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Abstract. In this paper, we investigate an inverse time-dependent source problem for a time-
fractional diffusion equation with nonlocal boundary and integral over-determination conditions.
The fractional derivative is described in the generalized Caputo sense. The nonlocal boundary
conditions are regular but not strongly regular. The special thing about this problem is: the system
of eigenfunctions is not complete, but the system of eigen-and associated functions forming a
basis in L2 (0,1). Under some natural regularity and consistency conditions on the input data
the existence, uniqueness and continuously dependence upon the data of the solution are shown
by using the generalized Fourier method, the estimates of Mittag-Leffler function and Banach’s
contraction mapping principle.
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1. INTRODUCTION

Fractional calculus (FC) is the study of integrals and derivatives of arbitrary order,
which has been considered by many researchers in recent years. The arbitrary order
integrals and derivatives are used in the modelling of many physical, chemical, and
biological phenomena, [2, 5, 8, 20, 24, 28]. The FC has applications in the reaction-
diffusion equations [18, 27], and is used to explain the well-known phenomena of
anomalous diffusion observed in experiments, [4, 18]. The time fractional diffusion
equations are obtained by replacing the standard time derivative with fractional de-
rivative in time variable to explain the sub-diffusion or super-diffusion, [19, 21].

In this paper, we are interested with the following time-fractional diffusion equa-
tion

cDα,ρ
t u(x, t) = uxx +F (x, t) , (x, t) ∈ ΩT , (1.1)
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with the initial condition

u(x,0) = ϕ(x) , 0 < x < 1, (1.2)

and family of nonlocal boundary conditions

u(0, t) = u(1, t) , βux (0, t) = ux (1, t) , 0 < t ≤ T, β ∈ R\{−1,1} , (1.3)

where ΩT := {(x, t) : 0 < x < 1, 0 < t ≤ T} for some fixed T > 0, cDα,ρ
t stands for

left-sided generalized Caputo fractional derivative of order 0 < α ≤ 1, ρ > 0 is a
real constant, F (x, t) is the source term and ϕ(x) is the initial data. The fractional
derivative in (1.1) is a generalization of left Caputo and Caputo-Hadamard fractional
derivatives, which can be obtained by taking ρ = 1 and ρ → 0+, respectively. For β =
0, the boundary conditions (1.3) are well-known and called in literature as Samarskii-
Ionkin conditions, [10]. More general boundary conditions of the type (1.3) have
been considered in [7, 12, 22, 25, 29].

The determination of a function u(x, t) which satisfies the initial boundary value
problem (IBVP) (1.1)-(1.3) such that u(·, t) ∈ C 2 (0,1) and cDα,ρ

t u(x, ·) ∈ C (0,T ),
whenever the source term F (x, t) and the initial data ϕ(x) are given and continuous,
is called strong or classical solution of the IBVP (1.1)-(1.3). This problem is usually
known as the direct problem.

Letting the source term have the form F (x, t) = r (t) f (x, t), the inverse source
problem consists of determining u(x, t) and r (t), from the initial data ϕ(x), the source
term f (x, t) and nonlocal boundary conditions (1.3). This problem is not uniquely
solvable. To have the inverse source problem uniquely solvable, we impose the in-
tegral over-determination condition∫ 1

0
u(x, t) dx = g(t) , t ∈ [0,T ] , (1.4)

where g ∈ AC [0,T ] (the space of absolutely continuous functions). The solvability of
inverse source problems with such condition has been considered earlier [3, 11, 26].

In [26] the inverse source problem (1.1)-(1.4) is studied for α = ρ = 1. The case
0 < α < 1 and ρ ̸= 1 is considered for the first time in this paper. We have analysed
the inverse source problem (1.1)-(1.4). Our strategy is mainly based on Fourier’s
method for construction of the series solution using a bi-orthogonal system of func-
tions obtained from the eigen-and associated functions of a spectral problem and its
conjugate problem, see [16]. We provide existence, uniqueness, and stability results
for solution of inverse source problem.

The rest of the paper is organized as follows: in Section 2, we provide some pre-
liminaries and basic result needed for the forthcoming sections. In Section 3, we
present associated spectral problem of this problem and its properties, whilst the bi-
orthogonal system is constructed. Our main results concerning the existence, unique-
ness and continuous dependence of the solution of the inverse problem is present in
Section 4.
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2. PRELIMINARIES AND SOME BASIC RESULTS

In this section, we recall some definitions, notations from fractional calculus, and
some basic results for the convenience of the readers.

