
Space-time modelling of soil organic carbon stock change at multiple scales: 
Case study from Hungary
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A B S T R A C T

The role of soil organic carbon (SOC) is crucial not only for numerous soil functions and processes but also for 
addressing various environmental crises and challenges we face. Consequently, the demand for information on 
the spatiotemporal variability of SOC is increasing, posing new methodological challenges, such as the need for 
information on SOC and SOC changes with quantified uncertainty across a wide variety of spatial scales and 
temporal periods. Our objective was to present a methodology based on a combination of machine learning and 
space–time geostatistics to predict the spatiotemporal variability of SOC stock with quantified uncertainty at 
various spatial supports (i.e., point support, 1 × 1 km, 5 × 5 km, 10 × 10 km, 25 × 25 km, counties, and the 
entire country) for Hungary, between 1992 and 2016. The role of geostatistics is pivotal, as it accounts for the 
spatiotemporal correlation of the interpolation errors, which is essential for reliably quantifying the uncertainty 
associated with spatially aggregated SOC stock and SOC stock change predictions. Five times repeated 10-fold 
leave-location-out cross-validation was used to evaluate the point support predictions and uncertainty quanti-
fications, yielding acceptable results for both SOC stock (ME = − 0.897, RMSE = 19.358, MEC = 0.321, and G =
0.912) and SOC stock change (ME = 0.414, RMSE = 16.626, MEC = 0.160, and G = 0.952). We compiled a series 
of maps of SOC stock predictions between 1992 and 2016 for each support, along with the quantified uncer-
tainty, which is unprecedented in Hungary. It was demonstrated that the larger the support, the smaller the 
prediction uncertainty, which facilitates the identification and delineation of larger areas with statistically sig-
nificant SOC stock changes. Moreover, the methodology can overcome the limitations of recent approaches in the 
spatiotemporal modelling of SOC, allowing the prediction of SOC and SOC changes, with quantified uncertainty, 
for any year, time period, and spatial scale. This methodology is capable of meeting the current and anticipated 
demands for dynamic information on SOC at both national and international levels.

1. Introduction

Soil organic carbon (SOC) plays a crucial role in the global carbon 
cycle, as it is the largest terrestrial pool of organic carbon (Lal et al., 
2018; Stockmann et al., 2013). SOC is also vital for various soil functions 
and processes, including agricultural productivity, water retention and 
management, stabilization of soil aggregates, buffering capacity, and the 
retention and release of plant nutrients (Centeri et al., 2014; Csikós 
et al., 2023; Hartemink and McSweeney, 2014; Jakab et al., 2016; 
Lefévre et al., 2017). However, the significance of SOC extends beyond 
soil science, attracting interest from multiple disciplines and practical 
applications such as conservation biology, environmental sciences, 

meteorology, hydrology, land use planning, and forestry. The multi-
functionality of soils and the pivotal role of SOC in addressing envi-
ronmental crises and challenges are increasingly recognized. The 
importance of SOC in climate change mitigation (Lal, 2004a; Minasny 
et al., 2017; Szatmári et al., 2023; Tóth et al., 2018), achieving land 
degradation neutrality (Keesstra et al., 2018; Stavi and Lal, 2015), 
maintaining ecosystem services (Jakab et al., 2024; Keesstra et al., 2016; 
Lal et al., 2018), and ensuring food and water security (Lal, 2004b; 
Minasny et al., 2017; 2013) is now well-known.

The demand for information on the spatiotemporal variability of SOC 
is increasing. This interest spans from global and continental scales to 
national, regional and local levels, highlighting the necessity for 
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comprehensive and accurate mapping of SOC over time. Over the past 
years, numerous mapping activities at different scales have been con-
ducted worldwide, focusing on predicting the spatiotemporal variability 
of SOC. Examples include Argentina (Heuvelink et al., 2020), Brazil 
(MapBiomas, https://brasil.mapbiomas.org/en/; Tayebi et al., 2021), 
China (Chen et al., 2023; Sun et al., 2021; Yang et al., 2023; Zhang et al., 
2023a; b), France (Urbina-Salazar et al., 2023), Italy (Schillaci et al., 
2017), Mexico and the conterminous United States (Guevara et al., 
2020), and the Netherlands (Helfenstein et al., 2024). Additionally, 
studies have been conducted at continental (De Rosa et al., 2024; Tian 
et al., 2024) and global scale (Padarian et al., 2022).

In recent years, extensive work has also been conducted in Hungary 
to better understand the spatiotemporal variability of SOC on a 
nationwide scale. Various digital soil mapping techniques were 
employed and compared to identify the technique that provides the most 
accurate prediction and the smallest yet reliable uncertainty quantifi-
cation for the country (Szatmári and Pásztor, 2019). Building on this 
research, SOC stock change was assessed between 1992 and 2010 
(Szatmári et al., 2019). This work was later extended to predict SOC 
stock change for the same time period, but at various spatial scales, 
using a combination of multivariate geostatistics and machine learning 
(Szatmári et al., 2021). Note that in our previous research, SOC data 
were available for only two years, and therefore, it was not possible to 
develop a space–time model and predict SOC stock for the intermediate 
years. Since then, SOC data for several years have become available, 
paving the way for modelling and predicting SOC annually. This still 
represents an important knowledge gap in Hungary, requiring further 
research and methodological development.

Spatiotemporal information on SOC is essential for informed de-
cisions in environmental policy, sustainable land management, and 
climate action. However, there are a number of end-user demands that 
need to be addressed urgently, including the expanding demands for 
dynamic information on SOC and the wide variety of spatial scales and 
temporal periods for which information on SOC change is required. For 
the latter one, many examples can be given, for instance, carbon ac-
counting requires the spatial average of SOC for the country, reported 
annually. SOC stock also serves as an indicator for sustainable devel-
opment goal 15, target 3 (i.e., combat desertification, restore degraded 
land and soil). The proposed EU Soil Monitoring Directive will require 
spatial average or total of SOC for soil governance units to assess soil 
health (Wadoux et al., 2024). These needs often call for the spatial ag-
gregation of SOC or SOC change predictions for larger areas (or sup-
ports), e.g., soil districts, total woodlands or grasslands, or the entire 
country. Crop simulations, terrestrial ecosystem process models or 
climate models require detailed SOC inputs (Fodor et al., 2014; Hidy 
et al., 2016; Koós et al., 2021), and SOC conservation strategies are 
evaluated at even more detailed scales (de Gruijter et al., 2016; Malone 
et al., 2018).

In addition, we face several scientific challenges in the spatiotem-
poral modelling of SOC. For example, the uncertainty of SOC at the level 
of observations may not be negligible due to sampling issues, and errors 
in measuring SOC and bulk density (Knotters et al., 2022; Paul et al., 
2023). Moreover, spatiotemporal interpolation introduces additional 
uncertainty, although this issue has been properly addressed in recent 
studies (e.g., Heuvelink et al., 2020; Szatmári et al., 2021; Zhang et al., 
2023a). Assessing SOC change after interpolation should account for the 
uncertainty in the predictions; however, quantifying this uncertainty 
still presents methodological difficulties (Helfenstein et al., 2024). 
Furthermore, if SOC change should be assessed at a support larger than 
the support of the observations, it can be difficult to quantify the un-
certainty associated with these spatially aggregated predictions. 
Although addressing all these challenges is beyond the scope of our 
study, we focus on some issues and propose solutions to certain meth-
odological challenges.

Clearly, the limited number of SOC observations over time can 
constrain the spatiotemporal modeling of SOC. However, if sufficient 

SOC data are available across space and time, either from a soil moni-
toring system or from multiple soil surveys, then a space–time model can 
be developed and used to predict SOC annually. Nowadays, the most 
commonly adopted approach involves the use of machine learning 
techniques applied to spatially and temporally exhaustive environ-
mental covariates, where static and dynamic covariates over time are 
distinguished to capture spatial and spatiotemporal variation of the soil 
forming factors, respectively (Helfenstein et al., 2024; Heuvelink et al., 
2020; Tayebi et al., 2021; Yang et al., 2023; Zhang et al., 2023a). 
Although the quantification of uncertainty associated with point support 
SOC predictions is increasingly common, a major limitation of this 
approach emerges.

