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Abstract. In this paper, we consider the existence of normalized solutions for the fol-
lowing Kirchhoff-type problem:

−
(

a + b
∫

RN
|∇u|2dx

)
∆u = λu + |u|p−2u + µ|u|q−2u in RN ,

with prescribed L2-norm: ∫
RN

|u|2dx = c2,

where N = 2, 3, a ≥ 0, b > 0 and c > 0 are constants, λ ∈ R, 2 < q < p = 2 + 8
N and

µ > 0. The number 2 + 8
N behaves as the L2 -critical exponent for the above problem.

We prove the multiplicity of normalized solutions for the above Kirchhoff-type problem
with L2-critical nonlinearity (that is, p = 2 + 8

N ) in the two cases: 2 < q < 2 + 4
N and

2 + 4
N < q < 2 + 8

N .

Keywords: Kirchhoff equation, constrained minimization, variational method, Po-
hozaev manifold.
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1 Introduction and main results

In this paper, we investigate the multiplicity of normalized solutions for the following
Kirchhoff-type problem

−
(

a + b
∫

RN
|∇u|2dx

)
∆u = λu + |u|p−2u + µ|u|q−2u in RN , (1.1)

with prescribed mass ∫
RN

|u|2dx = c2,

BCorresponding author. Email: ouzengq707@sina.com

https://doi.org/10.14232/ejqtde.2024.1.75
https://www.math.u-szeged.hu/ejqtde/
https://orcid.org/0009-0003-5442-604X
https://orcid.org/0000-0002-2054-9979
https://orcid.org/0000-0002-7879-1020


2 C.L. Liu, Y. Lv and Z.Q. Ou

where N = 2, 3, a ≥ 0, b, c > 0, λ ∈ R appears as a Lagrange multiplier, 2 < q < p = 2 + 8
N

and µ > 0. Let Ls(RN)(1 ≤ s < +∞) be the Lebesgue space with norm |u|s = (
∫

RN |u|sdx)1/s,

H1(RN) be the Hilbert space with the norm ∥u∥ =
( ∫

RN
(|∇u|2 + |u|2)dx

) 1
2 .

Problem (1.1) is a special form of the following Kirchhoff problem

−
(

a + b
∫

RN
|∇u|2dx

)
∆u = f (x, u) in RN ,

which is also a variant of Dirichlet problem−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = f (x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω ⊂ RN is a bounded domain with smooth boundary. It is well-known that problem
(1.2) appears naturally in the context of physics. Problem (1.2) is the stationary case of a
nonlinear wave equation

utt −
(

a + b
∫

Ω
|∇u|2dx

)
∆u = f (x, u), (1.3)

first proposed by Kirchhoff [9] in 1883. Problem (1.3) is a generalization of the classical
D’Alembert’s wave equation which describes free vibrations of elastic strings. The param-
eters in problem (1.3) have specific physical meaning: f is the external force, a is related to
the intrinsic properties of the string, and u means the displacement while b denotes the initial
tension. Since then, problem (1.3) has received much attention, see [1, 11, 12, 14, 15] and the
references therein. Since Lions in [11] proposed an abstract functional analysis framework,
Kirchhoff type problem has been intensively studied during the last decades. From a mathe-
matical perspective, problem (1.2) is not a pointwise identity as the appearance of the nonlocal
term

∫
Ω |∇u|2dx. The nonlocal term causes some mathematical difficulties and the investiga-

tion of problem (1.2) is more interesting and challenging. Such a nonlocal model also appears
in other fields as biological systems describing a process depending on the average of itself,
for example one species’ population density.

A way to study problem (1.1) is to search for solutions with L2-norm constraint, and such
solutions are known as normalized solutions and λ ∈ R appears as a Lagrange multiplier. In
addition, the study of L2-norm constraint problem can give a better insight of the dynamical
properties, like orbital stability or instability, and can describe attractive Bose-Einstein con-
densate. Normalized solutions of problem (1.1) can be obtained by looking for critical points
of the energy functional Ea,µ(u) constrained on Sc, where

Ea,µ(u) :=
a
2

∫
RN

|∇u|2dx +
b
4

(∫
RN

|∇u|2dx
)2

− 1
p

∫
RN

|u|pdx − µ

q

∫
RN

|u|qdx,

and

Sc :=
{

u ∈ H1(RN) :
∫

RN
|u|2dx = c2

}
.

Many interesting results on the normalized solutions of Kirchhoff problem are also ob-
tained not long ago, see [2,3,5,6,8,13,17,23]. Especially, many experts considered the existence
of normalized solutions for problem (1.1) with combined nonlinearities. For the case µ > 0,
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under different ranges of p and q, Li and Lou in [10] proved a multiplicity result for problem
(1.1). In detail, if 2 < q < 10

3 , 14
3 < p < 6 and µ < min{µ′, µ′′} , two solutions for problem

(1.1) were obtained. If 14
3 < q < p < 6, problem (1.1) has a mountain pass type solution. Hu

and Mao in [6] considered the following minimization problem

ma,c = inf
u∈Sc

Ea,µ(u), (1.4)

and they proved that if 2 < q < 10
3 and 2 < q < p ≤ 14

3 , problem (1.4) has a minimizer for
every c ∈ (0, c∗p). At the same time, when c satisfies the suitable conditions, the nonexistence
of minimizers for problem (1.4) was considered in the following four cases: (i) q = 10

3 and
p = 14

3 ; (ii) 10
3 = q < p < 14

3 ; (iii) 2 < q < p = 14
3 ; (iv) 2 < q < p, 14

3 < p < 6. Moreover, if
14
3 < q < p < 6, they also obtained the existence of normalized solutions for problem (1.1) by

using constraint minimization on a suitable submanifold of Sc. For the Sobolev critical case
(that is, p = 6), Feng, Liu and Zhang in [3] proved the existence and multiplicity of normalized
solutions for problem (1.1) under suitable assumptions on µ and c for the following four cases:
2 < q < 10

3 , q = 10
3 , 10

3 < q < 14
3 , 14

3 ≤ q < p = 6. Some similar results were also obtained in
[10,23]. For the case µ = 0, the existence, multiplicity and uniqueness of normalized solutions
for problem (1.1) have been considered in [13,19–22]. For the case µ < 0, we refer to [2,6], and
for the nonlinear Kirchhoff-type equations in high dimensions see [8].

As far as we known, there are few papers to consider the existence and multiplicity of
normalized solutions for problem (1.1) with L2-critical nonlinearity (that is p = 2 + 8

N ) in the
two cases: 2 < q < 2 + 4

N and 2 + 4
N < q < 2 + 8

N . The object of this paper is to prove
the existence and multiplicity of normalized solutions for problem (1.1) in those cases under
suitable assumptions on µ and a.