Definition 2.1 ([15, page 861]). Let [a,b] be a finite interval and f : [a,b] → R
be an integrable function. The generalized left fractional integral (in the sense of
Katugampola) is defined by

(I α,ρ
a ) f (t) =

1
Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

f (s)
ds

s1−ρ
, 0 < α < 1, ρ > 0,

where Γ(·) is the Euler Gamma function defined by Γ(α) :=
∫ +∞

0 tα−1e−t dt.

Definition 2.2 ([17, 1.1.5]). Let [a,b] be a finite interval. Then, AC [a,b] is the
space of absolute continuous functions on [a,b], defined by

AC [a,b] =
{

f : [a,b]→ R such that f (x) = c+
∫ x

a
ϕ(t) dt, ϕ ∈ L1 (a,b)

}
.

Definition 2.3 ([14]). Let ρ > 0 and f ∈ AC [a,b]. The left generalized Caputo
fractional derivative of f of order 0 < α < 1 is defined by

C
a Dα,ρ f (t) =

1
Γ(1−α)

∫ t

a

(
tρ − sρ

ρ

)−α

f ′ (s) ds.

If α = ρ = 1, then c
aDα,ρ f (t) = f ′ (t).

Theorem 2.1 ([14]). Let f ∈ AC [a,b], 0 < α < 1 and ρ > 0. Then, we have:

I α,ρ
a

(C
a Dα,ρ f (x)

)
= f (x)− f (a) .

Definition 2.4 ([1]). Let f : [ 0,+∞ [ → R be a real valued function. The ρ-
Laplace transform of f is defined by

Lρ { f (t)}(s) =
∫ +∞

0
e−s tρ

ρ f (t)
dt

t1−ρ
, ρ > 0,

for all values of s, the integral is valid.

Theorem 2.2 ([1]). If the ρ-Laplace transform of f : [ 0,+∞ [ →R exists for s> c1
and the ρ-Laplace transform of g : [ 0,+∞ [ → R for s > c2. Then, for any constants
a and b, the ρ-Laplace transform of a f +bg exists and

Lρ {a f (t)+bg(t)}(s) = aLρ { f (t)}(s)+bLρ {g(t)}(s) , for s > max{c1,c2} .

Definition 2.5 ([13]). Let f and g be two functions which are piecewise continuous
at each interval [0,T ]. We define the ρ-convolution of f and g by

( f ∗g)(t) =
∫ t

0
f
[
(tρ − sρ)1/ρ

]
g(s)

ds
s1−ρ

.
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Theorem 2.3 ([13]). Let f and g be two functions which are piecewise continuous
at each interval [0,T ]. Then,

Lρ {( f ∗g)(t)}= Lρ { f (t)}Lρ {g(t)} .

Theorem 2.4 ([13]). Let α > 0 and f ∈ AC [0,T ]. Then,

Lρ

{(C
0 Dα,ρ f

)
(t)

}
(s) = sαLρ { f (t)}− sα−1 f (0) .

Definition 2.6 ([6]). The Mittag-Leffler function of two parameters is defined as

Eξ,η (x) :=
+∞

∑
k=0

zk

Γ(ξk+η)
, z ∈ C, Re(ξ)> 0, Re(η)> 0.

For η = 1, the Mittag-Leffler function is reduced to classical one parameter Mittag-
Leffler function, that is,

Eξ,1 (x) := Eξ (x) =
+∞

∑
k=0

zk

Γ(ξk+1)
.

Let eξ (t,µ) := Eξ

(
−µtξ

)
and eξ,η (t,µ) := tη−1Eξ,η

(
−µtξ

)
, where µ is a positive

real number. The Mittag-Leffler functions eξ (t,µ), eξ,η (t,µ) for 0 < ξ ≤ 1, 0 < ξ ≤
η ≤ 1, respectively, are completely monotone functions, i.e.

(−1)n ∂n

∂tn

[
eξ (t,µ)

]
≥ 0 and (−1)n ∂n

∂tn

[
eξ,η (t,µ)

]
≥ 0, n ∈ N.

Using Theorem 1.6 in [23], we can have the following estimate∣∣µeξ,ξ (t,µ)
∣∣≤ Nµtξ

t
(
1+µξ

) ≤ N
t
≤C, t ∈ ]ε,T ] , (2.1)

where ε > 0, N and C are some constants.

Lemma 2.1 ([13]). Let ξ > 0 and
∣∣∣ λ

sξ

∣∣∣< 1. Then, we have:

Lρ

{
eξ

(
tρ

ρ
,λ

)}
=

sα−1

sα +λ
and Lρ

{
eξ,ξ

(
tρ

ρ
,λ

)}
=

1
sα +λ

.

