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Abstract. The public keys in a public key cryptosystem need not to be
protected for confidentiality, however, it is important to confirm their legality.
In this paper, motivated by Meshram et al. (2017), we develop a simple novel
key authentication scheme for public key cryptosystems whose security rely on
discrete logarithm problem in group ring. The advantage of our novel scheme
is that it requires no authority unlike regular certificate based techniques. In
our scheme, we consider a pair of secret key and password as the certificate
of public key. We show that the security of our scheme relies on discrete
logarithm problem in group ring (DLPGR). The DLPGR is an NP problem
for which no known quantum algorithm exists that solves it in polynomial
time.

Keywords: Authentication Scheme, Discrete Logarithm Problem, Public-key
Cryptosystem, Group Ring, Certificate based scheme

AMS Subject Classification: 94A60, 20C05, 20C07

1. Introduction
The public key cryptography successfully tackled the serious issue of distribution
of secret keys in symmetric key cryptography (cf. [4, 41, 42]). Moreover, various
advanced digital signature schemes and cryptographic primitives have been created
through the aid of public key cryptography (see, for example, [2, 3, 11–14, 17, 18,
28, 29, 31]). Typically, in a public key cryptographic scheme, there are two keys
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related to an entity, namely a public key which is available in open domain and a
private key which is available only with the entity. The public keys are kept open in
a repository open to all. But this public availability leads to vulnerability against
certain active attacks, such as an adversary can replace the actual public key of
an entity with a false public key [7]. Consequently, a secure key authentication
scheme is required to verify the legality of public keys. In the available literature,
various key authentication schemes have been proposed. But for almost all of these
schemes, there is a requirement of atleast one authority known as trusted center
(TC) or key authentication center (KAC). Over this authority, the whole trust lies,
therefore, it must be strong and safe against any external and internal attacks.

It is worth to mention that in a wide range of key authentication schemes,
the hold of KAC over secret keys can be categorized in the following situations:
(i) KAC is in total control of secret key of an entity; (ii) KAC can create an
undetected false certificate, however, it does not possess the secret key of an entity;
(iii) if KAC has produced a false certificate without possessing secret key, then it
can be shown that KAC can also produce the false certificate [7]. Accordingly,
Girault [7] classified the key authentication schemes into the following levels of
trust: (a) schemes depending on identity, i.e., ID-based; (b) schemes depending on
certificates; (c) schemes depending on public keys that are self-certified. Moreover,
Girault suggested a design of self-certified public keys. The improvement of the
model proposed by Girault was discussed in [24] by Laih et al. and their scheme
was the combination of ID and certificate based schemes.

For cryptosystems whose security depend on discrete logarithm problem, Horng
et al. [15] proposed a key authentication scheme. Their scheme requires no KAC,
however, the design is similar to certificate based schemes. Any entity can create
a certificate of the public key by combining secret key and password through some
known function. The password’s hash value is calculated and deposited at the
server. Zhan et al. [44] shown that the design of Horng et al. was susceptible to an
attack based on guessing the password. In order to protect against the password
guessing attack, Lee and Wu [26] proposed another key authentication scheme.
Further, in 2003, it is shown by Lee et al. [25] that there is a problem of non-
repudiation of public key of an entity in the design of Zhan et al. In addition to
this, Lee et al. [25] discussed an upgraded key authentication scheme. However,
the scheme of Lee et al. has serious security flaws (see, [37, 43, 45]). Meshram
et al. [32] presented another key authentication scheme for cryptosystems whose
security depend on the problems such as generalized discrete logarithm and integer
factorization. We also refer to the references within Meshram et al. [32] for a nice
survey on several other key authentication schemes available in the literature.

Due to the availability of various quantum algorithms (see [2]), the hard prob-
lems such as discrete logarithm in a finite field and integer factorization problem are
breakable on a sufficiently large quantum computer. Therefore, there is an urgent
need to incorporate various other hard problems (possibly NP-hard) in designing
new cryptographic primitives, for example, shortest vector problem that arises in
lattices, decoding a general linear code etc., (see [2]). In this paper, we utilize the
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recently discovered hard problem by Hurley et al. [19] in the algebraic structure of
group ring [33]. Precisely, our contribution in this paper is as follows: we incor-
porate discrete logarithm problem in group ring (DLPGR) to design a novel key
authentication scheme for public key cryptosystems whose security relies on the
hardness of DLPGR.

