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Abstract. Recent machine learning models are sensitive to adversarial input
perturbation. That is, an attacker may easily mislead an otherwise well-
performing image classification system by altering some pixels. It is quite
challenging to prove that a network will have correct output when changing
slightly some regions of the images. This is why only a few works targeted this
problem. Although there are an increasing number of studies on this field,
really reliable robustness evaluation is still an open issue. We will present
some theoretical results on the dependency problem of interval arithmetic
what is critical in interval based verification.
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1. Introduction

Szegedy et al. [7] showed first the phenomenon of adversarial examples. Since then
the efforts for verification algorithms were concentrated around optimized models of
the trained neural networks [9]. We were able to prove that these verification algo-
rithms are unfortunately not reliable [11]. In the last ICAI conference we reported
our first results with an interval based verification algorithm [4]. This approach
applied simple natural interval extension for the calculation of inclusion functions,
and we were able to produce realistic size adversarial example free zones for simple
networks, that had good accuracy for the MNIST picture database distinguishing
the hand written figures for the digits 3 and 7.

In the present work we report on our new results. The algorithm was reim-
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plemented in the Julia language [8]. Our computational test results on the full
MNIST database of 10 different hand written digits with a modest but realistic
size network (1 hidden layer of 128 neurons) could reach more modest verification
results as those reported in [4]. We are also dealing with full-scale machine learn-
ing models: an artificial neural network based on the huBERT language model,
trained to recognize Hungarian fake news in health-related texts, which contains
approximately 110 million parameters. This is obviously out of reach for verifica-
tion. On the other hand long standing open mathematical problems were solved
by interval based computer aided methods, let us just mention our contribution
to the solution of the Wright conjecture [2], and proving that the forced damped
pendulum is chaotic [1].

The limitations of the naive interval arithmetic approach were felt already in
our full MNIST test. It turned out that the critical question is how many activation
functions obtain such an input interval that contains zero. If the inputs are real
numbers then the probability of having a zero input for a ReLLU activation function
is in general zero for well trained networks. Table 1 gives the number of test cases
from the picture database for which at least one of the ReLU activation functions
had an input interval that contained zero. The moral of the results obtained is that
the simple application of the algorithm introduced in [3] the application of which
for neural network verification was reported in [4] is not sufficient, more sophis-
ticated algorithms should be developed. As a preparatory step in that direction
in the present paper a qualitative description is given on the possible amount of
overestimation caused by the dependency problem of naive interval arithmetic.

Table 1. The number of critical cases, for which at least one of the
ReLU activation functions had an input interval containing zero —
as a function of the interval width.

interval width
107! 1072 1073 10* 10® 10°% 107 1078
No. critical cases ‘ 9178 2389 310 32 4 1 1 0

2. Dependency problem for interval calculations

We consider the fully connected simple feedforward artificial neural network having
an input layer, one or more hidden layers and an evaluation output layer. We use
the ReLLU activation function max(0,x). This is a fairly general framework, and
our results can be transferred in a more or less straightforward way to other types
of neural networks such as convolutional and recurrent ones. In our model each
neuron number k is defined by the function

Y = max (0, Zn: wixi>

=0
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of its inputs z; with weights w;, and ¢y = 1. Here x; stands for one of the n outputs
of the earlier layer, or that of the inputs. Each neuron has as inputs all outputs of
the previous layer, the first layers input is obviously the input of the network.

Our neural network can be seen as a multidimensional function of the inputs
for each output. Without the ReLU activation functions these functions would be
simple linear combinations of the input values, in which the product of respective
weights give the coeflicients of the linear combinations. The ReLU activation func-
tions cause some parts of the computation tree disappear due to their zero branch.
The whole neural network forms the surface of a polygon in the high dimensional
space of input variables.

Verification of artificial neural networks means that for a given input we can
prove that for a neighbourhood of that input, we obtain the same classification
for each point inside the tested neighbourhood. In other words, the outputs of the
neural network should not change that much which would result in a different class.
Hence the range of the function should not change much inside the neighbourhood
of the given input. Interval calculations provide a straightforward tool for bounding
the range of functions reliably.

2.1. Interval calculation

Consider T the set of compact real intervals containing intervals z = [a, b], where
a,b,€ R, a < b. The four basic operations can easily be calculated for intervals
based on the real calculations on the real end points of the argument intervals:

[a,0] + [c,d] = [a+ ¢, b+ d],

[a,b] — [¢,d] = [a—d,b— (],

[a,b] - [¢,d] = [min(ac, ad, be, bd), max (ac, ad, be, bd)],
[a,b] / [¢,d] = [a,b] - [1/d,1/c] if O ¢ [c,d].