Quantifying the uncertainty associated with SOC change predictions 
at point support, and quantifying the uncertainty associated with SOC 
and SOC change predictions at larger spatial supports pose significant 
challenges. In both cases, the difficulty lies in accounting for the 
spatiotemporal correlation of interpolation errors. Incorporating this 
correlation is essential for providing reliable uncertainty estimates for 
SOC change predictions at point support and for spatially aggregated 
SOC and SOC change predictions (Szatmári et al., 2021; Wadoux and 
Heuvelink, 2023). To the best of our knowledge, machine learning 
techniques cannot adequately address this correlation, which means 
that recent studies relying exclusively on machine learning algorithms 
are unable to reliably quantify the uncertainty associated with SOC 
change predictions at point support and with spatially aggregated SOC 
and SOC change predictions. In our previous research (Szatmári et al., 
2021), we applied a linear model of coregionalization (Goovaerts, 1997; 
Wackernagel, 2003), a common technique in multivariate geostatistics, 
to account for the correlation of errors and to predict SOC and SOC 
change at various spatial supports. However, this model can only be 
developed for years for which SOC data have been collected. As a result, 
this approach is sub-optimal when the aim is to predict or aggregate SOC 
or SOC change for years or pairs of years lacking SOC data.

Space-time geostatistics offers a straightforward way to account for 
the spatiotemporal correlation of the errors (Cressie, 1993; Gräler et al., 
2016; Webster and Oliver, 2007) and allows for the quantification of 
uncertainty associated with point support and spatially aggregated 
predictions. It also overcomes the limitation of multivariate geo-
statistics, enabling predictions for years without observations. Heuve-
link et al. (2020) also suggested using space–time block kriging to 
predict SOC over larger areas. Indeed, block kriging is specifically 
designed to predict the spatial average over supports larger than the 
support of the observations (Goovaerts, 1997; Webster and Oliver, 
2007). In block kriging, uncertainty is often quantified by the computed 
block kriging variance (Hatvani et al., 2021; Lark and Lapworth, 2012), 
assuming normality and homoscedasticity of errors. However, SOC data 
are commonly found to be positively skewed (Orton et al., 2014; 
Szatmári and Pásztor, 2019), and therefore, prior transformation of the 
data is needed and geostatistical modelling and prediction is conducted 
on the transformed, normal scale. However, back-transformation of the 
results at larger supports could pose difficulties (Cressie, 2006; Orton 
et al., 2015; Szatmári et al., 2021), and consequently, geostatistical 
simulation is often employed.

The objective of this research was twofold. First, we aimed to present 
a methodology that combines machine learning and space–time geo-
statistics to address the growing demand for dynamic information on 
SOC across various spatial scales and time periods, while also tackling 
the related methodological challenges. A key goal was not only to pre-
dict SOC stock and SOC stock change across different spatial and tem-
poral scales, but also to quantify the uncertainty associated with these 
spatially aggregated predictions. To the best of our knowledge, this 
addresses a significant knowledge gap in the spatiotemporal modelling 
of SOC. The methodology was demonstrated using Hungary as a case 
study, covering the period from 1992 to 2016 at different aggregation 
levels. This leads to the second aim of our study, which was to provide a 
comprehensive series of maps presenting the spatiotemporal variability 
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of SOC in Hungary; maps that have not been previously available for the 
country.

2. Materials and methods

2.1. Soil data and computation of SOC stock

Soil data were derived from the Hungarian Soil Information and 
Monitoring System (SIMS). SIMS, established in 1992, is a nationwide 
soil monitoring system aimed at providing geographically referenced 
physical, chemical, and biological information on the temporal changes 
of Hungarian soils (total area: 93,030 km2). It stores measurements from 
4859 soil horizons across 1236 soil profiles (sampling density: 0.013 soil 
profiles per km2) (Fig. 1), which are also referred to as monitoring sites. 
These sites serve as benchmark locations representing the spatial di-
versity of Hungarian soils. SIMS distinguishes three types of monitoring 
sites: (1) I-points (number of soil profiles: 865) placed on agricultural 
lands (e.g., arable lands, pastures, orchards, vineyards), (2) E-points 
(number of soil profiles: 183) placed in forests and woodlands, and (3) S- 
points (number of soil profiles: 188) located in so-called “hot spot” re-
gions, mostly representing different types of environmental hazards (e. 
g., mining sites, spoil-banks, landfills, industrial areas). It should be 
noted that S-points were excluded from this research, as they represent 
areas extremely influenced by anthropogenic activity and are not rele-
vant for soils (Szatmári et al., 2019). Thus, a total of 1048 monitoring 
sites formed the basis of this research.

The SIMS operating protocol involves revisiting each soil profile 
annually and sampling each soil horizon. Laboratory analyses are then 
conducted on the collected samples. However, not all soil properties are 
measured every year. Specifically, SOC is measured every three years by 

wet oxidation of organic carbon using potassium dichromate (K2Cr2O7) 
catalyzed by sulfuric acid (H2SO4), according to the Hungarian Standard 
(MSZ–08–0452:1980, 1980). Note that data on SOC were available be-
tween 1992 and 2016; data collected after 2016 are not yet available. 
The proportion of coarse fragments and bulk density of the soil horizons, 
which are also needed to compute SOC stock, are among the soil prop-
erties that were measured only in the first, so-called base year (i.e., 
1992).

We computed SOC stock for each soil horizon at each soil profile for 
each year in which SOC content was measured using the following 
equation: 

SOCstock = 100⋅SOC⋅BD⋅(1 − CF)⋅(Top − Bottom) (1) 

where SOCstock is the soil organic carbon stock (tons ⋅ ha− 1), SOC is the 
soil organic carbon content (wt. %), BD is the bulk density (g ⋅ cm− 3), CF 
is the proportion of coarse fragments (vol. %), (Top − Bottom) is the 
thickness of the given soil horizon (cm), and 100 is used for unit con-
version. After computing SOC stock values for each soil horizon, we 
harmonized them for the topsoil (0–30 cm) at each soil profile. 
Harmonization was carried out using mass-preserving spline (Bishop 
et al., 1999), which is one of the most frequently used techniques for 
modelling the vertical distribution of soil properties. Note that 
computed SOC stock values were assumed to be certain (i.e., error-free).

2.2. Environmental covariates

A number of environmental covariates were collected and derived 
based on the scorpan model (McBratney et al., 2003). Since the objective 
is to model the space–time variability of SOC stock, it is necessary to 

Fig. 1. The location of the soil profiles in the Hungarian Soil Information and Monitoring System (SIMS) presented on a digital elevation model along with the 
administrative borders of Hungary.
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distinguish whether environmental covariates can be considered static 
or dynamic for the studied time period. For dynamic covariates, data 
had to be collected and derived for each year between 1992 and 2016. 
Table 1 summarizes the environmental covariates used in this study.

It was assumed that environmental covariates related to topography 
and parent material did not change over the studied period, as signifi-
cant changes in these soil forming factors require more time. Therefore, 
it is reasonable to consider them static in this research. We used a digital 

elevation model of Hungary (European Environment Agency, 2016) and 
many of its derivatives (Table 1). For parent material, we applied the 
geological map of Hungary (Gyalog and Síkhegyi, 2005), which had 
been previously correlated with the FAO code system on parent material 
classes (Bakacsi et al., 2014). Thus, the FAO conform parent material 
classes were used in this study. In our former research (Szatmári et al., 
2021; 2019), it was found that soil type is among the most informative 
covariates, and thus we also used the soil type map of Hungary (Pásztor 
et al., 2015). This was also considered static over the studied time 
period, as significant changes in soil types also need more time.

Environmental covariates related to climate were considered as dy-
namic covariates over the studied period. National and international 
databases were used, including the meteorological data repository 
(https://odp.met.hu/) of the Hungarian Meteorological Service (Hun-
garoMet) and E-OBS daily gridded meteorological data for Europe 
(Cornes et al., 2018). Based on these databases, the climatic parameters 
listed in Table 1 were derived for each season (spring: March to May; 
summer: June to August; autumn: September to November; winter: 
December to February) for each year between 1992 and 2016.

The biosphere (or organisms) is another soil forming factor, which 
was considered dynamic over the studied time period. We used products 
from the ESA Climate Change Initiative − Land Cover (Copernicus 
Climate Change Service - Climate Data Store, 2019), which provides 
global gridded land cover data with yearly temporal resolution starting 
from 1992. The dataset is based on the FAO’s land cover classification 
system. Additionally, satellite imagery and several derived spectral 
indices were used (Table 1). Annual satellite image mosaics, acquired by 
Landsat-4, − 5, − 7, − 8, and − 9 from June to October, were created using 
cloud masked images and median filter for each year between 1992 and 
2016. The formulas used to derive the spectral indices can be found in 
the Supplementary Material (SM1).