To this end, we mention some of the available literature in the direction of group
ring based cryptography. Rososhek [38] discussed cryptosystems in automorphism
groups of group rings of abelian groups. These cryptosystems implicitly depend
on the structure of group ring. Hurley et al. [19] discovered several hard problems
in group ring that are important from the perspective of cryptography. Inam et
al. [20] designed an ElGamal-like cryptosystem that is based on the matrices over
group ring. Goel et al. [8] presented an undeniable signature scheme by utilizing
group ring. A key exchange protocol by employing matrices over group ring was
proposed by Gupta et al. [9]. Mittal et al. [34–36] constructed few encryption
schemes using group ring.

In this paper, our main aim is to present a novel key authentication scheme.
This scheme is especially for all the public key cryptosystems whose security relies
on solving DLPGR. We show that our scheme works in the absence of any authority
and its security relies on deducing the solution of DLPGR. This paper is organized
as follows. The Section 2 contains some background material upon which we built
our new scheme. Our novel key authentication scheme whose security relies on
DLPGR is discussed in Section 3. We discuss the security analysis of our scheme
in Section 4. The Section 5 involves a comparison analysis of our scheme with
the already available key authentication schemes. In Section 6, we discuss an
example to show the practicality of our scheme. Finally, the last section draws
some concluding remarks.

2. Preliminaries

2.1. Group ring and units
Definition 2.1. Let R be a ring having unity and let G be a group. Let RG be
the set of all R-linear combinations of the form

u =
∑
g∈G

r(g)g, r(g) ∈ R,

where the summation runs over finitely many elements of G. In other words, the
set RG contains all finite R-linear combinations of the elements of G. Let · be the
operation defined on the group G and

u1 =
∑
g∈G

r(g)g and u2 =
∑
g∈G

r′(g)g,

where r(g), r′(g) ∈ R and g ∈ G. In order to multiply two elements, we write
u2 =

∑
h∈G r(h)h for notational convenience. Then we consider the addition (+)
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and multiplication (∗) operations in RG as follows:

u1 + u2 =
(∑

g∈G

r(g)g
)

+
(∑

g∈G

r′(g)g
)

=
∑
g∈G

(r(g) + r′(g))g,

u1 ∗ u2 =
(∑

g∈G

r(g)g
)

∗
(∑

g∈G

r′(g)g
)

=
∑

g,h∈G

r(g)r′(h)(g · h) =
∑

g′∈G

r′′(g′)g′,

where

r′′(g′) =
∑

g·h=g′

r(g)r(h) =
∑
g∈G

r(g)r(g′ · g−1) =
∑
h∈G

r(g′ · h−1)r(h).

It is straight-forward to see that both the addition and multiplication operations
defined above are well-defined. This is because a ring already has addition and
multiplication operations. The set RG along with operations + and ∗ is known as
group ring.

Example 2.2. Let R = Z5 = {0, 1, 2, 3, 4} be a ring of 5 elements and let G =
C4 = {e, a, a2, a3} be a cyclic group containing 4 elements. Let u1 = 2e + a and
u2 = a + 2a3 be the elements of the group ring Z5C4. Then we have

u1 + u2 = (2e + a) + (a + 2a3) = 2e + 2a + 2a3,

u1 ∗ u2 = (2e + a) ∗ (a + 2a3) = 2e(a + 2a3) + a(a + 2a3)
= 2a + 4a3 + a2 + 2a4 = 2e + 2a + a2 + 4a3,

where we have used the fact that a4 = e for a ∈ G.

Definition 2.3. Units: Let u1, u2 ∈ RG be such that

u1 ∗ u2 = e = u2 ∗ u1.

Then the element u2 is inverse of u1 (or u1 is inverse of u2) and we denote u2 = u−1
1 .

The elements u1 and u2 are known as units of the group ring.

Definition 2.4. Order: The order of an element u ∈ RG is the smallest positive
integer k such that uk = e.

Example 2.5. Let R = Z2 = {0, 1} be a ring of 2 elements and let G be the
quaternion group of 8 elements, i.e.,

Q8 = ⟨x, y : x4 = y4 = e, x2 = y2, yx = x−1y⟩.

Let w = 1 + x + y. Using Sharma et al. [39], we know that

w−1 = (1 + x + y)3.