Before stating the main results of this paper, let us recall the Gagliardo–Nirenberg inequal-
ity (see [18]): for any s ∈ [2, 2N

N−2 ) if N ≥ 3 and s ≥ 2 if N = 1, 2, we have

1
s
|u|ss ≤

1
2|Qs|s−2

2
|∇u|sγs

2 |u|s−sγs
2 , (1.5)

where γs := N(s−2)
2s and with equality only for u = Qs, and up to translations, Qs is the unique

positive solution of

−N(s − 2)
4

∆u +

(
1 +

s − 2
4

(2 − N)

)
u = |u|s−2u in RN ,

and satisfies
|∇Qs|22 = |Qs|22 =

2
s
|Qs|ss.

Especially, let p = 2 + 8
N , define

c∗ :=

(
b|Qp|

8
N
2

2

) N
8−2N

.

For s = p = 2 + 8
N and for any u ∈ Sc, we have

1
p
|u|pp ≤ 1

4
2
c2

(
c

|Qp|2

) 8
N

|∇u|42 =
b
4

( c
c∗
) 8−2N

N |∇u|42. (1.6)
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Set

µ∗ :=
2a|Qq|q−2

2

(4 − qγq)cq−qγq

 2a(2 − qγq)

b(4 − qγq))
(
( c

c∗ )
8−2N

N − 1
)


2−qγq
2

. (1.7)

Now, our main results are following.

Theorem 1.1. Let 2 < q < 2 + 4
N , p = 2 + 8

N , c > c∗ and 0 < µ < µ∗. Then problem (1.1) has two
radial solutions, denoted by ũc,µ and ûc,µ. Moreover, ũc,µ is a local minimizer of the functional Ea,µ on
the set

AR0 := {u ∈ Sc,r : |∇u|22 < R0}

for a suitable R0 = R0(c, µ) > 0 with Ea,µ(ũc,µ) < 0 and ũc,µ solves problem (1.1) for some λ̃c,µ < 0,
and ûc,µ is a critical point of mountain pass type for Ea,µ with Ea,µ(ûc,µ) > 0 and ûc,µ solves problem
(1.1) for some λ̂c,µ < 0.

Theorem 1.2. If 2 + 4
N < q < p = 2 + 8

N , µ > 0 and c < c∗, we have the following results:

(i) if a = 0, m0,c := infu∈Sc E0,µ(u) has a radial minimizer ũ, and ũ solves problem (1.1) for some
λ̃ < 0.

(ii) let ā = b
2

(
1−

( c
c∗
) 8−2N

N
)( 2

N(q−2) −
1
4

)
|∇ũ|22 > 0, for any a ∈ (0, ā), problem (1.1) has two radial

solutions, the one is a global minimizer ũc,a with λ̃c,a < 0, and the other is the mountain pass
type solution uc,a with λc,a < 0.

Remark 1.3. Theorem 1.1 complements [6, Theorem 1.2], where Hu and Mao considered the
case c ∈ (0, c∗) and obtained a minimizer of the functional Ea,µ on Sc. However, we deal with
the case c > c∗ and obtain two solutions for problem (1.1) under suitable assumptions on the
constant µ > 0. In the proof of Theorem 1.1, since the functional Ea,µ is not bounded from
below on Sc for c > c∗, we will restrict the functional Ea,µ on the Pohozaev set Pc,µ. We can
get a local minimizer for Ea,µ|Pc,µ and use mountain pass theorem to get the second critical
point. We emphasis that (1.7) has been used to ensure that Pc,µ is a smooth manifold and the
existence of mountain pass type solution.

To the best of our knowledge, Hu and Mao in [6] proved that if N = 3, 10
3 < q < 14

3 ,
p = 14

3 , c < c∗ and µ > 0 satisfy appropriate condition, problem (1.1) with has no minimizer.
However, we try to prove the existence of normalized solution for problem (1.1) with 2+ 4

N <

q < p = 2 + 8
N for the suitable constant a > 0. Furthermore, there are few results about the

existence of normalized solutions to degenerate Kirchhoff equations, that is, a = 0, so we first
establish the existence of minimizer m0,c = infu∈Sc E0,µ(u) < 0, which is a normalized solution
of the degenerate Kirchhoff equation. And then, we establish ma,c := infu∈Sc,r Ea,µ(u) < 0 with
the help of the minimizer of m0,c. At last, we will prove the existence of the second solution
with the mountain pass type for problem (1.1).

To overcome the lack of compactness, we work in H1
r (R

N). Although the energy functional
Ea,µ has a bounded Palais–Smale sequence on the mass constraint set Sc,r, unfortunately, we
can not deduce whether Ea,µ satisfies the Palais–Smale condition. To overcome this difficulty,
in the proof of Theorem 1.1, we will constrain the energy functional Ea,µ on a submanifold
of Sc,r corresponding to the Pohozaev identity. In the proof of (2) of Theorem 1.2, we use
Jeanjean’s method in [7] and construct an auxiliary map Ia,µ(u, τ) := Ea,µ(τ ⋆ u), which has
the same type of geometric structure on Sc,r × R as Ea,µ on Sc,r.
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2 Preliminaries

In this section, we will introduce some notations, then we recall a version of linking theorem.
Finally, we give the compactness analysis of Palais–Smale sequences for Ea,µ|Sc,r . Let

H1
r (R

N) = {u ∈ H1(RN) : u(|x|) = u(x)},

Sc,r := Sc ∩ H1
r (R

N) = {u ∈ Sc : u(x) = u(|x|)}.

For u ∈ Sc, and τ ∈ R, define the fiber map preserving the L2-norm

(τ ⋆ u)(x) := e
N
2 τu(eτx) for any x ∈ RN .

We introduce the auxiliary functional Ia,µ : H1(RN)× R+ → R by

Ia,µ(u, τ) := Ea,µ(τ ⋆ u) =
e2τa

2
|∇u|22 +

e4τb
4

|∇u|42 −
e4τ

p
|u|pp − µ

eγqqτ

q
|u|qq, (2.1)

then we easily see that the functional Ia,µ is of class C1. In addition, we define the Pohozaev
set by

Pc,µ = {u ∈ Sc,r : Pµ(u) = 0}

with
Pµ(u) = a|∇u|22 + b|∇u|42 −

4
p
|u|pp − µγq|u|qq.

Lemma 2.1 ([4, Theorem 2.7]). Let φ be a C1-functional on a complete connected C1-Finsler manifold
X and consider a homotopy-stable family F with extended boundary B. Set

c = c(φ,F ) = inf
A∈F

max
x∈A

φ(x)

and let F be a closed subset of X satisfying

A ∩ F\B ̸= ∅ for every A ∈ F (2.2)

and
sup
x∈B

φ(x) ≤ c ≤ inf
x∈F

φ(x). (2.3)

Then, for any sequence of sets (An)n ∈ F such that limn→∞ supAn
φ = c, there exists a sequence

(xn)n in X\B such that

lim
n→∞

φ(xn) = c, lim
n→∞

∥dφ(xn)∥ = 0, lim
n→∞

dist(xn, F) = 0, lim
n→∞

dist(xn, An) = 0.

