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ABSTRACT

The automated system for enhancing plant growth presents an innovative approach to optimize quality of
sugarcane cultivation for four main sugarcane growing zones. It includes issues like recommendation of crops
based on soil nutrients, diagnosis of disease in the leaf and stem images of sugarcane, weed detection and
harvesting time prediction. The research work proposed in the article presents an innovative two-stage approach
for object detection and classification in agricultural imagery. Initially, YOLOv8 (You Only Look Once) is
employed to accurately detect objects within images, delineating them with precise boundary boxes. Subse-
quently, the focus of hybrid model integrating Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks, known as Contextual Long Short-TermMemory (CLSTM), is employed. This dual-
stage methodology harnesses the speed and accuracy of YOLOv8 for robust object localization, while the
CLSTM model ensures nuanced classification, contributing to comprehensive and accurate approach for object
detection and crop-weed differentiation in agricultural scenarios. The proposed approach is compared with the
four DL algorithms for identifying weeds in sugarcane crops and subsequently assessed their accuracy and F1
score performance. At a learning rate of 0.002, the findings of CLSTM showcase superior precision at 98.5%,
recall at 97.8%, F1 score at 98.1%, and an overall accuracy of 97.7%. The subsequent task is harvesting time
prediction, which entails identifying the best time to harvest sugarcane based on the planting period, weather
predictions, and sugarcane brix value. The implementation of this automated system not only enhances the
productivity of sugarcane cultivation but also serves as a model for sustainable and resource-efficient agriculture.
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1. INTRODUCTION

Crop yields essential to be increased for agriculture provide food for 1.2 billion people and take
up 60% of the nation’s land. Manual crop prediction has mainly failed. Farmers cannot select the
optimal crops based on soil and environmental variables. In the present unique rural climate, it
has become fundamental to expand crop efficiency while limiting ecological effects (Deshmukh
et al., 2022). The execution of AI calculations has turned into a strong method for taking care of
this issue. The challenge is optimizing sugarcane cultivation from crop suggestion to harvesting
time prediction. Accurate predictions are crucial for maximizing yield and resource efficiency.

These algorithms hold the key to selecting the appropriate crop for the appropriate soil and
advising on the most effective fertilizer usage by utilizing the capabilities of advanced data
analysis and predictive modelling (Gupta et al., 2022; Sushil, 2023). Machine learning algorithms
can offer insightful information that enables farmers to make knowledgeable decisions by
examining the composition of the soil, climate data, past crop performance, and other pertinent
elements (Militanteand Gerardo, 2019, December; Patra et al., 2017). This innovative strategy
encourages sustainable practices while also boosting agricultural output, establishing a harmonic
balance between crop yield and environmental preservation. Numerous variables, including crop
illnesses the environment, the state of the soil, regional farming practises, novel pathogen
variations, various illnesses, etc., influence the cultivation of a wide range of crops (Manavalan,
2021; Shingade and Mudhalwadkar, 2023a, b). Untrained pesticide use can harm crops and soil
over time, and plant disease is one of the biggest threats to food security because it severely
lowers crop yield and quality (Militante et al., 2019; Senthil Kumar and Vijay Anand, 2024).
Currently, farmers are suffering losses as a result of climate change. Early identification of
diseases in sugarcane plants is essential for reducing output losses and maintaining the health
of the crops. Explainable AI models (XAI), enabled by deep learning-based techniques, have
ushered in a new era of enhanced disease identification. Due to innovative technologies, experts
can gather crucial new information on the variables impacting the onset of disease in sugarcane
plants, which combines the strength of deep learning algorithms with interpretability (Bandi
et al., 2023; Shingade and Mudhalwadkar, 2023a, b). The XAI model can reliably identify disease
symptoms, offer justifications for its predictions, and help farmers take preventative actions to
slow the spread of diseases by assessing vast datasets made up of photos, sensor data, and
historical disease trends. This method supports the development of tailored disease management
techniques in addition to lowering crop losses, thereby promoting sustainable sugarcane farming
practices (Le et al., 2019).

Weed infestation has long been a serious problem that reduces farm production and crop
yield. Precision real-time separation of weeds from crops will lead to advancements in precision
crop and weed management, which prevents weeds in a field from competing with crops for
light water and nutrients (Manikandakumar and Karthikeyan, 2023). The method of weed
management that is currently most frequently utilized is blanket herbicide spraying. Effective
weed identification methods are essential for boosting crop output and reducing weeds detri-
mental effects on agricultural productivity. A new age of precise weed detection has begun with
the introduction of improved classification algorithms (Sarvini et al., 2019). Farmers can
correctly detect and distinguish between desired plants and invasive weeds using these strategies
since they accurately classify both the crop and the weed. This makes it possible to use targeted
weed control techniques, such as selective herbicide treatment or manual weeding, to greatly
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lessen competition for resources and guarantee the best crop development (Jin et al., 2021).
Utilizing the effectiveness of these methods, farmers may boost yield potential by reducing the
negative effects of weeds and fostering a healthier and more fruitful agricultural environment
(Raja et al., 2020). In site-specific weed management (SSWM) treatments, a tolerable dose of
herbicides is advised based on reliable weed detection, which may ultimately increase chemical
savings while increasing its effectiveness (Ahmad et al., 2021). One of the most crucial elements
determining sugarcane productivity is harvest age. To reduce crop loss and maximize yield
potential, it is fundamental to forecast the ideal sugarcane harvesting time. Farmers might select
with sureness when is the best opportunity to collect their sugarcane crop by utilizing prescient
demonstrating apparatuses. These algorithms can precisely predict the best time to harvest the
crop by assessing a variety of characteristics like plant development stage, sugar content, mete-
orological conditions, and historical production data (Panakkal et al., 2022). This makes it
possible for farmers to prevent both premature and delayed harvesting, which can result in
sugarcane degradation and losses (Wang et al., 2022). This research addresses the problem by
applying advanced machine learning and deep learning techniques to enhance prediction ac-
curacy and crop management. Premature harvesting can lead to lower sugar content. Farmers
may improve their harvesting techniques, cut down on crop waste, and assure the best return
from their sugarcane crops by utilizing these predictive capabilities, which will lead to more
effective and sustainable agricultural practices (Fu et al., 2022). The E2E model represents a
ground-breaking advancement in sugarcane cultivation by combining YOLOv8 for accurate
object detection with a hybrid CLSTM model for sophisticated crop-weed differentiation and
disease prediction. This novel integration enables precise crop management and optimizes
harvesting timing, significantly enhancing agricultural efficiency. Its potential impact extends
beyond sugarcane, offering scalable solutions for crop management and yield prediction across
diverse agricultural sectors. The remaining sections are arranged as follows: Section “Literature
survey” covers the literature review; Section “Research problem definition and motivation”
discusses the study problem identification and motivation; Section “Proposed research meth-
odology” describes the proposed technique; Section “Experimentation and results discussion”
discusses the results; and Section “Research conclusion” contains the paper’s conclusion.

2. LITERATURE SURVEY

The literature survey on automated plant disease identification and diagnosis for enhancing
sugarcane growth quality using machine-learning approaches reveals a growing body of research
at the intersection of agriculture, technology, and data science. These efforts aim to mitigate the
economic losses caused by plant diseases and enhance overall crop yield and quality. Gunjan
et al. (2022) predicted crop yield precisely by employing SVM to produce accurate results and
aid farmers in selecting a suitable crop for the region and climatic conditions in the systems
prediction process; included are data on temperature, rainfall, subsurface water, and soil nitro-
gen, which could yield reliable advice about whether or not to invest in growing that crop. SVM
outperforms other classifiers in terms of accuracy, scoring 95.48 per cent. This recommended
model accomplishes 95.16%, which is greater in comparison to the other classifiers and equal to
or better than the Naive Bayes classifier’s precision rate of 94.31%. The recall rate for Naive
Bayes is 92.16%, which is also higher than the recall rates for the other classifiers. This submitted
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ensemble learner has a 93.33% recall rate. Additionally, F-measure and Mean Square Error offer
87.71% and 0.105, respectively. Tanwar et al. (2023) employ a convolutional neural networks
(CNN) model to predict and classify Red Rot disease in sugarcane. They delve into the issue of
Red Rot infection in sugarcane plants. The research begins by capturing images of diseased
plants through secondary sources. Utilizing the powerful features of CNN’s deep learning
techniques, they extract and analyze the disease-related characteristics, subsequently classifying
them (Narmilan et al., 2022). Remarkably, the study achieves a high accuracy rate of 93% in
predicting the presence of Red Rot Sugarcane Disease.