Thus, w ∈ Z2Q8 is a unit of the group ring.
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Definition 2.6. Augmentation map: Let RG be a group ring. Then the following
map

J : RG → R defined by J
(∑

g∈G

r(g)g
)

=
∑
g∈G

r(g)

is known as the augmentation map. Clearly, J maps any element w ∈ RG to the
sum of all the coefficients r(g) of the elements g of G appearing in w.

Example 2.7. Let R = Z5 and G = Q8, where Q8 is the quaternion group of
order 8 (same as discussed in Example 2.5). We take

w =
∑
g∈G

r(g)g = 1 + 2x + y ∈ RG.

Then, we observe that r(1) = r(y) = 1, r(x) = 2 and rest of the coefficients r(g)
are zero for g ∈ {xy, x2y, x3y, x2, x3}. So, we have

J (w) = J (1 + 2x + y) = r(1) + r(x) + r(y) + 0 = 1 + 2 + 1 = 4.

Thus, J (w) = 4 for w = 1 + 2x + y.

2.2. Discrete logarithm problem in group ring (DLPGR)
Definition 2.8. Let u1, u2 ∈ RG be given by

u1 =
∑
g∈G

r(g)g, u2 =
∑
g∈G

r′(g)g,

where r(g), r′(g) ∈ R. Let k be a positive integer such that u1 = uk
2 , i.e.,

∑
g∈G

r(g)g =
(∑

g∈G

r′(g)g
)k

.

The DLPGR is the problem of deducing k from the known values of u1 and u2.

There are several other versions of DLP in groups, for example, generalized
DLP, Elliptic curve DLP (see [31, 32]). DLPGR was discovered by Hurley et al.
[19] and used by various researchers to produce secure cryptosystems [34, 36]. To
this end, we briefly discuss a public key cryptosystem whose security relies on
DLPGR.

2.3. Public key cryptosystem based on DLPGR
Let R be a ring and let G be a finite group. Let u be a unit of the group ring
RG with inverse u−1. Both u and u−1 are open in public domain. It is worth to
mention that unlike groups, computation of inverse of an element in a group ring
is also, in general, a hard problem (see [19]). But for some instances, it is easy
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(see [35] for a nice overview). Let k be a secret integer and v = uk be the public
key. To encrypt a message M , an ephemeral key r needs to be chosen, where r is
a positive integer. The ciphertext is as follows

C1 = (u−1)r, C2 = M ∗ (v)r.

It is worth to mention that the encryption mentioned above is not similar to El-
Gamal as the ciphertext generated by ElGamal’s scheme does not involve the com-
putation of inverse of an element. The decryption is straight-forward by using the
private key as follows:

M = C2 ∗ (C1)k.

It is easy to see that the security of above scheme depends on DLPGR. Next, we
recall the password authentication scheme for multi-user computing systems.

2.4. Password authentication procedure
A password is a series of characters that is anticipated to distinguish between an
entity and the system. In a password authentication scheme for multi-user, entity
must (i) register with various systems; (ii) must save purposely created various
passwords to attain security of high level. While login to the system with his/her
identity (ID), an entity needs to enter his/her password (Pw) to help the system
in his/her recognition. The system authorize the entity by verifying the pair (ID,
Pw). Basically, the system checks whether or not the pair (ID, Pw) belongs to
the list of authorized pairs available with the system. Suppose that the list of
authorized pairs available with the system is not encrypted. This situation would
be extremely insecure. Since any adversary may get access to the system and can
easily forge. Consequently, Evans et al. [6] recommended a cryptographic solution
of the same that keeps authorized passwords safe from snooping. Furthermore, it
was suggested that passwords can be mapped through some cryptographic one-
way function to pictures. Therefore, the list of authorized pairs available with the
system can then be a list of mapping results (see [21, 22, 46]).

Based on DLPGR, we select a unit u of the group ring RG of large order. Let
Pw be the password of the entity. For this password Pw, we use the capacity uPw

as a picture. The benefit of such pictures is that they can be placed openly in the
table of passwords since they can only leak the information about the password if
DLPGR is solvable. But DLPGR is a hard problem.

3. The novel key authentication scheme

Let R be a ring and let G be a finite group. For an entity j, let his/her password be
represented by Pwj . Let skj be the private key of j and the corresponding public
key pkj be

pkj = uskj ,
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where u is an element of the group ring RG (it may be taken as a unit of large
order). We define the notations to be used in our key authentication scheme in
Table 1.

Table 1. Notations incorporated in the novel scheme.

