ROI was calculated for each participant and
presented as a summary score, including the percentage of
extreme positive deviations and percentage of extreme
negative deviations (Fig. 1E). We defined extreme average
deviations from the model at the threshold of z 5 ±1.65
(i.e., p < 0.05) to identify spatial distribution differences in

Table 1. Demographic information of subjects in the current study

HC n 5 665 IGD n 5 68 TUD n 5 71 F p

Age (year), M±SD [range] 21.65 ± 3.04 [19–35] 21.46 ± 2.22 [19–29] 22.13 ± 1.80 [19–26] 1.09 0.337
Education (year), M±SD [range] 14.47 ± 1.93 [12–20] 14.38 ± 1.56 [12–18] 13.92 ± 1.73 [9–20] 2.76 0.063
Euler, M±SD [range] 28.41 ± 10.55 [6–64] 29.43 ± 11.71 [14–80] 30.87 ± 11.76 [12–77] 2.11 0.102
DSM, M±SD NA 6.21 ± 1.13 NA NA NA
IAT, M±SD NA 66.33 ± 9.42 NA NA NA
FTND, M±SD NA NA 6.58 ± 1.60 NA NA
QSU, M±SD NA NA 27.73 ± 10.61 NA NA

Abbreviations: NA, not applicable; M, mean; SD, standard deviation; HC, Healthy Control; IGD, Internet Gaming Disorder; TUD, Tobacco
Use Disorder; DSM, number of DSM-5 item; IAT, Internet Addiction Test; QSU, Questionnaire for Smoking Urges.
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CT deviations from the normative model across groups.
Additionally, we visualized regions with extreme deviations
exceeding 2% threshold across groups to visualize the key
regions of interest (Fig. 1F).

Diagnostic associations

Calculate the Spearman correlation coefficient (p < 0.05,
FDR corrected) between regional deviations (Z-scores) and
severity scores of addiction symptoms (DSM and FTND)
through partial correlation analysis (excluding the effects of
gender, head motion, and Euler index). All analyses were
performed using Python software, version 3.8 (Python
Software Foundation). The effects of scanner artifacts were
mitigated by performing additional checks (Fig. 1F).

Ethics

This study protocol was approved by the Ethics Investiga-
tion Committee of Hangzhou Normal University. All par-
ticipants provided written informed consent as per the
principles outlined in the Declaration of Helsinki.

RESULTS

Comparison of group-level deviations

Figure 2 shows the average group differences in CT relative
to the standard model among the HC group (under cross-

validation) and the addiction groups after application of
Bonferroni correction. Both IGD and TUD groups exhibited
broad negative deviations as compared with the HC group.
However, the IGD group showed significant average positive
deviations in regions such as bilateral frontal pole (IGD-HC,
t 5 10.31, pbonferroni < 0.001, left; IGD-HC, t 5 10.35,
pbonferroni < 0.001, right) and right superior parietal cortex
(IGD-HC, t5 3.34, pbonferroni < 0.001) (Fig. 2A). Further, the
TUD group showed significant positive deviations in
regions such as bilateral frontal pole (TUD-HC, t 5 4.11,
pbonferroni < 0.001, left; TUD-HC, t5 6.11, pbonferroni < 0.001,
right) and bilateral lateral occipital cortex (TUD-HC,
t 5 3.65, pbonferroni 5 0.001, left; TUD-HC, t 5 6.40,
pbonferroni < 0.001, right) as compared with the HC group
(Fig. 2B).

The comparison of between-group deviations in the IGD
and TUD groups shows that both groups of patients
exhibit similar overall CT deviations. However, the
IGD group exhibits greater positive deviations compared
to the TUD group in more brain regions, such as bilateral
pars triangularis (IGD-TUD, t 5 4.05, pbonferroni < 0.001,
left; IGD-TUD, t 5 4.50, pbonferroni < 0.001, right) and
the left frontal pole (IGD-TUD, t 5 3.36, pbonferroni < 0.001).
In bilateral pericalcarine cortex (IGD-TUD, t 5 �5.44,
pbonferroni < 0.001, left; IGD-TUD, t 5 �3.45,
pbonferroni < 0.001, right) and bilateral lingual gyrus
(IGD-TUD, t 5 �4.59, pbonferroni < 0.001, left; IGD-TUD,
t 5 �2.09, pbonferroni 5 0.042, right), the TUD group

Fig. 2. Intergroup differences in deviations from the normative model. Pairwise comparisons of normative deviations between each group in
A-C to visualize regions with significant differences (pBonferroni<0.05). The color bars represent adjusted p-values
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demonstrates significantly more negative deviations
compared to the IGD group (Fig. 2C).

