Electrocardiology 2014 - Proceedings of the 41st International Congress on Electrocardiology

The Impact of Action Potential and Conduction Velocity Distribution Changes on Markers of Repolarization Dispersion

¹G. Kozmann, ¹G. Tuboly, ²V. Szathmáry, ³J. Švehlíková, ³M. Tyšler

¹Department of Electrical Engineering and Information Systems, Faculty of Information Technology, University of Pannonia, Veszprém, Hungary, ²Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia,

³Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia Email: kozmann.gyorgy@virt.uni-pannon.hu

Abstract. A necessary prerequisite of malignant arrhythmias is the elevated repolarisation dispersion (RD) of the ventricular myocardium. In this study, by the use of numerical heart and thorax models the RD properties were analyzed as a function of realistic action potential duration (APD) and activation propagation velocity (CV) changes taken from recent experimental studies of normal and heart failure cases. The contribution of APD and CV variability to the arrhythmogenic substrate of malignant arrhythmias was studied separately and in combination. RD was quantitatively characterized by the analysis of computer simulated QRST integral maps and non-dipolarity indices. Modelling study revealed that transmural APD variability is primarily responsible for the arrhythmogenic substrate. Depending on the transmural gradient, CV may moderate or enhance the resultant repolarization heterogeneity level.

Keywords: Malignant Arrhythmias, Repolarization Dispersion, Numerical Heart and Thorax Models, ORST integral maps, Transmural Gradient

1. Introduction

Ventricular tachycardia and fibrillation are the most common causes of sudden cardiac death (SCD). In spite of the continuous development of risk assessment methods, still no reliable ECG based marker of arrhythmia prone status does exist according to the scientific statement of the AHA/ACCF/HRS based on hundreds of clinical trials [1]. According to theoretical expectations, parameters casually reflecting the spatial heterogeneity of the elementary myocardial volumes might be the clue of a more efficient risk assessment [2].

In this study we attempted to link the observed normal and pathological QRST integral – and non-dipolarity index (NDI) – behaviour, to mesoscopic (intramural) and even to microscopic experimental findings. To this end, numerical chest and multi-element heart models were used. In the heart model, action potential duration (APD) and activation propagation velocity (CV) values of the different myocardial layers were approximated based on the recent optical mapping results of stained subepicardial, midmyocardial and subendocardial sections taken from healthy and failing human hearts (Glukhov et al. [3]).

2. Subject and Methods

Numerical Modelling of the Heart and Thorax

A five-layer numerical heart model was used with globally or locally adjustable intramural APD and CV modulation features. In the simulations transmural gradient (TG) of epicardial and endocardial layers was defined as APD_{epi} – APD_{endo}. However, while keeping TG

Electrocardiology 2014 - Proceedings of the 4 t^{st} International Congress on Electrocardiology

constant, local intramural APD deviations were allowed. Similarly, different intramural CV values were allowed, expressed in modelling distance unit/modelling time unit (mdu/mtu). Finally, a piecewise realistic shape, piecewise homogeneous thoracic model was used to compute body surface potential distributions, QRST integral maps and NDIs.

Details of the simplified computer model of the human cardiac ventricles were described previously by Szathmáry and Osvald [4].

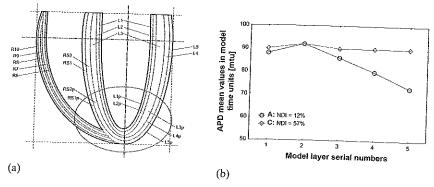


Fig. 1. (a) A schematic representation of the "layered" structure and geometry of the left and right ventricles. In our study the cllipse at the apex contains the model region with pathologically modulated APD and CV. (b) Mean value of the APD profile of a healthy subject (profile 'A') and the failing heart profile of the apical region. The simplified graph is based on the experimental data of Glukhov et al. [3].

To compute the cardiac potentials as well as the QRST integral maps on the thoracic surface, the multiple-dipole cardiac generator has been inserted into the realistically shaped piecewise homogeneous torso model (Fig. 2).