To identify WLD in crops of sugarcane, Amarasingam et al. (2022) assessed the execution
of the current deep learning models like Faster R-CNN, YOLOR, DETR, and YOLOv5. The
experimental findings show that the YOLOv5 network performed better than the other chosen
models with precision, recall, mean average precision@0.50 (mAP@0.50), and mean average
precision@0.95 (mAP@0.95) scores of 95%, 92%, 93%, and 79%, respectively. When measured
for precision, recall, mAP@0.50, and mAP@0.95, DETR had the worst detection performance,
scoring 77%, 69%, 77%, and 41%, respectively. Tamilvizhi et al. (2022) introduced a
quantum-behaved particle swarm optimiztion-based deep transfer learning (QBPSO-DTL)
model to accurately identify and categorize sugarcane leaf diseases. The outcomes showed
that the QBPSO-DTL model generated a better classification output for each epoch. For
example, the AUC, accuracy, measure, and recall of the QBPSO-DTL model utilizing 200
epochs are 94.1, 93.75%, 96.66%, 94.87%, and 92.50%, respectively.

Haq (2022) utilized the Convolution Neural Network (CNN) classification on a real dataset
of 4400 UAV pictures with 15,336 segments to develop a novel automated weed detection
method. The results were compared to existing ML and DL applications for categorizing weeds.
Overall classification accuracy for the newly developed CNNLVQ is 99.44%, which is encour-
aging. El-Kenawy et al. (2022) proposed a novel method for classifying images of weeds and
wheat captured by a sprayer drone. The proposed approach is based on a voting classifier
composed of K-nearest neighbours (KNN), support vector machines (SVM), and neural
networks (NNs), which are three basic models. The usefulness and superiority of the suggested
strategy over the other competing optimization strategies were proven by experimental data.
The suggested optimized voting classifier achieved a sensitivity of 98.10%, specificity of 95.20%,
F-score of 98.60%, and detection accuracy of 96.70%. Sunil et al. (2022) used RGB image texture
information to identify weeds and types of crops by comparing the Support Vector Machine
classification algorithm with deep learning-based visual group geometry 16 (VGG16) models
for classification. The average VGG16 model classifier f1-scores ranged from 93% to 97.5%,
according to the results. A 100% f1-score value was attained for the corn class by the VGG16
Weeds-Corn classifier, which seems remarkable for the corn crop production system.

Modi et al. (2023) explored computer vision-based deep learning for autonomous weed
identification. They used a dataset of 5,660 augmented images and trained six DL models with
90% for training and 10% for validation. DarkNet53 stood out with a >99% F1 score, surpassing
various models (AlexNet, GoogLeNet, InceptionV3, ResNet50, Xception) in identifying weeds in
sugarcane crops. Achieving >98% accuracy and <1% error rate was possible with a mini-batch
size of 16 and 20 epochs. Johnson et al. (2023) utilized pigment and hyperspectral analyses to
differentiate between sugarcane and weeds. Leaf samples from sugarcane varieties and common
weed species were collected. Hyperspectral data successfully distinguished sugarcane from weeds
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in all cases. Classification accuracy ranged from 67% to 100% for various weed species and
sugarcane varieties, with no misclassification of sugarcane as a weed.

3. RESEARCH PROBLEM DEFINITION AND MOTIVATION

Agriculture plays a critical role in global economies, underpinning food security and economic
stability. Sugarcane (Saccharum officinarum L.), a key member of the Graminae family, is vital to
India’s agricultural sector, which is the second largest in the country after Brazil. India alone
contributes approximately 25% of global sugarcane production. In 2018, 79.9% of sugarcane
produced was used for white sugar, with 11.29% for jaggery and 8.80% for animal feed and seed.
In 2019, India harvested 840.16 million tons of sugarcane. Understanding production levels is
essential for effective policymaking, as sugarcane is crucial for generating sugar, biofuels, and
other valuable by-products. Maximizing both yield and quality is vital to meet the growing
demand for these products. Traditionally, farmers have depended on manual methods and
personal experience for decisions related to soil management, disease detection, weed control,
and harvesting timing. However, these conventional approaches can be labor-intensive, time-
consuming, and often imprecise, leading to reduced productivity. To overcome these limitations,
automated systems incorporating advanced technologies and machine learning present a prom-
ising solution. These systems aim to enhance plant growth, provide tailored soil recommenda-
tions, and optimize both yield and quality in sugarcane cultivation. By leveraging sophisticated
algorithms and data analysis, these systems enable more efficient decision-making and precise
interventions throughout the cultivation cycle. A critical function of these automated systems is
predicting the most suitable crops for specific soil types through machine learning techniques.
By analyzing soil characteristics and historical crop data, the system assists farmers in making
informed crop selection decisions, ultimately enhancing productivity and resource use. Addi-
tionally, the integration of disease detection algorithms utilizing image processing can automate
the identification of plant diseases, allowing for timely interventions that minimize crop losses
and boost overall plant health. While the potential benefits are substantial, it is essential to
acknowledge the challenges associated with implementing such technologies, including the need
for farmer training and the importance of retaining human expertise in agricultural practices.
Balancing technology with traditional knowledge may lead to the most effective outcomes in
sugarcane cultivation.

4. PROPOSED RESEARCH METHODOLOGY

The automated system is implemented for the periodic monitoring of sugarcane fields from
growing season to harvesting.

The collection of data plays a crucial role in understanding the complexities of sugarcane
production. The overarching objective of this agricultural research is to address various crucial
challenges in farming. Initially, it intends to assist farmers in choosing the best-fit crops for
specific soil types and recommends the optimal fertilizer composition, utilizing machine
learning techniques for accurate predictions. Further, the project focuses on the early identifi-
cation of disease in sugarcane plants, offering a solution to the timely identification of diseases
such as rust, smut, and mosaic viruses. This enables farmers to take proactive measures to
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protect their crops and ensure sustainable sugarcane production. Additionally, the study eval-
uates and suggests effective object detection models for weed management, promoting chemical
savings and enhancing weed control precision in agriculture. Finally, the research includes a
model for predicting the optimal harvesting time for sugarcane, considering factors like sowing
periods, weather forecasting, and the brix value. Together, these objectives aim to improve
farming practices, reduce environmental impact, and optimize crop yield while addressing
critical agricultural challenges.

4.1. Crop recommendation for suitable soil

The study primarily aims to offer guidance on selecting the best crop for specific types of soil
and recommends the optimal fertilizer composition. Addressing issues related to micronutrient
deficits in the soil and imbalanced fertilizer application, the research explores various solutions,
including soil and foliar fertilization, crop systems, and organic amendments. Previously, the
study employed Barley, Rice, Wheat, Tomato, and Chilli as crops to predict yields in recom-
mended soils (Rubini and Kavitha, 2022). The study predicted sugarcane as the best crop for the
given soil type. Once the crop is determined, the research ensures the soil nutrient indices are
adequate for healthy plant growth. If the nutrient levels fall below the required threshold, the
model recommends the appropriate fertilizer dosage for farmers to apply in their farmland.

4.2. Sugarcane plant disease diagnosis

The current problem lies in the difficulty of timely identifying diseases in sugarcane plants. Sug-
arcane diseases, such as rust, smut, and mosaic viruses, can cause significant damage to crops if not
identified and managed promptly. Traditional visual inspections by farmers may not always detect
diseases in their early stages, leading to delays in implementing necessary control measures. There
is a necessity for an accurate, efficient, and automated system that can detect diseases in sugarcane
plants at an early stage, enabling farmers to take proactive actions. The purpose of this study is to
develop a system that enables the early identification of disease in sugarcane plants. By detecting
diseases at the beginning phase, farmers can take timely preventive measures to mitigate the
spread of diseases, minimize crop losses, and ensure sustainable sugarcane production.

The task of automatically detecting and classifying sugarcane diseases is intricate, and the
manual detection system faces challenges such as a lack of expertise, high expense, and a
multitude of variations in leaf disease symptoms. The research makes use of a DNet-SVM:
XAI comprehension that combines SVM and LIME translation with a thick net. DNet-SVM:
several changes made to DenseNet201, such as expanding a Support Vector Machine classifier,
were used to create XAI (Rubini and Kavitha, 2023). This trained the model using the labelled
dataset of sugarcane leaf/stem images with identified diseases. This enhances the model’s capa-
bility to understand complex examples and connections within the data, leading to improved
disease prediction accuracy.