In total, 62 environmental covariates were used in this study. Since 
these were obtained from different data sources, including national and 
international databases and repositories, it was necessary to resample 
them into a common geographic reference system with a resolution of 
100 m. This resolution was chosen because it corresponds to the target 
resolution of the GlobalSoilMap initiative (Arrouays et al., 2014), as well 
as to the general spatial resolution of the DOSoReMI@hu products 
(Pásztor et al., 2020). For categorical covariates (e.g., soil type, land 
cover, parent material), we used a nearest neighbor resampling tech-
nique. For continuous covariates (e.g., climatic data layers, digital 
elevation model and its derivatives), we employed a cubic spline 
technique.

2.3. Space-time modelling

As mentioned in the Introduction, data on SOC stock frequently 
found to be positively skewed, and Hungary is no exception (Szatmári 
et al., 2021; Szatmári and Pásztor, 2019). Therefore, the SOC stock data 
were transformed using square root transformation and space–time 
modelling of SOC stock was conducted on the transformed, normal scale. 
The importance and rationale for this transformation are described in 
detail in Szatmári and Pásztor (2019).

In this study, the spatiotemporal variation of SOC stock was 
modelled as a sum of a deterministic component and a stochastic 
component, that is 

Z(u, t) = m(u, t)+ ε(u, t) (2) 

where Z is the transformed SOC stock, m is the deterministic component 
describing structural variation in space and time, ε is the stochastic part 
of variation that often show spatiotemporal correlation, u is the vector 
of the geographical coordinates, and t refers to time. In the following 
subsections, it is described how we modelled the deterministic and 
stochastic components using machine learning and space–time geo-
statistics, respectively.

Table 1 
Summary of the environmental covariates. Abbreviations: S: other soil attri-
butes, C: climate, O: organisms, R: relief or topography, P: parent material, DEM: 
digital elevation model, HungaroMet: Hungarian Meteorological Service, ESA 
CCI-LC: European Space Agency Climate Change Initiative − Land Cover.

Factor Name Type Source

S Soil type map of Hungary static Pásztor et al. (2015)
C Seasonal precipitation dynamic HungaroMet
 Seasonal maximum temperature dynamic HungaroMet
 Seasonal minium temperature dynamic HungaroMet
 Seasonal mean temperature dynamic HungaroMet
 Seasonal evapotranspiration dynamic Cornes et al. (2018)
 Seasonal incoming global radiation dynamic Cornes et al. (2018)
O Land cover dynamic ESA CCI-LC
 NIR: Near-infrared band dynamic Landsat
 SWIR1: Short wavelength infrared 1 

band
dynamic Landsat

 SWIR2: Short wavelength infrared 2 
band

dynamic Landsat

 NDVI: Normalized difference 
vegetation index

dynamic derived from 
Landsat

 TVI: Transformed vegetation index dynamic derived from 
Landsat

 EVI: Enhanced vegetation index dynamic derived from 
Landsat

 SATVI: Soil-adjusted total vegetation 
index

dynamic derived from 
Landsat

 SAVI: Soil-adjusted vegetation index dynamic derived from 
Landsat

 MSI: Moisture stress index dynamic derived from 
Landsat

 GNDVI: Green normalized difference 
vegetation index

dynamic derived from 
Landsat

 GRVI: Green-red vegetation index dynamic derived from 
Landsat

 LSWI: Land surface water index dynamic derived from 
Landsat

 MSAVI2: Modified soil-adjusted 
vegetation index (2nd)

dynamic derived from 
Landsat

 BI: Brightness index dynamic derived from 
Landsat

 DSWI: Disease water stress index dynamic derived from 
Landsat

R Elevation (DEM) static EU-DEM
 Channel network base level static derived from DEM
 Diurnal anisotropic heating static derived from DEM
 Horizontal distance to channel 

network
static derived from DEM

 LS factor static derived from DEM
 Mass balance index static derived from DEM
 Multi-resolution ridge top flatness static derived from DEM
 Multi-resolution valley bottom 

flatness
static derived from DEM

 Multi-scale topographic index static derived from DEM
 Profile curvature static derived from DEM
 Real surface area static derived from DEM
 SAGA wetness index static derived from DEM
 Slope static derived from DEM
 Stream power index static derived from DEM
 Surface roughness static derived from DEM
 Total curvature static derived from DEM
 Topographic position index static derived from DEM
 Topographic ruggedness index static derived from DEM
 Topographic wetness index static derived from DEM
 Vertical distance to channel network static derived from DEM
P Geological map of Hungary static Gyalog and Síkhegyi 

(2005)
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2.3.1. Random forest in space and time
We used the random forest (RF) algorithm (Breiman, 2001), which 

proved to be a well-performing machine learning technique for SOC 
mapping not just in Hungary (Szatmári et al., 2021; 2019; Szatmári and 
Pásztor, 2019) but also in other countries (Guevara et al., 2018; Hel-
fenstein et al., 2024; Heuvelink et al., 2020; Veronesi and Schillaci, 
2019) and even at continental (Hengl et al., 2015; Wadoux et al., 2023) 
and global scale (Poggio et al., 2021). In brief, the RF algorithm gen-
erates multiple classification or regression trees during training, each 
tree trained on a random subset of the training data and considering a 
random subset of predictors (i.e., environmental covariates in our case) 
at each split. The final prediction for classification is determined by a 
majority vote of all trees, while for regression, it is the weighted average 
of the predictions. This ensemble approach helps improve generalization 
and robustness, making RF a powerful and versatile machine learning 
algorithm. The number of studies using RF or similar machine learning 
techniques for space–time modelling is increasing (Erdélyi et al., 2023; 
Helfenstein et al., 2024; 2022; Hengl et al., 2018; Heuvelink et al., 2020; 
Zhang et al., 2023a). In such applications, the regression matrix is 
derived from a space–time overlay of the observations on environmental 
covariates. This requires spatially and temporally exhaustive covariates 
and knowledge of the date of sampling. Once the regression matrix 
obtained, model calibration, cross-validation and prediction are done in 
the usual way (Hengl et al., 2018; Heuvelink et al., 2020). In this study, 
we employed the methodology described by Heuvelink et al. (2020).

The hyperparameters of RF can still be fine-tuned when used for 
space–time modelling. In this study, we fine-tuned the hyperparameter 
“mtry”, which is the number of random subset of environmental cova-
riates at each split. During fine-tuning and RF fitting, 5 times repeated 
10-fold cross-validation was used. We should note that “leave-location- 
out” cross-validation (LLOCV) was used instead of “classical” cross- 
validation, as the latter often gives over-optimistic picture about the 
performance of space–time modelling and thus potentially lead to 
deceiving results (Meyer et al., 2018). In LLOCV, the random subsets (i. 
e., folds) used in cross-validation are not defined at the level of indi-
vidual observations, as in “classical” cross-validation, but at the level of 
the monitoring sites, i.e., folds consist of randomly selected monitoring 
sites with all their associated observations. For more details and expla-
nation, see Meyer et al. (2018).

After fine-tuning the hyperparameter “mtry”, the final RF model was 
fitted between the transformed SOC stock data and the environmental 
covariates. Then it was used for giving space–time prediction with a 
resolution of 100 m for each year between 1992 and 2016, and it was 
identified as the deterministic part of variation (first term on the right- 
hand side of Eq. (2)).

