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Abstract. When one develops, tests and uses numerical methods to solve a 

differential equation, the performance of the method depends on the concrete 

way how the method is implemented and coded. In this tentative work, we 

solve the linear diffusion equation by the simplest explicit Euler method 

implemented with for loops as well as the built-in matrix operations of 

MATLAB. We obtain that the for loop performs better in one space 

dimension, but the matrix operations are faster in two space dimensions. 
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1. Aims and Scope of the Publication 

While most physical and engineering problems are related to ordinary or partial 

differential equations (ODEs or PDEs), there is no clear consensus about the 

numerical strategies to solve these equations. Explicit methods are quite simple to 

implement and one time step is usually performed in a very small time. However, 

they suffer from a very restrictive time step to satisfy the requirement of numerical 

stability. For time step sizes larger than the so called CFL limit, the magnitude of 

any computation error is amplified in each time step, leading to completely 

unusable results. Implicit schemes have better stability properties, but they are 

more complicated to use in practice, and the calculation of one timestep can be 

much longer than with explicit methods. If the number of space dimensions is 
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larger than one, the number of nodes or cells can be very large, thus the running 

time becomes a critical issue. 

Several novel explicit methods are proposed recently in the scientific literature, 

both for ODEs [1], and PDEs [3], [5]. In order to develop and test new numerical 

methods, as well as to explore which one can be proposed to different problems 

under specific circumstances, one should have information on what the actual 

running time depends on. When Runge-Kutta type methods are compared in the 

case of ODEs, it is usual to consider the number of function calls or evaluations as 

an indicator for the running time [4]. However, for PDEs, the CPU time depends 

on other factors as well, such as the number of space dimensions and the amount 

and way of memory usage. For example, remarkably different running times can be 

obtained if the calculation of the node variables is performed one after another by 

‘for’ loops over the space index or by the built-in matrix operations of MATLAB. 

The goal of our work is to make experiments on this issue. 

To achieve our goal, we have implemented Euler’s method in two different 

ways. To describe the characteristics of our implementations, we find useful to plot 

the CPU-time as a function of the timestep count and the numerical grid-point 

count, as well as to plot the computation error as a function of the CPU-time. What 

is more interesting, is to make comprehensive figure between different number of 

dimensions, as well as different implementations. At the same time, it is important 

to check whether the different implementations give the same computation error 

for any given timestep size and spatial step size. 

Therefore, in Section 2, we discuss the studied equation, Euler’s method and its 

theoretical background. In 2.6 we give how to measure the error of an 

implementation and highlight the error measurement way we use to verify our work. 

In Section 3, we go into some details of our actual implementation. In Section 4, we 

give the exact data that has been used for the test. In Section 5, we present our 

measurement results. In case of both implementations (in 5.1 and 5.2), we firstly plot 

the computation time and make comparison between 1-dimensional and 2-

dimensional case. Then we show the error – computation time characteristics of the 

given implementation. In 5.3, we make a comparison between the two 

implementations. Finally, in Section 6, we give our conclusions. 

 

2. The Studied Equation and the Applied Algorithms 

2.1. Heat Transfer or Diffusion Equation 

In physics, one of the most well-known partial differential equations is the 

diffusion equation or alternatively, Fick’s 2nd law: 

 
       

  
             (1) 
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where n is the spatial concentration of matter (a quantity varying across both space 

  and time  ), D  
  

 
  (in practice, rather  

   

 
 ) is the diffusion coefficient and 

   
  

    
  

    
  

    is the Laplacian operator. 

According to this equation, the more different is the concentration at a given spatial 

point from the concentration at the neighboring points, the faster it changes, as time 

passes. The direction of concentration change is to reduce the difference in space. 

Behind this phenomenon, we can find the second law of thermodynamics. The 

equation in details, indicating dependency on both space and time: 
 

 
            

  
    

             

    
             

    
             

     (2) 

where 
 

  
 is the derivation with respect to time, while 

  

   , 
  

    and 
  

    denotes to the 

second derivation (i.e., taking the derivative of the derivative) with respect to the 

appropriate spatial coordinate. 

Heat transfer is based on an analogous principle: We only have to substitute 

concentration n with temperature T [K] (also a function of space and time), and 

diffusion coefficient D with thermal diffusivity    
  

 
 : 

 
       

  
             (3) 

The thermal diffusivity can be expressed by substantial properties: 

   
 

  
  (4) 

where    
 

   
 ,    

 

   
 , and    

  

    are the heat conductivity, specific heat, and 

mass density, respectively. 