4.3. Weed detection model development

Controlling weed invasion through synthetic substances (herbicides and pesticides) is fundamental
for crop yield. Regardless, overindulgence in these synthetics has resulted in major agronomic and
ecological difficulties. As per precise weed discovery, a suitable portion of herbicides is suggested in
Site-Explicit Weed Administration (SSWM) applications, which may at last advance substance
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saving while at the same time upgrading its adequacy. To enhance the effectiveness of weed
detection models, several key strategies are recommended. The development of a weed detection
model in YOLO (You Only Look Once) v8 involves leveraging the capabilities of this state-of-the-
art object detection framework. YOLO v8 excels in real-time object detection, making it appro-
priate for applications like agricultural field monitoring. Within the framework of weed detection,
the model is used to train a dataset. comprizing images containing both crops and weeds. The
training process involves optimizing the neural network’s parameters to precisely determine and
classify objects, with a specific focus on distinguishing weeds from surrounding vegetation.
YOLO’s ability to detect multiple objects in a single pass enhances its efficiency in processing
large-scale agricultural landscapes. The resulting model is then fine-tuned and validated to ensure
robust weed detection performance. Once deployed, the YOLO v8 weed detection model offers a
useful instrument for farmers, enabling them to identify and manage weed infestations promptly,
contributing to more sustainable and effective crop management practices.

4.3.1. Image pre-processing. Pre-processing images is an important step in ensuring that all the
images are identical or nearly identical, allowing them to be interpreted as having been taken
with the same sensors and under the same environmental conditions. Pre-processing of the the
collected sugarcane plant images is implemented to enhance quality, remove noise and extract
relevant features from the images, such as colour, texture, shape, and size. Identifying and
cleaning up irregular values is the most difficult task. The location calculates a weighted normal
value over a given area based on the force difference between pixels and their Euclidean distance.
The following formulas are to be applied to set the likeness between any two pixels.

λ
�
pk;l; pm;o

�
¼ exp

−

����
�
k; l
�!��

�
a; b
�!�����2

2ψ2
λ

0
BBB@

1
CCCA; pm;o«Ωpk;l (1)

η
�
pk;l; pm;o

�
¼ exp

 
−

���pk;l � pm;o

���2
2ψ2

η

!
(2)

θ
�
pk;l; pm;o

�
¼ λ
�
pk;l; pm;o

�
(3)

Where, λðpk;l; pm;oÞ shows the geometric distance between pixels coefficient of influence,
ηðpk;l; pm;oÞ represents the brightness difference between pixels coefficient of influence, ðk; lÞ and
ðm; oÞ indicate the local area’s pixel coordinates and a, b be the reference point of pk;l:Ω, ψη and
ψλ are the characteristics of the coefficients standard deviation. Introducing θ as identical to λ
simplifies notation and clarifies that spatial influence directly affects prediction models, ensuring
consistency. The sum θ is calculated as follows.

ςxk;l ¼
X

xm;o«Ωxk;l

θ
�
pk;l; pm;o

�
(4)

Assume that T is the threshold value selected empirically, and the array gk;l map of noisy
pixels, then from (5).
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gk;l ¼
�

0 if ςxk;l<T
1; if ςxk;l ≥T (5)

For the accommodation of a visual view of the consequence of cleaning the image, the
Euclidean metric L2 was used. The L2 metric is well-suited for developing channel layers for
clearing images from storage disruption using flexible intermediate filtering. The ability to
measure the disparity in competence values between pixels is founded on the ability to create
an absolute contrast between the handled pixel and other pixels in the surrounding window.
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1; if pk;l ¼ pm;o; pm;o«Ωpk;l

1� 1
q
log2
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			; if pk;l ≠ pm;o; pm;o ∈Ωpk;l

(6)

Where q is the image pixels bit depth. The lower the number of U the maximum brightness
difference. Dividing by q keeps U non-negative. The logarithmic capability demonstrates the
main piece of the distinction among pixels and is appropriate to make sense of the computerized
idea of the information and to line up with the visual view of the natural eye, this is capable of
efficient operation on complex data representations, such as images.

4.3.2. Dataset pre-processing. The raw images of sugarcane collected are imbalanced, so to
balance the dataset, a data augmentation technique is applied and classes are balanced. To feed
images in the YOLO model, the raw images need to be annotated. Annotation guarantees
consistent and accurate labelling, which enhances the dependability and performance of the
trained model. Roboflow is the tool used to annotate the images of sugarcane and weed and save
them as a .txt file along with the original images as shown in Fig. 1.
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Fig. 1. Block diagram of the proposed work
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4.3.3. Implementation of proposed work. The proposed work is implemented in the two-stage
method for weed identification as shown in Fig. 2. The term “Detection” is defined as “Local-
ization” and “Classification”. In the proposed two-stage approach, the first stage involves the
process of Localization which is a method of locating an object in the image utilizing YOLO
version 8 for efficient object detection, employing bounding boxes to find items within the
image. Following this, the second stage focuses on classification or further processing based
on the identified objects, contributing to a comprehensive and accurate understanding of the
image content that describes what is in the boundary box. For classification, the hybrid model
approach of CLSTM was implemented, which is the combination of CNN and LSTM. This two-
stage methodology enhances the overall efficacy of object recognition and facilitates more
informed decision-making in applications such as computer vision and image analysis.

The E2E model improves sugarcane yield by optimizing crop management through precise
suggestions and timely harvesting predictions. It enhances resource efficiency by minimizing
inputs like water and fertilizers through accurate monitoring and analysis, leading to more
efficient use of resources and higher productivity. To evaluate the E2E model for sugarcane
cultivation, perform a comparative analysis by contrasting its performance with traditional
methods and other systems, focusing on improvements in productivity and resource efficiency.
Use before-and-after comparisons to highlight changes in key metrics, such as yield and
resource use, due to the model’s integrated approach. Benchmark the E2E model against existing
systems and industry standards to validate its effectiveness. Provide detailed case studies and
real-world applications showing the model’s success in managing crops and optimizing harvest-
ing. Include results from field trials to demonstrate its performance in diverse conditions. The
measurement techniques used to assess productivity and resource use, ensuring accuracy and

Fig. 2. Two-stage approach of weed detection
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reliability. Define and utilize key metrics, such as yield per hectare, water and fertilizer usage,
and harvesting time prediction accuracy, to comprehensively evaluate the model’s impact.

4.4. First stage: detecting objects in the image

The initial step in the workflow involves the application of the YOLO (You Only Look Once)
algorithm, the latest iteration in yolo series is yolov8 which improves upon earlier iterations by
incorporating multiple changes like modules for context aggregation, feature fusion and spatial
attention. One of the most significant object detection algorithms in use today is the YOLOv8
industry thanks to these advancements that lead to faster, more accurate object detection. There
are 5 different-sized models of yolo n, s, m, l, x. The proposed approach selected Large sized
model (yolov8l.pt) to object detection. The higher the model size that we select, the more
accurate the predictions will be. So large model is chosen here and X is not chosen because it
requires high computation time.

YOLOv8 detects objects within the given image and subsequently assigns bounding boxes to
each identified object. YOLOv8 is well known for its ability to instantly identify objects. It works
by dividing the image into grid cells and estimating bounding boxes and class probabilities for
objects that are present in each grid cell. By analyzing the complete image in one pass, YOLO
can efficiently and accurately localize and categorize multiple objects simultaneously. This pro-
cess not only streamlines object detection but also yields precise boundary boxes, forming the
foundation for subsequent stages in our image processing pipeline.

Annotating is necessary when using YOLOv8 technology to give the model accurate data labelling.
Annotated photos are required to enable YOLOv8, an object detection algorithm, to discover and
identify theobjects.YOLOv8can learn frompast imagesand forecast futureonesutilizing this annotated
data. It is simple to begin using models that have already been trained on basic objects. However, in
actual use, it can require a solution to identify particular items for a specific business issue.

There is probably not a free model that is fully informed, and this data is not readily
accessible through open datasets. To detect these kinds of specific objects, it is essential to train
own model. For that, the first process is to build a database related to the problem’s annotated
images and train the model used to make that happen. The steps that elaborate the image
annotation before the training and evaluation phase are explained as follows.
Image annotation: To instruct the model, annotations of images must be created and separated
into datasets of training and validation. The training set is utilized for both the validation set and
model training, which also tests the study’s conclusions, and is employed to assess the model’s
quality. The model undergoes training with 20% of the images in the validation set and eighty
percent of the training set’s images. Select and encode object classes to instruct the model to
identify them. The training of the model is designed to localize only, not to classify, hence in this
case, only one class—the crop class—is indicated as 0. No weed class is provided. The dataset is
then divided into the images and labels subfolders. The dataset is then divided into the images and
labels subfolders. Images are placed in the images subfolder, and a text file with annotations
is made for each image in the labels subfolder. The names of annotation text files and their
.txt extensions should match those of image files. To add documentation for every item present
on the relevant image to the annotation files, use the format shown below:

{object_class_id} {x_center} {y_center} {width} {height}
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For instance, the below weed image in Fig. 3 will be annotated as 0 0.589869281 0.490361446
0.326797386 0.527710843.

