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Molecular biology of oxygen free radicals
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The knowledge regarding oxygen
free radicals (termed also as active
oxygen species) showed an explosion-
dike increase during the last decade.
Unfortunately, however, the interpre-
tation of their physiological roles is by
far not clear. Therefore, it seems to be
necessary to outline the general trends
and most important aspects of their
molecular biology even in the frame
of such a Workshop dedicated to a
specialized problem like phagocytic
cell disorders.

The concept of free radicals

Free radicals are defined as chemi-
cal agents having an odd number of
electrons, i.e., an unpaired electron on
their external electron shell [24]. The
most general characteristics of the
free radicals is that apart from some
exceptional cases, the unpaired elec-
tron usually cannot be sufficiently
stable, i.e., the free radicals react
rather quickly with the adjacent mo-
lecules, and consequently, they never
reach considerably high concentra-
tions in any chemical or biochemical
system. This situation has always

represented a serious difficulty for
the progress of free radical science. It
should be stressed that in the living
systems a wide variety of different
types of free radicals occur, however,
the greatest importance can be at-
tributed to those which derive from
the molecular oxygen.

Although the role of free radicals
in chemical synthetic processes, poly-
merization reactions, etc. has been re-
cognized long decades ago, most of
the biochemists have been neglecting
the significance of their function in
the living systems for many years. The
discovery of superoxide dismutase
(SOD) [13, 14] represented an im-
portant step in the free radical re-
search, nevertheless, this approach to
biology has not been generally ac-
cepted. It is obvious that the most
important parameter on the basis of
which one could unequivocally judge
the role of free radicals would be the
turnover rate of these radicals. Un-
fortunately, turnover measurements
on the free radicals still represent a
serious methodological problem. The-
refore, the importance of free radicals
in biological systems is based largely
on circumstantial or indirect evidence
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even today. It seems to be amazing
that in spite of the fact that the im-
plication of free radical reactions in
biological processes such as aging was
proposed already 32 yers ago [9],
the progress in this field was extre-
mely slow, and even today it can only
be concluded from data actually
available that oxygen free radicals do
occur in biological systems [8, 19—
21] and are involved in numerous
biological phenomena such as cellular
aging, mutagenesis, inflammation and
other pathologies [1, 2, 10, 12, 15, 16,
22, 23, 26, 27, 31, 32].

Some important data about

OXYGEN FREE RADICALS

It is generally accepted that the
molecular oxygen has to undergo a
tetravalent reduction for being acti-
vated as a biological electron acceptor
in the terminal oxidation. To best of
our knowledge, tetravalent reduction
is performed in one single step only by
a few enzymes like the cytochrome
oxidase, lactase, ascorbic acid oxidase,
whereas numerous other enzymes
(cytochrome P-450, xanthine oxidase,
aldehyde oxidases, etc) catalyze only
monovalent reduction of the 02 mo-
lecule. This latter process leads to the
formation of superoxide anion radi-
cals (O7.), which are dismutated
very actively by the SOD [13, 14]. The
product of this reaction is hydrogen
peroxide which is much less harmful
per se for the cells than the superoxide
radicals, nevertheless, it is also elimi-
nated. Two main systems perform this
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job: 1) the catalases (wherever pre-
sent) which are sensitive only for rela-
tively high hydrogen peroxide con-
centrations, and (2) the glutathione
peroxidase (GPO) reacting also with
the low concentrations of H2 2. Ho-
wever, GPO requires a substrate
(glutathione) for this reaction which
may not always be available in the
cells [7]. As a consequence, it can be
assumed that some freely diffusing
H2 2is always present in living sys-
tems and may participate in various
reactions. One of the effect of the
presence of H 20 2 can be direct lipid-
-peroxidation [3, 28], however, pro-
bably more important is the reaction
of H2 2 with transition metals like
Fe2+ (Fenton-reaction) [4]. This type
of reaction generates OH- free radi-
cals which are extremely reactive
[33]. They will pick up an electron
from any of the neighboring molecules
within about 2 molecular collisions,
i.e., they will form covalent cross-
-links in or between the organic mole-
cules. Due to the extremely high reac-
tivity of the OH- radicals, practically
no enzymatic or any other protection
is possible against them except that
which has been provided by the evo-
lution of the life: the continuous rep-
lacement of the damaged components
by resynthesis and degradation of the
waste products.

It has been shown that even in vivo
a sufficient amount of Fe2+is availab-
le [5] for a Fenton-reaction, and that
the OH' radicals deriving from this
reaction are able to attack the amino
acids and proteins very efficiently
even under mild chemical conditions
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[6, 40, 41]. Furthermore, rapid aging
of young rats could be achieved
by increasing the Fe2+ content of
the brain by injecting iron soluti-
ons into the cerebrospinal fluid (CSF)
[18].