In the rest of this paper we denote both        and        as       . 

 

2.2. Spatial and Time-Domain Discretization, FDM 

The solution of the equations by a finite difference method consists of the 

following steps: 

 The studied spatial domain is discretized into a          rectangular 

grid, where   ,    and    denotes to the number of nodes along axis  ,   

and  . The grid-points are: 

           

              

              

              
  (5) 
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where: 

o       ,        and        are the possible spatial indexes, 

o         ,          and          are the initial values of spatial 

scales, 

o         
,         

 and         
 final values of spatial scales and 

o   
  
  
  

   

                   

                   

                   

  are the division steps of spatial 

scales 

 The time domain is also discretized, and sampled in    timepoints: 

                 (6) 

where: 

o         are the possible time indexes, 

o          is the initial time value, 

o         
 is the final time value and 

o    
          

 
 is the size of timesteps. 

 The continuous function         can be approximated by a       
   

 data matrix: 

                              
   

 (7) 

 Since our differential operators are linear, each (spatial) differential operator 

   can be replaced by a multi-index matrix     
     

     
, for which: 

              
     

      
     

     
      

        

            (8) 

where p, q and r, as well as i, j and k are indexes running over the 3 spatial 

dimensions. 

 As a result, instead of differential equations, a system of algebraic equations 

are sufficient to be solved. 

We obtain the matrix of the Laplacian operator by the central difference formula: 

                 
     

  

 
                          

    
                          

    
                          

    (9) 

To introduce the                   
     

     
            formalism – as (8) suggests –, the 

matrix of Laplacian operator must be: 



                                                     MATLAB’s Matrix capabilities 109 

 

     
     

     
 

 
 
 
 

 
 
  

 

    
 

    
 

   

 

   

                  

                    

 

                       

 

   

 

                    
     

 
 
 

 
 
 

 (10) 

In our paper, we consider only 1-dimensional and 2-dimensional cases. 

 

2.3. Euler’s Method 

It is well-known that the simplest and most famous explicit method is Euler’s 

method. This is a first order method, which means that the local error (i.e. error per 

timestep) is decreasing proportionally to the second power of the size of timesteps, 

while the global error only with first power. 

Let the differential equation to be solved be: 

 
        

  
            (11) 

where    is a differential operator containing only spatial derivation. According to 

Euler: 

       
   

       
     

      
     

     
    (12) 

where         
     

 is the approximated value of the derivative around the spatial point 

       at timepoint     . In our case of 2-dimensional diffusion with      spatial 

points, one can substitute: 

            
  

    
  

     (13) 

where D is either the diffusion coefficient or the thermal diffusivity. 

Based on the above derivation, Euler’s time-stepper formula (12) is the following: 

    
   

     
     

  

        
      

     
       

     
       

     

    
      

     
       

     
       

     

     (14) 

Regarding performance and optimization aspects, we would like to make two 

remarks: 

 It is sufficient to only store two data grids, for two sequential timesteps. 

 Datapoints of the new timestep can be calculated independently from each 

other, which gives us an opportunity to parallelization. 
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2.4. Handling Boundary Conditions 

The above formula has one incompletion: It can only be used in the inner domain – 

where        and       . Only these datapoints have the neighbors 

referenced by the formula. The boundaries – where    ,     ,     or     , 

– require further considerations. In our work, we deal with the fixed boundary 

condition: We only perform calculation in the inner domain, and the values on the 

boundaries remain unchanged. In case of heat transfer it means, that we are heating 

or cooling the walls of the domain so that its temperature does not change. (This 

kind of boundary condition belongs to the Dirichlet’s type of boundary conditions, 

which is the name when a solution has to obtain predefined values at the 

boundaries. In this paper, we simply refer to our fixed boundary condition as 

Dirichlet’s boundary condition.) 

This boundary condition is implemented such that the values at the boundary 

are not refreshed during the calculation. It implies that the (1D) spatial differential 

operator matrix must start and end with a zero row-vector: 

     
 

 
      

 

 
 

 

    

 
 
 
 
 
 
 
 
 
   
    
    

  

   
   

   

  
    

    
    

 
 
 
 
 
 
 
 

 (15) 

where   is either the diffusion coefficient or the thermal diffusivity. 