Theorem 2.5 ([13]). The Cauchy problem{
C
0 Dα,ρy(t)+λy(t) = f (t) , t > 0, 0 < α < 1, ρ > 0, λ ∈ R,
y(0) = y0, y0 ∈ R,

has the solution

y(t) = y0eα

(
tρ

ρ
,λ

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
,λ

)
f (s)

ds
s1−ρ

.
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3. THE AUXILIARY SPECTRAL PROBLEM AND BI-ORTHOGONAL SYSTEMS

Applying the Fourier method for solving the direct problem (1.1)-(1.3) leads to the
spectral problem

−X ′′ = λX , 0 < x < 1, (3.1)

X (0) = X (1) , βX ′ (0) = X ′ (1) , β ∈ R\{−1,1} . (3.2)

According to [25, Theorem 3.109], the boundary conditions (3.2) are regular but
not strongly regular. Obviously, the boundary-value problem (3.1)-(3.2) is not self-
adjoint. But the problem

−Y ′′ = λY, 0 < x < 1, (3.3)

Y (0) = βY (1) , Y ′ (0) = Y ′ (1) , β ∈ R\{−1,1} , (3.4)

will be a conjugated problem.
The two spectral problems (3.1)-(3.2) and (3.3)-(3.4) have the same double eigen-

values λk = (2πk)2 (except for the first λ0 = 0). Following the idea presented in [9],
the system of eigen-and associated functions of problem (3.1)-(3.2) is given by:

X0 (x) = 2, X2k−1 (x) = 4cos(2πkx) , X2k (x) = 4(1−b−ax)sin(2πkx) (3.5)

and the system of eigen-and associated functions of conjugate problem (3.3)-(3.4) is
the following:

Y0 (x) = ax+b, Y2k−1 (x) = (ax+b)cos(2πkx) , Y2k (x) = sin(2πkx) , (3.6)

where a = (1−β)/(1+β) and b = β/(1+β).

Lemma 3.1. The systems of functions (3.5) and (3.6) are bi-orthonormal in
L2 (0,1).

Proof. It is easy to show that the systems (3.5) and (3.6) form a bi-orthogonal
system on [0,1], i.e. ⟨Xi,Yi⟩= 1 and

〈
Xi,Yj

〉
= 0, i ̸= j. □

Lemma 3.2. The systems of functions (3.5) and (3.6) are complete in L2 (0,1).

Proof. Let f ∈ L2 (0,1) be orthogonal with the system of functions (3.5). f (x) can
be presented by the series

f (x) =
+∞

∑
n=1

Bn sin(2πnx) , (3.7)

which converges in L2 (0,1). Since f (x) is orthogonal with (3.5), we have

0 =
∫ 1

0
4(1−b−ax) f (x)sin(2πkx) dx

=
+∞

∑
n=1

Bn

∫ 1

0
4(1−b−ax)sin(2πkx)sin(2πnx) dx = Bk, k ∈ N∗.
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From (3.7), f (x) = 0. Then, (3.5) is complete in L2 (0,1). □

Theorem 3.1. The system of functions (3.5) forms a Riesz basis in L2 (0,1).

Proof. From [25, page 211], the system (3.5) is a Riesz basis in L2 (0,1) if there
exist two constants m,M > 0 such that for any f ∈ L2 (0,1), the following inequality
holds:

m∥ f∥2
L2(0,1) ≤

+∞

∑
i=0

f 2
i ≤ M ∥ f∥2

L2(0,1) ,

where

fi = ⟨ f ,Yi⟩=
∫ 1

0
f (x)Yi (x) dx and f̄i = ⟨ f ,Xi⟩=

∫ 1

0
f (x)Xi (x) dx.

For i = 0, and using the Cauchy-Schwarz inequality we have

f 2
0 = ⟨ f ,Y0⟩2 =

[∫ 1

0
Y0 (x) f (x) dx

]2

≤
∫ 1

0
Y 2

0 (x) dx
∫ 1

0
f 2 (x) dx

≤ 1+β+β2

3(1+β)2 ∥ f∥2
L2(0,1) .

(3.8)

For i = 2k−1, and using the Bessel inequality we obtain:
+∞

∑
k=1

f 2
2k−1 =

+∞

∑
k=1

⟨ f ,Y2k−1⟩2 ≤ ∥Y2k−1∥2
L2(0,1) ∥ f∥2

L2(0,1)

≤ 7−11β+7β2

6(1+β)2 ∥ f∥2
L2(0,1) .