Notations Descriptions
Pwj Password of an entity j

skj , pkj Private and public keys of entity j

⊕ XOR operation
RG Group ring
u Unit of group ring

Cj Certificate of public key pkj

E(·) Exponentiation (one-way) function
J Augmentation map
H Public hash function

3.1. Registration phase
Our scheme bank on the following assumptions:

(1) Let the one-way exponential function

E : Z → RG where z 7→ uz,

where R = Z or Fp for some prime p. The function E(·) is open in public domain.
It is important to see that by using repeated square and multiply algorithm [31],
one can easily compute E(z) for any given z. This one-way exponential function is
nothing but same as the function utilized in the cryptosystems that are based on
DLPGR.

(2) In order to guard against the password guessing attacks, for the password Pwj of
an entity j, we apply the one-way exponential function E and obtain the encrypted
password as E(Pwj ⊕skj). This encrypted password is saved in the password table.

(3) For saving the storage space, augmentation map J (see Definition 2.6) and a
public hash function H can be utilized. For this, first apply J on the multiplication
of E(Pwj ⊕skj), with pk

J (pkj)
j and then apply H on the result, i.e., store the picture

H
(
J (E(Pwj ⊕ skj)

(
pkj

)J (pkj)))
)

of password Pwj . We note that J (E(Pwj ⊕skj)
(
pkj

)J (pkj))) is an integer as R = Z
or Zp. By writing its binary representation, we can compute the above-mentioned
hash value by using any of the recently developed state-of-the-art hash functions
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such as hash functions based on Gluškov product of automata [5, 10], quantum
hash function [27], hash functions based on chaotic maps [40] etc., or conventional
hash function such as SHA-3.

(4) The password table can now be openly placed in public domain, since we have
stored the picture of passwords or encrypted passwords.

3.2. Certificate generation phase
Since we are working on the self-certified keys, the certificate is generated itself by
the entity. There is no need of KAC or TC. The entity j can pair his/her secret
key skj along with password Pwj to obtain the certificate

Cj = Pwj ⊕ skj + skjJ (pkj).

For verification purpose, both the public key pkj and certificate Cj are placed in
the network that is open to public.

3.3. Authentication and verification phase
Each entity needs to present the certificate, public key and encrypted password for
authentication. The password image can be written as

E(Cj) = uPwj⊕skj+skjJ (pkj)

= uPwj⊕skj uskjJ (pkj)

= E(Pwj ⊕ skj)
(
pkj

)J (pkj)
. (3.1)

If hash function is used on the encrypted password, then we must have

H(J (E(Cj))) = H
(
J (E(Pwj ⊕ skj)

(
pkj

)J (pkj)))
)
. (3.2)

So, whenever an entity t needs to utilize the public key of an entity j, he/she
obtains j’s certificate Cj and public key pkj from the network. Also, t obtains
E(Pwj ⊕skj) or the hash value H

(
J (E(Pwj ⊕skj)

(
pkj

)J (pkj)))
)

from the password
table. Following this, the entity t can ensure the validity of pkj through equation
(3.2) or the following equation:

E(Cj) = E(Pwj ⊕ skj)
(
pkj

)J (pkj)
.

If any of these holds, then the entity t gets assurance about the legality of public
key pkj and can use it for the encryption purpose.

4. Security analysis
In the password table, in place of the entity j’s password Pwj , we have stored
E(Pwj ⊕ skj). This means that one cannot alter or modify it illegally. However,
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an adversary may attempts to illegally create the public key or deduce the private
key or speculate the password in our scheme. We show that this would not be
possible in our scheme via the following theorem.

Theorem 4.1. The novel key authentication scheme of this paper can resist the
public key based forgery attack.

Proof. Suppose that an attacker attempts to forge the public key pkj of an entity
j with a wrong key wkj . In order to certify wkj as an actual key, the attacker must
produce a false certificate C′

j such that any of the following holds:

E(C′
j) = E(Pwj ⊕ skj)

(
wkj

)J (wkj)
, (4.1)

H(J (E(C′
j))) = H

(
J (E(Pwj ⊕ skj)

(
wkj

)J (wkj)))
)
.