 

2.5. Deriving 2-dimensional from 1-dimensional case 

Let          be an operator dealing with functions with variable marked as  . Also 

let          be another operator dealing with functions with variable denoted to as 

 . According to the mathematicians’ definition [6],[7], the tensor product of these 

operators is an              operator dealing with 2-variable functions in such a 

manner, that for any functions      and      it satisfies the equation: 

                                    (16) 

When we approximate continuous functions by discrete data vectors, operators has 

to be replaced by matrices. When dealing with higher dimensions and multiple 

variables, data vectors become matrices, while operator matrices turn into multi-

dimensional hypermatrices. To simplify formalism, we have to flatten the data 

matrix to a single vector, containing the rows or columns of the matrix in an 

ordered way. Let operator    have an     sized matrix   , whilst let the matrix of 

   be a     matrix, marked as   . In this case, when taking the above tensor 
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product of the two operators, we have to take the so-called Kronecker’s product of 

the two matrices: 

     
   

     
   

  
               

   
               

 

           

 (17) 

We’ve displayed the sizes of the matrices to highlight that the sizes along with the 

corresponding dimensions are multiplicated. 

In case of two dimensions, operator            
         

    can be written as the 

tensor product of the one-dimensional second derivation          
       

    and an 

identity operator              . As the two-dimensional Laplacian operator 

contains two such a member summed up, it can be considered as the sum of two 

such tensor products. Having a       data grid, its matrix has a size of     

            and can be written as: 

        
               

           
          

          
       (18) 

where: 

●    
      and    

      are       and       one-dimensional Laplacian operator 

matrices, 

●    
     and    

     are       and       unity matrices, 

●    and    are the number of datapoints along the   and   axes, respectively. 

When applying this to the differential operator    and its finite matrix in equation 

(12), one has to take further considerations regarding the boundary points. Namely, 

we have to replace with zero the first and last element of the unity matrix in case of 

Dirichlet’s condition: 

        

                        

      

                        

   

      
        

   

   

   

      
        

   

      

                       (19) 

(Otherwise, simulation will enable heat transfer/diffusion at the boundary, in a 

direction parallel to the boundary, and only the corner points will be truly fixed.) 

MATLAB has a built-in function to calculate Kronecker’s product, and based 

on it, we have created a MATLAB function to generate this matrix. See 

APPENDIX 2.2. 
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2.6. Reference Solutions, Measuring Error, Verification 

If we wish to measure the accuracy of the computation and make statistics, we 

need a reference solution to deal with. In our paper, we only use initial problems 

with well-known analytical solutions, hence we can use the analytical solution, as a 

reference. As we restrict our examination to Dirichlet’s case only, it is easy to 

choose this option. 

Once we have the reference solution, we have several ways to measure the 

distance between the output of our algorithm and the reference. The 2 most used 

error definitions (with one index for both dimension) are the following: 

 Absolute maximum of difference: 

        
                  

     
 

     
 (20) 

 RMS value of difference: 

         
       

     
 
      

   

     
 (21) 

In our work, we use the absolute maximum value formula (20). Our test-framework 

we used to test the implementations can be found at [10]. 

 

3. Implementing the Algorithms 

The repository, where we implemented the algorithms can be found at [11]. 

3.1. Using Simple For-Loop in MATLAB 

When using MATLAB, we would like to compare the computation time of single 

for-loops and matrix-based implementation. We have to start with the simple, 

loop-based version of Euler’s method. The implementation in 1D and 2D can be 

seen at APPENDIX 1. 

3.2. Taking Advantage of MATLAB’s Sparse Matrices 

As MATLAB is based on a matrix-oriented framework with lots of built-in 

optimizations, we suppose that it takes less computation time to use matrix-algebra 

instead of using loops directly. Namely, we use matrix (15) and its 2-dimensional 

version. In this case, the kernel of the main loop of Euler’s method (12) becomes: 

       
   

     
     

      
   

   
    

     
   

     

        (22) 

or if we have flattened the data matrix to a single-column vector: 

   
   

   
     

      
 

 
  

     
   

     

    (23) 
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In a matrix form: 

                          (24) 

 

As mentioned earlier, we created a dedicated function in MATLAB to produce 

kernel matrix   , which can be seen at APPENDIX 2.2. Note that in case of a 

      spatial grid, this matrix has        
 
 elements, which can easily deplete 

the computer’s memory for large grids (let alone 3-dimensional cases of future 

development), even without the presence of actual data. To make the situation 

better, these functions use MATLAB’s sparse matrix architecture, which means only 

the non-zero elements of the matrix allocate memory. The main loop of Euler’s 

method in its simplified, matrix-based version can be seen at APPENDIX 2.1. 

