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Eli Metchnikoff, who was born in
1845 and died in 1916, was one of the
first to write about phagocytes. He
described the uptake of spores of a pri-
mitive fungus (Monosporu bicuspi-
data) by cells of the fresh-water flea
(Daphnia magna) and later the up-
take of a needle ofa fern by a larva of
a starfish (Bipinnaria) [1]. But
Metchnikoff was not the first to ob-
serve phagocytosis. Ernst Haeckel
had already described the uptake of
Indigo dye by cells of Thetis fimbria,
a small marine organism [2]. In the
same period in which phagocytosis
was described, Julius Cohnheim was
the first to describe the migration of
leucocytes from the circulation into
tissues after injury [3]. His study
done in the frog was the first to yield
results comparable to those of mo-
dern research on inflammation, since
Cohnheim described the role of che-
motaxis in the supply of cells to a site
of inflammation or infection. Another
historical event concerns the de-
scription of opsonins, which are serum
factors that promote the ingestion of
bacteria by professional phagocytes,
i.e., granulocytes, monocytes, and
macrophages, by Almroth Wright and

Stewart Douglas [4]. Today it is
known that these opsonins are im-
munoglobulins (antibodies) and com-
plement and in some respect fibro-
nectin, that cover the bacteria and
interact with specific binding sites on
the surface of phagocytes. More re-
cently, the mechanism by which op-
sonized bacteria are taken up by
phagocytes, which is called the zipper
mechanism, was described by Sam
Silverstein [5].

In the present contribution | shall
briefly review our studies on the origin
and kinetics of macrophages as well as
the functions ofthese cellsand pointout
questions that remain to be answered.

Origin and Kinetics of mononu-

clear Phagocytes

Mononuclear phagocytes form a
cell line that originates from the
pluripotent stem cell in the bone
marrow. The most immature cell of
this line is the monoblast (Fig. 1).
In the mouse, the cell cycle of the
monoblast is about 12 hr, and after
division one cell gives rise to two
promonocytes. The promonocyte too
divides only once (cell-cycle time
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Humoral control of monocytopoiesis
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Fig. 1. Schematic representation of the origin and kinetics of mononuclear phagocytes
and the humoral control (positive and negative feedback mechanisms) of the production
of monocytes

about 16 hr) and gives rise to two
monocytes (Fig. 1). Monocytes do not
divide further, and leave the bone
marrow randomly within 24 hr after
they are formed. These cells remain
relatively long in the circulation (mo-
use: half-time about 17 hr; man: half-
time about 71 hr) compared with gra-
nulocytes (half-time about 7 hr), and
leave this compartment randomly.

During the last twenty years, con-
siderable attention has been given to
the origin of the macrophages. The
bone marrow origin of macrophages
in the peritoneal cavity, liver, spleen,
and lung, as well as of synovial type-A
cells and osteoclasts, has been proven
by a large number of studies [6]. Ki-
netic studies with in vivo-labeled mo-
nocytes done in normal, in monocyto-
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pénie and in irradiated mice have
provided proof that the monocytes
migrate from the blood into the tis-
sues, where they become macrophages
(Fig. 1) [7—10]. In vitro labeling
studies with the DNA precursor
H-thymidine have shown that 5%
or less of macrophages at various
sites synthesize DNA. Not much is
known about the characteristics of
the mononuclear phagocytes that di-
vide in the tissues and body cavities.
These cells are not resident macro-
phages but have very recently, less
than 24 to 48 hr before harvesting,
arrived in the tissues from the bone
marrow. The current view is that in
the normal steady state the mainte-
nance of the population of macro-
phages in a tissue compartment de-
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pends on the influx of monocytes
from the circulation and on local
division of mononuclear phagocytes
that also derive from the bone mar-
row and divide once in the tissues.
Calculations have shown that on ave-
rage 75% of the macrophage popu-
lation is supplied by the influx of
monocytes and 25% by local division
of (immature) mononuclear phago-
cytes. Based on these data, in the
mouse the calculated mean turnover
time of macrophages in the tissues
lie between 7 and 14 days, which is
much shorter than the turnover time
previously reported.

In the normal steady state the
combination of a constant influx of
monocytes into tissues, where they
become macrophages, and a constant
local production, implies a constant
cell death in the tissues and/or a con-
stant efflux of cells from the tissue
compartments. Almost nothing is
known about this point. It is known
that lung macrophages leave the
body via air spaces, and there is
evidence that macrophages migrate
to the local lymph nodes and perhaps
die at that site.