(3.9)

For i = 2k, and using the Bessel inequality we obtain:
+∞

∑
k=1

f 2
2k =

+∞

∑
k=1

⟨ f ,Y2k⟩2 ≤ ∥Y2k∥2
L2(0,1) ∥ f∥2

L2(0,1) ≤
1
2
∥ f∥2

L2(0,1) . (3.10)

From (3.8)-(3.10), we have
+∞

∑
i=0

f 2
i = f 2

0 +
+∞

∑
k=1

f 2
2k−1 +

+∞

∑
k=1

f 2
2k ≤ M ∥ f∥2

L2(0,1) , (3.11)

where M = 4−β+4β2

2(1+β)2 .
On the other hand we have:

f̄ 2
0 = ⟨ f ,X0⟩2 =

[∫ 1

0
X0 (x) f (x) dx

]2

≤ 4∥ f∥2
L2(0,1) . (3.12)

Using the Bessel inequality, we obtain:
+∞

∑
k=1

f̄ 2
2k−1 =

+∞

∑
k=1

⟨ f ,X2k−1⟩2 ≤ 8∥ f∥2
L2(0,1) , (3.13)



AN INVERSE TIME-DEPENDENT SOURCE PROBLEM 861

+∞

∑
k=1

f̄ 2
2k =

+∞

∑
k=1

⟨ f ,X2k⟩2 ≤
8
(
1+β+β2

)
3(1+β)2 ∥ f∥2

L2(0,1) . (3.14)

Then, from (3.12)-(3.14) we have:
+∞

∑
i=0

f̄ 2
i ≤ 44+80β+44β2

3(1+β)2 ∥ f∥2
L2(0,1) . (3.15)

Using the Cauchy-Schwarz inequality and (3.15), we get

∥ f∥2
L2(0,1) = ⟨ f , f ⟩=

+∞

∑
i=0

f̄i fi

≤

[
+∞

∑
i=0

f̄ 2
i

]1/2[
+∞

∑
i=0

f 2
i

]1/2

≤

[
44+80β+44β2

3(1+β)2

]1/2

∥ f∥L2(0,1)

[
+∞

∑
i=0

f 2
i

]1/2

.

Consequently, we have:

m∥ f∥2
L2(0,1) ≤

+∞

∑
i=0

f 2
i , m =

3(1+β)2

44+80β+44β2 . (3.16)

From (3.11) and (3.16), the system (3.5) is a Riesz basis in L2 (0,1). □

Corollary 3.1. From Lemme 3.1 and Theorem 3.1, the systems (3.5) and (3.6) are
equivalent bases in L2 (0,1).

4. MAIN RESULTS

4.1. Existence and uniqueness of the solution

In this subsection, we give the main result on existence and uniqueness of the
solution of the inverse problem (1.1)-(1.4) is presented as follows.

Theorem 4.1. Let the following assumptions be satisfied
(A1) ϕ ∈ C 4 (0,1), ϕ(1) = ϕ(0), ϕ′ (1) = βϕ′ (0), ϕ′′ (1) = ϕ′′ (0), ϕ′′′ (1) = β

×ϕ′′′ (0);
(A2) f (x, ·) ∈ C [0,T ] and for t ∈ [0,T ], f (·, t) ∈ C 4 [0,1];

f (0, t) = f (1, t) , fx (1, t) = β fx (0, t) , fxx (0, t) = fxx (1, t) ,

fxxx (1, t) = β fxxx (0, t) ,
∫ 1

0
f (x, t) dx ̸= 0

and there exists a constant M > 0 such that

0 <

∣∣∣∣∫ 1

0
f (x, t) dx

∣∣∣∣−1

≤ M;
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(A3) g ∈ C 1 (0,T ), and g satisfies the consistency condition
∫ 1

0 ϕ(x) dx = g(0).

If the following condition

T <

(
α |1+β|ρα

MC′ |1−β|

)1/ρα

, (4.1)

where C′ is defined in (4.16), then the inverse problem (1.1)-(1.4) has a unique solu-
tion.