4. Sample Data 

4.1. Scalings 

4.1.1. Timescales 

We always use 11 different timescales, namely (neglecting physical dimensions): 

Table 1. The timescales used in this paper 

Nt Tinit Tfin Δt 

500 0 0.04 8.000e-5 

900 0 0.04 4.444e-5 

1,500 0 0.04 2.667e-5 

3,000 0 0.04 1.333e-5 

5,000 0 0.04 8.000e-6 

9,000 0 0.04 4.444e-6 

15,000 0 0.04 2.667e-6 

30,000 0 0.04 1.333e-6 

50,000 0 0.04 8.000e-7 

90,000 0 0.04 4.444e-7 

150,000 0 0.04 2.667e-7 

4.1.2. 1D Spatial Grids 

In case of 1 dimension, we used 7 different spatial grids: 
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Table 2. The spatial grids used in 1-dimensional case 

Nx Xinit Xfin Δx 

50 0 10 2.041e-1 

100 0 10 1.010e-1 

200 0 10 5.025e-2 

400 0 10 2.506e-2 

800 0 10 1.252e-2 

1,200 0 10 8.340e-3 

2,000 0 10 5.003e-3 

 

4.1.3. 2D Spatial Grids 

In 2D case, we examine the same timescales, as in 1D. On the other hand, the 

number of spatial grids has increased: 

Table 3. The spatial grids used in the 2-dimensional case 

Nx Ny NxNy ΔxΔy 

25 25 625 1.736e-3 

25 50 1,250 8.503e-4 

50 50 2,500 4.165e-4 

50 75 3,750 2.758e-4 

75 75 5,625 1.826e-4 

75 100 7,500 8.365e-4 

100 100 10,000 5.020e-4 

We have reduced the examined spatial intervals to have the same number of stable 

datapoints as in 1D. Hence, the starting and ending grid-points are: 

  
     

     
   

 
 
 , 

  
    

    
   

 
 
 . (25) 

4.2. Sample Data 

4.2.1. 1-dimension 

To test our implementations in 1 dimension, we use: 

                        
       

          
    (26) 

which has the analytic solution: 
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    (27) 

 

In Figure 1, this solution is shown for         and         . Note that we used 

          for the actual computation. 

 
Figure 1. Example initial function (red dotted line) and the analytical solution  

in 1-dimensional case with Dirichlet’s boundary condition. 

4.2.2. 2-dimensions 

In 2 dimensions, we take the product of 2 sine terms: 

                         
       

          
       

       

          
    (28) 

On a colormap (       ;          ): 

 
Figure 2. Example initial function and its computed solution  

in 2-dimensional Dirichlet’s case 
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This has the following analytic solution: 

                         
 

   
 

      

       
       

 
       

       

 
    (29) 

where: 

               

               

             (30) 

5. Measurement Results 

Before stating the results, we have to notice, that we used a computer with Intel 

Core i7-9700, 3GHz CPU, 16GB RAM and 64-bit Windows 10 Pro. 

5.1. Single FOR-loop 

5.1.1. Computation time 

In case of the single for loop implementation, we have got the following CPU-time 

values: 

 

Figure 3. CPU-time of the loop-based implementation, as a function of timestep count,  

for different spatial grids 
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As a colormap: 

 

Figure 4. CPU-time of the loop-based implementation, as a function of timestep and  

spatial data-point count, for 1D (left) and 2D (right) 

To compare 1- and 2-dimensional case in a more spectacular way, we can 

rearrange Figure 3 to let the number of cells be on the horizontal axis, and filter out 

some timescales: 

 
Figure 5. CPU-time of the loop-based implementation, as a function of the number of 

spatial nodes, for different dimensions and timestep counts 

The linear connection between the computation time and the number of steps and 

grid-points can be seen, especially for higher (>200) number of cells. According to 

Figure 5, the CPU-time in 2-dimensional case is about 20 times greater than in 1 
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dimension, if the number of spatial datapoints and the number of timesteps are 

equal. 