The following formula is used to calculate x_center, y_center, width and height

x center ¼ ðbox x leftþ box x width=2Þ
image width (7)

y center ¼ ðbox y topþ box height


2Þ
image height (8)

width ¼ box width


image width (9)

height ¼ box height


image height (10)

For the image with the details as image_width 5 612, image_height 5 415, box_x_left 5 261
box_x_top 5 94, box_width 5 200 and box_height 5 219 then

x center ¼ ð261þ 200=2Þ=612 ¼ 0:589869281

y center ¼ ð94þ 219=2Þ
415 ¼ 0:490361446

width ¼ 200=612 ¼ 0:326797386

height ¼ 219=415 ¼ 0:527710843

So here, the annotation will be “0 0.589869281 0.490361446 0.326797386 0.527710843”.

4.4.1. YOLOv8 model. Convolutional neural networks (CNNs) are the foundation of the
one-stage, real-time object detection model used in the You Only Look Once model series.
The reason for YOLO’s widespread use is its effective feature fusion and capacity to generate
extremely precise detection outcomes while upholding a thin network architecture. New features
and enhancements over its predecessors are introduced by YOLOv8, the most recent YOLO
version detection model, enhancing detection performance and flexibility. YOLOv8 adopts an
anchor-free approach, reducing how many box predictions there are, expediting non-maxima
suppression, and optimizing detection efficiency. To cater to diverse research needs, YOLOv8
offers five different scale models (n, s, m, l, x) based on scale factors akin to YOLOv5. The

Fig. 3. Weed image
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YOLOv8 network comprises Backbone, Neck, and also Head modules, responsible for prediction
output, multi-feature fusion, and feature extraction, in that order. The network’s structure is seen
in Fig. 4, and it is adept at efficiently detecting objects in images by predicting bounding boxes.

Backbone module: Similarly to the YOLOv5 architecture, the YOLOv8 architecture also
makes use of the Spatial Pyramid Pooling Fusion module, which greatly improves the model’s
capacity for generalization while successfully avoiding issues like image distortion brought
through operations on the image regions such as scaling and cropping. The C2f module, which
combines the two branches of a parallel gradient flow and reduces a convolutional layer based
on the original C3 module, allows the YOLOv8 model to extract richer and more robust gradient
flow information while maintaining its lightweight properties. The advancements introduced in
YOLOv8, such as its anchor-free approach and multiple scale models catering to various
research needs, showcase a commitment to improving flexibility and performance of detection.
As fewer box predictions are made, expediting non-maxima suppression, and optimizing detec-
tion efficiency, YOLOv8 demonstrates its capability to meet the demands of modern computer
vision applications. The integration of the network’s Backbone, Neck and Head modules un-
derscores its proficiency in prediction output, multi-feature fusion and also feature extraction.
YOLOv8’s efficacy in detecting objects with bounding boxes further solidifies its position as a
robust and versatile real-time object detection solution for applications across various fields.

4.4.2. Training and validation phase of YOLO.

� Once all of the images have been annotated, the data is divided into combined with a train and
validation dataset, along with a YAML descriptor file is produced and sent to the train approach.

� Run a random set of images via the method in the training stage. The model will then output
the bounding boxes for each object it detects, along with its class.

� Send the outcome of the loss function, which compares the output that was received with the
accurate results obtained from the files with annotations for the images. The degree of in-
accuracy is computed by the loss function.
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Fig. 4. YOLOv8’s network structure
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� The optimizer receives the loss function result and modifies the model weights according to
the degree of inaccuracy in the right direction. The next cycle’s errors are decreased as a result.

� Using the same methodology, the validation phase determines the model’s precision by
comparing the actual and predicted results.

4.4.3. Implementation of YOLOv8. YOLOv8 is a cutting-edge object detection model designed
for real-time image analysis. It excels in detecting and classifying objects within an image
efficiently, making it ideal for agricultural tasks such as differentiating between crops, weeds,
and signs of disease. YOLOv8 achieves high accuracy with its advanced architecture, which
includes a backbone network for feature extraction, a neck for feature aggregation, and a head
for bounding box prediction and classification.

The CLSTM model integrates Convolutional Neural Networks (CNNs) with Long Short-Term
Memory (LSTM) networks to address both spatial and temporal dimensions of data. CNNs extract
detailed features from individual images of sugarcane fields, identifying key traits and patterns
crucial for distinguishing between crops and weeds. The LSTM component then analyzes these
features over time, leveraging sequential data to forecast future conditions and identify trends
based on historical observations. This hybrid approach enables comprehensive analysis by
combining spatial insights with temporal predictions for enhanced crop management.
Data Sources for E2E Model: Image data for the YOLOv8 model is collected from field cameras,
drones, or publicly available agricultural datasets, with each image meticulously annotated
to identify crops, weeds, and disease symptoms. For the CLSTM model, temporal data is
utilized, encompassing historical records of environmental conditions, crop growth stages,
and resource inputs. This data is sourced from field sensors, weather stations, and agricultural
records, providing a comprehensive basis for training the model to analyze and predict changes
over time.

4.5. Second stage – classification

The subsequent phase of the pipeline employs a hybrid model CLSTM which combines Long
Short-Term Memory and Convolutional Neural Network architectures. This integrated model is
designed to classify the extracted portions of image is either crops or weeds. The CNN compo-
nent is adept at capturing spatial features from the segmented regions, enabling robust feature
extraction, while the LSTM component processes the temporal sequence of information, pre-
serving contextual dependencies. The synergy between CNN and LSTM enhances the capacity
of the model to discern between crop and weed instances, considering both spatial character-
istics and temporal patterns in the segmented regions. This two-stage process guarantees a
far-reaching and accurate analysis among the input image, providing valuable insights for
agricultural applications such as precision farming and weed management.

4.5.1. Classification of the extracted portion of the image. Following the initial object detec-
tion with YOLO, the corresponding bounding box regions are taken out of the image and
forwarded to the second stage. In this subsequent phase, a hybrid model combining Long
Short-Term Memory and Convolutional Neural Network architectures is employed for classi-
fication. This Contextual Long Short-Term Memory (CLSTM) hybrid model excels in recog-
nizing intricate patterns within the extracted image portions, enabling accurate differentiation
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between crops and weeds. The temporal modelling capabilities of LSTM, coupled with the
spatial feature extraction of CNN, contribute to a complete understanding of the content,
ensuring precise classification results. This two-stage process harnesses the strengths of both
YOLO and the hybrid model, culminating in an effective approach for crop and weed identi-
fication in agricultural scenarios.

4.5.2. Convolutional neural network (CNN). The purpose of Convolutional Neural Networks
is to efficiently extract spatial characteristics from images. Weight sharing, hierarchical feature
learning, and convolutional layers are the main techniques that enable CNNs to capture
spatial data.

Convolutional Layers: The fundamental components of CNNs used in feature extraction are
convolutional layers. Small matrices called kernels, or learnable filters, make up a convolutional
layer. These filters calculate the product of dots between the filter values and the matching input
values at each point as they move above the source image in a predetermined pattern. The end
product is a feature map that draws attention to the local features, patterns, and textures found
in the input image.

Local Receptive Fields: Local receptive fields enable convolutional layers to focus on tiny,
nearby spatial portions of the input. Within its receptive field, each filter has a speciality for
identifying particular features.

Weight Sharing: A key idea in CNNs that lowers parameter numbers and improves the
network’s capacity for generalization is weight sharing. Throughout the input image, the same
set of filters are applied at various spatial places. Because of this, the network can identify
comparable patterns (textures, edges) in images irrespective of their location.

Pooling Layers: To downsample feature maps and lower computational complexity, pooling
layers are frequently added after convolutional layers. The most notable properties in a partic-
ular region are retained by common pooling techniques such as average and maximum pooling.

Hierarchical Feature Learning: CNNs that use hierarchical feature learning include several
convolutional layers layered on top of one another. Basic characteristics like borders, textures,
and colours are captured by lower layers. Higher layers build on these fundamental character-
istics as data moves through the network to acquire more knowledge of intricate and abstract
representations.