Noteworthy, different developmental trends were recor-
ded between the two addiction groups in the bilateral peri-
calcarine cortex and bilateral pars triangularis. In the
pericalcarine cortex, the IGD group showed significant
negative deviation (IGD-HC, t 5 �7.82, pbonferroni < 0.001,
left; IGD-HC, t 5 �6.48, pbonferroni < 0.001, right) and the
TUD group exhibited a significant positive deviation (TUD-
HC, t 5 3.35, pbonferroni 5 0.003, left; TUD-HC, t 5 0.965,
pbonferroni 5 1, right) as compared to the HC group. In the
pars triangularis, the IGD group showed significant positive
deviation (IGD-HC, t 5 1.16, pbonferroni 5 0.759, left;
IGD-HC, t 5 2.50, pbonferroni 5 0.041, right) and the TUD
group exhibited a significant negative deviation (TUD-HC,
t 5 �4.97, pbonferroni < 0.001, left; TUD-HC, t 5 �4.40,
pbonferroni < 0.001, right) as compared to the HC group.
All results are reported in Supplementary Table S1.

Spatial extent of extreme deviations

At a threshold Z value of 1.65 (p 5 0.05), the HC group in
general did not show significant deviations from the
normative model, indicating the good fit of this model for
this queue. The analysis of extreme positive deviations re-
veals that the TUD group has a notably higher proportion,
accounting for 20.59% (14/68) of the ROIs examined,
compared to the IGD group, which only accounts for 8.82%
(6/68). Similarly, in terms of extreme negative deviations,
the TUD group exhibits a substantially higher proportion,
comprising 73.53% (50/68) of the ROIs, compared to the
IGD group, which constitutes 42.65% (29/68) of the ROIs.

Figure 3A displays the negative mean deviations from the
normative model in the IGD group in the left temporal pole
(Z 5 �1.82). As seen in the overlap plot of the IGD group,
the proportions of positive deviations were higher in the
regions such as bilateral frontal pole (left 10.29%; right
17.65%), bilateral precentral gyrus (left 2.94%; right 5.88%)
and superior parietal cortex (right 2.94%). In addition, there
were higher proportions of negative deviations in the regions
such as lateral temporal pole (left �23.53%; right �19.12%),
lateral insula (left �11.76%; right �10.29%) and bilateral
pericalcarine cortex (left �10.29%; right �11.76%).

Figure 3B depicts the negative mean deviations from the
normative model observed in the TUD group (consistent
with that in the IGD group) in the left temporal pole
(Z 5 �2.00). The TUD group also exhibited larger average
negative deviations in the right temporal pole (Z 5 �2.22)
and right medial orbitofrontal cortex (Z 5 �1.76). Mean-
while, the IGD group also showed a trend of decreased
average CT in the right temporal pole (Z 5 �1.59) and right
medial orbitofrontal cortex (Z 5 �1.38). The overlap plot of
the TUD group demonstrated higher proportions of positive
deviations in the regions such as bilateral frontal pole
(left 7.04%; right 4.23%), bilateral precentral gyrus (left
4.23%; right 9.86%), bilateral superior parietal cortex
(left 4.23%; right 2.82%) and bilateral pericalcarine cortex
(left 11.27%; right 8.45%). On the other hand, he TUD

group showed a higher proportion of negative deviations in
almost whole brain, especially in the lateral temporal pole
(left �30.99%; right �39.44%), bilateral superior temporal
(left �25.35%; right �15.49%), bilateral medial orbitofrontal
cortex (left �2.82%; right �19.72%) and insula (left
�14.08%), which closely matches the brain regions with the
highest proportion of deviations observed in the IGD group.
All results are reported in Supplementary Table S2 and
Table S3.

Association with symptoms

In the IGD group, a positive correlation was observed be-
tween DSM scores and the regional Z-scores of the left en-
torhinal cortex (r 5 0.27, pFDR 5 0.029), right lateral
orbitofrontal cortex (r 5 0.25, pFDR 5 0.041), right para-
hippocampal gyrus (r 5 0.25, pFDR 5 0.004) and right frontal
pole (r 5 0.26, pFDR 5 0.036) (see Fig. 4A). The TUD group,
on the other hand, FTND scores were negatively correlated
with the regional Z-scores of the left lateral orbitofrontal
cortex (r 5 �0.24, pFDR 5 0.047), right medial orbitofrontal
cortex (r 5 �0.38, pFDR 5 0.001), right rostral anterior
cingulate cortex (r 5 �0.28, pFDR 5 0.016), right rostral
middle frontal gyrus (r 5 �0.25, pFDR 5 0.039), left superior
parietal cortex (r 5 �0.29, pFDR 5 0.015) and left superior
temporal cortex (r 5 �0.27, pFDR 5 0.023) (see Fig. 4B).