From these equations, the adversary can deduce C′
j by solving any of the following:

C′
j = E−1

(
E(Pwj ⊕ skj)

(
wkj

)J (wkj)
)

, (4.2)

C′
j = E−1

(
J −1

(
H−1

(
H

(
J (E(Pwj ⊕ skj)

(
wkj

)J (wkj)))
))))

. (4.3)

Since the attacker cannot modify E(Pwj ⊕ skj) in the table of passwords with-
out possessing the knowledge of entity j’s password, the attacker cannot deduce
the certificate C′

j from equation (4.2) without solving DLPGR. Meanwhile, as the
cryptographic hash functions, by definition, are pre-image resistant, the attacker
cannot deduce the certificate C′

j from equation (4.3) without solving DLPGR, with-
out inverting J (which is a many-to-one function) and without inverting the hash
function H. Consequently, for the attacker it is not feasible to forge the public-key
illegally.

Next, we talk about the public-key forgery attack model discussed in Lee et
al. [25].

Theorem 4.2. The novel key authentication scheme is secure against the ingenious
attack model of Lee et al. [25].

Proof. Let t be a malicious legal entity and let skt be his/her private key and
let wkj be his/her wrong public key. The entity t utilizes his/her private key to
sign any record and the signature Ct must be certified by entity t by using his/her
public key pkt. However, at a later stage, in place of the actual certificate Ct, t
may provide a false certificate C′

t and deny signing the record to infer that wrong
public key was utilized in the first place in the following manner:
(1) uses equation (4.1) to compute

wk
J (wkj)
j = E(C′

j)
(
E(Pwj ⊕ skj))−1.
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(2) tries to obtain wkj from wk
J (wkj)
j .

We claim that deducing wkj from wk
J (wkj)
j is harder than solving DLPGR. To see

this, suppose that wkj ∈ Fp. This means J (wkj) = wkj . That is to say that we
need to deduce wkj from wk

wkj

j . Due to Agnew et al. [1], we know that deducing
wkj from wk

wkj

j is harder than DLP. Further, it is easy to see that DLPGR is hard
problem than DLP as the group ring contains the group. Consequently, it follows
that deducing wkj from wk

J (wkj)
j is harder than solving DLPGR. Thus, the result

holds.

Next, we show that our scheme is secure against the password guessing attack.

Theorem 4.3. The presented key authentication scheme can withstand the pass-
word guessing attack launched by a malicious server.

Proof. If there is a closed network environment, then it is believed that the servers
are trusted. Therefore, it is highly unlikely that any server will initiate a password
guessing attack. Consequently, one can assume that password table will not be
illegally amended. An example of such an environment is any closed environment
in which all the servers are controlled by a single admin. However, in order to
strike at the server end, an attacker must have to guess the password Pwj as well
as skj in order to deduce E(Pwj ⊕ skj). But this is computationally infeasible as
both are randomly chosen and are known only to the entity. Further, even if an
attacker guesses the password by some means, e.g., derives it from the certificate

Cj = Pwj ⊕ skj + skjJ (pkj),

it is still computationally infeasible to guess the secret key. Therefore, our scheme
is safe against any such attack.

Next, we show that our scheme is secure even if certificate gets intercepted.

Theorem 4.4. Suppose that the password used in the certificate of public key gets
intercepted in the presented scheme. It is still not possible for an adversary to find
the private key from the certificate.

Proof. We suppose that password Pwj of entity j gets compromised by any means.
Then, in order to deduce the secret key, an adversary may try to utilize (i) E(Pwj ⊕
skj), which is available on the server; (ii) certificate

Cj = Pwj ⊕ skj + skjJ (pkj).

It is clear that if the adversary somehow deduces the secret key from the known
value of E(Pwj ⊕ skj), then he/she has solved DLPGR, i.e., adversary deduced
skj from the values of uPwj⊕skj , where Pwj is known. But we know that it is
computationally infeasible to solve DLPGR.
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For the possibility (ii), we assume that the adversary may try to obtain the
secret key from the known value of certificate Cj . More precisely, adversary tries
to find the couple (r1, r2), where

r1 = Pwj ⊕ skj , r2 = skjJ (pkj).

Suppose that the adversary succeeds in deducing the above-mentioned couple.
Then, by XORing the compromised password Pwj with r1, the private key skj

can be computed, i.e.,
skj = Pwj ⊕ skj ⊕ Pwj .

The same can be obtained from r2 also as J (pkj) is public knowledge. However,
if Pwj and skj are sufficiently large, then it is computationally infeasible to obtain
the secret key from the certificate via brute force. Thus, result.

Next, we briefly discuss the hardness of DLPGR.

4.1. Hardness of DLPGR
There is no known classical/quantum algorithm that can find the solution of DLP
in group rings. However, one can always apply the brute force attack. So, in order
to utilize DLPGR in cryptography, we study its brute force complexity.