5.1.2. Error of 1D computation 

If we display the error of the 1-dimensional computation: 

 

Figure 6. Computation error of the loop-based implementation,  

as a function of timestep size, for the 1D case 

One can see that finer meshes yield more accurate solutions, but only if the time 

step size is sufficiently small. The CFL limit is lower if the mesh is finer. Above 

this limit, the algorithm is unstable and the error is extremely large. If one decrease 

the time step size, the error suddenly drops to a very small value at a special point, 

where the leading error terms of the space and time discretization cancels each 

other. If the time step size is decreased further, the error tends to a constant value, 

which is due to the space discretization only and its leading term is  
 

  
        , 

where       is the forth derivative of the function with respect to  . (See [9]) 

To describe the performance better, we can plot the error as a function of the 

computation time: 
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Figure 7. Computation error of the loop-based implementation  

as a function of CPU-time, for the 1D case 

5.1.3. Error of the 2D computation 

The error of the 2-dimensional computation as a function of the time step size and 

the computation time is presented in Figure 8 and Figure 9, respectively. 

 
Figure 8. Computation error of the loop-based implementation,  

as a function of timestep size, for the 2D case 
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Figure 9. Computation error of the loop-based implementation,  

as a function of CPU-time, for the 2D case 

5.2. Sparse matrix-based computation 

5.2.1. Computation time 

The computation time of the sparse matrix-based implementation, as a function of 

the number of time and space points can be seen in Figure 10 and Figure 11, 

respectively. 

 
Figure 10. Computation time of the matrix-based implementation,  

as a function of timestep count, for different spatial grids 
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Figure 11. Computation time of the matrix-based implementation,  

as a function of data-point count, for different dimension and timestep counts 

The linear connection between the computation time and the number of timesteps 

still holds, but in case of the number of cells, the proportional connection is a bit less 

obvious, than in case of the loop-based implementation. The reason is, that MATLAB 

does some optimization in the background, dynamically changing some implement-

tation details from experiment to experiment. At the end of the day, the difference 

between the 1-dimensional and 2-dimensional computations is largely reduced. 

5.2.2. Error of the 1D computation 

The error of the matrix-based implementation in 1-dimensional case: 

 
Figure 12. Computation error of the matrix-based implementation,  

as a function of CPU-time, for the 1D case 
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This implementation gives the same results as the previous one, but the running 

times are different. 

5.2.3. Error of 2D computation 

In 2-dimensional case: 

 
Figure 13. Computation error of the matrix-based implementation,  

as a function of CPU-time, for the 2D case 

5.3. Comparing loop-based and matrix-based solution 

We can compare the different implementations by plotting similar figures like 

Figure 5 or Figure 11. The running time as a function of the spatial nodes are 

presented in Figure 14, Figure 15 and Figure 16 for the 900, 9000 and 90000-

timestep case, respectively. 

 
Figure 14. Comparison of the loop-based and the matrix-based implementation,  

using 900-timestep measurement data 
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Figure 15. Comparison of the loop-based and the matrix-based implementation,  

using 9000-timestep measurement data 

 
Figure 16. Comparison of the loop-based and the matrix-based implementation,  

using 90000-imestep measurement data 

Based on the above figures – as well as comparing Figure 6 and Figure 11 –, one 

can say that the 1-dimensional computation time has increased by a factor of 5, 

while the 2-dimensional time values has decreased to a fraction of 4-5. One can 

conclude, that only in case of multiple dimensions does the matrix-framework 

accelerate the computation. 
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6. Conclusion 

In this work, we solved the linear diffusion equation by the explicit Euler (FTCS) 

method implemented in two different ways: with for loops as well as the built-in 

matrix operations of MATLAB. We obtained that the matrix-based implementation 

is worth using only if the number of space dimensions is two, regardless of the time 

step size. In the case of 1 dimension, the overhead of the framework used by 

MATLAB makes things worse and we suggest using the traditional for-loop 

implementation. We consider this work as only a preliminary investigation, based 

on which the performance of the MATLAB implementations can be compared to 

other programming languages such as C++ in the case of more complicated 

problems and more sophisticated numerical methods as well. After that, we are 

going to parallelize the calculations on GPUs to achieve a serious increase in 

speed, which will enable us to solve large-scale engineering problems. 