Non-Linearity (Activation Function): To introduce non-linearity, an element-wise applica-
tion of a function of nonlinear activation (often ReLU, or Rectified Linear Unit) is made
following convolutional and pooling processes. The network can learn intricate correlations
between features because of its non-linearity, which also increases the expressiveness of the
model.

Global Context: The global context and relationships between various components of the
image input are captured by higher layers in the network, which also have larger receptive fields.
Understanding this global context is essential to identify intricate objects and conditions.

Convolutional layers are utilized by CNNs to extract hierarchical spatial characteristics from
input images using localized operations. By ensuring that the same filters are applied to all areas
of the image, weight sharing improves the generalization capacity of the model. CNNs are useful
for a range of image-processing tasks because of their hierarchical structure, which enables them
to capture both basic and complicated spatial patterns.
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This novel method improves classification accuracy while guaranteeing flexibility in dynamic
and changing visual environments. It works especially well in agricultural applications where
accurate weed detection is crucial to productive farming methods.

4.5.3. Long Short-Term Memory model. Long Short-Term Memory (LSTM), a type of recur-
rent neural network (RNN), serves as a robust tool for classifying the extracted portions of
images as either crop or weed. Renowned for its capacity to model sequential dependencies and
capture temporal patterns, LSTM excels in analyzing image sequences and making informed
classifications. Concerning agriculture, where distinguishing between crops and weeds is crucial
for optimizing farming practices, the use of LSTM ensures that the model can effectively
comprehend and categorize the dynamic features and variations within the image data. The
application of LSTM in image classification contributes to the precision and adaptability
required for accurate identification and decision-making in agricultural scenarios, ultimately
enhancing the efficiency of crop management processes. Three layers: the output layer, the
LSTM layer and the dense layer with a sigmoid activation function. Let x be a tensor that
contains the input set values of a subject. x is fed as input to the embedding layer to generate
the output tensor, f ðxÞ, of the given dimensions:

f ðxÞ ¼ embeddingðlengthðxÞ; output � dimension; input � lengthðxÞÞ (11)

where f ðxÞ is the input for the LSTM layer.

gðxÞ ¼ lstmðf ðxÞÞ (12)

where gðxÞ is the input to the Dense layer with a sigmoid activation function. Converging the
output values among 0 and 1, this layer also serves as the output. Here, 0 denotes the absence of
demented subjects, and 1 denotes their presence.

z ¼ gðxÞ � W þ b (13)

y ¼ 1=ð1þ e−zÞ (14)

The implementation of Long Short-Term Memory for classifying extracted image portions as
crops or weeds ends up being a promising approach. The unique temporal modelling capabilities
of LSTM enable accurate and dynamic classification, essential for optimizing agricultural prac-
tices. This method not only enhances precision in the identification of crops and weeds but also
showcases the adaptability required to handle diverse visual contexts. The utilization of LSTM
holds significant potential for advancing image-based crop management, contributing to a more
effective and informed decision-making realm of precision agriculture.

4.5.4. CLSTM model. Figure 5 explains a hybrid model of Contextual Long Short-Term Mem-
ory (CLSTM) that is utilized for image classification tasks where the data will be recorded for
both spatial and temporal dependencies. Hierarchical spatial features among the input data are
extracted using CNN as the first feature extractor. To capture temporal dependencies across the
images, the CNN’s output features are then input into the LSTM network. For eventual classi-
fication, the LSTM’s resultant output is coupled to two fully interconnected layers. The spatial
and temporal data that the CNN and LSTM components learned are combined in these layers.
The final layer usually generates class probabilities for the image sequence using a sigmoid
activation function. Using labelled data, the entire model is trained from end to end The
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CNN is used during training to teach the model how to extract spatial characteristics from each
image, while the LSTM is used to collect temporal dependencies throughout the series. Tem-
poral dependencies between frames are captured by LSTMs as they process the sequence of these
spatial properties.

4.6. Training phase

During the training cycle, each image is converted into a sequence of features through a com-
bination of a Long Short-Term Memory and Convolutional Neural Network architecture in-
volves the following algorithmic steps:

• Data Preprocessing:
a. Load and preprocess image dataset.
b. Resize images to a consistent size.
c. Normalize pixel values.

• CNN Feature Extraction:
a. CNN architecture is designed for image feature extraction.
b. The Convolutional layers are employed to remove hierarchical spatial features from each

image.
c. The output will be a set of features representing spatial information within the image.

• Sequence Conversion:
For every image, the extracted spatial features are reshaped into a sequence of vectors.

• Padding
These sequences have different lengths, so to ensure uniform length padding or truncating is
essential.

Fig. 5. Hybrid model -CLSTM
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• Long Short-Term Memory Architecture:
a. LSTM architecture is intended to process sequences of features.
b. The input shape based on the sequence length and dimensionality of each feature vector is

passed.
c. LSTM layers are added with 512 units in the proposed approach.

• Fully Connected Layers:
a. Two fully connected layers are added after the LSTM layers to further process the learned

temporal representations.
b. Flatten layer and dropout layer with 0.4 is added before the output layer.
c. The layer that is output is included with a Sigmoid activation for the classification of weed

or a sugarcane crop.

• Training:
a. The dataset is split into instruction and verification sets of 80:20.
b. Then the combined CNN-LSTM model is trained utilizing a loss function as categorical

cross-entropy and an optimization algorithm as Adam.

4.7. Testing phase

When a test image is transported via the combined Contextual Long Short-Term Memory
model for classification, the process involves the following steps:

• Preprocess the Test Image:
Preprocess the test image similarly to preprocessing for the training images. This includes
resizing, and normalization steps used during training.

• Extract Spatial Features using CNN:
a. Pass the preprocessed test image via the CNN portion of the model.
b. The CNN extracts hierarchical spatial features from the image.

• Convert Features into Sequences:
Reshape the extracted spatial features into a sequence of vectors with the same sequence
length used during training.

• Pass Sequences through LSTM:
a. Pass the sequence of feature vectors via the LSTM segment of the model.
b. The LSTM captures temporal dependencies within the sequence.

• Make Predictions:
a. Then the combined trained model is used to make predictions on the test sequence.
b. The model outputs probabilities for each class.

4.7.1. Hyperparameter tuning of the suggested model. The model’s parameters, such as the
number of epochs, batch size, learning rate, etc., were determined before the training process
occurred. The model underwent training using training data. For a determinate validation of
the prototype, the validation set was employed. This assisted in optimizing the model’s hyper-
parameters. The model was retrained with these parameters after the appropriate ones were
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determined. Upon completing the instruction procedure, the test set was utilized to verify the
model’s correct operation by providing an additional practical validation of the unseen data
points.

Table 1 displays the performance metrics of the CLSTM model across different epochs and
batch sizes, providing a comprehensive view of its effectiveness in handling the given task. When
the quantity of epochs rises, there is a discernible improvement in key metrics such as precision,
recall, F1 score, and overall accuracy. For instance, at epoch 10, with a batch size of 16, the
model achieves a precision of 92.0%, recall of 99.2%, F1 score of 99.5%, and an accuracy of
94.6%. Moreover, the impact of varying batch sizes is evident, with performance variations
observed across different configurations. As the model undergoes training for more epochs, it
consistently refines its capacity to forecast with accuracy, as reflected in the escalating precision,
recall, and F1 score values.

4.8. Harvesting time prediction of sugarcane crop

Predicting when to harvest is another important aspect of agriculture. It entails figuring out when
to harvest sugarcane in order to maximize sugar content and crop quality overall. The estimation
of sugarcane harvesting time is influenced by a number of variables. Based on variables such as the
cane’s brix value, weather forecasts, and the planting period, the sugarcane harvesting time can be
estimated. In the world of sugarcane farming, knowing when to plant is essential to achieving
strong crop growth and maximum yields. The upgraded datasets and features mentioned below
are added to the existing methods in the climate-forcing datasets to provide new datasets that
support and connect to agricultural applications. Various conventional methods, such as manual
crop disease and pest detection and statistical calculations to estimate quantity and forecast crop
production and loss, were often labour-intensive and prone to human error because farmers
lacked experience before the development of information technology. Machine learning is one
area in which technology can learn from recognitions and experiences. Large volumes of crop field
data are available for this study to extract the most important findings for machine learning and
data analytics. It reveals hidden relationships and patterns between variables that affect horticul-
ture, like humidity, soil salinity, and temperature.