Another important point which is
often neglected in the study of expe-
rimental or pathological lesions in
which macrophages are involved is
whether these cells accumulate or
proliferate in the tissues. These terms
are often used erroneously: prolifera-
tion should be reserved for cases in
which the increase in the number
of cells is known to be due to the
division of cells already present
at, or recruited to, a site and the

term accumulation for increases due
to the migration of (non-dividing)
cells from other sites (e.g., the circula-
tion).

R egulation of monocyte

PRODUCTION

As soon as tissue injury occurs, the
mechanisms by which injurious agents
are eliminated start to operate. In
general, granulocytes appear first at
the site of the lesion, and after a short
delay the number of exudate ma-
crophages in the inflammatory exu-
date increases. During various kinds
of inflammation the number of cir-
culating monocytes increases as well.
When a rather large number of ma-
crophages is required at the site of
inflammation, a regulatory mecha-
nism is needed to augment the rate
of division of the monocyte precur-
sors in the bone marrow.

Investigations have shown that
plasma and sera collected during the
onset of an inflammatory reaction
contain a factor, called factor incre-
asing monocytopoiesis (FIM), that
stimulates monocytopoiesis [11 —14].
This factor is synthesized and secreted
by macrophages at the site of inflam-
mation and then transported via the
circulation to the bone marrow where
it exerts its stimulatory action (Fig.
1). FIM is a small protein with a
molecular mass of about 20 K dalton,
is cell line specific, is not species spe-
cific, is no complement or clotting
factor, has no chemotactic activity,
and is not CSF-M or IL-1. The mole-
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cular structure of FIM is unknown
as yet.
During the second phase of an

inflammatory response the circula-
tion contains a serum factor that
inhibits monocytopoiesis (Fig. 1). This
factor, monocyte production inhibi-
tor (MPI) [16], has a molecular mass
of approximately 250 K dalton; the
site of its production has not yet
been established. Although FIM and
MPI are not detectable under stea-
dy-state conditions with the available
assay methods, it is conceivable that
they regulate monocytopoiesis under
steady-state conditions as well.

Mononuclear phagocyte

system

On the basis of the data then ava-
ilable, the concept of the Mononuclear
Phagocyte System (MPS) [16] was

put forward in 1969. Later research
confirmed the assumptions underly-
ing this concept, and supplementary
evidence was also obtained. The cells
assigned to the mononuclear phago-
cyte system at present are shown in
Table I.

Several types of cell (i.e., dendritic
cells, interdigitating cells in lym-
phoid tissues, follicular and germinal-
-centre dendritic cells, epidermal Lan-
gerhans cells, and wveiled cells in
lymph) all differ from monocytes and
macrophages in a number of mor-
phologic and functional characteris-
tics and, furthermore, their origin
has not yet been definitely establis-

hed [17, 18]. Consequently, these
cells have not yet been assigned
definitely to the MPS, even

though some of them (e.g., the inter-
digiting cell, the Langerhans cell,
and the veiled cells) are good candi-
dates.

Table |

Cells belonging to the mononuclear phagocyte system (MPS)

Body acvities

Pleural macrophages
Peritoneal macrophages

Inflammation
Exudate macrophages

Bone marrow Tissues

Monoblasts Macrophages occurring in:

Promonocytes connective tissue (histiocytes)

Monocytes skin (histiocytes; Langerhans cells?)
liver (Kupffer cells)

Blood spleen (red pulp macrophages)

Monocytes

interdigitating cells?)
thymus

lymph nodes (free and fixed macrophages; Epithelioid cells

Multinucleated giant cells

bone marrow (resident macrophages)

bone (osteoclasts)
synovia (type A cell)

lung (alveolar and tissue macrophages)
mucosa-associated lymphoid tissues

gastro-intestinal tract
genito-urinary tract
endocrine organs

central nervous system (macrophages,
(reactive) microglia, CSF macrophages)
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Opsonization of pakticles

Research done in the last few
decades has revealed that opsoniza-
tion is achieved by the coating of
particles (e.g., micro-organisms) with
specific antibodies of the I1gG class,
in particular the subclasses IgGI and
1gG3, with or without complement,
or by IgM antibodies together with
complement. The (Fab)2 sites of the
IgG molecules bind to the particle,
thus exposing their Fc parts to the
surface to the phagocytes. Since pha-
gocytes have membrane receptors for
the Fc part of IgG, they can recog-
nize and bind lgG-coated particles.
Among the other immunoglobulins,
IgA has been reported to have some
opsonic activity too [19—21], albeit
much less than 1gG. igl) and IgE,
as far as is known at present, are not
involved in the opsonic process des-
pite the presence of IgE receptors on
mononuclear phagocytes [22]. IgM
itself has no opsonic capacity, but
the binding of IgM antibodies to
particles promotes activation of the
complement systems, which leads to
the deposition of C3b on the particles
and thus yields micro-organisms co-

ated with IgM + C3b. 1gG-coated
bacteria too can activate comple-
ment, which leads to 1gG + C3b-