2.3.2. Space-time geostatistics

2.3.2.1. Space-time kriging for point support prediction. Geostatistical 
analysis was performed on the residuals obtained from the fitted RF 
model. Each residual includes spatial coordinates (i.e., longitude and 
latitude) as well as temporal information (i.e., year), making it suitable 
for space–time geostatistical analysis. It was assumed that the residuals 
represent a stationary spatiotemporal random field (second term on the 
right-hand side of Eq. (2)), which is multivariate normal with zero mean. 
In such a case, it can be fully characterized by a covariance function, that 
is 

Cst(h, v) = Cov(ε(u, t), ε(u + h, t + v) ) (3) 

where Cst(h, v) is the spatiotemporal covariance function that quantifies 
the covariance between ε(u, t) and ε(u+h, t+v) for any pair of points (u,
t) and (u + h, t + v) in the space–time domain, and Cst(h, v) depends 
only on the separation distance in space (i.e., h) and time (i.e., v). Note 
that calculating and modelling the spatiotemporal covariance is a real 
challenge (Gräler et al., 2016; Heuvelink et al., 2017), and therefore we 

should make additional assumptions. It was supposed that the spatial 
term of the stochastic component is isotropic, that is the separation 
vector h is taken to be scalar, namely, the Euclidean distance (i.e., h =

‖h‖). Furthermore, a sum-metric covariance model (Gräler et al., 2016; 
Snepvangers et al., 2003) was used, which is a combination of a spatial, 
a temporal and a metric model including an anisotropy parameter: 

Cst(h, v) = Cs(h) + Ct(v) + Cjoint

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2 + (κ⋅v)2
√ )

(4) 

where Cs(h) and Ct(v) are the spatial and temporal terms of the spatio-
temporal variability, respectively, and the last term on the right-hand 
side is the joint space–time model with the anisotropy parameter κ. 
This parameter, which is given as spatial unit per temporal unit, matches 
space and time by re-scaling temporal distances to equivalent spatial 
distances (Gräler et al., 2016; Snepvangers et al., 2003). In geostatistics, 
it is more common to use the variogram instead of the covariance 
function (Gräler et al., 2016), thus 

γst(h, v) = γs(h) + γt(v) + γjoint

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2 + (κ⋅v)2
√ )

(5) 

where γs, γt and γjoint are the spatial, temporal and joint variograms, 
respectively. Once either the covariance or the variogram has been 
calculated and modelled, kriging can be done in the usual way 
(Heuvelink and Griffith, 2010; Heuvelink and van Egmond, 2010). In 
this study, the prediction of the space–time variability of SOC stock at 
point support, with a resolution of 100 m, was given by adding the 
space–time kriged RF residuals to the prediction of the RF model (Eq. 
(2)). The point support SOC stock predictions were then transformed 
back to the original, positively skewed scale by taking the square of a 
prediction and adding the computed kriging variance as bias correction. 
The uncertainty associated with the point support prediction of SOC 
stock was expressed by the width of the 90 % prediction interval, which 
is defined by the 0.05 and 0.95 quantile. The quantiles were derived by 
subtracting and adding 1.64 times the kriging standard deviation to the 
SOC stock prediction. Finally, they were also transformed back to the 
original scale by taking their square.

2.3.2.2. 2D + T LU simulation for change of support. As it was indicated 
in the Introduction, geostatistical simulation was used to predict the 
spatial average of SOC stock and SOC stock change with quantified 
uncertainty at various supports. The supports we used in this study are 
listed in Table 2. We applied LU simulation (Alabert, 1987; Davis, 1987), 
which has been used in geostatistics for decades to simulate values for 
larger supports both in 2D and 3D (Deutsch and Journel, 1998; Goo-
vaerts, 1997). In brief, the simulation algorithm is based on the Cholesky 
factorization (or decomposition) that decomposes the covariance matrix 
of a given 2D or 3D block into a lower and an upper triangular matrix, 

Table 2 
List of supports used in this study. In the last column, two numbers separated by 
the multiplication symbol (⨯) are presented. The first number means the number 
of discretization points in the geographical space (2D), whereas the second 
means the number of time slices (T) from 1992 to 2016 (i.e., 25 years).

Support Area Number of 2D 
+ T blocks

Total number of discretization 
points over a 2D + T block

1 km square 
blocks

1 × 1 km 94,118 10 × 25

5 km square 
blocks

5 × 5 km 3938 100 × 25

10 km square 
blocks

10 × 10 km 1029 200 × 25

25 km square 
blocks

25 × 25 km 184 1000 × 25

Hungarian 
counties

525–8443 
km2

19 counties +
Budapest*

263–4222 × 25

Hungary 93,030 km2 1 9000 × 25
* Budapest, as the capital, is officially not part of Pest County
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hence the name LU (lower–upper) simulation. First, the given 2D or 3D 
block is discretized by points often following a grid scheme, then the 
covariance matrix of the discretization points is subject to Cholesky 
factorization, and finally the obtained lower triangular matrix is 
multiplied by a vector of independent random numbers to generate 
simulated values at the discretizing grid points. By computing the 
average of the simulated values we obtain a realization of the block 
average. More simulated values at the discretizing grid points and thus 
more realizations for the block average can be readily obtained by using 
other vectors of independent random numbers.

Although the original algorithm is designed to 2D and 3D simulation, 
it can be readily extended to space–time application if the spatiotem-
poral covariance matrix is used. In this study, we considered a 2D + T 
block dimension, spanning spatially over 2D and temporally from 1992 
to 2016 with annual breakdowns (i.e., 25 years in total). The dis-
cretization points within each 2D + T block followed a grid scheme 
across space and time with constant geographical locations over time. 
For instance, if there are 9 discretizing points in the 2D geographical 
space and 5 time slices, then in each time slice the discretizing points are 
at the same geographical locations, and the total number of points dis-
cretizing the 2D + T block is 9 × 5 = 45. Since the block size (or area) 
varies from support to support, different point densities were used for 
discretization at each support (Table 2). Point densities in the 2D 
geographical space ranged from 10 to 0.01 points per km2. Higher 
densities were used for smaller supports (e.g., 1 × 1 km square block, 5 
× 5 km square block) and lower densities were used for larger supports 
(e.g., Hungarian counties, entire Hungary). Hungarian counties were 
discretized with a point density of 0.5 points per km2.

We used conditional LU simulation (i.e., it was conditioned to the 
transformed data in space and time), thus the Cholesky decomposition of 
the spatiotemporal covariance matrix C is 

C =

[
C11 C12
C21 C22

]

= L⋅U =

[
L11 0
A21 L22

][
U11 B12
0 U22

]

(6) 

where C11 is the spatiotemporal covariance matrix between the data 
points, C21 is the spatiotemporal covariance matrix between the data 
and the points discretizing the 2D + T block, and C22 is the spatiotem-
poral covariance matrix between the discretization points. Note that C12 
is the transpose of C21. After decomposing the covariance matrix C a 
spatiotemporal stochastic realization at the points discretizing the 2D +
T block can be generated by 

zl = A21⋅L− 1
11 ⋅z + L22⋅ω (7) 

where zl is the vector of a simulated stochastic realization, z is the vector 
of the conditioning data, and ω is the vector of independent random 
numbers. Note that the first term on the right-hand side is the kriging 
term and the second is the simulated kriging error. As other geo-
statistical simulation algorithms, it also reproduces the spatiotemporal 
correlation structure by the realizations generated. This is indispensable 
to reliably quantify the uncertainty associated with predictions given at 
larger supports (e.g., spatial average or total). In this study, 1000 sto-
chastic realizations were generated for each 2D + T block at each sup-
port (Table 2).

2.4. Spatial aggregation

To obtain prediction for the spatial average of SOC stock over a given 
block in a given year we should do the following: (1) transform the 
simulated SOC stock values for the given block in the given year back to 
the original, positively skewed scale by taking their square, (2) compute 
the average of the back-transformed SOC stock values for each realiza-
tion yielding 1000 average values, which can be interpreted as 1000 
realizations of block average of SOC stock, and then (3) compute the 
average of the 1000 block realizations. The uncertainty associated with 
this prediction was quantified by the width of the 90 % prediction 

interval, which was determined by the 0.05 and 0.95 quantiles of the 
1000 block realizations.

If we are interested in the spatial average of SOC stock change over a 
given block between two years, then we should do the following: (1) 
transform the simulated SOC stock values for the given block in the 
given two years back to the original, positively skewed scale by taking 
their square, this yields paired realizations for SOC stock, (2) compute 
the difference between the paired back-transformed SOC stock re-
alizations, this yields realizations for SOC stock change, (3) compute the 
average of SOC stock change for each realization yielding 1000 average 
values, which can be interpreted as 1000 realizations of block average of 
SOC stock change between the two years, and then (4) compute the 
average of the 1000 block realizations. Similarly to the case above, the 
uncertainty associated with the prediction was quantified by the width 
of the 90 % prediction interval, which was determined by the 0.05 and 
0.95 quantiles of the 1000 block realizations of SOC stock change.

To identify significant change in SOC stock between the two years, 
we examined how many of 1000 block realizations of SOC stock change 
have a positive or negative change (Szatmári et al., 2021). If the number 
of positive (or negative) SOC stock changes was larger than 950 (i.e., 95 
% of the 1000 block realizations), then we said there was a statistically 
significant increase (or decrease) in SOC stock over that block between 
the two years.