4.1.1. Brute force attack

Let G be a finite group with order z and

u1 =
z∑

j=1
rgj

gj .

Let order of u1 be s, i.e., s is the least positive integer for which us
1 = 1. It is

straight-forward to see that on s multiplications of u1 with itself, one can solve
DLPGR discussed in Definition 2.8. We note that on multiplying u1 with u1,
O(2z2) multiplications are required that includes z2 group and z2 ring multipli-
cations. That is to say that DLPGR can be solved in O(2z2s) multiplications.
Let

R = Zp (finite field of order p) and G = ⟨g⟩ (cyclic group of order z),

where p is a k1-bit number and z is a k2-bit number. Then one can solve DLPGR
in

T = O(z22α(k2
1 + k2

2)) bit operations,

where the size of s is α bits. Clearly, if we consider the input size as the order of
u1, then T is an exponential time.
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4.1.2. Collision algorithms

The general effect of any collision algorithm is that it reduces the number of bit op-
erations by square root times the operations required for brute force. Furthermore,
it is easy to see that the collision algorithms available to solve DLP in groups can
be extended to solve DLPGR. Consequently, the number of bit operations needed
to solve DLPGR through collision algorithms can be reduced to

T ′ = O(z22α/2(k2
1 + k2

2)) bit operations.

To the best of authors’ knowledge, currently, there is no algorithm that takes
lesser than T ′ bit operations to solve DLPGR. Therefore, DLPGR is an extremely
hard problem. The security provided by DLPGR with the different parameters is
provided in the following Table 2.

Table 2. Size of parameters and the security provided by DLPGR.

Parameters Size security (atleast)
|G| = z ≥ 27, s ≥ 2225 128 bits
|G| = z ≥ 28, s ≥ 2485 256 bits

5. Advantages of our scheme and comparison
analysis

The various advantages of our scheme are discussed as follows:

(1) The size of parameters required for DLPGR is considerably smaller than the
related hard problems such as integer factorization problem (IFP), DLP, DLP in a
subgroup, Elliptic curve discrete logarithm problem (ECDLP), DLP with conjugacy
search problem (DLCSP) (cf. [8]). This is shown in Table 3.

Table 3. Parameters sizes and security.

Hard Problem Parameters sizes and security (bits)
IFP [31] ((3072, primes of size 1536 bits), 128)
DLP [31] (3072, 128)

DLP in a subgroup (DSA) [31] (256, 128)
DLCSP [8] (48, 128)
ECDLP [2] (256, 128)

DLPGR (Table 2) (10, 256)

(2) The proposed scheme attains the third and top level of security mentioned by
Girault [7]. This is because the regular key authentication schemes are insecure due
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to the presence of authorities as they can work together in a bad way. However, in
our scheme, there is no involvement of any authority. Consequently, there would
not be any malicious collaboration among the certifying authorities.

(3) It is known that a public key in an identity-based (ID-based) scheme is the ID
of entity. However, in our presented scheme, entity can effortlessly change his/her
private key as well as password. Accordingly, on changing his/her private key
and (or) password, the entity can also modify the associated data which involves
password’s picture, public key and the certificate. In addition, the authentication
phase can also be performed by the entity himself/herself.

(4) Our scheme can be executed even if the image of password is not produced by
using the Hash function H. This is discussed in Subsection 3.1. However, the use
of a hash function can considerably reduce the storage requirement.

(5) Suppose that it is possible to compute inverse of an element in a group ring
through an oracle and J (pkj) = 1. Then equation (3.1) implies that

pkj = E(Cj)E(Pwj ⊕ skj)−1. (5.1)

That is one can compute entity’s public key via equation (5.1), where E(Pwj ⊕skj)
can be obtained from the table of passwords and Cj can be considered as self-
certified public key. Therefore, the original public keys may be deleted from the
public domain, since they are no longer required to store there. As a result, we only
need to store the picture of the password and the self-certified public key. Girault
[7] discussed that the public key file can be removed from the public domain in the
self-certified schemes, provided the cryptographic scheme is non-interactive. So,
our scheme is in line with the discussion of Girault. Thus, the storage required for
this portion of the scheme is equal to that of ID-based scheme.