References 

[1] Dang, Q. A., Hoang, M. T.: Positive and elementary stable explicit nonstandard 

Runge-Kutta methods for a class of autonomous dynamical systems. International 

Journal Computer Mathematics, vol. 97, no. 10, pp. 2036–2054. 

https://doi.org/10.1080/00207160.2019.1677895  

[2] Beuken, L., Cheffert, O., Tutueva, A., Butusov, D., Legat, V.: Numerical Stability 

and Performance of Semi-Explicit and Semi-Implicit Predictor–Corrector Methods. 

Mathematics, vol. 10, no. 12, 2022, https://doi.org/10.3390/math10122015.  

[3] Pourghanbar, S., Manafian, J., Ranjbar, M., Aliyeva, A., Gasimov, Y. S.: An 

efficient alternating direction explicit method for solving a nonlinear partial 

differential equation. Mathematical Problems in Engineering, vol. 2020, no. 

November, pp. 1–12, 2020, https://doi.org/10.1155/2020/9647416.  

[4] Mazzia, F., Y., Sergeyev, Y. D., Iavernaro, F., Amodio, P., Mukhametzhanov, M. 

S.: Numerical methods for solving ODEs on the Infinity Computer. AIP Conference 

Proceedings, vol. 1776, no. 1, 2016, p. 090033, https://doi.org/10.1063/1.4965397.  

[5] Saleh, M., Kovács, E., Barna, I. F., Mátyás, L.: New Analytical Results and 

Comparison of 14 Numerical Schemes for the Diffusion Equation with Space-

Dependent Diffusion Coefficient. Mathematics, vol. 10, no. 15, Aug. 2022, p. 2813. 

https://doi.org/10.3390/math10152813  

[6] Bourbaki, N.: Elements of Mathematics. Vol. 1, chap. 2.3. Berlin, Springer-Verlag, 

1989. 

[7] Petz D.: Lineáris analízis. Chap. 1.2. Budapest, Műegyetemi Kiadó, 2001, id. 

05057. 

[8] Kumar, V., Chandan, K., Nagaraja, K. V., Reddy, M. V.: Heat Conduction with 

Krylov Subspace Method Using FEniCSx. Energies, vol. 15, no. 21, Oct. 2022,  

p. 8077, https://doi.org/10.3390/en15218077  

https://doi.org/10.1080/00207160.2019.1677895
https://doi.org/10.3390/math10122015
https://doi.org/10.1155/2020/9647416
https://doi.org/10.1063/1.4965397
https://doi.org/10.3390/math10152813
https://doi.org/10.3390/en15218077


                                                     MATLAB’s Matrix capabilities 125 

 

[9] Nagy, Á., Majár, J., Kovács, E.: Consistency and Convergence Properties of 20 

Recent and Old Numerical Schemes for the Diffusion Equation. Algorithms, vol. 15, 

no. 11, Nov. 2022, p. 425, https://doi.org/10.3390/a15110425.  

[10] https://bitbucket.org/koicsd/test-tool/. 

[11] https://bitbucket.org/koicsd/diffusion/. 

  

https://doi.org/10.3390/a15110425
https://bitbucket.org/koicsd/test-tool/
https://bitbucket.org/koicsd/diffusion/


126                                           D. Koics, K. Nehéz, E. Kovács 

 

APPENDIX 

In this appendix, we present some important code snippets from our repository 

[11], extended with some comments for higher clarity. 

1. Loop-based implementation of Euler’s method 

1.1. 1-dimensional case 

dt=(Tfin-Tinit)/Nt; % timestep size 

Nx=numel(data); % number of spatial grid-points 

dx=(Xfin-Xinit)/(Nx-1); % size of spatial step 

 

... % preconditioning of periodic case comes here 

 

COEFF_ = dt * coeff / dx / dx; 

temp=zeros(1, Nx); % temporary data-vector for iterations 

for n = 1 : Nt 

    temp(1) = ... % first point of grid 

    for i = 2 : Nx – 1 

        % inner datapoints 

        temp(i) = data(i) + COEFF_ * ... 