-coated bacteria. Deposition of C3b on
micro-organisms can also occur in
the absence of immunoglobulins. This
occurs via the alternative pathway of
complement activation, which is ini-
tiated by structures on the cell walls
of micro-organisms [23, 24]. Particles
like zymosan can also be coated by

complement synthesized and secreted
by macrophages [25]. Since phago-
cytes have C3b receptors, C3b-opso-
nized particles can attach to the mem-
brane of these cells and be ingested
[26, 27].

Although the recognition of par-
ticles coated with 1gG and/or C3b
via their Fey and C3b receptors is the
main mechanism underlying the inge-
stion of foreign material (e.g. micro-
-organisms), which is called immune
phagocytosis [28 —31], attachment
of particles can also be promoted by
other serum factors, such as fibro-
nectin [32—35]. Fibronectin enhan-
ces the ingestion mediated via C3b
and/or Fey receptors [36]. Non-im-
mune phagocytosis is less efficient
than immune phagocytosis and refers
to the ingestion of non-opsonized par-

ticles [37], particles opsonized by
nonspecific proteins [32—34], par-
ticles with a lectin-like structure

[38], and particles with a modified
surface membrane [39]. This type of
ingestion occurs via nonspecific bin-
ding sites on the phagocyte membra-
ne.

Mechanisms of phagocytosis

When a micro-organism has been
recognized and has become attached
to the phagocytes, ingestion can oc-
cur. Recently, the mechanism un-
derlying the ingestion of particles by
macrophages has been studied in de-
tail (29, 30, 40) (Fig. 2). These authors
showed that one singlepoint receptor-
-ligand interaction between particle
and phagocyte is not enough to trig-
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Opsonization Attachment of Zippering
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Fig. 2. Postulated mechanism for the ingestion of IgG-coated micro-organisms (ITT//I")
by a zipper phenomenon. Adapted from Griffin et al (29)

ger complete ingestion of the par-
ticle; for that, the phagocyte mem-
brane must surround the particle in
a zipper-like way by continous re-
ceptor-opsonin interactions. When the
tips of the pseudopodia of a pha-
gocyte surrounding a particle make
contact with each other, the micro-
-organism is lodged in a phagosome.
The membrane of this vacuole then
fuses with lysosomes, which gives rise
to a phagolysosome.

Intracellular

KILLING OF BACTERIA

Serendipity led to the observation
that when monocytes with ingested
bacteria were incubated in the pre-
sence of medium without serum, no
intracellular killing occurred. This
indicated that serum proteins stimu-
late intracellular Killing [41]. The
assay used to measure the intracellu-
lar killing of micro-organisms in vitro
includes the removal of non-ingested
bacteria by repeated washes followed
by incubation of cells containing
phagocytosed bacteria for 60 or 120
min at 37 °C before determination of
the number of viable intracellular
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micro-organisms with a microbiologi-
cal method [42].

Analysis of the observation concer-
ning serum in relation to intracellular
killing showed that in the presence of
IgG monocytes kill about 40 —50% of
the ingested bacteria and in the pre-
sence of complement components C3,
C3b, and B/Bb about 30—40%, but
when both IgG and complement are
present 85% of the ingested bacteria
are killed within 120 min. Blocking
and other experiments proved that
the Fey part of IgG interacts with
its specific receptor in the cell mem-
brane, and that C3/C3b interacts with
its membrane receptor as well [41,
43]. It is of interest that for mono-
cytes the membrane stimulation ne-
cessary for optimal intracellular kil-
ling can also be activated by a non-
-physiological stimulus, e.g., concana-
valin A, for which binding sites, i.e.,
the mannose residues, are present in
the cell membrane [44].

Catalase-positive and catalase-nega-
tive bacteria differ as to the degree
of intracellular Killing in the absence
of extracellular 1gG [45]. Ingested
catalase-positive bacteria are not or
virtually not killed in the absence of
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B/Bb

C3/C3b

Fig. 3. Schematic representation of the stimulation of the intracellular killing by extra-

cellular stimuli via an interaction with their respective membrane receptors. For granu-

locytes this stimulation was found in the presence of 1gG and C3b; for monocytes in
the presence of 1gG, C3/C3b, B/Bb and lectins

serum whereas catalase-negative bac-
teria are killed rather effectively un-
der these conditions.