Lemma 2.2. Let a > 0, b > 0, c > 0, µ > 0, 2 < q < p = 2 + 8
N . Let {un} ⊂ Sc,r be a bounded

Palais–Smale sequence for Ea,µ|Sc,r at energy level m ̸= 0 with Pµ(un) → 0 as n → ∞. Then up to a
subsequence un → u strongly in H1(RN). Moreover, u ∈ Sc,r and u is a radial solution for problem
(1.1) for some λ < 0.

Proof. The proof is divided into three steps.

Step 1: Lagrange multipliers λn → λ in R. Since H1
r (R

N) ↪→ Ls(RN) is compact for s ∈
(2, 2N

N−2 ), from the boundedness of Palais–Smale sequence {un}, there exists a subsequence of
{un}, still denoted by {un}, and u ∈ H1

r (R
N) such that

un ⇀ u in H1
r (R

N), un → u in Ls(RN), un → u a.e. on RN .
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Because {un} is a Palais–Smale sequence of Ea,µ|Sc,r , by the Lagrange multipliers rule, there
exists λn ∈ R such that

(a + b|∇un|22)
∫

RN
∇un∇φdx − µ

∫
RN

|un|q−2un φdx

−
∫

RN
|un|p−2un φdx − λn

∫
RN

un φdx = on(1) (2.4)

for every φ ∈ H1(RN), where on(1) → 0 as n → ∞. In particular, taking φ = un in (2.4), we
have

λnc2 = a|∇un|22 + b|∇un|42 − µ|un|qq − |un|pp + on(1).

The boundedness of {un} in H1
r (R

N) ∩ Lq(RN) ∩ Lp(RN) implies that {λn} is bounded as
well. Hence, up to a subsequence, we have λn → λ ∈ R.

Step 2: λ < 0 and u ̸≡ 0. Recalling that Pµ (un) → 0, we have

λnc2 = µ(γq − 1)|un|qq + (γp − 1)|un|pp + on(1),

hence, let n → ∞, we have

λc2 = µ(γq − 1)|u|qq + (γp − 1)|u|pp.

Since µ > 0 and 0 < γq, γp < 1, we deduce that λ ≤ 0, with “=" if and only if u ≡ 0. If λn → 0,
we have limn→∞ |un|pp = 0 = limn→∞ |un|qq. Using again Pµ(un) → 0, we have Ea,µ(un) → 0,
which is a contradiction with Ea,µ(un) → m ̸= 0 and thus λn → λ < 0 and u ̸≡ 0.

Step 3: un → u in H1(RN). Since un ⇀ u ̸≡ 0 in H1(RN), we get B := limn→∞ |∇un|22 ≥
|∇u|22 > 0. Then, (2.4) implies that

(a + bB)
∫

RN
∇u∇φdx − µ

∫
RN

|u|q−2uφdx −
∫

RN
|u|p−2uφdx − λ

∫
RN

uφdx = 0 (2.5)

for any φ ∈ H1(RN). Combining (2.4) with (2.5) and taking φ = un − u, we obtain

(a + bB)|∇(un − u)|22 − λ|un − u|22 → 0 as n → ∞.

Since λ < 0, we conclude that {un} converges strongly in H1(RN).

3 Proof of Theorem 1.1

In this section, we deal with the case 2 < q < 2 + 4
N , p = 2 + 8

N , c > c∗, µ > 0 and prove
Theorem 1.1. First of all, it is well known that any critical point of the functional Ea,µ belongs
to Pc,µ. Conversely, if u ∈ Pc,µ, we get ∂τ Ia,µ(u, 0) = 0. Now, we consider the decomposition
of Pc,µ into the disjoint union Pc,µ = P+

c,µ ∪ P0
c,µ ∪ P−

c,µ, where

P+
c,µ := {u ∈ Pc,µ : 2a|∇u|22 + 4b|∇u|42 > µqγ2

q |u|
q
q + pγ2

p|u|
p
p} = {u ∈ Pc,µ : ∂ττ Ia,µ(u, 0) > 0},

P0
c,µ := {u ∈ Pc,µ : 2a|∇u|22 + 4b|∇u|42 = µqγ2

q |u|
q
q + pγ2

p|u|
p
p} = {u ∈ Pc,µ : ∂ττ Ia,µ(u, 0) = 0},

P−
c,µ := {u ∈ Pc,µ : 2a|∇u|22 + 4b|∇u|42 < µqγ2

q |u|
q
q + pγ2

p|u|
p
p} = {u ∈ Pc,µ : ∂ττ Ia,µ(u, 0) < 0}.
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By (1.5) and (1.6), we have

Ea,µ(u) ≥
a
2
|∇u|22 +

b
4

(
1 −

( c
c∗
) 8−2N

N
)
|∇u|42 − µ

cq−γqq

2|Qq|q−2
2

|∇u|γqq
2 (3.1)

for every u ∈ Sc,r. Therefore, to understand the geometry of the functional Ea,µ|Sc,r , it is useful
to consider the function h : R+ → R:

h(t) :=
a
2

t +
b
4

(
1 −

( c
c∗
) 8−2N

N
)

t2 − µ
cq−γq

2|Qq|q−2
2

t
γqq

2 .

Now, we study the properties of h(t).

Lemma 3.1. Let c > c∗, 2 < q < 2 + 4
N , p = 2 + 8

N , 0 < µ < µ∗, where µ∗ is defined in (1.7), the
function h has a local strict minimum at negative level and a global strict maximum at positive level.
Moreover, there exist 0 < R0 < R1, both depending on c and µ, such that h(R0) = 0 = h(R1) and
h(t) > 0 for any t ∈ (R0, R1).

Proof. Since

h(t) = t
γqq

2

(
a
2

t1− γqq
2 +

b
4

(
1 −

( c
c∗
) 8−2N

N
)

t2− γqq
2 − µ

cq−qγq

2|Qq|q−2
2

)
for t > 0, we have h(t) > 0 if and only if

φ(t) > µ
cq−qγq

2|Qq|q−2
2

, with φ(t) :=
a
2

t1− γqq
2 +

b
4

(
1 −

( c
c∗
) 8−2N

N
)

t2− γqq
2 .

It is not difficult to check that φ has a unique critical point t̄ on (0, ∞), which is a global
maximum point at positive level:

t̄ :=
2a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
) ,

and the maximum level is

φ(t̄) =
a

(4 − qγq)

 2a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
)
1− qγq

2

> 0.

From 0 <
γqq

2 < 1, µ > 0 and c > c∗, it is obvious that limt→0+ h(t) = 0− and limt→+∞ h(t) =
−∞. Therefore, h is positive on an open interval (R0, R1) if φ(t̄) > µ cq−qγq

2|Qq|q−2
2

, which is ensured

by

0 < µ < µ∗ :=
2a|Qq|q−2

2

(4 − qγq)cq−qγq

 2a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
)
1− qγq

2

.