2.5. Validation

To assess the performance of the SOC stock and SOC stock change 
predictions at point support 5 times repeated 10-fold LLOCV was used. 
The prediction performance was assessed by computing the mean error 
(ME), root mean square error (RMSE), and model efficiency coefficient 
(MEC): 

ME =
1
n
∑n

i=1
Pi − Oi (8) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

22

√

(9) 

MEC = 1 −

∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi − O)

2 (10) 

where Pi and Oi are the predicted and observed SOC stock (or SOC stock 
change), respectively, and O is the mean of the observed SOC stocks (or 
SOC stock changes). ME is commonly referred to as bias, and RMSE is the 
spread of the error distribution. If MEC is between 0 and 1, then it can be 
similarly interpreted as R-square, and if it takes a negative value, then it 
means that the prediction is worse than using the mean of the data as 
prediction.

We also assessed the reliability of the uncertainty quantifications at 
the level of point support. For this purpose, prediction interval coverage 
probability (PICP) plot (also known as accuracy plot) was compiled 
(Shrestha and Solomatine, 2006), and then G-statistic was computed 
(Deutsch, 1997). A PICP plot graphically presents the expected and 
observed fraction of validation data falling within a symmetric predic-
tion interval. For instance, for the 90 % prediction interval, we expect 
90 % of the validation data to fall within the interval and 10 % outside 
the interval. This can be generalized to any symmetric prediction 
interval: 

PICP(p) =
1
n
∑n

i=1
δ(li ≤ Oi < ui) (11) 

where li and ui are the lower and upper limit of the p-width symmetric 
prediction interval for Pi, respectively, and δ(•) is an indicator function 
taking 1 if the expression in the brackets is true and 0 otherwise. Ideally, 
the PICP plot follows the 1:1 line. G-statistic measures the overall 
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closeness of the PICP plot to the 1:1 line, that is 

G = 1 −

∫ 1

0
|PICP(p) − p |dp (12) 

Ideally, the G value is equal to 1.
More recently, Schmidinger and Heuvelink (2023) pointed out a 

weakness of PICP, namely that it does not take systematic one-sided bias 
into account. Therefore, they proposed additional validation metric, 
namely quantile coverage probability (QCP). QCP follows the same logic 
as PICP, but uses quantiles instead of symmetric prediction intervals, 
that is: 

QCP(τ) = 1
n
∑n

i=1
δ(Oi ≤ qi

τ) (13) 

where qi
τ is the τ quantile for Pi, and δ(•) is an indicator function taking 1 

if the expression in the brackets is true and 0 otherwise. Its advantage is 
that one-sided bias will not be hidden.

3. Results

3.1. Space-time modelling of SOC stock at point support

In Fig. 2, we present the boxplots for each year and histogram of all 
SOC stock data before and after square root transformation. The histo-
gram of the original (i.e., untransformed) data confirmed that the dis-
tribution of the SOC stock values is positively skewed (Fig. 2, upper left 
corner). The boxplots of the original data show some outlying obser-
vations in the upper tail of the distribution (Fig. 2, lower left corner), 
which are mostly due to the skewed distribution of the data rather than 
erroneous observations. Those high SOC stock values were observed in 
peatlands known to be significant organic carbon pools worldwide (Illés 
et al., 2019; Minasny et al., 2019). After square root transformation it 
was found that the yearly and overall distribution of the data are close to 
normal, furthermore, transformation also handled most of the outliers 
(Fig. 2, right column). Outliers, which were not handled by trans-
formation, were removed from the dataset. Summary statistics of SOC 

stock data are shown in Table 3, and the spatial distribution of SOC stock 
data can be found in the Supplementary Material (SM2).

It was found that the optimal value of the hyperparameter “mtry” is 
10 (Fig. 3, left graph), and the associated RMSE and R-square values are 
1.367 and 0.421, respectively. The final RF model consists of 500 trees 
and the minimum node size was set to 5. In Fig. 3 (right graph), we 
present the 40 most important environmental covariates in the final RF 
model. Soil type proved to be the most important, which is completely in 
line with our previous findings (Szatmári et al., 2021; 2019). This can be 
explained by that the genetic soil types in Hungary (Stefanovits, 1963) 
strongly depend on the development, amount and quality of soil organic 
matter, among others. According to the World Reference Base (WRB) 
international soil classification system (IUSS Working Group WRB, 
2022), the soil types with the highest proportion of area are Vertisols 
(17.1 %), Gleysols (14.5 %), Regosols (13.6 %), Chernozems and Kas-
tanozems (13.2 %), Arenosols (11.5 %), Luvisols and Alisols (10.8 %), 
and Stagnosols (6.3 %). In addition to soil type, parent material and 
several geomorphometric parameters (e.g., multi-resolution ridge top 
flatness, elevation, total curvature) were also found to be informative 
covariates, which were considered static over the studied time period. 
Last but not least, covariates related to climate (e.g., seasonal precipi-
tation and temperature) and organisms (e.g., soil-adjusted total 

Fig. 2. Graphical summary of the soil organic carbon (SOC) stock data before (left column) and after (right column) square root transformation. First row presents 
the histogram of the overall SOC stock data, and second row presents the boxplots for each year with measured SOC.

Table 3 
Summary statistics of the soil organic carbon (SOC) stock data derived from the 
Hungarian Soil Information and Monitoring System. Annotation: The unit of the 
SOC stock data is [tons ⋅ ha− 1], and n means the number of observations.

Years n Min Max Mean Median Std. deviation

1992 983 2.45 221.44 50.08 46.83 26.06
1995 944 0.50 186.32 50.52 46.43 26.14
1998 995 1.51 207.15 52.36 48.16 26.12
2000 842 1.95 157.35 52.19 49.71 23.40
2004 807 3.61 178.18 52.01 49.13 25.46
2007 999 5.15 171.91 53.99 51.46 24.92
2010 972 7.42 164.01 52.33 50.02 23.96
2013 985 2.14 166.16 51.11 48.02 23.74
2016 939 4.79 162.43 49.81 48.50 23.57
Total 8466 0.50 221.44 51.66 48.43 25.16
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vegetation index, short wavelength infrared, brightness index) are also 
in the top 40. Note that they were considered dynamic in the respective 
period.

We derived the RF residuals and then space–time geostatistical 
analysis was conducted on them. Fig. 4 presents the experimental var-
iogram and the fitted spatiotemporal variogram model in 3D. As it was 
mentioned, a sum-metric variogram model was fitted, which models the 
space–time variability as a combination of spatial, temporal and joint 

variograms (Eq. (5)). Its parameters are summarized in Table 4.
Using the fitted variogram model, space–time kriging was performed 

on the RF residuals, and then the resulting space–time kriging pre-
dictions were added to the predictions obtained by the RF model, ac-
cording to Eq. (2). Finally, we transformed the point support SOC stock 
predictions back to the original, positively skewed scale, which were 
then presented in Fig. 5. The quantified uncertainty associated with the 
point support prediction of SOC stock can be found in the 
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Fig. 3. Fine-tuning of the number of covariates used in each split (“mtry”) (left graph), and the 40 most important covariates in the final random forest model (right 
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Supplementary Material (SM3).

3.2. Performance of SOC stock predictions and uncertainty 
quantifications at point support

The performance of the spatiotemporal predictions at point support 
is presented in Table 5. For SOC stock, it was found that the space–time 
model slightly underestimates SOC stock by 0.897, whereas for SOC 
stock change, the space–time model slightly overestimates the actual 
change by 0.414. However, if we take the standard deviation associated 
with the computed ME values into account, then we can say that SOC 
stock and SOC stock change predictions are practically unbiased at point 
support. In both cases, the magnitude of the computed RMSE and MEC 
values are similar to those presented in our previous study (Szatmári 
et al., 2021). However, a deeper comparison cannot be made because in 

our previous research the computed error measures referred to a non- 
space–time model, mapping the SOC stock change for a certain time 
period (i.e., 1992–2010), whereas in this study, these measures refer to a 
space–time model that is able to predict SOC stock change for any time 
period between 1992 and 2016. The PICP plots presented in Fig. 6 (left 
column) has shown that for SOC stock, the uncertainty quantifications at 
point support slightly underestimate the “real” uncertainty, whereas for 
SOC stock change, it was found that the uncertainty quantifications 
slightly overestimate the uncertainty. The computed G-statistics, which 
measures the overall closeness of PICP to the 1:1 line, were found to be 
0.912 and 0.952 for SOC stock and SOC stock change, respectively. They 
are still quite close to the ideal, expected value (i.e., 1), thus the pre-
dicted uncertainty can be considered as a realistic quantification of 
uncertainty. This was also confirmed by the QCP plots (Fig. 6, right 
column), furthermore, the QCP plots also revealed that uncertainty 

Table 4 
The parameters of the sum-metric variogram model fitted to the random forest 
residuals. The space–time anisotropy parameter of the model reported in the last 
row. Annotation: A 3D representation of the fitted variogram model is presented 
in Fig. 4 (right plot).