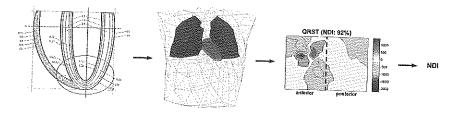


Fig. 2. Layout of the major modelling steps.

Evaluation of Repolarization Dispersion by QRST Integrals and Non-dipolarity Indices In a concise way QRST integral maps are characterized by the beat-to-beat sequence of NDI(QRSTint), based on the c_i components of the KL expansion:

Electrocardiology 2014 - Proceedings of the 41st International Congress on Electrocardiology

NDI(QRSTint) =
$$\frac{\sum_{i=4}^{12} c_i^2}{\sum_{i=1}^{12} c_i^2} = \frac{P_{ND}}{P_D + P_{ND}} \cdot 100\%$$
 (1)

where NDI(QRSTint) non-dipolarity index of the QRST integral i. component of the KL expansion

QRST integral map power represented by the "dipolar" KL components (i: 1-3)

P_{ND} QRST integral map power represented by the "non-dipolar" KL components (i: 4-12) according to Lux et al. [5].

3. Results

In our reference case TG was -15 mtu (modelling time unit), yielding an NDI of 16%. By the systematic change of TG in the apical part of the heart model from -15 mtu up to +14 mtu, the NDI did change from 16% up to 76%. In the reference case CV was 3 mdu/mtu in the Purkynje layer and 1 mdu/mtu in all the others. In the pathological case CV pattern was 2 mdu/mtu in the Purkynje layer, and 0.5 mdu/mtu in all the others. The NDI range due to the combined APD and CV modulations did not change, however the TG of the maximal NDI shifted slightly in the direction of positive TGs. An increase of NDIs occurred at TGs significantly positive. However the increase of APD profile slope finally caused a quick decrease of NDI. According to our modelling results uneven CV profiles between the limits shown in Fig. 3(a) resulted in NDI characteristics running between the two graphs shown in Fig. 3(b).

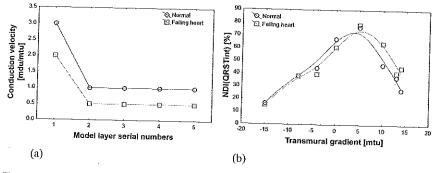


Fig. 3. (a) Transmural CV and the NDI(QRSTint) vs. TG patterns. Circle markers represent the profiles in the healthy myocardium, while square markers indicate the profiles in failing heart (apical) regions.
(b) NDI(QRSTint) vs. transmural gradient. Circle markers represent the relationship if CV is normal, square markers show the consequences of apical CV modulation depicted in Fig. 3(a).

A few examples of the impact of TG modulation (without CV modulation) are illustrated by the QRST integral maps shown in Fig. 4.

Electrocardiology 2014 - Proceedings of the 41st International Congress on Electrocardiology

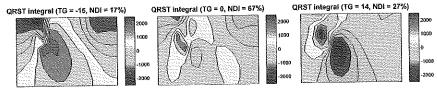


Fig. 4. Simulated QRST integral maps vs. TG. The subsequent modulation of TG results the most fragmented QRST integral pattern at the transition of TG from negative into positive value. The smallest range of amplitudes are at TG = 0.

4. Discussion

According to this model study, NDI is primarily affected by the TG value. The impact of intramural local maxima/minima on RD is negligible. The impact of decreasing CV is modest until TG is negative (i.e. close to the normal APD distribution), however at TG > 0 NDI increase is more emphasized. We should remark, that positive TG slopes > 5 mdu/mtu surpass the gradients were not found in the paper of Glukhov, possibly because physically they are not possible in failing heart myocardial tissue.

The study of QRST integral maps vs. increasing TG revealed, that after reaching the NDI maximum the map pattern turned to be more and more dipolar but with reversed polarity.