It follows immediately that h has a global maximum at positive level in (R0, R1). Moreover,
since limt→0+ h(t) = 0−, there exists a local minimum point at negative level in (0, R0). The
fact that h has no other critical points can be verified observing that h′(t) = 0 if and only if

ψ(t) = µ
γqqcq−qγq

2|Qq|q−2
2

with ψ(t) := at
2−qγq

2 + b
(

1 −
( c

c∗
) 8−2N

N
)

t
4−qγq

2 .
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Clearly ψ has only one critical point, which is a strict maximum, and hence the above equation
has at most two solutions, which necessarily are the local minimum and the global maximum
of h previously found.

We now study the structure of the Pohozaev manifold Pc,µ. Recalling the decomposition
of Pc,µ = P+

c,µ ∪ P0
c,µ ∪ P−

c,µ.

Lemma 3.2. If 2 < q < 2 + 4
N , p = 2 + 8

N and 0 < µ < µ∗, then P0
c,µ = ∅ and Pc,µ is a smooth

manifold of codimension 2 in H1(RN).

Proof. Otherwise, let u ∈ P0
c,µ, from Pc,µ(u) = 0 and ∂ττ Ia,µ(u, 0) = 0, we have

a|∇u|22 + b|∇u|42 − µγq|u|qq −
4
p
|u|pp = 0,

2a|∇u|22 + 4b|∇u|42 − µqγ2
q |u|

q
q − pγ2

p|u|
p
p = 0.

By (1.5), we obtain

(2 − qγq)a|∇u|22 + (4 − qγq)b|∇u|42 = γp(pγp − qγq)|u|pp ≤ (4 − qγq)b
( c

c∗
) 8−2N

N |∇u|42,

2a|∇u|22 = µγq(4 − qγq)|u|qq ≤ µqγq(4 − qγq)
cq−qγq

2|Qq|q−2
2

|∇u|qγq
2 .

Then, the lower and upper bounds of |∇u|2 are given by a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
)
 1

2

≤ |∇u|2 ≤
(

µqγq(4 − qγq)cq−qγq

4a|Qq|q−2
2

) 1
2−qγq

,

which leads to

µ >
4a|Qq|q−2

2

qγq(4 − qγq)cq−qγq

 a(2 − qγq)

b(4 − qγq)
(
( c

c∗ )
8−2N

N − 1
)


2−qγq
2

> µ∗,

which contradicts to 0 < µ < µ∗, hence, P0
c,µ = ∅. Pc,µ is a smooth manifold of codimension

2 in H1(RN), see proof of [16, Lemma 5.2].

Lemma 3.3. Let a > 0, b > 0, 2 < q < 2 + 4
N , p = 2 + 8

N , 0 < µ < µ∗, if u ∈ Pc,µ is a critical point
for Ea,µ|Pc,µ , then u is a critical point for Ea,µ|Sc,r , where µ∗ is defined in (1.7).

Proof. From Lemma 3.2, we deduce that Pc,µ is a smooth manifold of codimension 2 in H1(RN)

and P0
c,µ = ∅. If u ∈ Pc,µ is a critical point for Ea,µ|Pc,µ , then by the Lagrange multipliers rule,

there exists λ, ξ ∈ R such that〈
E′

a,µ(u), φ
〉
− λ

∫
RN

uφdx − ξ
〈

P′
µ(u), φ

〉
= 0, ∀φ ∈ H1

(
RN
)

.

So u solves

−((1 − 2ξ)a + (1 − 4ξ)b|∇u|22)∆u − λu + µ(ξqδq − 1)|u|q−2u + (pξγp − 1)|u|p−2u = 0.
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Combining with the Pohozaev identity, we have

(1 − 2ξ)a|∇u|22 + (1 − 4ξ)b|∇u|42 + µγq(ξqγq − 1)|u|qq + γp(pξγp − 1)|u|pp = 0.

Since u ∈ Pc,µ and u /∈ P0
c,µ, we deduce from ξ(2a|∇u|22 + 4b|∇u|42 − µqγ2

q |u|
q
q − γ2

p p|u|pp) = 0
that ξ = 0.

The manifold Pc,µ is then divided into two components P+
c,µ and P−

c,µ, having disjoint
closure.

Lemma 3.4. For every u ∈ Sc,r, we have

(i) if b
4 |∇u|42 ≥ 1

p |u|
p
p, the function Ia,µ(u, ·) has a critical point su ∈ R and a zero cu ∈ R, with

su < cu;

(ii) if b
4 |∇u|42 < 1

p |u|
p
p, the function Ia,µ(u, ·) has exactly two critical points su < tu ∈ R and two

zeros cu < du ∈ R, with su < cu < tu < du;

(iii)
∫

RN |∇(τ ⋆ u)|2 ≤ R0 for every τ ≤ cu, and

Ea,µ(su ⋆ u) = min
{

Ea,µ(τ ⋆ u) : τ ∈ R and
∫

RN
|∇(τ ⋆ u)|2dx < R0

}
< 0; (3.2)

(iv) For any u ∈ Sc,r with b
4 |∇u|42 < 1

p |u|
p
p, we have

Ea,µ(tu ⋆ u) = max{Ea,µ(τ ⋆ u) : τ ∈ R} > 0, (3.3)

and Ia,µ is strictly decreasing and concave on τ ∈ (tu,+∞);

(v) The maps u ∈ Sc,r 7→ su ∈ R and u ∈ Sc,r 7→ tu ∈ R are of class C1.

Proof. We recall that by (3.1)

Ia,µ(u, τ) = Ea,µ(τ ⋆ u) ≥ h
(∫

RN
|∇(τ ⋆ u)|2dx

)
= h

(
e2τ
∫

RN
|∇u|2dx

)
.

Thus, the function Ia,µ(u, ·) is positive on (C(R0), C(R1)) with

(C(R0), C(R1)) :=
(

1
2

ln
(

R0/
∫

RN
|∇u|2dx

)
,

1
2

ln
(

R1/
∫

RN
|∇u|2dx

))
.

If b
4 |∇u|42 ≥ 1

p |u|
p
p, from (2.1), Ia,µ(u, τ) → +∞ as τ → +∞, and Ia,µ(u, τ) → 0− as τ → −∞.

Hence, it follows that Ia,µ has at least a critical point su, with su local minimum point on
(−∞, C(R0)) at negative level, and Ia,µ has at least a zero point cu with su < cu < C(R0). Note
that ∂τ Ia,µ(u, τ) = 0 reads

ϕ(τ) = µγq|u|qq with ϕ(τ) := ae
4−N(q−2)

2 τ|∇u|22 + be
8−N(q−2)

2 τ|∇u|42 −
4
p

e
8−N(q−2)

2 τ|u|pp. (3.4)

But ϕ(τ) is increasing on (−∞,+∞), hence, Ia,µ has exactly a critical point su and a zero
point cu.

If b
4 |∇u|42 < 1

p |u|
p
p, Ia,µ(u, τ) → −∞ as τ → +∞ and ϕ has a unique maximum point, and

Ia,µ(u, τ) → 0− as τ → −∞. Therefore, we conclude that Ia,µ has exactly two critical points:
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su, local minimum on (−∞, C(R0)) at negative level, and tu, global maximum at positive level,
which also gives (3.3).