Component Partial sill Model type Range Nugget

Spatial variogram 0.001 Exponential 20,000 m 0.040
Temporal variogram 0.032 Exponential 2000 days* 0.001
Joint variogram 0.083 Exponential 15,000 m 0.758
Anisotropy parameter (κ) 17.764 m ⋅ day− 1**
* Approximately 5.5 years, ** Approximately 6.48 km ⋅ year− 1

Fig. 5. Spatiotemporal prediction of soil organic carbon (SOC) stock at point support from 1992 to 2016. The spatial resolution is 100 m, the unit is [tons ⋅ ha− 1], and 
the maps have been masked with open water bodies and settlements. Annotation: The uncertainty associated with the spatiotemporal predictions can be found in the 
supplementary material (SM3).

Table 5 
The performance of the SOC stock and SOC stock change spatiotemporal pre-
dictions at point support using 5 times repeated 10-fold leave-location-out cross- 
validation. Annotation: In the brackets the corresponding standard deviation is 
presented. Abbreviations: ME: mean error (or bias), RMSE: root mean square 
error, and MEC: model efficiency coefficient.

ME 
[tons ⋅ ha− 1]

RMSE 
[tons ⋅ ha− 1]

MEC 
[-]

SOC stock − 0.897 (1.984) 19.358 (2.042) 0.321 (0.087)
SOC stock change 0.414 (1.742) 16.626 (2.112) 0.160 (0.067)
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quantifications do not suffer from one-sided bias over the period under 
study.

3.3. Spatial aggregation of SOC stock at various supports

After carrying out spatial aggregation, we compiled a series of maps 
of spatially aggregated SOC stock predictions between 1992 and 2016 
for each support, together with a series of maps showing the quantified 
prediction uncertainty. The map series can be found in the Supple-
mentary Material (SM4–15). In Fig. 7, we present the spatially aggre-
gated SOC stock change between the start and end year of the period 
under study (i.e., 1992 and 2016). As expected, the larger the support, 
the smaller the uncertainty associated with the spatially aggregated SOC 
stock change predictions (Fig. 7, second column) and, consequently, 
supports to identify and delineate larger areas with statistically signifi-
cant change (Fig. 7, third column). Indeed, there is a difference of three 
orders of magnitude in the quantified uncertainty between the first and 

last rows of Fig. 7 (second column), which is a remarkable decline of 
uncertainty. It is important to emphasize that Fig. 7 serves as an illus-
trative example, showing the potential and possibilities of our recent 
work. Specifically, such investigations and assessments can be con-
ducted for any year, time period, and spatial support, which is unprec-
edented in Hungary and, to the best of our knowledge, globally. In the 
Supplementary Material (SM16), we provided a similar assessment for 
SOC stock change for the period between 1992 and 2010, which was the 
focus of our previous research (Szatmári et al., 2021). This allows for a 
direct comparison between our recent results and those from previous 
study (Szatmári et al., 2021). Furthermore, we could also demonstrate, 
for example, how SOC stock changed year by year at a given spatial 
support (e.g., 10 × 10 km) during the respective period (Fig. 8).

Fig. 6. The prediction interval coverage probability (PICP) plot with the computed G-statistic value (left column) and quantile coverage probability (QCP) plot (right 
column) for SOC stock (first row) and SOC stock change (last row). Annotation: The error bars were derived from the 5 times repeated 10-fold cross-validation, and 
the red solid lines show the 1:1 line (i.e., ideal case). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

G. Szatmári et al.                                                                                                                                                                                                                               Geoderma 451 (2024) 117067 

10 



4. Discussion

4.1. Interpretation and comparison of the results

It was observed that the static environmental covariates were more 
influential than the dynamic covariates in the final, fine-tuned RF model 
(Fig. 3, right graph). Note that special care was taken to avoid overfitting 
the RF model with static environmental covariates, using leave-location- 
out cross-validation instead of “classical” cross-validation (Meyer et al., 
2018). The predominance of static covariates in the RF model can be 
attributed to the larger spatial variability of SOC stock compared to its 
temporal variability, as it was noted by Heuvelink et al. (2020). 
Regarding the informative covariates, both static and dynamic, identi-
fied in our study, they align with findings from studies using RF or other 
machine learning techniques (e.g., cubist) to model spatiotemporal 

variability of SOC (Helfenstein et al., 2024; Heuvelink et al., 2020; 
Tayebi et al., 2021; Zhang et al., 2023a). These covariates are parent 
material (or geology), soil type (or soil class), digital elevation model 
and its derivatives (e.g., ridge top and valley bottom flatness, topo-
graphic wetness index), climatic data (e.g., seasonal temperature, pre-
cipitation), and satellite images and derived indices (e.g., short-wave 
infrared bands, NDVI). Clearly, the relative importance of these cova-
riates varies from case to case because these SOC mapping campaigns 
took place in different parts of the world (i.e., Argentina, Brazil, China, 
and the Netherlands), reflecting diverse conditions of climate, geology, 
topography, and biotic factors. Moreover, the target resolution of these 
campaigns ranges widely, from 25 m to 1 km.

In line with our previous findings (Szatmári et al., 2021), it was 
shown that spatial aggregation significantly reduces the uncertainty 
associated with spatially aggregated SOC stock and SOC stock change 

Fig. 7. Spatial aggregation of soil organic carbon (SOC) stock change between 1992 and 2016 at various supports. Spatially aggregated predictions of SOC stock 
change (first column), the associated uncertainty (second column), and the maps of statistically significant change in SOC stock (third column). Annotation: The 
codes in the third column are: 1 – Increase, 2 – No significant change, and 3 – Decrease.

G. Szatmári et al.                                                                                                                                                                                                                               Geoderma 451 (2024) 117067 

11 



predictions (Fig. 7 and SM4–15), even in space–time applications. 
Generally, it can be said that the larger the support, the smaller the 
uncertainty associated with the spatially aggregated predictions. In fact, 
there was a difference of three orders of magnitude between the 

quantified uncertainties associated with point support predictions and 
when they were spatially aggregated over the whole territory of 
Hungary. This is due to the partial cancellation of negative and positive 
interpolation errors during spatial aggregation, a well-known 

Fig. 8. Series of maps showing areas with statistically significant change in SOC stock. The maps present how SOC stock changed year after year over 10 × 10 km 
square blocks between 1992 and 2016. Color key to the maps: Green – Increase, Grey – No significant change, and Red – Decrease. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)
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phenomenon in geostatistics (Goovaerts, 1997; Webster and Oliver, 
2007). It is noteworthy that the decreasing uncertainty enables us to 
identify and delineate more areas with statistically significant SOC stock 
changes in Hungary, as it was showed in Fig. 7 (third column) and Fig. 8.

In addition to the validation of SOC stock predictions, SOC stock 
change predictions were also validated using 5 times repeated 10-fold 
cross-validation (Table 5). In terms of MEC, the SOC stock predictions 
(MEC = 0.321) were found to be more accurate than SOC stock change 
predictions (MEC = 0.160), which is consistent with recent findings (e. 
g., Helfenstein et al., 2024). This suggests that predicting SOC stock 
change is more challenging than predicting SOC stock, which is an 
important finding because an increasing number of end-users and ini-
tiatives are interested in SOC stock change in addition to or instead of 
SOC stock. However, the uncertainty quantification associated with SOC 
stock change predictions is proved to be accurate (Fig. 6, last row), and it 
can be said that the uncertainty estimates at point support reliably 
quantify the “real” uncertainty. For SOC stock (Fig. 6, first row), the 
uncertainty was slightly underestimated. It is important to note that 
uncertainty was quantified solely using the kriging variance, which 
implicitly assumes no uncertainty in the deterministic part of variation 
(i.e., first term on the right-hand side of Eq. (2)). This can sometimes be 
an over simplistic assumption (Szatmári and Pásztor, 2019). Therefore, 
incorporating uncertainty in the deterministic part into space–time 
modeling is advisable.