Predicting the optimal harvesting time for sugarcane is a critical task in agriculture. It
involves determining the most suitable time to harvest sugarcane to achieve the highest sugar
content and overall crop quality. Several factors influence the prediction of harvesting time in
sugarcane: The harvesting time can be predicted for sugarcane based on parameters like the
sowing period, weather forecasting, and the brix value of the cane. Figure 6 displays the flow
diagram of the harvesting time prediction model.

Table 1. Performance metrics of the CLSTM model

Epoch Batch size Precision (%) Recall (%) F1 Score (%) Accuracy

10 16 92.0 99.2 99.5 94.6
32 93.4 99.2 96.2 95.5

20 16 94.9 99.2 97.0 96.4
32 97.8 97.8 97.8 97.3

30 16 98.5 97.8 98.1 97.7
32 94.4 99.2 97.8 97.0
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Sowing Season Classification: In the realm of sugarcane cultivation, understanding the
optimal sowing season is paramount for ensuring robust crop growth and maximizing yields.
This crucial decision is often categorized into three primary periods, each with its distinct
characteristics and considerations. This section delves into the classification of sowing seasons
for sugarcane, shedding light on the factors that influence this pivotal agricultural choice. The
sowing season for sugarcane is categorized into three main periods.

� Adsali Season (June–August)
� Pre-seasonal Season (October–November)
� Suru Season (January–February)

In regions like Maharashtra and Karnataka, Adsali planting typically occurs from July to
August, and the crop takes about 16–18 months to mature. This extended growing season often
leads to higher yields and better sugar recovery. One key advantage of Adsali planting is that it
only spans one summer season. However, in recent times, the area under Adsali planting has
been decreasing due to limited availability of irrigation water. Pre-seasonal planting is prevalent

Fig. 6. Flow diagram for harvesting time prediction
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in northern India, taking place September through October, although in Bihar and the Indian
Peninsula, it occurs in October-November. In Gujarat and Maharashtra, this is additionally
known as autumn planting. In 13–15 months, the pre-seasonal crop reaches maturity and
provides sugarcane early in the crushing season. Spring planting in Northern India takes place
in February–March, However, in the Indian Peninsula, it occurs in January–February. Spring-
planted crops are referred to as Eksali in Gujarat and Andhra Pradesh and Suru in Maharashtra.

Selecting the appropriate sowing period is crucial for predicting the harvesting time accu-
rately. The developed algorithm offers three options for farmers to select a suitable sowing
period. For instance, if a farmer chooses to sow the crop during the June-August Adsali season
(option 1), the model requires input regarding the sowing date, month, and year. Since it is an
Adsali period, the crop needs a minimum of 18 months to mature. Option 2 indicates a
15-month maturity period, while option 3 corresponds to a 12-month duration, allowing
farmers to align their sowing decisions with the desired harvesting timeline.

Weather Forecasting: While the model estimates the harvesting time based on the chosen
sowing period, it’s important to note that the sowing season alone isn’t the sole determinant of
the ideal harvest time. Weather conditions have an important part, and farmers must consider local
climate forecasts. Specifically, sugarcane crops should be harvested prior to the start of frost, neces-
sitating a minimum temperature of above 20 degrees Celsius. The weather forecasting model pro-
vides valuable insights by offering 14 key parameters for the next 10 days, aiding farmers in assessing
the feasibility of harvesting. These parameters include [temp_prediction,tempfeels_like_prediction,
temp_min_prediction,temp_max_prediction,pressure_prediction,sea_level_prediction,grnd_level_
prediction,humidity_prediction,temp_kf_prediction,main_weather_prediction,main_weather_
description_prediction,clouds_prediction, wind_speed_prediction, wind_degree_prediction] as the
output for the next 10 days so the farmer can check the possibility for harvesting. These predictions
are obtained through an API call, empowering farmers to decide with knowledge based on upcoming
weather conditions and ensuring a successful harvest.

Brix Value and Maturity Assessment: Another important feature that defines the optimal
harvesting time for sugarcane is the Brix value. The method of sucrose growth in sugarcane
stalks begins during the elongation stage and continues even after this stage ends. However, it’s
during the ripening stage that sucrose accumulation accelerates significantly. This ripening stage
is characterized by growth in the brix value. To assess whether the sugarcane is ready for harvest,
the farmer should measure the brix value using a hand brix refractometer. When the brix value
reaches the range of 18–20, it indicates that the crop has reached maturity and is suitable for
harvesting. If the estimated harvesting time is approaching the current month and year, the
model recommends performing weather forecasting for the next 10 days to predict the local
climatic conditions. This prediction is obtained through an API call. Together, these insights aid
farmers in making knowledgeable judgements on harvesting their sugarcane, ensuring that it
reaches the desired maturity stage for optimal yield.

This holistic and integrated approach, which encompasses sowing season classification, pre-
cise weather forecasting, and meticulous brix value assessment, empowers farmers with a robust
toolkit for making well-informed decisions throughout the entire sugarcane cultivation and
harvesting journey. Moreover, the meticulous assessment of the brix value is a critical milestone
in the sugarcane cultivation journey. This value serves as a reliable indicator of sucrose accu-
mulation and ripeness. With the control of the model, farmers can precisely determine when
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their sugarcane crop has reached the optimal maturity stage for harvesting. This not only
ensures maximum sugar content but also enhances the overall quality of the yield.

4.9. Integration of YOLOv8 and CLSTM

YOLOv8, a cutting-edge object detection algorithm, excels in real-time identification of objects
in sugarcane fields, distinguishing crops, weeds, and disease signs with speed and accuracy.
CLSTM combines CNNs for image feature extraction with LSTMs for analyzing sequential data,
enabling predictions about crop growth and optimizing harvesting schedules by leveraging time-
series data and historical trends.

YOLOv8 and CLSTM work synergistically to enhance crop management in sugarcane fields.
YOLOv8 first detects and classifies objects in real-time, providing crucial data for the CLSTM
model. This data, encompassing current field conditions, is then used by CLSTM to analyze
temporal patterns and predict future trends, optimizing harvesting schedules. YOLOv8’s rapid,
precise detection ensures that CLSTM receives accurate, up-to-date information, leading to
comprehensive analysis and improved decision-making. This integration not only offers a ho-
listic view of crop health and growth but also enhances yield and minimizes waste through
better-informed management strategies.

5. EXPERIMENTATION AND RESULTS DISCUSSION

The integration of artificial intelligence, computer vision, and machine learning has significantly
improved weed detection and management in agricultural fields. Our findings indicate that
AI-powered systems can accurately identify and classify weeds, reducing the need for manual
detection. The technology has demonstrated substantial efficiency gains, streamlining the farming
process and enhancing productivity. Key metrics, such as detection accuracy and time saved, have
shown considerable improvements with the adoption of these advanced technologies.

The results highlight the transformative impact of integrating advanced technologies in weed
management. By automating weed detection, AI and machine learning not only reduce labour
and time but also contribute to more precise and sustainable agricultural practices. This evolu-
tion in technology supports the broader goals of precision agriculture, enhancing resource
optimization and boosting overall crop yield. The implications suggest that further advance-
ments could continue to refine and expand these benefits, offering a more efficient approach to
modern farming challenges. This separation clarifies the findings and their implications, making
the information more digestible and actionable.

5.1. Performance analysis of YOLOv8

In assessing the YOLO model’s performance in weed detection, a range of performance metrics
was employed, including precision, recall, F1-score, average precision (AP), and mean average
precision (mAP). These metrics provided a quantitative evaluation of the model’s effectiveness
in identifying weeds within the dataset. The mAP score, often considered a comprehensive
metric for identifying object models, served as a key indicator of overall performance. This
score was compared to baseline models or other relevant benchmarks when applicable. Further-
more, a detailed analysis was conducted to examine the compromize between recall and
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precision, shedding light on the capacity of the model to minimize false positives and maximize
the detection of actual weed instances. The significance of these trade-offs within the framework
of specific applications was discussed. These images highlighted instances of correctly detected
weeds, false positives, and false negatives, contributing to a comprehensive assessment. A
ground truth value was obtained by manually calculating the quantity of weeds in each image.
Therefore, using this data, the evaluation metrics for weed detection were recall (R) and preci-
sion (P). The following is a definition of these model evaluation metrics:

Precision ¼ TP
TP þ FP

(15)

Recall ¼ TP
TP

TP þ FN
(16)

The training progress of the model YOLO is comprehensively depicted in Fig. 7 across 50
epochs. This graphical representation unveils the model’s evolution through key metrics and
losses. In the inaugural epoch, the model encounters a training box loss of 1.6208, a classification
loss of 1.94, and a regression loss of 1.808. Precision, recall, mAP50, and mAP50-95 metrics are
detailed with initial values of 0.00048, 0.02864, 0.00023, and 5.00E-05, respectively. Throughout
the training, fluctuations in these metrics are evident, signifying the model’s adaptation to the
dataset. Notably, nan or inf values are observed, particularly in early epochs, warranting thor-
ough investigation. Validation losses and metrics on unseen data are also presented, offering
insights into the functionality of the model. Continuous monitoring facilitates a nuanced un-
derstanding of convergence and generalization, guiding potential adjustments for enhanced
performance. In early epochs, the model grapples with high variability, yet as training pro-
gresses, stability emerges, showcasing refined object detection capabilities and minimizing erro-
neous negative and positive results. The recorded learning rate adjustments in the final columns
underscore the optimization process crucial for the model’s convergence.