Next, we compare our scheme with the already available key schemes in the
literature. Basically, we show that the computation cost of our scheme is very
much comparable to various other schemes. We refer to Table 4 and Figure 1 to
study the comparison analysis with various other schemes such as Hsieh et al. [16],
Kumaraswamy et al. [23], Lee et al. [25], Liu et al. [30], Peinado [37], Wu et al.
[43], Zhang et al. [45], Meshram et al. [32]. The notations used in Table 4 are as
follows:
Tinv: Time required in a modular inverse computation
Tmul: Time required in a modular multiplication computation
Texp: Time required in a modular exponentiation computation
Tadd: Time required in a modular addition computation
TH: Time required in hash computation
TXOR: Time required in a XOR function computation
T ′

add: Time required in an addition computation through map J
T ′

exp: Time required in exponentiation computation in a group ring
T ′

mul: Time required in a multiplication computation in a group ring.
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It is worth to mention that for the parameters sizes mentioned in Table 3, we
have that

T ′
exp ≈ Texp, T ′

add ≈ Tadd, T ′
mul ≈ Tmul.

6. Example
In this scheme, we study a toy example related to our scheme. All the results
are calculated using the software GAP (Groups, Algorithm, Programming). We
consider

R = Z5 = {0, 1, 2, 3, 4} and G = Q8 = ⟨x, y : x4 = y4 = e, x2 = y2, yx = x−1y⟩.

Registration phase: Let u = 1 + xy. Let skj = 2 be the private key. Then the
public key is

pkj = u2 = 1 + 2xy + y2.

Figure 1. Key Authentication Schemes.

Let Pwj = 12. Then
Pwj ⊕ skj = 14.

This means the encrypted password is

E(Pwj ⊕ skj) = u14.

Also, we have

J (pkj) = 1 + 2 + 1 = 4 and (pkj)J (pkj) = (1 + 2xy + y2)4.
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The picture to be stored is

H
(
J (E(Pwj ⊕ skj)

(
pkj

)J (pkj)))
)

= H
(
J ((u14 ∗ (1 + 2xy + y2)4)

)
= H

(
J (1 + y2 + 2xy)

)
= H(4). (6.1)

Table 4. Computation cost in registration and authentication
phases.

Authentication scheme Registration phase Authentication phase
Lee et al. (2003) Tinv + 4Tmul + 3Texp + 2Tadd + TH 2Tmul + 2Texp

Wu and Lin (2004) Tinv + 2Tmul + 4Texp + 2Tadd + TH Tmul + Texp

Zhang and Kim (2005) 2Tmul + Texp + 3Tadd + TH 3Tmul + Texp + 4Tadd + 2TH

Peinado (2004) Tinv + 4Tmul + 3Texp + 2Tadd + TH 2Tmul + 2Texp

Hsieh and Leu (2012) 9TH + 7TXOR 7TH + 5TXOR

Kumaraswamy et al. (2015) 3Tmul + 2Texp + 3Tadd 2Tmul + 3Texp + Tadd

Liu et al. (2014b) 4TH + 10TXOR + 2Tmul 3TH + 6TXOR + 13Tmul

Meshram et al. (2017) 2Tmul + Texp + Tadd + TH + 2TXOR 2Tmul + Th

Our Scheme 2Tmul + 2Texp + 3Tadd + TH + TXOR Tadd + Texp + Th

Certificate generation phase: The certificate corresponding to key pkj is

Cj = Pwj ⊕ skj + skjJ (pkj)
= (12 + 2) + (2 × 4) = 22.

Verification phase: For verification, we must have

H(J (E(Cj))) = H
(
J (E(Pwj ⊕ skj)

(
pkj

)J (pkj)))
)
. (6.2)

We note that

H(J (E(Cj))) = H(J (u22)) = H(J (1 + y2 + 2xy)) = H(4). (6.3)

Thus, verification is completed because of equations (6.1)–(6.3).

7. Conclusion
We have proposed a simple novel key authentication scheme for public key cryp-
tosystems based on discrete logarithm problem in group ring. In our scheme, the
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entity controls the certificate and authentication procedure is based on the table of
passwords and there is no requirement of authorities in our scheme. We have care-
fully discussed the security of our scheme as well as the size of various parameters
required in our scheme. Moreover, in order to show the worth of our scheme, we
compared it with the several other related schemes. Finally, in order to show the
practicality of our scheme, we have discussed a toy example.

Acknowledgements. The authors are thankful to the editor and anonymous
reviewer of the manuscript for their valuable comments and suggestions that im-
proved the paper to a great extent.
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