From su < C (R0), then it holds that∫
RN

|∇(su ⋆ u)|2dx = e2su

∫
RN

|∇u|2dx < R0.

In addition, we have su ⋆ u ∈ Pc,µ, tu ⋆ u ∈ Pc,µ, and τ ⋆ u ∈ Pc,µ implies τ ∈ {su, tu}. By
minimality and P0

c,µ = ∅, we have ∂ττ Ia,µ(u, su) > 0, that is, su ⋆ u ∈ P+
c,µ. In the same way,

tu ⋆ u ∈ P−
c,µ. In particular, Ia,µ(u, ·) is concave on [tu,+∞).

Finally, we show that u 7→ su and u 7→ tu are of class C1. To this end, we apply the
implicit function theorem on the C1 function Φ(u, τ) := ∂τ Ia,µ(u, τ). We see Φ(u, su) = 0 and
∂τΦ(u, su) = ∂ττ Ia,µ(u, su) > 0, and the fact that it is not possible to pass with continuity from
P+

c,µ to P−
c,µ (since P0

c,µ = ∅). By the same argument, we have that u 7→ tu is of C1.

From the proof of Lemma 3.4, we see that su < C (R0) < tu and∫
RN

|∇(su ⋆ u)|2dx < R0 <
∫

RN
|∇(tu ⋆ u)|2dx,

which implies
P+

c,µ ⊆ {u ∈ Sc,r : |∇u|22 < R0}

and
P−

c,µ ⊆ {u ∈ Sc,r : |∇u|22 > R0}.

For k > 0, let us set
Ak := {u ∈ Sa,r : |∇u|22 < k},

and
Mc,µ := inf

u∈AR0

Ea,µ(u).

As an immediate lemma, we have:

Lemma 3.5. supP+
c,µ

Ea,µ ≤ 0 ≤ infP−
c,µ

Ea,µ.

Lemma 3.6. It results that Mc,µ ∈ (−∞, 0), that

Mc,µ = inf
Pc,µ

Ea,µ = inf
P+

c,µ

Ea,µ, and that Mc,µ < inf
AR0\AR0−ρ

Ea,µ

for ρ > 0 small enough.

Proof. For any u ∈ AR0 , we have

Ea,µ(u) ≥ h(|∇u|22) ≥ min
t∈[0,R0]

h(t) > −∞,

and hence Mc,µ > −∞. Moreover, for any u ∈ Sc,r, we have |∇(τ ⋆ u)|22 < R0 and Ea,µ(τ ⋆ u) <
0 for τ ≪ −1, and hence Mc,µ < 0.

Now, Mc,µ ≤ infP+
c,µ

Ea,µ from P+
c,µ ⊂ AR0 . On the other hand, if u ∈ AR0 , then su ⋆ u ∈

P+
c,µ ⊂ AR0 , and

Ea,µ(su ⋆ u) = min
{

Ea,µ(τ ⋆ u) : τ ∈ R and
∫

RN
|∇(τ ⋆ u)|2dx < R0

}
≤ Ea,µ(u),
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which implies that infP+
c,µ

Ea,µ ≤ Mc,µ. To prove that infP+
c,µ

Ea,µ = infPc,µ Ea,µ, it is sufficient to
recall that Ea,µ(u) > 0 on P−

c,µ.

Finally, by the continuity of h, there exists ρ > 0 such that h(t) ≥ Mc,µ
2 for any t ∈ [R0 −

ρ, R0]. Therefore, we have

Ea,µ(u) ≥ h(|∇u|22) ≥
Mc,µ

2
> Mc,µ

for every u ∈ Sc,r with R0 − ρ ≤ |∇u|22 ≤ R0.

Lemma 3.7. Mc,µ can be achieved by some ũc,µ ∈ Sc,r. Moreover, ũc,µ is an interior local minimizer for
Ea,µ|AR0

, and ũc,µ solves problem (1.1) for some λ̃c,µ < 0. Moreover, ũc,µ is a ground state of Ea,µ|Sc,r ,
any ground state of Ea,µ|Sc,r is a local minimizer of Ea,µ on AR0 .

Proof. Let us consider a minimizing sequence {vn} for Ea,µ|AR0
. By Lemma 3.4, there exists a

sequence {svn} such that svn ⋆ vn ∈ P+
c,µ and

Ea,µ(svn ⋆ vn) = min
{

Ea,µ(τ ⋆ svn) : τ ∈ R and
∫

RN
|∇(τ ⋆ svn)|2dx < R0

}
< Ea,µ(vn),

where the last inequality follows from vn ∈ AR0 . Besides, we also see that∫
RN

|∇(svn ⋆ vn)|2dx < R0,

furthermore, by Lemma 3.6, we have∫
RN

|∇(svn ⋆ vn)|2dx < R0 − ρ.

Once again by Lemma 3.6, it holds that

Mc,µ = inf
Pc,µ

Ea,µ = inf
P+

a,µ

Ea,µ.

Setting un = svn ⋆ vn and using the Ekeland’s variational principle, we may assume that {un}
is a Palais–Smale sequence for Ea,µ on Sc,r and Pµ (un) = 0. Hence, we have

Ea,µ(un) =
a
4
|∇un|22 −

µ

q

(
1 − N(q − 2)

8

)
|un|qq = Mc,µ + on(1).

It results to

a
4
|∇un|22 ≤ (Mc,µ + 1) +

µ

q

(
1 − N(q − 2)

8

)
cq− N(q−2)

2

2|Qq|q−2
2

|∇un|
N(q−2)

2
2 , (3.5)

which gives {|∇un|2} is bounded, hence, {un} is bounded in H1(RN). From Lemma 2.2, up to
a subsequence, un → ũc,µ strongly in H1(RN) , and ũc,µ solves problem (1.1) for some λ̃c,µ < 0.
Moreover, we have

∫
RN |∇ũc,µ|2dx < R0 − ρ and ũc,µ is an interior local minimizer for Mc,µ.

Since any critical point of Ea,µ|Sc,r lies in Pc,µ and Mc,µ = infPc,µ Ea,µ, we see that ũc,µ is a
ground state for Ea,µ|Sc,r . It only remains to prove that any ground state of Ea,µ|Sc,r is a local
minimizer of Ea,µ in AR0 . Let u be a critical point of Ea,µ|Sc,r with Ea,µ(u) = Mc,µ = infPc,µ Ea,µ.
Since Ea,µ(u) < 0 < infP−

c,µ
Ea,µ, necessarily u ∈ P+

c,µ. Then Lemma 3.6 implies that P+
c,µ ⊂ AR0 .