Fig. 7. Training progress and evolution for YOLO of metrics over 50 epochs
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Figure 8 displays the curve that illustrates the trade-off between confidence levels and the
corresponding recall rates. At a confidence threshold of 0.99, the model demonstrates high
confidence in its predictions, resulting in a lower recall for detecting instances. Conversely, at
a threshold of 0.000, the recall is maximized, indicating a more inclusive approach with lower
confidence requirements for identifications. This analysis offers insightful information about the
model’s performance level. across different confidence thresholds, aiding in the selection of an
appropriate operating point based on specific application requirements.

The presented Fig. 9 showcases the model’s performance at a level of confidence of 0.930 for
crop detection and an overall multi-class detection scenario with a mean Average Precision of
0.930 at 0.5 Intersection over Union. This curve offers a thorough understanding of the trade-off
between recall and precision, offering valuable insights into the capacity of the model to balance
sensitivity and accuracy across different confidence levels. The achieved mAP@0.5 metric
further quantifies the overall effectiveness of the model in accurately identifying and localizing
objects within the specified IoU threshold.

Figure 10 presents a thorough examination of the model’s performance for both crop
detection and multi-class detection. At a high confidence threshold of 1.00, the model exhibits
a precision of 0.828, indicating a robust association between the confidence levels assigned by
the prototype and the precision of its predictions. This figure offers insightful information about
how reliable the model’s detections are, particularly when considering perfect confidence levels,
and offers a nuanced understanding of precision across different confidence thresholds for both
crop-specific and overall object detection scenarios.

Figure 11 displays an assessment of the model’s performance through the Confidence and F1
curves for all classes. At a level of confidence of 0.86, the model achieves an F1 score of 0.432.
This analysis sheds light on the capacity of the model to balance precision and recall at varying
confidence levels, providing insightful information for selecting an optimal operating point

Fig. 8. Confidence-recall trade-off curve analysis
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based on specific application requirements. The figure contributes to a nuanced understanding
of the trade-offs between confidence levels and overall model performance, providing crucial
information for decision-making in real-world scenarios.

After the Yolov8 model has been trained using 5,800 images, the instruction and verification
output are shown in the images below. In this instance, Yolov8 recognizes the objects and gives
the boundary box of each crop and weed in the field image. In this case, crop refers to both the
sugarcane and the field’s weeds.

Fig. 10. Precision analysis at high confidence threshold for crop and multi-class detection

Fig. 9. Performance evaluation curve for crop detection and multi-class situation at confidence threshold
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Figure 12 represents the E2E model for sugarcane, the graph displaying mean monthly
temperatures (200, 400, 275, 375, 25, 100, 200) represents the variation in temperature over
different months. This temperature data is crucial for both crop suggestion and harvesting time

Fig. 11. Confidence-F1 trade-off curve for multi-class detection at threshold

Fig. 12. Optimizing sugarcane planting and harvesting in monthwise
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prediction. Machine learning and deep learning algorithms analyze historical temperature
trends to optimize planting schedules and predict harvest times. By incorporating temperature
data, the model can determine the most suitable planting periods and forecast ideal harvest
times to maximize yield. The goal is to align agricultural practices with climatic conditions,
ensuring optimal growth and productivity of sugarcane crops throughout their growth cycle.

Figure 13 presents the 12–16 month cycle for sugarcane cultivation using the E2E model
shows the timeline from crop suggestion to harvesting time prediction. Initially, the model
suggests suitable crop varieties based on environmental and soil data (months 2–3). As the crop
grows, the model uses machine learning algorithms to predict growth patterns and adjust
recommendations (months 4–5). Advanced deep learning techniques refine these predictions
as the crop matures (months 6–6.5). Finally, the model provides accurate harvesting time pre-
dictions to optimize yield (month 12). The cycle reflects a comprehensive approach, integrating
data at various stages to improve the efficiency and accuracy of sugarcane farming.

Figure 14 represents the E2E model for sugarcane cultivation tracks key metrics over time,
including surplus, deficit, withdrawal, and replacement. Surplus values (150, 100, 50, 75) indi-
cate the excess resources available at different stages, initially high but decreasing as the crop
matures. Deficit values remain at 0, showing no shortage of resources throughout. Withdrawal

Fig. 13. Optimizing sugarcane cultivation a 12–16 month E2E model
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values (25, �100, �50) represent resource consumption or depletion, with a significant drop
indicating high resource use or potential over-extraction at certain points. Replacement values
(25, 100) reflect the addition or replenishment of resources, with an initial small replacement
and a larger one later to sustain crop growth and health. This data helps optimize resource
management and ensure efficient sugarcane production using machine learning and deep
learning insights.

Figure 15 shows Brix levels for different sugarcane varieties of RB 867515, RB 863129, and
RB 92579 throughout the cultivation cycle in the E2E model. RB 867515-17% exhibits stable
Brix levels, indicating consistent sugar content throughout growth. RB 863129-18% shows a
gradual increase, suggesting improved sugar concentration as the plant matures. RB 92579-18%
demonstrates fluctuating Brix levels, with periods of higher and lower sugar content. The graph
helps evaluate the sugar content potential of each variety, informing optimal harvesting times.
By leveraging machine learning and deep learning, the model predicts and maximizes yield
quality based on these Brix trends, guiding better crop management and selection for efficient
sugarcane production.

Figure 16 represents maximum temperatures recorded over several days: 32, 34, 38, 40, 37,
28, and 30 8C. In the context of an end-to-end (E2E) model for sugarcane cultivation, these
temperature values play a crucial role in crop suggestion and harvesting time prediction. Ma-
chine learning and deep learning techniques can analyze this temperature data alongside other

Fig. 14. Resource management in sugarcane cultivation surplus, deficit, and replacement metrics
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environmental factors to determine optimal planting times and predict growth cycles. High
temperatures may accelerate growth but also increase stress, impacting yield. By integrating
this data, the model helps farmers make informed decisions, ensuring efficient resource use and
maximizing crop yield. The analysis ultimately supports better management practices for sug-
arcane cultivation.

Figure 17 shows two sets of relative humidity data: Relative Humidity 1 (160, 165, 180, 160,
145, 140, 150) and Relative Humidity 2 (140, 150, 160, 140, 125, 120, 130). In an end-to-end
(E2E) model for sugarcane cultivation, these humidity readings are vital for crop suggestion and

Fig. 16. Impact of maximum temperatures on sugarcane growth and harvesting prediction

Fig. 15. Brix levels for sugarcane varieties
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harvesting time prediction. Machine learning and deep learning algorithms analyze these hu-
midity levels alongside temperature and other factors to optimize growth conditions. Higher
humidity can enhance sugarcane growth but may also foster diseases if excessive. By correlating
humidity data with growth stages, the model assists farmers in making timely decisions on
planting, irrigation, and harvesting, ultimately improving yield and sustainability in sugarcane
farming.

Figure 18 illustrates minimum temperatures recorded over time: 22, 24, 26, 28, 26, 18, 15,
and 15 8C. In the context of an end-to-end (E2E) model for sugarcane cultivation, these

Fig. 17. Role of relative humidity in sugarcane growth and harvesting optimization

Fig. 18. Impact of minimum temperatures on sugarcane growth and harvest timing
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minimum temperatures are crucial for crop suggestion and harvesting time prediction. Machine
learning and deep learning algorithms utilize this temperature data to assess growth conditions.
Lower temperatures, particularly those below 188C, can hinder sugarcane growth and affect yield
quality. By analyzing these temperature fluctuations along with humidity and maximum tem-
peratures, the model helps predict optimal planting times and harvesting schedules. This
data-driven approach enables farmers to make informed decisions, ultimately enhancing crop
management and improving overall productivity in sugarcane farming.