Proof. According to assumptions (A1)-(A3), there are positive constants, L1, L2,
Mi, i = 0, . . . ,2, such that

L1 := max
0≤t≤T

eα

(
tρ

ρ
,λk

)
, L2 := max

0≤s≤t≤T
Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
,

M0 := ∥r∥C (0,T ) . M1 := max
(
∥ f0∥C (0,T ) ,

∥∥∥ f (4)2k−1

∥∥∥
C (0,T )

,
∥∥∥ f (4)2k

∥∥∥
C (0,T )

)
,

M2 := max
(
|ϕ0| ,

∣∣∣ϕ(4)
2k−1

∣∣∣ , ∣∣∣ϕ(4)
2k

∣∣∣) .
The proof of this theorem takes place in three steps:

Step 1: Construction of solution: By applying the Fourier’s method, the solu-
tion u(x, t) of the direct problem (1.1)-(1.3), can be developed in uniformly
convergent series form using the eigenfunctions (3.5) in L2 (0,1) as follows

u(x, t) = 2u0 (t)+
+∞

∑
k=1

u2k−1 (t)X2k−1 (x)+
+∞

∑
k=1

u2k (t)X2k (x) , (4.2)

We define the coefficients u0 (t), u2k−1 (t) and u2k (t) for k ∈ N∗ by multiply-
ing (4.2) by the eigenfunctions of (3.6) and integrating over [0,1] and using
Lemma 3.1, we get

u0 (t) = ⟨u(x, t) ,Y0 (x)⟩ , u2k−1 (t) = ⟨u(x, t) ,Y2k−1 (x)⟩ ,
u2k (t) = ⟨u(x, t) ,Y2k (x)⟩ ,

(4.3)

where ⟨·, ·⟩ represents the inner product in L2 (0,1).
The expansion coefficients of the functions f (x, t) and ϕ(x) into eigen-

functions (3.6) are given by

f0 (t) = ⟨ f (x, t) ,Y0 (x)⟩ , f2k−1 (t) = ⟨ f (x, t) ,Y2k−1 (x)⟩ ,
f2k (t) = ⟨ f (x, t) ,Y2k (x)⟩ ,

(4.4)

and

ϕ0 = ⟨ϕ(x) ,Y0 (x)⟩ , ϕ2k−1 = ⟨ϕ(x) ,Y2k−1 (x)⟩ ,
ϕ2k = ⟨ϕ(x) ,Y2k (x)⟩ .

(4.5)
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From (1.1), (4.3)-(4.5), Lemma 3.1, integration by parts twice and (1.3), we
obtain{

cDα,ρ
t u0 (t) = r (t) f0 (t) ,

u0 (0) = ϕ0,
(4.6){

cDα,ρ
t u2k (t)+λku2k (t) = r (t) f2k (t) ,

u2k (0) = ϕ2k,
(4.7){

cDα,ρ
t u2k−1 (t)+λku2k−1 (t) =−4πaku2k (t)+ r (t) f2k−1 (t) ,

u2k−1 (0) = ϕ2k−1.
(4.8)

Applying I α,ρ
0 on (4.6) and using Theorem 2.1, we obtain

u0 (t) = ϕ0 +
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

r (s) f0 (s)
ds

s1−ρ
. (4.9)

Applying Theorem 2.5 on (4.7) and (4.8) , we obtain:

u2k (t) = ϕ2keα

(
tρ

ρ
,λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
,λk

)
r (s) f2k (s)

ds
s1−ρ

, (4.10)

and

u2k−1 (t) = ϕ2k−1eα

(
tρ

ρ
,λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
,λk

)
r (s) f2k−1 (s)

ds
s1−ρ

−4πak
∫ t

0
eα,α

(
tρ − sρ

ρ
,λk

)
u2k (s)

ds
s1−ρ

.

(4.11)

After substituting expressions u0 (t), u2k (t), and u2k−1 (t), respectively de-
scribed by (4.9), (4.10), and (4.11), into (4.2), we have:

u(x, t) = 2ϕ0 +
2

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

r (s) f0 (s)
ds

s1−ρ

+
+∞

∑
k=1

{
ϕ2keα

(
tρ

ρ
,λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
,λk

)
r (s) f2k (s)

ds
s1−ρ

}
X2k (x)

+
+∞

∑
k=1

{
ϕ2k−1eα

(
tρ

ρ
,λk

)
+

∫ t

0
eα,α

(
tρ − sρ

ρ
,λk

)
r (s) f2k−1 (s)

ds
s1−ρ

−4πak
∫ t

0
eα,α

(
tρ − sρ

ρ
,λk

)
u2k (s)

ds
s1−ρ

}
X2k−1 (x) ,

Taking the generalized Caputo fractional derivative cDα,ρ
t of the over-

determination condition (1.4), and integrating the equation (1.1) on [0,1] and
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using (1.3), we obtain

r (t) =
cDα,ρ

t g(t)+(1−β)ux (0, t)∫ 1
0 f (x, t) dx

where
∫ 1

0
f (x, t) dx = 2 f0 (t)+

2a
π

+∞

∑
k=1

f2k (t)
k

and

ux (0, t) =
+∞

∑
k=1

8πk (1−b)
(

ϕ2keα

(
tρ

ρ
,λk

)
+
∫ t

0
eα,α

(
tρ − sρ

ρ
,λk

)
r (s) f2k (s)

ds
s1−ρ

)
.