This leads to |∇u|2 < R0, and as a consequence u is a local minimizer for Ea,µ|AR0
. Lemma 3.4

implies that Ea,µ(u) ≤ 0 for any u ∈ P+
c,µ, and |∇u|22 < R0. Hence, u is a local minimizer for

Ea,µ|AR0
.
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In the following, we focus on the existence of a second critical point for Ea,µ|Sc,r . Let

Q̃p(x) := c
Qp(x)
|Qp|2

, Qτ
p(x) := c

e
N
2 τQp(eτx)
|Qp|2

for any τ > 0,

we have Q̃p(x), Qτ
p(x) ∈ Sc,r.

Lemma 3.8. If 2 < q < 2 + 4
N , p = 2 + 8

N , and c > c∗, we have
∫

RN |∇Qτ
p|2dx → +∞ and

Ia,µ(Q̃p, τ) → −∞ as τ → +∞.

Proof. A straightforward calculation shows that∫
RN

|∇Qτ
p|2dx = e2τ

∫
RN

|∇Q̃p|2dx.

From (1.5) with s = p and (2.1), we have

Ia,µ(Q̃p, τ)

=
ae2τ

2

∫
RN

|∇Q̃p|2dx +
be4τ

4

(∫
RN

|∇Q̃p|2dx
)2

− e4τ

p

∫
RN

|Q̃p|pdx − µ
eγqqτ

q

∫
RN

|Q̃p|qdx

=
ae2τ

2
c2|∇Qp|22
|Qp|22

− µ
eγqqτ

q
cq

|Qp|q2
|Qp|qq + c4e4τ

(
b
4
|∇Qp|42
|Qp|42

− 1
4

2
c2

(
c

|Qp|2

) 8
N 2|Qp|pp

q|Qp|22

)

=
ac2e2τ

2
− µ

eγqqτ

q
cq

|Qp|q2
|Qp|qq +

bc4e4τ

4

(
1 −

( c
c∗
) 8−2N

N
)

,

from c > c∗, we have Ia,µ(Q̃p, τ) → −∞ as τ → +∞.

Lemma 3.9. Suppose that Ea,µ(u) < Mc,µ. Then the value tu defined by Lemma 3.4 is negative.

Lemma 3.10. It results that
σ̃c,µ = inf

u∈P−
c,µ

Ea,µ(u) > 0.

We introduce the minimax class

Γ :=
{

γ ∈ C([0, 1], Sc,r) : γ(0) ∈ P+
c,µ with

b
4
|∇γ(0)|42 <

1
p
|γ(0)|pp, Ea,µ(γ(1)) ≤ 2Mc,µ

}
,

then Γ ̸= ∅. In fact, we have sQ̃p
⋆ Q̃p ∈ P+

c,µ by Lemma 3.4 and Ea,µ(τ ⋆ Q̃p) → −∞ as τ → +∞

by Lemma 3.8, and τ 7→ τ ⋆ Q̃p is continuous. Thus, we can define the minimax value

σc,µ := inf
γ∈Γ

max
t∈[0,1]

Ea,µ(γ(t)).

Lemma 3.11. σc,µ > 0 can be achieved by some ûc,µ ∈ Sc,r, and ûc,µ solves problem (1.1) for some
λ̂c,µ < 0.

Proof. Since we want to use Lemma 2.1, next we verify the conditions of Lemma 2.1 one by
one. Let us set

F := Γ, A := γ([0, 1]), F := P−
c,µ and B := P+

c,µ ∪ E2Mc,µ
a,µ ,

where Ec
a,µ := {u ∈ Sc,r : Ea,µ(u) ≤ c}.
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We first show that F is homotopy-stable family with extended boundary B: for any γ ∈ Γ
and any η ∈ C([0, 1]× Sc,r; Sc,r) satisfying η(t, u) = u, (t, u) ∈ (0 × Sc,r) ∪ ([0, 1]× B), we want
to get η(1, γ(t)) ∈ Γ. In fact, let γ̃(t) = η(1, γ(t)), then γ̃(0) = η(1, γ(0)) = γ(0) ∈ P+

c,µ.

Besides, γ̃(1) = η(1, γ(1)) = γ(1) ∈ E2Mc,µ
a,µ . Therefore, we have η(1, γ(t)) ∈ Γ.

Next we verify the condition (2.2): by Lemma 3.5 and Lemma 3.9, we know F ∩ B = ∅ and
hence F\B = F. We claim that

A ∩ (F\B) = A ∩ F = γ([0, 1]) ∩ P−
c,µ ̸= ∅, ∀γ ∈ Γ. (3.6)

Indeed, since γ(0) ∈ P+
c,µ with b

4 |∇γ(0)|42 < 1
p |γ(0)|

p
p, we know sγ(0) = 0 (see the definition of

su in Lemma 3.4) and hence tγ(0) > sγ(0) = 0. On the other hand, since Ea,µ(γ(1)) ≤ 2Mc,µ <

Mc,µ (see Lemma 3.6), we by Lemma 3.8 have tγ(1) < 0. By Lemma 3.4, we know tγ(τ) is
continuous in τ. It follows that for every γ ∈ Γ there exists τγ ∈ (0, 1) such that tγ(τγ) = 0,
that is, γ(τγ) ∈ P−

c,µ, and hence A ∩ (F\B) ̸= ∅.
Finally, we verify the condition (2.3), that is, we need to show

inf
P−

c,µ

Ea,µ ≥ σc,µ ≥ sup
P+

c,µ∪E
2Mc,µ
a,µ

Ea,µ.

By (3.6), for every γ ∈ Γ, we have

max
t∈[0,1]

Ea,µ(γ(t)) ≥ inf
P−

c,µ

Ea,µ,

so that σc,µ ≥ σ̃c,µ. On the other hand, if u ∈ P−
c,µ with b

4 |∇u|42 < 1
p |u|

p
p, then for s1 ≫ 1 large

enough
γu : τ ∈ [0, 1] 7→ ((1 − τ)su + τs1) ⋆ u ∈ Sc,r

is a path in Γ. Since u ∈ P−
c,µ, we know tu = 0 is a global maximum point for Ia,µ, and deduce

that
Ea,µ(u) ≥ max

t∈[0,1]
Ea,µ (γu(t)) ≥ σc,µ,

which implies that σ̃c,µ ≥ σc,µ. Thus, we get σc,µ = σ̃c,µ > 0. By Lemma 3.5, we know

Ea,µ(u) ≤ 0 for any u ∈ P+
c,µ ∪ E2Mc,µ

a,µ , hence we get (2.3). From Lemma 2.1, we obtain a Palais–
Smale sequence {un} for the functional Ea,µ on Sc,r and Pµ (un) → 0. Similar to (3.5), {un} is
bounded. Hence, from Lemma 2.2, up to a subsequence, un → ûc,µ strongly in H1(RN) , and
ûc,µ solves problem (1.1) for some λ̂c,µ < 0.

Proof of Theorem 1.1. Theorem 1.1 comes from Lemma 3.7 and Lemma 3.11.

4 Proof of Theorem 1.2

In this section, we deal with the case 2 + 4
N < q < p = 2 + 8

N , µ > 0, a ≥ 0 and prove
Theorem 1.2. We first consider the existence of normalized ground state solution for the
degenerate Kirchhoff-type equations, that is, a = 0, by the following minimization problem:

m0,c = inf
u∈Sc

Ea,µ(u).