DISCUSSION

Herein, we applied normative modeling to compare the
deviations in CT development patterns between IGD and
TUD individuals relative to a typical control group. Our
results show that the TUD group exhibited overall brain
atrophy and that the IGD group showed a similar overall
trend but slightly lower degree of defects. On one hand, the
two groups of patients exhibit a high degree of alignment in
the distribution of CT extreme values; on the other hand, the
average deviations and regional specificity differences
observed between the two addiction groups demonstrate a
highly individualized pattern that deviated from the tradi-
tional case-control paradigm and manifested differently at
different developmental stages.

Similar deviation trends and the concentration of
extreme values

Consistent with previous findings, we observed widespread
cortical thinning in patients with IGD and TUD compared
to the HC group. Our study further revealed that both the
IGD and TUD groups exhibited significant average negative
deviations and a high proportion of extreme deviations in
the bilateral temporal pole and medial orbitofrontal cortex.
The temporal pole is known to play a crucial role in social
cognition, emotion processing, and decision-making (Olson,
McCoy, Klobusicky, & Ross, 2013; Olson, Plotzker, &
Ezzyat, 2007). Dysfunction in this region has been linked to
impulsivity and altered reward processing, which are

Journal of Behavioral Addictions 13 (2024) 3, 841–853 847

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 11/25/24 12:23 PM UTC

https://doi.org/10.1556/2006.2024.00044
https://doi.org/10.1556/2006.2024.00044
https://doi.org/10.1556/2006.2024.00044


relevant features of addictive behaviors (Camchong, Mac-
Donald, Bell, Mueller, & Lim, 2011). Similarly, the medial
orbitofrontal cortex is implicated in reward processing,
value-based decision-making, and behavioral control (Rolls,
2019; Wallis, 2007). Disruptions in these brain regions may
contribute to the development and maintenance of addictive
behaviors seen in IGD and TUD. Our findings underscore

the potential utility of these regions as neuroimaging bio-
markers for addiction. Future studies should investigate the
functional implications of these structural alterations and
their relationship to clinical characteristics and treatment
outcomes in IGD and TUD populations.

The spatial distribution of extreme CT deviations in both
addiction groups exhibits certain overlap, with extreme

Fig. 3. Spatial overlap of extreme deviations. A-B, Map of the regional extreme deviations in two addiction groups. The upper panel displays
the region with higher mean deviations from the normative model, and the two lower panels show the region with higher proportion of

extreme positive and negative deviations from the normative model
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Fig. 4. Partial correlation analysis. A) Correlations between regional deviations and DSM scores. B) Correlations between regional deviations and FTND scores
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positive deviations predominantly concentrated in bilateral
frontal pole regions, while extreme negative deviations are
concentrated in areas such as the insula, temporal pole, and
superior temporal gyrus. Correlation analyses revealed a
positive association between the right frontal pole CT de-
viation in the IGD group and their DSM scores. Similarly,
the left superior temporal gyrus CT deviation in the TUD
group showed a positive correlation with their FTND scores.
The elevated CT in the frontal pole among both groups may
suggest compensatory mechanisms or neuroadaptive re-
sponses to addictive behaviors, potentially reflecting alter-
ations in executive functions and decision-making processes
(George & Koob, 2017; Goldstein & Volkow, 2011). These
changes may have potential significance in assessing and
monitoring the severity of addiction and treatment out-
comes (Schacht, Anton, & Myrick, 2013). Furthermore,
the spatial convergence of extreme negative deviations in
regions implicated in reward processing and emotion regu-
lation, such as the insula and temporal pole, underscores
their critical role in addiction pathology (Naqvi & Bechara,
2010). These findings suggest shared neurobiological alter-
ations in specific brain regions implicated in addiction-
related behaviors among individuals with IGD and TUD,
underscoring the clinical relevance of these neuroimaging
markers in assessing addiction severity and treatment
outcomes.

Specificity and heterogeneity in the CT development
patterns

Although both addiction groups exhibited widespread
cortical thinning, the TUD group generally deviated from
the model to a greater extent than the IGD group. Nicotine
exposure is known to impact cortical structure and function,
affecting regions involved in cognitive control and decision-
making (Koob & Volkow, 2016). In contrast, the patterns
observed in IGD may be related to excessive and compulsive
gaming behaviors, which can also impact brain structure and
function, albeit possibly through different mechanisms
(Kuss, Griffiths, Karila, & Billieux, 2014; Weinstein &
Lejoyeux, 2010). This observation may be attributed to the
fact that substances can have a greater impact on brain
structure alteration than behavioral addictions. The direct
introduction of psychoactive substances into the body leads
to neurochemical imbalances and subsequent structural
changes in key brain regions involved in reward, decision-
making, and emotional regulation. On the other hand,
behavioral addictions primarily affect functional connectiv-
ity patterns, and their influence on structural alterations may
be less pronounced (Corley et al., 2012; Li et al., 2015;
Morales et al., 2014).