Hence, we get following implicit representation of r (t)

r (t) = η(t)+

[
2 f0 (t)+

2a
π

+∞

∑
k=1

f2k (t)
k

]−1 ∫ t

0
K (t,s)r (s)

ds
s1−ρ

, (4.12)

where

η(t) =

cDα,ρ
t g(t)+a

+∞

∑
k=1

8πkϕ2keα

(
tρ

ρ
,λk

)
∫ 1

0 f (x, t) dx
, (4.13)

and

K (t,s) = a
(

tρ − sρ

ρ

)α−1 +∞

∑
k=1

8πk f2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
.

Step 2: Existence of the solution: We consider the following map:

P (r (t)) := η(t)+

[
2 f0 (t)+

2a
π

+∞

∑
k=1

f2k (t)
k

]−1 ∫ t

0
K (t,s)r (s)

ds
s1−ρ

.

on the space C [0,T ] with ∥φ∥ := max
0≤t≤T

|φ(t)|. To show P is well defined.

Since, under the assumptions (A1), (A2) and integration by parts four times,
for t,s ∈ [0,T ], we obtain

+∞

∑
k=1

8πkϕ2keα

(
tρ

ρ
,λk

)
≤

+∞

∑
k=1

L1

∣∣∣ϕ(4)
2k

∣∣∣
2π3k3 , (4.14)

+∞

∑
k=1

8πk f2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
≤

+∞

∑
k=1

L2

∣∣∣ f (4)2k (s)
∣∣∣

2π3k3 , (4.15)

where ϕ
(4)
2k =

∫ 1
0 ϕ(4) (x)sin(2πkx) dx, f (4)2k (t) =

∫ 1
0

∂4 f (x,t)
∂x4 sin(2πkx) dx.
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Using the Cauchy-Schwarz and Bessel inequalities, we obtain

+∞

∑
k=1

L2

∣∣∣ f (4)2k (s)
∣∣∣

2π3k3 ≤

[
+∞

∑
k=1

L2
2

4π6k6

]1/2[
+∞

∑
k=1

(
f (4)2k (s)

)2
]1/2

≤ c
∥∥∥∥∂4 f (x, t)

∂x4

∥∥∥∥
L2(0,1)

,

where c is a constant independent of t and k. Thus, we have

+∞

∑
k=1

8πk f2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
≤C′,

C′ = c max
0≤t≤T

∥∥∥∥∂4 f (x, t)
∂x4

∥∥∥∥
L2(0,1)

.

(4.16)

By (4.14) and (4.15), the series functions

+∞

∑
k=1

8πk f2k (s)Eα,α

[
−λk

(
tρ − sρ

ρ

)α]
and

+∞

∑
k=1

8πkϕ2keα

(
tρ

ρ
,λk

)
are uniformly convergent. Then, η(t) and K (t,s) are continuous functions on
[0,T ] and [0,T ]× [0,T ], respectively. Hence, the operator P is well defined.

Let r1,r2 ∈ C (0,T ). From (4.16) and the change of variable τ = tρ−sρ

ρ
, we

get

∥P (r1)−P (r2)∥ ≤
MC′ |1−β|T ρα

α |1+β|ρα
∥r1 − r2∥ . (4.17)

With the condition (4.1), MC′|1−β|T ρα

α|1+β|ρα < 1, then the mapping P is a contrac-
tion. Consequently, by Banach fixed point theorem, the mapping P has a
unique fixed point r ∈ C [0,T ].

To establish the regularity of the obtained solution, it remains to show

u(x, t) ,ux (x, t) ,uxx (x, t) ,cDα,ρ
t u(x, t) ∈ C (ΩT ) .

Under assumptions (A1)-(A2) and integration by parts four times, we have

f2k (t) =
f (4)2k (t)
16π4k4 , f2k−1 (t) =

1
16π4k4

(
f (4)2k−1 (t)−

2a
πk

f (4)2k (t)
)
,

ϕ2k =
ϕ
(4)
2k

16π4k4 , ϕ2k−1 =
1

16π4k4

(
ϕ
(4)
2k−1 −

2a
πk

ϕ
(4)
2k

)
.