It is challenging to directly compare the current results with those 
published previously (Szatmári et al., 2021; 2019), as such a compre-
hensive map series of the spatiotemporal variability of SOC stock has not 
been available for Hungary before. As mentioned in the Introduction, in 
our previous research, SOC data were available for only two years (1992 
and 2010), making it impossible to develop a space–time model capable 
of predicting SOC stock annually. Szatmári et al. (2021) used a linear 
model of coregionalization (Goovaerts, 1997) to account for the corre-
lation of the interpolation errors in predicting SOC stock changes at 
various supports. Comparing those results with the current ones (SM16) 
reveals significant differences in SOC stock change, associated uncer-
tainty, and areas of significant change. Although the magnitude is 
similar, the patterns of SOC stock change and uncertainty differ. These 
differences can be attributed to several factors. First, this study included 
more SOC stock data and environmental covariates, using annual data 
for climate and biosphere instead of long-term averages. Second, the 
methodologies were very different. Regarding uncertainty, Szatmári and 
Pásztor (2019) demonstrated that the methodologies and assumptions 
made in quantifying uncertainty can lead to very different uncertainty 
predictions. The space–time model in this study resulted in relatively 
smaller prediction uncertainty, allowing for the identification and 
delineation of more areas with significant change than in our previous 
study.

It is important to highlight the main limitation of the approach 
presented in our previous study (Szatmári et al., 2021): SOC stock and 
SOC stock change, along with quantified uncertainty, whether at point 
support or larger supports, can only be predicted for years or time pe-
riods where SOC stock observations are available. However, there is no 
guarantee that SOC stock observations will be available for all years that 
are of interest to end-users. Therefore, this approach is sub-optimal from 
this point of view. In contrast, the methodology presented in our recent 
work, which combines space–time geostatistics with machine learning, 
allows us to predict SOC stock and SOC stock change for any year, time 
period, and spatial support (Figs. 7 and 8, and SM4–16).

It follows from the above that such comprehensive, coherent, 
spatially and temporally exhaustive information on SOC stock in 
Hungary has never been available before. This makes our study and the 
resulting map series unique and important contribution from a national 
perspective. It also paves the way for a comprehensive analysis and 
assessment of the spatial and temporal variability of SOC stored in 
Hungarian topsoils. This information is crucial for Hungary, and perhaps 
Europe, to address contemporary environmental crises (e.g., climate 

change, land and soil degradation, desertification) and challenges (e.g., 
water-, food-, and soil security).

4.2. General discussion

First and foremost, it is important to emphasize that without ac-
counting for the spatial or spatiotemporal correlation of interpolation 
errors, it is impossible to reliably quantify the uncertainty associated 
with spatially aggregated SOC stock or SOC stock change predictions. 
Note that this principle generally applies to all other soil properties as 
well. If this correlation is ignored, the quantified uncertainty will not 
represent the “true” uncertainty. Moreover, Wadoux and Heuvelink 
(2023) noted that uncertainty will be underestimated. The serious 
consequences of making decisions based on such unrealistic uncertainty 
quantification cannot be overstated.

In this study, a methodology combining space–time geostatistics 
with machine learning was presented and tested on the example of 
Hungary predicting the spatiotemporal variability of SOC stock and SOC 
stock change at various supports. In fact, the use of geostatistics in 
digital soil mapping has been in decline, with most recent studies on 
spatiotemporal modeling relying solely on machine learning techniques 
(Helfenstein et al., 2024; 2022; Heuvelink et al., 2020; Tayebi et al., 
2021; Yang et al., 2023). However, our study highlighted an important 
limitation of applying machine learning in spatiotemporal modelling: 
machine learning alone is inadequate when it comes to quantifying the 
uncertainty associated with SOC change predictions at point support or 
when predicting SOC and SOC change at larger spatial scales with 
quantified uncertainty. Indeed, machine learning techniques are unable 
to account for the spatial or spatiotemporal correlation of errors, which 
is essential for reliably quantifying these uncertainties, and to the best of 
our knowledge, no study has demonstrated otherwise. The methodology 
presented here effectively addresses these challenges. Space-time geo-
statistics is specifically designed to account for the spatiotemporal cor-
relation of errors (Cressie, 1993; Gräler et al., 2016; Kyriakidis and 
Journel, 1999; Webster and Oliver, 2007), and this is the key advantage 
of using geostatistics in this study. Furthermore, it overcomes the limi-
tations of our previous approach (Szatmári et al., 2021), allowing for the 
prediction of SOC stock and SOC stock change, with quantified uncer-
tainty, for any year, time period, and spatial scale (Figs. 7 and 8, and 
SM4–16), thereby meeting a wide range of end-user needs. Note that 
there are other approaches, tested so far in 2D and 3D aggregation, that 
do not use geostatistics, such as the Gaussian process regression (Wang 
et al., 2024) or the Monte Carlo integration of the spatial auto- 
correlation of the map errors (Wadoux and Heuvelink, 2023). An 
interesting question is whether these methods can be extended to 
space–time applications.

Geostatistical simulation was used to generate equally probable 
stochastic realizations for the given 2D + T blocks, which were regularly 
or irregularly shaped and varied in size (Table 2). This formed the basis 
for predicting the spatial average of SOC stock and SOC stock change 
with quantified prediction uncertainty. Although sequential stochastic 
simulation (Deutsch and Journel, 1998; Goovaerts, 1997) is often 
regarded as the gold standard for generating stochastic realizations both 
univariate and multivariate cases (Angelini et al., 2023; Goovaerts, 
2001; Heuvelink, 1998; Heuvelink et al., 2016; Poggio and Gimona, 
2014; Szatmári et al., 2021; Szatmári and Pásztor, 2019), we applied 2D 
+ T LU simulation, which relies on the Cholesky decomposition of the 
spatiotemporal covariance matrix. This method was preferred over 
sequential simulation because it is a simple technique that is easy to use 
and implement, can be faster, requires less computing capacity based on 
our experience, and allows for the generation of a large number of sto-
chastic realizations once the covariance matrix has been decomposed. 
These factors make it very attractive and time-efficient for working in 
the space–time domain.

As mentioned in the Introduction, there is a growing demand for 
information on SOC and, more importantly, on SOC change, both 
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nationally and internationally. It is well known that the spatial and 
temporal scales at which such information is required vary widely, 
highlighting the need for dynamic, scalable information on SOC and 
SOC change, with quantified uncertainty, over time. Indeed, numerous 
examples can be given, from GHG inventories (spatial total for the 
country, reported annually), ecosystem accounts (spatial averages for 
total grasslands and arable lands, reported every 3–4 years), through 
crop simulations, terrestrial ecosystem process models, and climate 
models (desired resolution: from 100 m to 10 km) (Fodor et al., 2014; 
Hidy et al., 2016; Koós et al., 2021), to carbon farming and sustainable 
soil and land management (desired resolution: ≤ 100 m) (de Gruijter 
et al., 2016; Malone et al., 2018). To the best of our knowledge, it is not 
currently mandatory to report uncertainty associated with SOC or SOC 
change predictions (e.g., in GHG inventories, carbon accounting, and 
ecosystem condition accounts). However, we believe that involving this 
uncertainty is crucial for informed decision-making, and therefore, 
propose that the associated uncertainty should also be reported. As 
demonstrated, the methodology presented in this study is capable of 
meeting these requirements, thus addressing an important knowledge 
gap in the spatiotemporal modelling of SOC.

Several studies have pointed out that the uncertainty associated with 
point support predictions is too high to reliably identify areas with 
statistically significant SOC change (Heuvelink et al., 2020; Szatmári 
et al., 2021). Indeed, our results also revealed a significant difference in 
uncertainty between point support predictions and spatially aggregated 
predictions over larger supports. Therefore, it is noteworthy to highlight 
that spatial aggregation can greatly reduce uncertainty, thus supporting 
the detection and delineation of larger areas with statistically significant 
changes in SOC stock (Figs. 7 and 8). However, it should be noted that an 
important drawback of spatial aggregation is the loss of spatial detail. 
Consequently, spatial aggregation is not suitable in cases where de-
cisions or actions need to be based on highly detailed spatial information 
on SOC or SOC change, such as carbon farming or evaluation of SOC 
conservation strategies. This issue will be addressed in the following 
subsection.