Compared to the IGD group, the TUD group exhibits a
higher degree of heterogeneity in whole-brain CT deviations.
Specifically, the TUD group shows a simultaneous presence
of more extreme positive and negative deviations in regions
such as the paracentral lobule, pericalcarine cortex,
precentral gyrus, and frontal pole, while the IGD group
demonstrates a more uniform deviations across whole brain

regions. Additionally, the TUD group displays a broader
range of CT abnormalities, with TUD group having higher
proportions of extreme ROIs compared to the IGD group.
The increased variability in CT deviations in the TUD group
may reflect the diverse neurobiological mechanisms of to-
bacco addiction and its impact on brain structure. The
relationship between the degree of heterogeneity and diag-
nosis awaits further investigation.

The observed differences in CT development trajectories
between individuals with IGD and those with TUD,
particularly in the bilateral pericalcarine cortex and bilateral
pars triangularis, highlight intriguing neurobiological dis-
tinctions associated with these diseases. In our study, we
found that the IGD group exhibited significantly positive
deviations in the bilateral pericalcarine cortex compared to
the HC group, whereas the TUD group showed significantly
negative deviations in this region relative to HC group. This
finding suggests potential neuroadaptive processes specific
to IGD, potentially related to visual processing and sensory
integration, which have been previously associated with al-
terations in the pericalcarine cortex (Maguire, 2001; Murray,
Wise, & Drevets, 2011). In the bilateral pars triangularis, the
two groups exhibited the opposite pattern compared to
the above, with IGD group exhibiting significantly negative
deviations and TUD group showing significantly positive
deviations relative to HC group. The pars triangularis is
known to be involved in cognitive control and language
processing (Amunts et al., 1999), and our findings may
reflect distinct patterns of neural plasticity associated with
different addictive behaviors. These differential CT patterns
in the pericalcarine cortex and pars triangularis may be
related to underlying neural mechanisms specific to IGD
and TUD. For instance, the observed increased CT in the
pericalcarine cortex among individuals with IGD could be
associated with heightened attentional and perceptual pro-
cesses, potentially related to gaming-related visual stimuli
(Kuss & Griffiths, 2012). Conversely, the reduced CT in the
pars triangularis in IGD may reflect alterations in cognitive
control and decision-making processes commonly impaired
in addiction (Goldstein & Volkow, 2011). Further research is
needed to elucidate the precise mechanisms underlying these
cortical thickness alterations and their implications for un-
derstanding and treating addictive behaviors.

In conclusion, this study employed a normative
modeling approach to investigate similarities and differences
in the cortical anatomy of IGD and TUD individuals. This
approach preserved the traditional case-control paradigm
for group-level analyses while simultaneously provided an
additional insight at a more individualized level. Thus, it
contributed to personalized addiction research. Our findings
demonstrate widespread commonalities among two disor-
ders where extreme individual differences are otherwise
masked by averaged group-level deviations. These outlier
individuals are meaningful in themselves, and using
normative modeling to identify and explain these individual-
level differences is not only a statistical advancement but
also a valuable approach to gather important information on
neurobiological substrates of addiction-related processes.
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This enables us to move beyond reliance on diagnoses and
gain a better understanding of the heterogeneity of mental
disorders.

Limitations

Our study has some limitations. Firstly, the analysis was
performed on an ROI-wise rather than vertex-wise basis. This
approach facilitates comparison of structural abnormalities
between regions but may result in the loss of more local in-
formation. Secondly, this study only excluded participants
with other types of addiction through verbal inquiry before
recruitment, lacking scale and biochemical data for intergroup
comparisons. Thirdly, the GSP dataset does not provide di-
agnoses for IGD and TUD, so some participants in the dataset
may have IGD or TUD. Despite the enormous sample size of
GSP, it may still potentially affect the results of normative
modeling. Lastly, the trajectory of brain development was
based on the cross-sectional data, and further research is
warranted to validate these findings in longitudinal cohorts.

CONCLUSIONS

Herein we developed a model of cortical development using a
large HC cohort and applied it to IGD and TUD cohorts to
quantify the extent of patients’ deviations. Our results indicate
that the CT development patterns in IGD and TUD patients
exhibited consistent large-scale deviations (primarily cortical
atrophy). IGD and TUD patients demonstrated heterogeneity
at the individual level, characterized by high individualization
and limited spatial overlap. The PCC was the only brain re-
gion where different CT developmental trends were observed
between the two groups. These findings will improve our
knowledge of the neural mechanisms underlying IGD and
broaden our ideas about the pathophysiology of substance-
related versus non-substance-related disorders.
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