And then, we discuss the the existence of normalized solutions for the nondegenerate
Kirchhoff-type equations, that is, a > 0.
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Lemma 4.1. If a ≥ 0, 2 + 4
N < q < p = 2 + 8

N and c < c∗, the functional Ea,µ is coercive on Sc.
Moreover, m0,c < 0.

Proof. Utilizing (1.5) and (1.6), we see that for any u ∈ Sc,

Ea,µ(u) ≥
b
4

(
1 −

( c
c∗
) 8−2N

N
)
|∇u|42 − µ

cq−qγq

2|Qq|q−2
2

|∇u|qγq
2 ,

hence, from 2 < γqq < 4 and c < c∗, we obtain that the functional Ea,µ is coercive on Sc.
For any u ∈ Sc, set ut(x) = t

N
2 u(tx) for any t > 0, then ut ∈ Sc and

m0,c ≤ E0,µ(ut) =
b
4
|∇u|42t4 − 1

p
|u|ppt4 − µ

q
|u|qqtγqq → 0− as t → 0+,

hence, from µ > 0 and 2 < γqq < 4, we obtain m0,c < 0.

In order to prove that the minimizer of ma,c can be obtained, we now give two lemmas.

Lemma 4.2. If ma,c < 0, we have ma,c < ma,γ + ma,c−γ for any 0 < γ < c.

Proof. The proof is similar to [19, Lemma 2.5], so we omit it.

Corollary 4.3. ma,c is strictly decreasing in c ∈ (0,+∞).

Lemma 4.4. Let c < c∗, m0,c := inf u ∈ ScE0,µ(u) has a radial minimizer ũ, and ũ solves problem
(1.1) for some λ̃ < 0.

Proof. Let {un} ⊂ Sc be a minimizing sequence of m0,c < 0, it can easily see that {un} is
bounded in H1(RN) by Lemma 4.1. Since E0,µ is even, we can suppose that un ≥ 0. Moreover,
let u∗

n be the symmetric radial decreasing rearrangement of un, up to subsequence, we may
assume that there exists ũ ∈ H1

r (R
N) such that

u∗
n ⇀ ũ in H1(RN), u∗

n → ũ in Ls(RN), s ∈ (2, 2∗), u∗
n(x) → ũ(x) a.e. in RN . (4.1)

Hence, we have

E0,µ(ũ) ≤ lim inf
n→∞

E0,µ(u∗
n) ≤ lim inf

n→∞
E0,µ(un) = m0,c, |ũ|22 ≤ c2.

From E0,µ(ũ) ≤ m0,c < 0, it follows that ũ ̸≡ 0. By Corollary 4.3, it must hold that

E0,µ(ũ) = m0,c, |ũ|22 = c2.

By the Lagrange multiplier rule, there is λ̃ ∈ R such that

−b|∇ũ|22∆ũ = λ̃ũ + |ũ|p−2ũ + µ|ũ|q−2ũ,

and then, combining with the Pohozaev identity, we have

λ̃|ũ|22 =
4 − p

p
|ũ|pp +

µ

2q
(N(q − 2)− 2q)|ũ|qq,

which implies λ̃ < 0 from 2 + 4
N < q < p = 2 + 8

N .
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Lemma 4.5. Let 2 + 4
N < q < p = 2 + 8

N , there is a constant ā = ā(b, c, q) > 0 such that for any
a ∈ (0, ā), we have

ma,c := inf
u∈Sc

Ea,µ(u) < 0.

Proof. From [21, Lemma 2.1], ũ satisfies the following Pohozeav identity:

b|∇ũ|42 −
4
p
|ũ|pp − µ

N(q − 2)
2q

|ũ|qq = 0,

and it follows that

m0,c = E0,µ(ũ)

=
b
4
|∇ũ|42 −

1
p
|ũ|pp − µ

1
q
|ũ|qq

=

(
1
4
− 2

N(q − 2)

)
b|∇ũ|42 +

(
8

N(q − 2)
− 1
)

1
p
|ũ|pp

< 0.

Hence, we obtain

Ea,µ(ũ) =
a
2
|∇ũ|22 + E0,µ(ũ)

=
a
2
|∇ũ|22 +

(
1
4
− 2

N(q − 2)

)
b|∇ũ|42 +

(
8

N(q − 2)
− 1
)

1
p
|ũ|pp

≤ a
2
|∇ũ|22 +

b
4

(
1 −

( c
c∗
) 8−2N

N
)(

1
4
− 2

N(q − 2)

)
|∇ũ|42.

Let

ā =
b
2

(
1 −

( c
c∗
) 8−2N

N
)(

2
N(q − 2)

− 1
4

)
|∇ũ|22,

for any a ∈ (0, ā), we have Ea,µ(ũ) < 0, and hence ma,c ⩽ Ea,µ(ũ) < 0.

Lemma 4.6. Let 0 < a < ā and c < c∗, ma,c := infu∈Sc Ea,µ(u) has a radial minimizer ũc,a, and ũc,a

solves problem (1.1) for some λ̃c,a < 0.

Proof. The proof is similar with that of Lemma 4.4, and we omit it.

Lemma 4.7. Let 0 < a < ā, 2 + 4
N < q < p = 2 + 8

N and c < c∗, there exists 0 < Kc,a <
|∇ũc,a|22

2
small enough such that

0 < sup
u∈A

Ea,µ(u) < inf
u∈B

Ea,µ(u),

where A = {u ∈ Sc,r : |∇u|22 < Kc,a}, B = {u ∈ Sc,r : |∇u|22 = 2Kc,a}.

Proof. Let K > 0 be arbitrary but fixed and suppose that u, v ∈ Sc,r satisfies

|∇u|22 < K and |∇v|22 = 2K.

From (1.5), we have

Ea,µ(v)− Ea,µ(u) ≥ Ea,µ(v)−
a
2
|∇u|22 −

b
4
|∇u|42

≥ aK
2

+
3bK2

4
− b

( c
c∗
) 8−2N

N
K2 − µ

cq−qγq

|Qq|q−2
2

(2K)
N(q−2)−4

4

= K

(
a
2
+

(
3
4
−
( c

c∗
) 8−2N

N
)

bK − µ
cq−qγq

|Qq|q−2
2

(2K)
N(q−2)−4

4

)
,
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and

Ea,µ(u) ≥
a
2
|∇u|22 +

b
4

(
1 −

( c
c∗
) 8−2N

N
)
|∇u|42 − µ

cq−qγq

2|Qq|q−2
2

|∇u|qγq
2 .

In summary, we can choose sufficiently small constant 0 < Kc,a <
|∇ũc,a|22

2 such that

0 < sup
u∈A

Ea,µ(u) < inf
u∈B

Ea,µ(u)

where A = {u ∈ Sc,r : |∇u|22 < Kc,a}, B = {u ∈ Sc,r : |∇u|22 = 2Kc,a}.