4.3. Limitations and future research

In this study, a relatively large set of static and dynamic environ-
mental covariates was used. However, capturing the temporal variation 
of SOC is challenging. In fact, the temporal variation of SOC is influ-
enced not only by present conditions but also by the delayed or long- 
term effects of factors and processes that occurred or changed in the 
past. For example, land use change significantly influences SOC, 
although these effects often manifest later in time. In this work, we did 
not account for the long-term effects of soil forming factors, which 
should be addressed in future research to improve the performance of 
the developed space–time model. Nonetheless, there are promising ap-
proaches aimed at incorporating the long-term effects of the soil forming 
factors. For example, Heuvelink et al. (2020) applied weighted averages 
to dynamic covariates across multiple years using exponential decay 
functions, whereas Helfenstein et al. (2024) considered land use changes 
over 5, 10, 20, and 40-year periods based on historical land use maps. It 
should be pointed out that, unfortunately, many national and interna-
tional initiatives link SOC stock changes to the annual changes in land 
use, as proposed by the LULCF (land use, land-use change, and forestry) 
framework. We believe that more research is needed to better under-
stand the temporal variation of SOC and how the delayed or long-term 
effects of certain factors (e.g., land use change, and declining precipi-
tation) influences changes in SOC.

Although spatial aggregation is a potential way to reduce uncer-
tainty, the issue of reducing uncertainty at point support or finer scales 
remains unresolved. Addressing this challenge is becoming increasingly 
urgent, as a growing number of applications (e.g., carbon farming, 
sustainable agriculture, land use planning) and related decision-making 
processes and policy formulations require reliable information on SOC 

and SOC change at finer spatial scales. Two factors further complicate 
this issue. First, there are additional sources of uncertainty that are 
rarely considered in the spatiotemporal modeling of SOC. As mentioned 
in the Introduction, uncertainty related to SOC stock data may not be 
negligible due to sampling issues, measurement errors in SOC and bulk 
density, etc. (Knotters et al., 2022; Paul et al., 2023). Second, accurately 
predicting SOC change is difficult, which makes it challenging to reliably 
track SOC changes over time at finer scales (Helfenstein et al., 2024). In 
the near future, emphasis should be placed on reducing uncertainty at 
finer scales and incorporating all possible sources of uncertainty into the 
modelling process.

We could only validate the predictions and uncertainty quantifica-
tions at point support, as we had no SOC stock observations from 
probability sampling, which are essential for validating block pre-
dictions (Brus et al., 2011; Vaysse et al., 2017). Cross-validation statis-
tics at point support can provide an indication of the quality of block 
support predictions; however, this method is not always reliable for all 
cases. Therefore, more effort should be made to collect validation data at 
block support. Collecting such validation data through probability 
sampling would enable a more comprehensive assessment of prediction 
accuracy across different spatial scales. This approach aligns with the 
goals outlined in Pedometrics Challenge 5 (Wadoux et al., 2021), which 
emphasizes the need for improved validation methods to better support 
soil property predictions. Implementing probability sampling in future 
studies would not only strengthen the validation process but also help in 
refining the predictive models used for SOC stock assessments.

5. Conclusions

Our objective was to present a methodology for predicting the 
spatiotemporal variability of SOC stock and SOC stock change with 
quantified uncertainty at various aggregation levels, using Hungary as 
an example, and to identify and delineate areas with statistically sig-
nificant SOC stock changes. We used a combination of machine learning 
and space–time geostatistics to predict SOC stock at point support, then 
spatial aggregation was performed using conditional 2D + T LU simu-
lation, which relies on Cholesky decomposition of the spatiotemporal 
covariance matrix. The main conclusions drawn from this study can be 
summarized as follows: 

• Importance of spatiotemporal correlation: It is crucial to account for the 
spatiotemporal correlation of errors to reliably quantify the uncer-
tainty associated with SOC change predictions at point support, as 
well as the uncertainty related to spatially aggregated SOC or SOC 
change predictions. Ignoring this correlation results in unrealistic 
uncertainty quantifications, which can have serious consequences 
for decision-making processes.

• Integration of geostatistics and machine learning: The combination of 
machine learning and space–time geostatistics offers a robust 
methodology for predicting the spatiotemporal variability of SOC 
across various supports. While machine learning alone is insufficient 
for quantifying the uncertainty associated with SOC change or 
spatially aggregated SOC and SOC change predictions, geostatistics 
fills this gap by accounting for the spatiotemporal correlation of 
errors.

• Addressing dynamic SOC information needs: The methodology pre-
sented in this study partially meets the increasing demand for dy-
namic information on SOC and SOC changes across various spatial 
scales and time periods. By providing comprehensive predictions and 
quantifying the associated uncertainties, it addresses both current 
and anticipated demands at national and international levels.

• Exhaustive information on SOC for Hungary: The series of maps and the 
information that can be derived from them are unprecedented and 
meet the crucial demand for spatially and temporally exhaustive 
information in Hungary. This also paves the way for a comprehensive 
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analysis and deeper understanding of the spatiotemporal variability 
of SOC stored in Hungarian soils.
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Erdélyi, D., Kern, Z., Nyitrai, T., Hatvani, I.G., 2023. Predicting the spatial distribution of 
stable isotopes in precipitation using a machine learning approach: a comparative 
assessment of random forest variants. GEM - Int. J. Geomathematics 14, 1–19. 
https://doi.org/10.1007/S13137-023-00224-X/TABLES/1.

European Environment Agency, 2016. EU-DEM (raster) - version 1.0, Apr. 2016 [WWW 
Document]. URL https://sdi.eea.europa.eu/catalogue/srv/api/records/3473589f-0 
854-4601-919e-2e7dd172ff50.

Fodor, N., Pásztor, L., Németh, T., 2014. Coupling the 4M crop model with national geo- 
databases for assessing the effects of climate change on agro-ecological 
characteristics of Hungary. Int. J. Digit. Earth 7, 391–410. https://doi.org/10.1080/ 
17538947.2012.689998.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University 
Press.

Goovaerts, P., 2001. Geostatistical modelling of uncertainty in soil science. Geoderma 
103, 3–26. https://doi.org/10.1016/S0016-7061(01)00067-2.
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G. Szatmári et al.                                                                                                                                                                                                                               Geoderma 451 (2024) 117067 

15 

https://doi.org/10.1016/j.geoderma.2024.117067
https://doi.org/10.1016/j.geoderma.2024.117067
https://doi.org/10.1007/BF00897191/METRICS
https://doi.org/10.1007/BF00897191/METRICS
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0010
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0010
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0010
https://doi.org/10.1016/B978-0-12-800137-0.00003-0
https://doi.org/10.1016/B978-0-12-800137-0.00003-0
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0020
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0020
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0020
https://doi.org/10.1016/S0016-7061(99)00003-8
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/j.1365-2389.2011.01364.x
https://doi.org/10.1111/j.1365-2389.2011.01364.x
https://doi.org/10.3389/fpls.2023.1076902
https://doi.org/10.3389/fpls.2023.1076902
https://doi.org/10.1029/2017JD028200
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0060
https://doi.org/10.1007/s11004-005-9022-8
https://doi.org/10.1007/BF00898189/METRICS
https://doi.org/10.1007/BF00898189/METRICS
https://doi.org/10.1016/j.geoderma.2015.11.010
https://doi.org/10.1016/j.geoderma.2015.11.010
https://doi.org/10.1111/gcb.16992
https://doi.org/10.1111/gcb.16992
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0090
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0090
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0090
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0095
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0095
https://doi.org/10.1007/S13137-023-00224-X/TABLES/1
https://sdi.eea.europa.eu/catalogue/srv/api/records/3473589f-0854-4601-919e-2e7dd172ff50
https://sdi.eea.europa.eu/catalogue/srv/api/records/3473589f-0854-4601-919e-2e7dd172ff50
https://doi.org/10.1080/17538947.2012.689998
https://doi.org/10.1080/17538947.2012.689998
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0115
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0115
https://doi.org/10.1016/S0016-7061(01)00067-2
https://doi.org/10.5194/soil-4-173-2018
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0140
http://refhub.elsevier.com/S0016-7061(24)00296-9/h0140
https://doi.org/10.1016/j.envint.2020.106263
https://doi.org/10.1016/J.GEODERMA.2021.115659
https://doi.org/10.1016/J.GEODERMA.2021.115659
https://doi.org/10.1038/s43247-024-01293-y
https://doi.org/10.1371/journal.pone.0125814
https://doi.org/10.1371/journal.pone.0125814
https://doi.org/10.7717/peerj.5518


Heuvelink, G.B.M., Kros, J., Reinds, G.J., De Vries, W., 2016. Geostatistical prediction 
and simulation of European soil property maps. Geoderma Reg. 7, 201–215. https:// 
doi.org/10.1016/j.geodrs.2016.04.002.
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