(4.18)
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From (4.9)-(4.11), (4.18) and (2.1), we get

|u0 (t)| ≤ M2 +
M0M1T ρα

ραΓ(α+1)
:= M3, t ∈ [0,T ] ,

|u2k (t)| ≤
L1M2 +L2M0M1T ρα/αρα

16π4k4 , t ∈ [0,T ] ,

|u2k−1 (t)| ≤
(L1M2 +L2M0M1T ρα/αρα)(1+ |a|+ |a|CT ρ/ρ)

16π4k4 ,

t ∈ [ε,T ] , ε > 0.

(4.19)

By using (4.2) and (4.19), following relations hold for x ∈ [0,1] and t ∈ [ε,T ]
with ε > 0 such that

|u(x, t)| ≤ 2M1 +
+∞

∑
k=1

(L1M2 +L2M0M1T ρα/αρα)(1+ |a|+ |a|CT ρ/ρ)

4π4k4

+
+∞

∑
k=1

(1+ |b|+ |a|)(L1M2 +L2M0M1T ρα/αρα)

4π4k4 ,

|ux (x, t)| ≤
+∞

∑
k=1

(L1M2 +L2M0M1T ρα/αρα)(1+ |a|+ |a|CT ρ/ρ)

2π3k3

+
+∞

∑
k=1

(|a|+2πk (1+ |b|+ |a|))(1+ |b|+ |a|)
4π4k4

× (L1M2 +L2M0M1T ρα/αρ
α)

|uxx (x, t)| ≤
+∞

∑
k=1

(L1M2 +L2M0M1T ρα/αρα)(1+ |a|+ |a|CT ρ/ρ)

πk2

+
+∞

∑
k=1

(a+πk (1+ |b|+ |a|))(L1M2 +L2M0M1T ρα/αρα)

π3k3 . (4.20)

From (4.6)-(4.8), (4.19) and for t ∈ [ε,T ], we have∣∣c
0Dα,ρ

t u0 (t)
∣∣≤ M0M2,∣∣c

0Dα,ρ
t u2k (t)

∣∣≤ M0M2

16π4k4 +
L1M2 +L2M0M1T ρα/αρα

4π2k2 ,∣∣c
0Dα,ρ

t u2k−1 (t)
∣∣≤ (1+ |a|)M0M2

16π4k4 +
(L1M2 +L2M0M1T ρα/αρα)

4π2k2

× (1+ |a|+ |a|CT ρ/ρ)+
|a|(L1M2 +L2M0M1T ρα/αρα)

4π3k3 .

Consequently,∣∣c
0Dα,ρ

t u(x, t)
∣∣≤ 2M0M2 +

+∞

∑
k=1

(2+ |b|+2 |a|)M0M2

4π4k4 (4.21)
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+
+∞

∑
k=1

|a|(L1M2 +L2M0M1T ρα/αρα)

π3k3

+
+∞

∑
k=1

(L1M2 +L2M0M1T ρα/αρα)(2+ |b|+2 |a|+ |a|CT ρ/ρ)

π2k2 .

From (4.20), (4.21) and by Weierstrass M-test, the series corresponding to
u(x, t), ux (x, t), uxx (x, t), c

0Dα,ρ
t u(x, t) are uniformly convergent on [0,1]×

[ε,T ] for ε > 0. Hence, u(x, t), ux (x, t), uxx (x, t), c
0Dα,ρ

t u(x, t) are continuous
functions on ΩT .

Step 3: Uniqueness of the solution: Let {u(x, t) ,r1 (t)} and
{v(x, t) ,r2 (t)} be two solution sets of the inverse problem (1.1)-(1.4). By

using (4.2), we obtain

u(x, t)− v(x, t) = 2(u0 (t)− v0 (t))

+
+∞

∑
k=1

(u2k−1 (t)− v2k−1 (t))X2k−1 (x)

+
+∞

∑
k=1

(u2k (t)− v2k (t))X2k (x) ,

(4.22)

Due to the estimate (4.17) and condition (4.1), we have r1 = r2, and by sub-
stituting r1 = r2 in (4.22) and (4.9)-(4.11), we obtain u = v.

□

4.2. Continuous dependence of the solution on the data

Let H be the set of triples {ϕ, f ,g} where the functions ϕ, f and g satisfy the
assumptions of Theorem 4.1 and

∥ϕ∥C 4(0,1) ≤ M4, ∥ f∥C 4(ΩT )
≤ M5, ∥g∥C 1(0,1) ≤ M6.