Acknowledgements

We acknowledge the financial support of the Hungarian State and the European Union under the programme TÁMOP-4.2.2.A-11/1/KONV-2012-0073 (Project title: "Telemedicine-focused research activities in the field of Mathematics, Informatics and Medical sciences"), grant APVV-0513-10 of the Slovak Research and Development Agency and grant 2/0131/13 from the VEGA Grant Agency, Slovakia.

References

- [1] Goldberger JJ et al: A scientific statement from the American Heart Association Council on Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. *Circulation*, 118: 1497-1518, 2008.
- [2] Geselowitz DB. The ventricular gradient revisited: relation to the area under the action potential, *Biomedical Engineering, IEEE Transactions on*, (1): 76-77, 1983.
- [3] Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, Moazami N, Efimov IR. Transmural dispersion of repolarization in failing and nonfailing human ventricle. *Circulation research*, 106 (5): 981-991, 2010.
- [4] Szathmáry V, Osvald R. An interactive computer model of propagated activation with analytically defined geometry of ventricles. *Computers and biomedical research*, 27 (1): 27-38, 1994.
- [5] Lux RL, Evans AK, Burgess MJ, Wyatt RF, Abildskov JA. Redundancy reduction for improved display and analysis of body surface potential maps. I. Spatial compression. *Circulation Research*, 49 (1): 186-196, 1981.

Electrocardiology 2014 - Proceedings of the 41st International Congress on Electrocardiology

Noninvasive Localization of Ectopic Activation Using BSPM and CT-Based Torso Model

^{1,2}M. Tysler, ¹J. Svehlikova, ^{2,3}O. Punshchykova, ²P. Kneppo, ³V. Maksymenko

¹Institute of Measurement Science SAS, Bratislava, Slovakia

²Faculty of Biomedical Engineering, CTU in Prague, Kladno, Czech Republic

³National Technical University of Ukraine "Kyiv Polytechnic Institute", Faculty of Biomedical Engineering, Kyiv, Ukraine

Email: tysler@savba.sk

Abstract. In this study accuracy of the inverse localization of ectopic ventricular activity in dependence on the used heart and torso model was examined. Best agreement between the positions obtained from the inverse solution and from the electrophysiological study was achieved when the CT-based torso and heart model was used. The use of a personally adjusted general torso model with the heart model obtained from CT gave less accurate but still acceptable location of the ectopic activity. If simplified geometric heart model was used, the results depended on the fidelity of its shape and position estimation and varied from acceptable locations to locations scattered within wide range of the ventricular volume.

Keywords: body surface potential mapping; inverse problem of electrocardiology; torso model; ectopic activation.

1. Introduction

It has been shown elsewhere [1, 2] that cardiac imaging based on multichannel surface ECG and proper torso and heart model may be useful for non-invasive assessment of electrophysiological state of the heart by solving the inverse problem of electrocardiology. The accuracy of the solution may depend on the selected model of the cardiac sources, method used for assessment of its parameters, and fidelity of the ECG data and torso model. In this study the accuracy of inverse localization of ventricular ectopic activity in dependence on the used heart and torso model was examined.

2. Subject and Methods

Two male patients (P1: 57 years old man, P2: 17 years old man) with premature ectopic activity in the ventricles causing ventricular tachycardia underwent 10 minutes of body surface potential mapping (BSPM) using the ProCardio 8 system with 62 electrodes placed according the Amsterdam lead system. Computed tomography (CT) scanning with slice thickness of 0.3 mm and a pixel size of 0.885 mm was performed on patients with attached ECG electrodes using the Toshiba Aquilion ONE™ system. Finally, intracardiac electrophysiological study (EPS) was performed using the Bard LabSystem™ PRO EP Recording System. To reveal the position of the premature ectopic activity, St. Jude EnSite NavX™ cardiac mapping and navigation system was used in the first patient and standard protocol under X-ray was used for the second patient.

For non-invasive estimation of the site of the premature ectopic activity an inverse solution based on dipole model of the cardiac electric generator and measured BSPM data was used.

Integral map over the initial time interval of the ectopic activity was used as the input for its inverse localization. The integral map values in body surface points are defined as