Figure 19 presents the performance metrics of the K-Nearest Neighbors (KNN) model
versus a proposed model for predicting sugarcane cultivation outcomes in the E2E model.
The KNN model shows an accuracy of 89.3%, while the proposed model achieves a higher
accuracy of 97.7%, indicating improved overall prediction reliability. Precision for KNN is
91.2%, compared to the proposed model’s 98.5%, reflecting better accuracy in identifying
relevant results. The F1 score for KNN is 88.5%, whereas the proposed model scores 97.5%,
showing enhanced balance between precision and recall. These metrics highlight the pro-
posed model’s superior performance in predicting optimal harvesting times and improving
sugarcane yield management, driven by advanced machine learning and deep learning
techniques as shown in Fig. 20.

Fig. 19. Performance comparison: KNN vs. proposed model in sugarcane prediction
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The model attains the best precision with the optimizer learning rate hyper tuned to
the description: optimizer: AdamW (lr 5 0.002, momentum 5 0.9) with parameter groups
97 weight (decay 5 0.0), 104 weight (decay 5 0.0005), 103 bias (decay 5 0.0).

Once the Yolo model is trained then the below image in Fig. 21 is passed to Yolo to detect the
boundary box of objects (either a crop or a weed) in the field image.

The following is Yolo’s output upon its identification of the input image’s boundary box
(Fig. 22).

Fig. 20. Training and validation batch images
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5.2. Performance analysis of CLSTM

The output of yolo (You Only Look Once) in the image (Fig. 22) is passed for the CLSTM model
showcasing the initial data fed into the proposed system for weed and sugarcane crop classifi-
cation. This image serves as the foundation for the subsequent processes in the model, high-
lighting the importance of accurate and representative input data for achieving precise
classification results. The clarity and relevance of the input image significantly influence the
capacity of the model to make informed distinctions between weed and sugarcane crop in-
stances, contributing to the overall effectiveness of the classification system.

Fig. 21. Test image passed to YOLOv8 model

Fig. 22. Output of YOLO with Boundary box for the test image
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In the comparative analysis, the research work delves into the performance evaluation of
three distinct models for CNN, DenseNet, and the hybrid proposed approach CLSTM
(CNNþLSTM). Each model is meticulously assessed based on specific metrics to gauge its
effectiveness in handling the given task. Furthermore, a detailed examination of the CLSTM
model’s performance across various epochs and batch sizes offers insightful information about
its adaptability and accuracy. This comparative study aims to elucidate the strengths and
weaknesses of each model, aiding in the choice of the most suitable architecture for the desig-
nated application.

Technical specification: YOLOv8 features a sophisticated architecture that incorporates
convolutional layers, attention mechanisms, and enhanced detection heads to enhance object
localization and classification. It is trained on a diverse dataset of sugarcane fields, which in-
cludes annotated images of crops, weeds, and disease symptoms. The model supports various
input resolutions, typically ranging from 4163 416 pixels to 6403 640 pixels, balancing detec-
tion accuracy with computational efficiency. Optimized for real-time performance, YOLOv8 can
process images at high frame rates, making it well-suited for live monitoring and rapid analysis
applications.

The presented Table 2 encapsulates the performance metrics of different models, namely
CNN, DenseNet, and CLSTM, based on precision, recall, F1 score, and overall accuracy.
Notably, the CNN model exhibits a precision of 95.6%, recall of 98.5%, F1 score of 97.0%,
and an impressive overall accuracy of 96.4%. Similarly, DenseNet demonstrates robust perfor-
mance with a precision of 94.9%, recall of 98.5%, F1 score of 96.7%, and an accuracy of 95.9%.
Lastly, CLSTM showcases superior precision at 98.5%, recall at 97.8%, F1 score at 98.1%, and an
overall degree of precision of 97.7%. These quantitative results provide a comprehensive assess-
ment of the models’ capabilities in terms of precision, recall, and overall classification accuracy,
aiding in the selection and enhancement of the most effective model for the given task.

Figure 23 explains the relationship between epochs and accuracy, showcasing the training
accuracy and validation accuracy. At the designated epoch, the model achieves a remarkable
training accuracy of 97.6% and a corresponding validation accuracy of 99.35%. This analysis
offers insightful information about the convergence and generalization capabilities of the model
over training epochs, contributing to an improved understanding of its overall performance. The
figure helps evaluate the model’s learning dynamics and reliability in accurately classifying
instances.

Figure 24 displays the training process’s epochs and losses. The model’s performance on the
training dataset is demonstrated by the training loss, which is measured at 0.0827, and its ability
to generalize to new data is demonstrated by the validation loss, which is measured at 0.0152. A
succinct summary of the model’s learning process is given by this visualization, where lower loss
values indicate better convergence and efficiency in identifying underlying patterns in the data.

Table 2. Performance of models CNN, DenseNet and CLSTM (Epoch 5 30, Batch size 5 16)

Model Precision (%) Recall (%) F1 Score (%) Accuracy

CNN 95.6 98.5 97.0 96.4
DenseNet 94.9 98.5 96.7 95.9
CLSTM 98.5 97.8 98.1 97.7
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The model’s training processes and generalization skills can be evaluated with the assistance of
the figure.

The boundary box portions in the output of the YOLO model are extracted and saved in the
local drive and passed to CLSTM regarding the categorization of weeds or crops. The below
image in Fig. 25 represents the input and also output flow of the CLSTM.

5.3. Analysis of harvesting time prediction

The output of harvesting time prediction is displayed in the below representation in Fig. 26.
Figure 26 provides a comprehensive weather forecast for Bengaluru City, India, over the next

10 days, which is vital for determining the optimal time to harvest a sugarcane crop. This
includes various weather-related parameters for each time prediction, including the date and
time of the prediction, city-related information such as latitude and longitude, population, time
zone, sunrise, and sunset times, as well as temperature predictions, atmospheric pressure, sea
level pressure, ground level pressure, humidity, and temperature fluctuations. The user’s input
data, including the sowing date of the sugarcane crop (November 1, 2021) and the estimated
harvesting time (May 1, 2023), is calculated based on the sowing date, and suppose the current
date is (May 13, 2023) according to this calculation, the sugarcane crop is ready for harvesting at
the time, so the model generates the next 10 days’ weather prediction to verify the optimal
harvesting time. Furthermore, the user is prompted to enter the Brix saccharometer value, which
is essential for assessing the maturity of the crop. Here, the user enters a Brix value of 21,
indicating that the crop has matured and is suitable for harvesting.

Fig. 24. Training loss and validation loss

Fig. 23. Epochs vs accuracy of validation and training
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6. RESEARCH CONCLUSION

The research work presents an innovative and advanced automated system with the potential to
transform sugarcane cultivation practices. Its core objectives revolve around enhancing yield,
improving crop quality, and advocating for sustainable farming methods. The study leverages

Fig. 26. Harvesting time prediction in Bengaluru city

Fig. 25. Input and Output flow of CLSTM
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the power of five machine learning algorithms working in tandem within an ensemble learning
model for recommendations of the most suitable crop according to the soil conditions and
suggests optimal fertilizer compositions. Notably, the execution of the DNet-SVM model, a
fusion of Dense Net, SVM, and LIME interpretation techniques, substantially elevates the
accuracy of the disease prediction. This breakthrough is a cornerstone in disease management,
as it effectively reduces crop yield losses and promotes sustainable agricultural practices.
Furthermore, the research extends its focus to the critical aspect of precise weed detection.
Through the utilization of deep learning and a comprehensive analysis of object detection
models, this study advances site-specific weed management approaches. This not only dimin-
ishes the reliance on herbicides but also amplifies their efficiency, aligning with eco-friendly and
sustainable weed control practices. Beyond disease and weed management, the study takes a
holistic approach by predicting optimal sugarcane harvesting times. This prediction accounts for
multiple factors, including sowing periods, weather forecasts, and brix values, all aimed at
maximizing sugar content and overall crop quality. The system’s predictions empower farmers
with valuable insights to make well-informed decisions regarding their harvesting schedules. In
future research, enhance model generalization by diversifying datasets with more challenging
images. Improve real-world agricultural performance by incorporating data from diverse
locations, seasons, and weed species to enhance the detectors’ performance. Consider semi-
supervised and weakly-supervised learning approaches to reduce reliance on fully annotated
datasets, alongside domain adaptation techniques for better performance in new agricultural
fields.
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