Not only the basic operations, but also standard functions like sin, log etc. can
easily be generalized for interval arguments. It is important that we have the
inclusion property: f(x) € F(X), where the real number z is in the interval X.
This property holds also for careful computer implementations, which use outside
rounding to have rigorous bounds on the range f(X) of the real function f(z). The
above arithmetic rules ensure sharp bounds on the resulting reals. The numeric
effect of the outside rounding is usually negligible. Still, interval arithmetic keeps
the inclusion property.

The main difficulty in applying interval arithmetic in the evaluation of trained
neural network lies in the so-called dependency problem. In spite of the fact that
addition and multiplication gives sharp bound for intervals, the hidden dependen-
cies of input variables pose a substantial problem in terms of overestimation of the
bounded ranges [6]. To illustrate it consider the inclusion function F(X) of the
function
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It gives F'([0,1]) = [—1, 1], while the range of it, f(X) is here just [—0.25,0.0]. The
width of the calculated inclusion w(F(X) is eight time as large as the width of
the range w(f(X)). It is not the last word, using more sophisticated techniques
the problem of the too loose enclosure can be overcome — at the cost of higher
computing times.

For example affine arithmetic and the interval propagation technique [10] can
help. In the present work a description is given on the possible effect of the de-
pendency problem on the overestimation of interval evaluation of trained artificial
neural networks.

2.2. Results

In the following, we investigate the overestimation amounts we can face while
evaluating trained fully connected feed forward networks with the ReLU activation
function. We study the situation when the weights of such a network are given
as real numbers, we fix an input (e.g. a picture), and we test how large intervals
around the input values can be verified to result in the same classification we
obtained for the real case. In the next theoretical investigations we assume that
interval arithmetic is calculated in the precise way, i.e. we exclude the effect of
outside rounding. Note that only the dependency problem of the addition and
subtraction should be considered for artificial networks, because the multiplication
or division of input values do not play a role in the calculation of the output values.

Assertion 2.1. For a fully connected feed forward standard artificial neural net-
work the overestimation size w(F (X)) — w(f(X)) of the inclusion function can be
zero only if at least one of the following conditions are fulfilled:

o all input intervals are of zero width: w(x;) =b—a =0,

e for all input variables x; in the computation of each of the outputs all weights
of them are of the same sign: either all nonnegative, or all nonpositive, and

e all the final evaluation functions calculating the outputs of the network have
negative arguments.

These conditions are not only sufficient one by one, but a proper combination of
them is also mecessary.

Proof. If the input intervals are of zero width, then the possible harmful effect
of dependency has no room, since the lower and the upper bounds of all input
intervals are equal. In this way the weighted subtraction results in the same value,
indifferent of which bounds we choose from the arguments.

The second condition is sufficient, since in this case it is the same which output
we calculate, and also for all input variables, the weights have the same sign, and
in this way the dependency problem cannot happen for their weighted summation.

If the third condition is met, then all ReLUs providing the output variables
must have the value of interval zero ([0, 0]). It is exactly the range of the network
for the input studied.
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The obvious effect of a ReLLU activation function is, that all possible com-
binations of the subnetwork that produce its negative argument for the output
disappear. In other words, we obtain an equivalent network for the given input,
if we neglect the subnetwork producing the negative argument of the given ReLLU
activation function. If we evaluate our network on input intervals in stead of input
real numbers, then the whole argument interval of the given ReLLU activation func-
tion must be negative to have this feature. The remaining evaluation network will
be sensitive for the first two earlier defined conditions, and if none holds, then the
dependency problem will necessarily corrupt the result. Other combinations of the
three conditions are possible that together ensure that the given neural network on
the considered input will not produce positive overestimation size. O]

The conditions in Assertion 2.1 are quite strong, and in full-size neural networks
capable to solve real life problems, these can hardly be met. Note that the case
when only a single hidden layer is in the network is implicitly covered by the second
condition, since then each input interval will only be multiplied by a single weight.
Single hidden layer fully connected feed forward neural networks seem to be too
simple, but they have full recognition capacity with proper activation to get the
output — at the cost of a large number of neurons in that single layer [5].

Consider now the question which are the major factors for the overestimation
sizes in the same setting.

