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Abstract. The authors consider the general third order functional differential equation
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and obtain sufficient conditions for the oscillation of all solutions. It is important to
note that a; for i = 1,2, and f are somewhat independent of each other. The results
obtained are illustrated with examples.
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1 Introduction

The primary objective of this work is to study the oscillatory behavior of solutions of the
nonlinear third order differential equation

@mahmwwfwwﬂﬂwy+WWﬂuw»:a V3w, (L)

where a;, i = 1,2, and B are quotients of odd positive integers. A solution x of (1.1) is a
continuous function on [Ty, o), Ty > vy that satisfies (1.1) on [Ty, o). We consider only those
solutions x(v) of (1.1) that are continuable, i.e., they satisfy sup{|x(v)| : v > T} > 0 for all
T > Ty > vp. Such a solution is said to be oscillatory if it is neither eventually positive nor
eventually negative, and to be nonoscillatory otherwise.

Throughout, we always assume that
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(A1) a;(v), g(v) € C([vy,0),Ry) fori=1,2, with q(v) # 0 and

co _ 1 o _ 1
/ a, " (s)ds = oo = / a, " (s)ds; (1.2)

0 0
(Ay) T € CH (v, ), R) with T(v) <wv, T/(v) >0, and lim,_, T(v) = c0.

As equation (1.1) is regarded as a useful instrument for simulating processes in various fields
of applied mathematics, physics, and chemistry (see the monographs [6,22,24]), it is important
to analyze the qualitative properties of equation (1.1). For several years now, there has been
a growing interest in the asymptotic behavior of solutions of various forms of linear and
nonlinear third order differential equations and their applications; see, e.g., [1-5,7-16,18,21]
and the references therein.

In particular, Baculikovd and Dzurina [4] considered the third-order nonlinear delay dif-
ferential equation of the form

(1) [ )]+ 4(0)P(e(v)) = 0. (13)

They used a comparison theorem with appropriate lower-order equations to derive sufficient
condition for the asymptotic and oscillatory behaviour of Eq. (1.3). This work allows us to
note the following;:

(1) Eq. (1.3) is a particular case of Eq. (1.1);

(2) There is no general rule to choose the function ¢(v) that plays a very important role in
deriving the oscillation of Eq. (1.1).

Chatzarakis et al. [9] considered the third-order linear differential equation of the form

(22 [(m) (¢ 0)))']) +aw)x(x(w)) =0, (14)

and using the integral technique, comparison method, and Gronwall inequality, they im-
proved the results reported in [4] by relaxing the above mentioned second observation. In-
spired by the papers referenced here, we wish to the study of the general equation (1.1) and
derive some easily verifiable sufficient conditions for the oscillation of all it solutions.

2 Basic lemmas

In view of (1.2), we introduce the following notation:

A(v,v) :/Vaz'xlz(s)ds and A*(v,1p) :/V (A(S'VO))Xllds

Yo a1 (S)

Setting G1(x(v)) = (¥'(v))* and Gy(x(v)) = [(a1(v)Gi(x(v)))']*, we can write equation
(1.1) as the equivalent equation

(a2(v)Ga(x(v))) +q(v)xP(t(v)) =0 for v > vy. (2.1)

To obtain our main results, we will utilize the following lemmas, the first of which is well
known.
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Lemma 2.1. Let (A1) and (Az) hold. If x is an eventually positive solution of (1.1) for v > vy, then
there exists v1 > vg such that either

(I) Gi(x(v)) > 0and Gy(x(v)) >0, or (II) Gy(x(v)) <0and Gy(x(v)) >0
forv > vy.

Lemma 2.2. Let (A;) and (Az) hold. If x is a positive solution of (1.1) such that Case I of Lemma 2.1
holds for v > v, then

x(v) > A" (v, 1) ((2(0)Ga(x(v))) %) 22)
forv >y > vy

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(v) > 0, x(t(v)) > 0, and
which satisfies Case I of Lemma 2.1 for v > 14 for some v; > 1. Then,

1

a3 (5)G5 ()

nW)G) = [ (@ ()Gix(s) ds = [ 2 5
g )
that is, ) )
@) (¥ ()" = Ay, n)ay (v)GF* (x(v)),
SO N
v = (2 () Gatao)) 23)

Integrating from v to v gives

x(v) > (QZ(V)Gz(x(V)))ﬁ/V (A(S,vl) a

V1
which completes the proof. O

For convenience, we let

and

A*(v,T(v)) = /TV B(v,s)ds.