Let u ∈ Sc,r be arbitrary and fixed, it is easy to see that |∇(τ ⋆ u)|22 → 0 and Ia,µ(u, τ) →
0+ as τ → 0+. Hence, there exists ûc,a ∈ Sc,r such that |∇ûc,a|22 < Kc,a and Ea,µ(ûc,a) > 0.
Combining with Lemma 4.7, we can construct the minimax value for the functionals Ea,µ

and Ia,µ:
γ̃c = inf

h̃∈Γ̃c

max
t∈[0,1]

Ia,µ(h̃(t))

with Γ̃c = {h̃ ∈ C([0, 1], Sc,r × R) : h̃(0) = (ûc,a, 0), h̃(1) = (ũc,a, 0)}, and

γc = inf
h∈Γc

max
t∈[0,1]

Ea,µ(h(t))

with Γc = {h ∈ C([0, 1], Sc,r) : h(0) = ûc,a, h(1) = ũc,a}, where ũc,a is obtained in Lemma 4.6.
We have the following lemma.

Lemma 4.8. If 0 < a < ā, 2 + 4
N < q < p = 2 + 8

N and c < c∗, we have

γ̃c = γc ≥ max{Ea,µ(ûc,a), Ea,µ(ũc,a)} := δc > 0.

Proof. For any h̃ ∈ Γ̃c, we can write it into

h̃(t) = (h̃1(t), h̃2(t)) ∈ Sc,r × R.

Setting h(t) = h̃2(t) ⋆ h̃1(t), we have h(t) ∈ Γc and

max
t∈[0,1]

Ia,µ(h̃(t)) = max
t∈[0,1]

Ea,µ(h̃2(t) ⋆ h̃1(t)) = max
t∈[0,1]

Ea,µ(h(t)),

which implies γ̃c ≥ γc. On the other hand, for any h ∈ Γc, set h̃(t) = (h(t), 0), we get h̃ ∈ Γ̃c

and
max
t∈[0,1]

Ia,µ(h̃(t)) = max
t∈[0,1]

Ea,µ(h(t)),

which provides that γc ≥ γ̃c. Thus, we have γ̃c =γc. Finally, γc ≥ max{Ea,µ(ûc,a), Ea,µ(ũc,a)}>0
follows from the definition of γc.

In what follows, we give the relationship between the Palais–Smale sequence for the func-
tional Ia,µ and that of the functional Ea,µ.

Lemma 4.9. There exists a sequence {(vn, τn)} ⊂ Sc,r × R+ such that for n → ∞, we have

(1) Ia,µ(vn, τn) → γ̃c,
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(2) I′a,µ|Sc,r×R(vn, τn) → 0, i.e., it holds that

∂τ Ia,µ(vn, τn) → 0 and ⟨∂u Ia,µ(vn, τn), φ̃⟩ → 0

for any

φ̃ ∈ Tvn =

{
φ̃ ∈ H1(RN) :

∫
RN

vn φ̃dx = 0
}

.

In addition, setting un(x) = τn ⋆ vn(x), then for n → ∞ we get

(i) Ea,µ(un) → γc,

(ii) Pµ(un) → 0,

(iii) E′
a,µ|sc,r(un) → 0, i.e., it holds that ⟨E′

a,µ(un), φ⟩ → 0 for any

φ ∈ Tun =

{
φ ∈ H1(RN) :

∫
RN

un φdx = 0
}

.

Proof. According to the construction of γ̃c, we know that the conclusions (1) and (2) follow
directly from Ekeland’s Variational Principle. Next we mainly prove (i)–(iii).

For (i), it is obvious from

Ea,µ(un) = Ea,µ(τn ⋆ vn) = Ia,µ(vn, τn)

and γ̃c = γc.
For (ii), we first have

∂τ Ia,µ(vn, τn) = e2τn a|∇vn|22 + e4τn b|∇vn|42 − µeγqqτn γq|vn|qq − e4τn
4
p
|vn|pp

= a|∇(τn ⋆ vn)|22 + b|∇(τn ⋆ vn)|42 − µγq|τn ⋆ vn|qq −
4
p
|τn ⋆ vn|pp

= a|∇un|22 + b|∇un|42 − µγq|un|qq −
4
p
|un|pp

= Pµ(un).

Thus, (ii) is a consequence of ∂τ Ia,µ(vn, τn) → 0 as n → ∞.
For (iii), by the definition of the functional Ia,µ, we have

⟨∂u Ia,µ(vn, τn), φ̃⟩ = e2τn a
∫

RN
∇vn∇φ̃dx + e4τn b|∇vn|22

∫
RN

∇vn∇φ̃dx

− µeγqqτn

∫
RN

|vn|q−2vn φ̃dx − e4τn

∫
RN

|vn|p−2vn φ̃dx,

where

φ̃ ∈ Tvn =

{
φ̃ ∈ H1(RN) :

∫
RN

vn φ̃dx = 0
}

.

On the other hand, for any

φ ∈ Tun =

{
φ ∈ H1(RN) :

∫
RN

un φdx = 0
}

,
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from un(x) = τn ⋆ vn(x), we have

⟨E′
a,µ(un), φ⟩

= a
∫

RN
∇un∇φdx + b|∇un|22

∫
RN

∇un∇φ̃dx − µ
∫

RN
|un|q−2un φdx −

∫
RN

|un|p−2un φdx

= e2τn a
∫

RN
∇vne−

Nτn
2 ∇φ(e−τn x)dx + e4τn b|∇vn|22

∫
RN

∇vne−
Nτn

2 ∇φ(e−τn x)dx

− µeγqqτn

∫
RN

|vn(x)|q−2vn(x)e−
Nτn

2 φ(e−τn x)dx

− e4τn

∫
RN

|vn(x)|p−2vn(x)e−
Nτn

2 φ(e−τn x)dx.

Setting
φ̃(x) = e−

Nτn
2 φ(e−τn x),

we get (iii) if we could show φ̃ ∈ Tvn . In fact, φ̃ ∈ Tvn comes from the following equalities:

0 =
∫

RN
un φdx =

∫
RN

e
Nτn

2 vn(eτn x)φ(x)dx =
∫

RN
vn(x)e−

Nτn
2 φ(e−τn x)dx =

∫
RN

vn φ̃dx.

Lemma 4.10. γc > 0 can be achieved by some uc,a ∈ Sc,r, and uc,a is a radial solution of problem (1.1)
for some λc < 0.

Proof. By Lemma 4.1 and Lemma 4.9, we obtain a bounded Palais–Smale sequence {un} ⊂ Sc,r

for Ea,µ|Sc,r at level γc > 0 such that Pµ(un) → 0 as n → ∞. By Lemma 2.2, we have un → uc,a

in H1
r (R

N), and uc,a ∈ Sc,r is a radial solution of problem (1.1) for some λc < 0.

Proof of Theorem 1.2. Theorem 1.2 comes from Lemma 4.4, Lemma 4.6 and Lemma 4.10.
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