Assertion 2.2. For a fully connected feed forward standard artificial neural net-
work of k input intervals, m neurons in each of the even number of n hidden
layers, and all weights w; are bounded by |w;| < W the amount of overestima-
tion w(F(X)) —w(f(X)) of the inclusion function of an output is not more than
2/ 22 W S w(X;).

Proof. As a consequence of Assertion 2.1 to have positive overestimation we must
have positive width input intervals, two weights for their addition with opposing
signs, and a path to output values through ReLU activation functions that have
arguments which have positive values as well. Since our feed forward network is
fully connected, in each neuron we have every interval from the previous layer
multiplied by weights. No overestimation can occur in the first hidden layer, since
here each input is just multiplied by a weight, but no subtraction of the same
variable may be active.

One neuron on the second hidden layer can produce at most 2W?2w(X;) overes-
timation, where w(X;) is the width of the original input interval X;, and W is the
upper bound of the absolute value of the weights in the network. This is the case,
when w;w; X; — wjw; X; is in the actual sum of the neuron. The range of this sum
is zero, and in this way the overestimation size is 2W2w(X;).

Consider now the case when all weights of the network that will affect this over-
estimation are of the same sign. Then the calculated overestimation changes also
by subsequent multiplications by weights as we calculate the output values. The
isotonicity property of interval arithmetic implies that this overestimation cannot
disappear in the evaluation of the network — with the exception of multiplication by
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zero. For this kind of overestimation we obtain the upper bound of 2W"w(X;). For
each input variable and neuron we can calculate with similar overestimation, that
sums up to 2mWw™" Zle w(X;). According to this expression, the type of networks
we discussed in the previous paragraph produce two times larger overestimation
compared to fix sign weights considered in the present paragraph.

In all other scenarios the overestimation generated in the two first layers will
be strengthened by the similar effects of the dependency problem, but this time
the outputs of the earlier level neurons will play the role of the input intervals.
The respective overestimation obtained on an output of a subsequent two level
part of the network is 2mW?2 >  w(Y;), where Y; are the output intervals of the
preceding part of the network.

The total overestimation amount can be calculated for an output value of a

deep neural network as
k

on/ 22y Z w(X;),
i=1
for even integers n. For odd m-s this upper bound is accordingly smaller by the
amount of the last overestimation caused by the effect of the dependency problem
on the top layer. O

Example 2.3. To illustrate the overestimation caused by the dependency problem

in interval based verification of artificial neural networks, consider a simple network

having two neurons in the first layer and the ReLU activation functions after them,

and one more layer having a single neuron. All neurons have zero bias for simplicity.
The function that describes it effect is

f(z) = w3 max (0, wi2) + wg max(0, wax)).

Fix the weights to w; = wo = 1 and w3 = 1, wy = —1. Let’s calculate first the
inclusion function of f(z) for the argument interval [0, 1]:

F([0,1]) = ReLU([0, 1]) — ReLU([0, 1))
= ReLU([0,1]) — ReLU([0,1]) = [0,1] — [0,1] = [1,1].

Here, for the sake of simplicity, the same notation was used for the interval
version of the ReLLU function as for the usual, real one. Otherwise, the interval
version of ReLU can be e.g. [max(0, a), max(0,b)] for an argument interval of [a, b].
The correct range of this network as a real function is [0, 0]. The amount of
overestimation is now 2 — 0 = 2. This is in accordance with Assertion 2.2, and
shows that the upper bound given there is sharp (with m =2, n =2, W =1, and
kE=1).

Corollary 2.4. A direct consequence of Assertion 2.2 is that we can have the
same amount of overestimation due to the dependency problem with decreasing the
number of hidden layers while increasing the number of neurons in a layer and vice
versa.
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3. Conclusion

Interval arithmetic based methods are promising for the verification of artificial
neural networks, but the dependency problem is a serious threat, and it should
be handled carefully to obtain reasonable size adversarial example free zones in
acceptable amount of computation time. We have characterized those few cases
when the dependency problem does not corrupt the inclusion function of a network,
and described how the parameters (input size, weight parameter bound, number
of layers and neurons in the layers) affect the overestimation of interval inclusion
functions.

The main consequence of our theoretical study is that we can control the amount
of overestimation caused by the dependency effect of interval arithmetic by forcing
advantageous parameters such as low absolute bound of weights, or minimizing the
number of hidden layers — while keeping the expected level of precision and recall.
Still, the obvious proven full solution for the dependency problem, a single hidden
layer with proper activation to get the output, is probably computationally too
complex to be applicable.
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