An important feature of the short-
dived radical species such as OH"
radicals must be emphasized here. It
is easy to show (and well known in
polymer chemistry) that the cross-
-linking effect of the OH" radicals de-
pends very strongly on the density of
the actual chemical system. If the
system is highly diluted (as in the
cytosol), intermolecular cross-linking
will not occur, since the dissolved
molecules are too far from each other,
i.e., one radical will react with only
one molecule. If however, the density
of the system is larger (as in the
membranes), the probability of the
formation of intermolecular cross-
dinkswill considerably increase. There-
fore the same rate of radical forma-
tion may be much more efficient in
polymerizing the molecular compo-
nents in systems of higher density. In
other words, it can be expected that
OH" radical attack destroys the mem-
brane components to a higher extent
than the cytosolic components. This
expectation agrees with the fact that
some membrane proteins of hépato-
cytes display tenfold shorter half-life
than do the average proteins in the
cytoplasm (30]. Therefore, the possi-
bility that the cell membrane damage
represents one of the most important
rate-limiting factors during the func-
tion of all cellular systems cannot be
ignored.

Free radicae induced

MEMBRANE DAMAGE

The best known mechanism of
membrane damage induced by free
radicals is lipid peroxidation. This
pathway was proposed as the origin
of the age pigment (lipofuscin) accu-
mulation. Details of this process are
treated in various reviews [3, 25, 29].
An essential point of lipid peroxida-
tion is that polyunsaturated fatty
acids are decomposed by direct or
indirect peroxidation processes re-
sulting in malondialdehyde (MDA)
as an end-product. MDA is extremely
reactive with primary amino groups
of proteins and gives rise to the so-cal-
led Schiff-bases showing a characte-
ristic fluorescence.

Lipid peroxidation increases the
rigidity of the lipid layer. Althoug hit
is known that lipid peroxidation dec-
reases the activities of some mem-
brane bound enzymes and the age-
-dependent decrease of the activities
of a great number of hormone-recep-
tor complexes has been ascribed to
such phenomena, it seems to be of
even more general importance that
lipid peroxidation alters the overall
physicochemical properties of the cell
membrane. Since the physicochemical
state of the membrane lipids can di-
rectly determine basic functional pa-
rameters like permeability of the cell
membrane for the monovalent ions
(and probably also for water) [see for
ref: 38, 39], it can be concluded that
itisworthwhile to analyze the possible
functional consequences of the radical-
-induced physicochemical changes.
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The other possibility for free-radi-
cal induced membrane damage isthat
oxyradicals (mainly OH') are able to
attack directly the membrane pro-
teins and result in a cross-linking of
them [17, 40]. It should be stressed
that this phenomenon must be of
greater importance than generally as-
sumed, since the OH' radicals are
formed in the aqueous phase, and be-
cause of their high reactivity, they
will perform most probably the reac-
tions in the same phase, while only a
part of them can reach the relatively
deep, hydrophobic regions of the cell
membrane.

Therefore, there are good reasons
for assuming that the functioning of
the living cells is accompanied all the
time by a continuous formation of
lipid-lipid, lipid-protein or protein-
-protein cross-links; however, these
phenomena occur with higher pro-
bability in the membranes than in the
cytosol. In addition to this free-radi-
cal induced damage, the cell plasma
membrane is exposed to another
damaging factor: the residual heat
formation during each discharge of
the resting transmembrane potential
[see for details: 35]. Membrane struc-
ture and function are continuously
altered by these phenomena. The
damaged components need to be
replaced by newly synthesized ones,
and must be degraded by the lysoso-
mal system, since otherwise the cells
could not maintain their homeostasis.
In the young and adult ages a strict
equilibrium is maintained between the
decomposition and replacement of
the damaged membrane components;
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therefore, no accumulation of the
waste-products  (lipofuscin) occurs.
This does not mean that damage is
not taking place to the membranes in
the younger ages. As a matter of fact,
because of the higher metabolic rate
in the young tissues, an even higher
amount of lipofuscin-like products co-
mes into being in the same time pe-
riod than in the old systems. However,
the rate of elimination of these pro-
ducts is able to keep up with the
requirement of th cells [37, 39]. This
assumption has recently been verified
when it was shown that brain cells
filled up with lipofuscin-like pigments
even in young rats, if some of the
lysosomal enzymes (thiol-proteases)
were inhibited by leupeptin for a
couple of days [11], in other words,
if the equilibrium between formation
and elimination rates of lipofuscin was
disturbed.

The membrane

HYPOTHESIS OF AGING

Even if the biological role of oxygen
free radicals is accepted, there is a
paradoxical situation which needs ex-
planation: the aggressive chemical
nature of the oxygen free radicals
remains unchanged during the whole
human life span. Young individuals
consume more oxygen per unit of mass
and time (i.e., there is an even more
intense radical formation in the young-
er ages) as compared to older ones.
Yet it is a fact that young cells and
organisms are able to grow and dif-
ferentiate, while older ones progres-
sively deteriorate in their structure
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and functional performance. This dis-
crepancy must be explained by biolo-
gical structure itself. Theoretical evi-
dence is available [37] showing that
any explanation of general validity for
this discrepancy should consider only
the really common properties of all
living systems.

Considering the basic properties of
the cell membrane, a working hypot-
hesis was outlined first in 1978 called
the membrane hypothesis of aging
(MHA) [34]. This concept proposes a
cell physiological mechanism which
is able to explain the contradictory
effects and consequences of the free
radicals on biological systems at young
and old ages. Numerous experimental
models have been tested from the
point of view of MHA and none of
them resulted in any inherent contra-
diction. Details can be found in our
original as well as some recent review
papers summarizing [34 —42] the ava-
ilable evidence demonstrating that the
free-radical induced membrane dama-
ge is a key event in both maturation
and aging of cells.
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