In sum, these studies have shown
that optimal intracellular Killing of
bacteria ingested by granulocytes and
monocytes/ macrophages requires con-
tinous stimulation of these cells by
extracellular serum factors (1gG,
C3/C3b, and B/Bb) interacting with
their specific membrane receptors
[41, 43, 45, 46] (Fig. 3).

Macrophage Activation

The phenomenon of cellular im-
munity has been known for more
than eighty years, and is best illu-
strated by the experiments of Robert
Koch in 1882 [47]. When normal
guinea pigs are inoculated subcuta-
neously with a large number of live
tubercle bacilli, the wound first closes
and seemingly heals, but after about

2

10 to 14 days extensive ulceration
develops and persists until the animal
dies. When a small number of tubercle
bacilli are injected intracutaneously
the animal’s defences can cope with
these micro-organisms and it will sur-
vive because a state of immunity has
developed. When such an animal
has recovered and is re-infected with
a large number of tubercle bacilli,
it will not die. This increased resis-
tance to infection with tubercle bacil-
li, based on an altered immunity, can
be demonstrated with the tuberculin
test. When a small amount of an
extract of tubercle bacilli (called tu-
berculin) is applied to the skin, a local
inflammatory reaction becomes mani-
fest in two to three days. Histologi-
cally, the reaction is characterized by
an infiltrate containing lymphocytes
and macrophages. This type of res-
ponse is called a delayed hypersensi-
tivity reaction, because two to three
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days elapse before the reaction re-
aches a maximum.

In 1945, Merril Chase [48] was the
first to demonstrate that the cellular
immunity to tubercle bacilli and the
delayed hypersensitivity reaction ex-
pressing the altered state of cellular
immunity can be transferred from
immune guinea pigs to normal ani-
mals by lymphocytes but not by
serum. Studies by Mackeness [49, 50]
and Blanden et al. [51] showed that
live L. monocytogenes and BCG acti-
vate macrophages that express en-
hanced microbicidal activity against
various micro-organisms. This state
of acquired immunity is called cel-
lular or cell-mediated immunity. Re-
cent research has shown that lym-
phokines produced and secreted by
T4 (helper) lymphocytes are respon-

sible for the activation of macro-
phages [52 —55].
In general, it has been assumed

that activated macrophages express
enhanced microbicidal activity aga-
inst all types of micro-organism ir-
respective of the kind of stimulus.
Recent research has shown that acti-
vated macrophages exert their incre-
ased microbicidal activity only to-
ward certain types of micro-organism
depending on the kind of stimulus.
Activation of macrophages occurs
during an infection with BCG or L.
monocytogenes. These activated ma-
crophages fulfill two generally ac-
cepted criteria for macrophage acti-
vation [56], i.e., inhibition of the
intracellular replication of Toxo-
plasma gondii and enhanced oxidative
metabolism as reflected by the incre-
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ased oxygen consumption and H 20
release after stimulation of the cells
with PM A [57]. The rate of intracel-
lular killing of L. monocytogenes by
murine macrophages activated by
BCG and PPD was greater by a fac-
tor of about 1.7 —2.0 than that of the
resident macrophages [57]. The re-
sults of in vivo studies, i.e., a decrease
in the number of intravenously-in-
jected L. monocytogenes in the liver
and spleen of BCG-infected mice
are consistent with the in vitro re-
sults [57]. BCG-PPD-activated ma-
crophages did not kill S. typhimurium
more rapidly than normal resident
macrophages [57] and the intracel-
lular killing of S. aureus and E. coli
by activated macrophages was also
not more efficient than that by resi-
dent macrophages [57]. Thus, acti-
vation of macrophages by live bac-
teria is a selective process with regard
to their bactericidal effector func-
tions.

Interferon-y is assumed to be the
most important component of the T
lymphocyte-derived lymphokines re-
quired for the induction of enhanced
oxidative and toxoplasmastatic acti-
vity in macrophages [58—60]. Ho-
wever, resident macrophages activa-
ted with interferon-y either in vivo or
in vitro did not Kill ingested Listeria
monocytogenes [61] and S. typhi-
murium (to be published) at a higher
rate than normal resident macro-
phages. A finding which was re-
cently confirmed [62]. Also the growth
of L. monocytogenes and S. typhi-
murium in the spleen and liver of
mice treated with interferon-y was
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not retarded [61]. From these results
it became evident that interf'eron-y,
although adequate for the induction
of some manifestations of macro-
phage activation, did not enable acti-
vated macrophages to Kkill bacteria
more rapidly.

In sum, recent studies have shown
that the interactions between acti-
vated macrophages and micro-orga-
nisms are dependent on the kind of
activation and the type of micro-
-organism.
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