For φ ∈ H , we define the norm ∥φ∥H := ∥ϕ∥C 4(0,1)+∥ f∥C 4(ΩT )
+∥g∥C 1(0,1).

By using the Cauchy-Schwarz and Bessel inequalities, the series functions

+∞

∑
k=1

∣∣∣ f (4)2k (s)
∣∣∣

2π3k3 ≤ M7,

is uniformly convergent, where f (4)2k (s) are the coefficients of the sine Fourier expan-

sion of the function ∂4 f (x,s)
∂x4 .

Theorem 4.2. The solution {u(x, t) ,r (t)} of the inverse problem (1.1)-(1.4) un-
der the assumptions of Theorem 4.1, depends continuously upon the data for T <(

α|1+β|ρα

MC′|1−β|

)1/ρα

.
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Proof. Let {u(x, t) ,r (t)} and {ũ(x, t) , r̃ (t)} be two solution sets of the inverse
problem (1.1)-(1.4), corresponding to the data φ = {ϕ, f ,g} and φ =

{
ϕ̃, f̃ , g̃

}
, re-

spectively.
For g, g̃ ∈C1 (0,T ), we have

∥∥c
0Dα,ρ

t g−c
0 Dα,ρ

t g̃
∥∥

C (0,T ) ≤ M8 ∥g− g̃∥C 1(0,T ), where

M8 =
T 1−ρα

ρ1−αΓ(2−α)
. From (4.13), we have

η(t)− η̃(t) =
(∫ 1

0
f (x, t) dx

∫ 1

0
f̃ (x, t) dx

)−1

×
[∫ 1

0
f̃ (x, t) dx

(c
0Dα,ρ

t g(t)−c
0 Dα,ρ

t g̃(t)
)

+a
+∞

∑
k=1

8πk (ϕ2k − ϕ̃2k)Eα

(
−λk

(
tρ

ρ

)α)
+c

0Dα,ρ
t g̃(t)

(∫ 1

0
f̃ (x, t) dx−

∫ 1

0
f (x, t) dx

)
+a

+∞

∑
k=1

8πkϕ̃2kEα

(
−λk

(
tρ

ρ

)α)
×
(∫ 1

0
f̃ (x, t) dx−

∫ 1

0
f (x, t) dx

)]
.

From (4.18), we have ϕ2k − ϕ̃2k =
∫ 1

0 (ϕ(x)− ϕ̃(x))X2k (x) dx = ϕ
(4)
2k −ϕ̃

(4)
2k

16π4k4 .
We have the estimate

∥η− η̃∥ ≤ N1 ∥ϕ− ϕ̃∥C 4(0,1)+N2
∥∥ f − f̃

∥∥
C (ΩT )

+N3 ∥g− g̃∥C1(0,1) ,

where N1 = M2 |a|L1C∗, N2 = M2 (|a|L1M7 +M6M8), N3 = M2M5M8.
From (4.12), we have the estimate

∥r− r̃∥ ≤ ∥η− η̃∥+ MM0 |a|T ρα

αρα

∥∥∥ f (4)− f̃ (4)
∥∥∥

C (ΩT )
+

M |a|C′T ρα

αρα
∥r− r̃∥

+
M2M0C′T ρα

αρα

∥∥ f − f̃
∥∥

C (ΩT )
.

Due to the estimate of ∥η− η̃∥, we have(
1− M |a|C′T ρα

αρα

)
∥r− r̃∥ ≤ N1 ∥ϕ− ϕ̃∥C 4(0,1)

+

(
N2 +

MM0 |a|T ρα

αρα
+

M2M0C′T ρα

αρα

)∥∥ f − f̃
∥∥

C 4(ΩT )

+N3 ∥g− g̃∥C1(0,1) .
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Hence (
1− M |a|C′T ρα

αρα

)
∥r− r̃∥ ≤ N4

∥∥φ− φ̃
∥∥

H ,

where N4 := max
{

N1,N2 +
MM0|a|T ρα

αρα + M2M0C′T ρα

αρα ,N3

}
.

For T <
(

αρα

M|a|C′

)1/ρα

, we have ∥r− r̃∥ ≤ N4

1−M|a|C′T ρα

αρα

∥∥φ− φ̃
∥∥

H .

From (4.2), a similar estimate can be also obtained for the difference u− ũ:

∥u− ũ∥C(Ω̄T) ≤ N5
∥∥φ− φ̃

∥∥
H .

□
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