Lemma 2.3. Let (A1) and (Ay) hold. If x is a positive solution of (1.1) such that Case II of Lemma 2.1
holds for v > v, then

1

x(x(v)) > A*(r, 7(v)) (az(V)GZ(x(v))) 2.4

forv >y > vy

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(v) > 0, x(t(v)) > 0, and
Case II of Lemma 2.1 is satisfied for v > 17 for some v; > 19. For v > s > 11, we have

1

B (VG (0) ~ @ ()G = [ (@G du = [ E G,

ay* ()
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That is,

1 1

—a(5) (¥ ()" > A(v,5)a (1)G32 (x(v),

SO

—x'(s) > (ig?{/i))al (az(v)Gz(x(v)))ﬁ > B(v,s) (az(v)Gz(x(v)))ﬁ ) (2.5)

Integrating from 7(v) to v, we obtain

v

—x(v)+x(t(v)) > <az(1/)Gz(x(1/))>a‘m/T B(v,s)ds,

(v)

or
1

x(x(v)) > A*(v,7(v)) (az(V)Gz(x(V))>

This proves the lemma. O

Remark 2.4. In view of Lemma 2.3, from (1.1) and (2.4), we see that

4

~ (@)Ga(x0)) = P (x() = q0) (A7) (m)Gatx) ) ™

Integrating this inequality from 7(v) to v, we have
v ~ p
limsup/ 7(0) (A (w,7(w)) du > 1
v—oo  JT(V)

in the case where -£— = 1.
LST%]

We also have the following lemma.

Lemma 2.5. In addition to the hypotheses of Lemma 2.3, assume that there exists a constant v > 1
such that yt(v) < v for v > vy > vy. Then

1

x(t(v)) > A" (yr(v), T(v)) <ﬂ2(7T(V))G2(X(7T(V)))> (2.6)

forv >y > vy

Proof. If we integrate (2.5) from 7(v) to yT(v), we can obtain (2.6). O

3 Okscillation results

Our first oscillation result is as follows.

Theorem 3.1. Let (A;) and (Ay) hold and assume that there exists a constant v > 1 such that
yt(v) < v forv > vy > vy. If the first-order delay equations

Y/ (1) +q(v) (A*(x(v),m))P (Y(x(v))) 7% = (3.1)

and

~ p
Z'v) +q) (A" (re (), 7)) (Z(rr(v)) == =0 (3:2)
are oscillatory, then Eq. (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (1.1) such that x(v) > 0 and x(7(v)) > 0 for
v > v > vp. According to Lemma 2.1, we distinguish the following two cases.
Case I. Using (2.2) in (2.1), we obtain

(@)Ga(x(v))) = ()2 (x(v))
aip\ P
zq(v)(A*(r(vwl))ﬁ((azu(v))c;z(x(r(v)))) ) |

Setting Y (v) = a2(v)Gz(x(v)), this becomes
Y'(v) +g(v) (A" (x(v), )P (Y (x(v))) 5% <0,

By [3, Lemma 2.1(I)], the related differential equation (3.1) also has a positive solution, which

is a contradiction.
Case II. Using (2.6) in Eq. (2.1), we obtain

— (2(1)Ga(x(v))) = q(v)x*(x(v))
> 4(v) (A*(re (), 7)) ((aalre() Galx(re ()7 ) )
Setting Z(v) = a2(v)Ga(x(v)), this becomes
a5 <0,

~, B
Z'v) +q) (A" (e (), 7)) (Z(rT(v)))
Again by [3, Lemma 2.1(I)], the corresponding differential equation (3.2) must have a positive

solution. This contradiction proves the theorem.

Example 3.2. Consider the third-order delay equation

3 /
1, ! c 1V
— — — ] = > .
(1/ [(1/2 (x (1/))> ) —l—vzxs (3) 0, v>1, (3.3)
where ¢ > 0 is a constant, a1 = 1, a2 = 3, a1(v) = -5, }2(v) = v, q(v) = 5, B = 1, and
T(v) = §. Clearly, (A1), (A2) and (1.2) hold. Using
v _1 v 3 _
Av,1) :/ a, (s)ds :/ s”3ds = Vi3
1 1 2
and
1 2 2 11
. W) [ A(s, 1) o i (8 (353 _3> 1( v3 o2
A(T(V)'l)_/l (M(S)) ds_/l 2 *=2\ma wtu)
it is not difficult to see that equation (3.1) becomes
1
(3.4)

c Vs o2\ .y
< L N G )
oyt n 9(3) 0
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Also, using vy = 2 and

we see that

-~

. r7(v) ¥ 302(v3 — 3 v3  23us — v
A (yr(v), T(v)) = /T(U) B(v,s)ds = / (2>ds == 3%,
3

and so equation (3.2) becomes

1
, c vs 235 —vus )\ (2
Z'(v) + 53 |5 732 YA 3= 0. (3.5)

Clearly, [19, Theorem 5] guarantee that all solutions of Egs. (3.4) and (3.5) are oscillatory. Thus,
every solution of Eq. (3.3) oscillates.

Theorem 3.3. Let (A1) and (Az) hold. If the first-order delay equation (3.1) is oscillatory and

timsup [ q(u) (4" ((v), 7(s))) ds > 1

(3.6)
for B = ayay, then Eq. (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(v) > 0 and x(7(v)) > 0 for
v > 11 > 1. We again consider the two cases in Lemma 2.1.