            (data(i-1) + data(i+1) - 2 * data(i)); 

    end 

    temp(Nx) = ... % last point of grid; 

    data = temp; 

end 

1.2. 2-dimensional case 

dt=(Tfin-Tinit)/Nt; % timestep size 

Nr=size(data); % = [Nx, Ny] -- number of spatial grid-points 

dr=(Rfin-Rinit)./(Nr-1); % = [dx, dy] -- size of spatial step 

COEFF_ = dt * coeff ./ dr ./ dr; 

 

% preconditioner loops of periodic case come here 

 

temp = zeros(Nx, Ny); 

for n = 1 : Nt 

    temp(1,1) = ... % top left point 

    % temp(1,Ny) = ... % top right point 

    % temp(Nx,1) = ... % bottom left point 

    % temp(Nx,Ny) = ... % bottom right point 

    for i = 2 : Nx-1 

        temp(i,1) = ... % top edge of grid 

        temp(i,Nx) = ... % bottom edge of grid 

    end 

    for j = 2 : Ny-1 

        temp(1,j) = ... % left edge of grid 

        temp(Nx,j) = ... % right edge of grid 

    end 

    for i = 2 : Nx-1 

        for j = 2 : Ny-1 
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            % inner point 

            temp(i,j) = data(i,j) + COEFF_ * [ 

                data(i-1,j) + data(i+1,j) - 2 * data(i,j); 

                data(i,j-1) + data(i,j+1) - 2 * data(i,j) 

            ]; 

        end 

    end 

    data = temp; 

end 

2. Matrix-based implementation of Euler’s method 

2.1. Main loop 

Please, substitute KerMat_Diffusion_FixedBC from 2.2 to kerfun. 

dt=(Tfin-Tinit)/Nt;  %% time step 

Nr = size(data_init);  %% number of datapoints along different axes 

as vector 

Nflat = prod(Nr);  % numel(Nr)  %% total number of datapoints 

 

if isvector(data_init) 

    %% creating sparse matrices 

    [kernel, precond] = kerfun(Rinit, Rfin, Nflat, varargin{:}); 

else 

    %% creating sparse matrices 

    [kernel, precond] = kerfun(Rinit, Rfin, Nr, varargin{:}); 

end 

 

%% flattening and preprocessing 

flatdata = precond * reshape(data_init, Nflat, 1); 

 

%% processing flattened data (iteration over time) 

for i = 1 : Nt 

    flatdata = flatdata + dt * kernel * flatdata; 

end 

data_fin = reshape(flatdata, Nr); 

2.2. Sparse matrix creator function 

To be used with 2.1. 

function [kernel, precond] = KerMat_Diffusion_FixedBC(... 

        Rinit, Rfin, Nr, coeff) 

% Rinit, Rfin and Nr must be a vector (or a scalar for 1D calc.)! 

% Rinit, Rfin and Nr must have the same array-size! 

 

dim = numel(Nr); 

dr = (Rfin - Rinit) ./ (Nr - 1); 

  

switch dim 

    case 1 

        Nx = Nr; 
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        dx = dr; 

        kernel = coeff * spdiags([  % Laplace’s tridiag. truncated 

                %  1 above diag, last element 0: 

                ones(1,Nx-2)    0                   0; 

                %  -2 in diag, first and last element 0: 

                0               repmat(-2, 1,Nx-2)  0 

                %  1 below diag, first element 0: 

                0               0                   ones(1,Nx-2) 

        ]', [-1 0 1], Nx, Nx) / dx / dx; 

        precond = speye(Nx); 

         

    case 2 

        Ny = Nr(1); 

        Nx = Nr(2); 

        Yinit = Rinit(1); 

        Xinit = Rinit(2); 

        Yfin = Rfin(1); 

        Xfin = Rfin(2); 

        % dy = dr(1); 

        % dx = dr(2); 

        [kernelY, precondY] = KerMat_Diffusion_FixedBC(... 

                Yinit, Yfin, Ny, coeff);  % 1D trunc. Laplacian 

        [kernelX, precondX] = KerMat_Diffusion_FixedBC(... 

                Xinit, Xfin, Nx, coeff);  % 1D trunc. Laplacian 

        kernel = ... 

            % 2nd partial with rspt. to x, as 

            % 1D Laplacian by identity matrix (all truncated): 

            kron(kernelX, ... 

                spdiags([0; ones(Ny-2,1); 0], 0, Ny, Ny))... 

            + ... 

            % 2nd partial with respect to y, as 

            % identity by 1D Laplacian matrix (all truncated): 

            kron(spdiags([0; ones(Nx-2,1); 0], 0, Nx, Nx),... 

                kernelY); 

        precond = kron(precondX, precondY); 

         

    otherwise 

        error('Unsupported number of dimensions!') 

end 

end 