Case I. Proceeding as in the proof of Theorem 3.1, we again obtain a contradiction.
Case II. Clearly, forv > u > 1y,

u

al(v)Gl(x(v))—al(u)Gl(x(u)):/v(al(s)Gl(x(s)))/dSZ/v ay” (s)Gy* (x(s))

ay’ (s)
that is,

ay’ (s)
and so

ay* (s)
Hence,

_x’(u) > (ﬂz(U)Gz(x(v)))ﬁ (ﬂléu) /MU ]1( )ds) ’
S

and integrating from u to v gives
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x(1) > (a2(0)Ga(x(0))) 5% A* (0, u1).

Now, for any v > s > 1, for some v, > vy, if we set u = 7(s) and v = 7(v) in the preceding
inequality, gives

1

Mﬂm2<MﬂMQ&WMDymNWMJ®) (37)

Integrating Eq. (1.1) from 7(v) to v and then applying (3.7),

v

B(t)GAx((0)) 2 [ al)P(x(s)ds

which implies

and contradicts (3.6). O

Example 3.4. Consider the equation

(;K;Awm)

where we have a1 = 1, ap = 3, a1(v) = 91?, ;) = 5, qv) = % for6 >0, f =3 and
T(v) = 4. Clearly, (A;), (Az) and (1.2) hold. Using

Ay, 1) = /1Va2_"‘12(s)ds = /1V <512>; ds = (31/25_3>

3 !
5
) + 5 (%) —0, v>1, (3.8)

and

it is not difficult to see that (3.1) becomes

14 3
42 s V3 5 v
Y/ - Y — = 0 39
W)+ 5547 <7. 27 8 14) (2) (39)

Indeed, following [20, Theorem 2.1.1], Eq. (3.9) is oscillatory if

14 3 3
lim/v 0 957 —S——i ds>1
v—oo Jy 125-s7 \ 7. 2% 8 14 e’
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And using

Iq>k 7 = —_=
o= [ (G sy
27 (VA —®)  BuE -3
25 8 7.02%

Eq. (3.6) becomes

5 14 14 3
v vig (27 (vi(P—s%) 3us —3s3
* B s — i _
[, 10 @4 .o as= [ (25 ( - )

> 1.

By Theorem 3.3, every solution of (3.8) oscillates.

Theorem 3.5. Let (Ay) and (Az) hold. If B = wiap and there is a nondecreasing function ¢ €
C'([vo, ), (0, 00) such that (3.6) and

1(a))2 iy 2 o

PO (M) g
a1 (s)

lim sup [¢<s>q<s> -

v—00 V1
hold, then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of Eq. (1.1) such that x(v) > 0 and x(7(v)) > 0 for
v > 11 > 1. We again consider cases.
Case I. Define

_ 2 2(V)Ga(x(v))
W(v) = 4’(‘0%-

Then W(v) > 0, and using Lemma 2.2, the decreasing nature of a,(v)Gz(x(v)), and (2.3)

W) = 2 @WG(x(v))' | 82()G(xW))V) _ g ¢1)(@(v)Ca(x(1))x ()T (V)
xP(t(v)) xP(t(v) ) P (T (v))
"(v At W) (a2 (1) Ga (x(v))) 0z
<o -t (A st
oy OV BTW) <r<v>,vl> N
< ) + G - 2 ( ) W),
If we complete the square on the right hand side, we find that
, (@) (A(T(v),v)\ B
W) < () + (g (AT

Integrating the preceding inequality from 17 to v, we see that (3.10) gives a contradiction to
the fact that W(v) > 0.

Case II. Proceeding as in the proof of Theorem 3.3, leads to a contradiction in this case. O
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Example 3.6. Consider the equation

3 /
) v
) R (5) -0, wv>1, (3.11)

where we have a1 = 3, 00 =3, ;1 (v) = 1, ap(v) = 1, q(v) = Vi foré >0,=1and 7(v) =

3 v
Clearly, (A1), (A2) and (1.2) hold. Using ¢(v) = v* and A(t(v),11) = 3] (%)% — 1] in Eq.
(3.10), we have

v "(s))2(o(s iy 2 s o
lim sup [(P(S)q(s)_w)) (9()) (A(r( >,1>> ]ds

v J1 a1(s)

. v 3s® (35, 4 -3
= lim sup A [55 =y (4(53 - 1)) ] ds = oo.

V—00

It is not difficult to see that (3.6) holds, so by Theorem 3.5, every solution of (3.11) oscillates.

4 Concluding remark

Employing the methods of comparison, Riccati substitution, and the integral method, we in-
troduced three novel conditions for the oscillation of a general third-order nonlinear delay
differential equation. Interestingly, our results are applicable to linear, sublinear, and super-
linear equations. Some illustrative examples are given to show the applicability of our results.
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