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On the Diophantine equation
(pn)x + (4m + p)y = z2 when p, 4m + p

are prime integers∗
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Abstract. In this paper, we give methods to solve the Diophantine equa-
tion (pn)x + (p + 4m)y = z2 where p ≥ 3 and p + 4m are prime integers.
Concretely, using the congruent method, one proves that this equation has
no non-negative solutions if p > 3. For the case p = 3, using the elliptic
curves, we will show that this equation has no solutions if m ≥ 3. In this
case, when m = 1 using the elliptic curves, we will show that this equation
has only solution (x, y, z) = (2, 1, 4) if n = 1 and (x, y, z) = (1, 1, 4) if n = 2,
and when m = 2 using the elliptic curves, we will show that this equation
has only solutions is (x, y, z) = (4, 1, 10) if n = 1 and (x, y, z) = (2, 1, 10) if
n = 2.
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1. Introduction
Equations with an exponential Diophantine nature, such as those encountered in
the Fermat–Catalan and Beal’s conjectures, take the form am + bn = ck while
imposing restrictions on the exponents. These equations arise when additional
variables are introduced as exponents in a Diophantine equation. Despite efforts
dedicated to addressing specific instances like Catalan’s conjecture, a comprehen-
sive theory for solving these equations is currently unavailable. Catalan’s conjecture
specifically states that the equation xp − yq = 1 possesses no other integer solu-
tions besides 32 − 23 = 1 (see [2]). Mihailescu successfully proved this conjecture
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(see [4]). Many authors have studied a generalized form of this equation, which is
the Diophantine equation expressed as

bx − cy = z2. (1.1)

Consider the following examples: when a2+b2 = c2 with gcd(a, b, c) = 1 and a being
an even number, Terai [7] proposed the conjecture that Equation (1.1) has a unique
positive integer solution (x, y, z) = (2, 2, a). In the case where b = q ̸≡ 7 (mod 8)
represents an odd prime and x ≡ 1 (mod 2), the Diophantine equation

px − cy = z2 (1.2)

has been solved by Arif and Muriefah [1] and Zhu [8]. In [6], Terai presented vari-
ous results concerning Equation (1.2) (see [6, Theorem 1.2, 1.3, 1.4]). Additionally,
Terai noted in [6] that there is currently no proof establishing the absence of solu-
tions for the equations 12x − 23y = z2 and 24x − 47y = z2 in the scenario where
both x and y are odd.

Turning our attention to a different aspect, the Diophantine equations xn+yt =
zm have garnered significant attention from mathematicians. Generally speaking,
this problem poses considerable challenges. Suppose m and n are positive integers.
We define a solution (x, y, z) ∈ Z3 for the equation xn + yn = zm as primitive if
gcd(x, y, z) = 1. Conversely, a solution (x, y, z) is deemed trivial if xyz belongs to
the set {−1, 0, 1}. In 1997, Darmon and Merel [3] succeeded in proving the following
two theorems by employing the Shimura–Taniyama conjecture in conjunction with
Frey curves.
Theorem 1.1. The equation xn + yn = z2 has no nontrivial primitive solutions
for prime n ≥ 7.

Theorem 1.2. Assume the Shimura–Taniyama conjecture. Then the equation
xn + yn = z3 has no nontrivial primitive solutions for prime n ≥ 7.

After that, Poonen [5] completed the proof of the above two theorems. Concretely,
he proved Theorem 1.1 and Theorem 1.2 are true for all n ≥ 3 and n ≥ 4, respec-
tively.

Now, we consider the Diophantine equations

px + qy = z2 (1.3)

where p and q are distinct primes. This Diophantine equation has been widely
studied for various fixed values of p and q. Note that if either y = 0 or x = 0 then
Equation (1.3) becomes z2 −(pn)x = 1 or z2 −qy = 1, a special form of the Catalan
conjecture. However, there is no solution to the general equations.

In this paper, we consider the Diophantine equation

(pn)x + (p + 4m)y = z2. (1.4)

where n is a positive integer and p ≥ 3 are prime integers. For the case p > 3,
using the factor method, one proves that (1.4) has no solutions. However, there is
still no answer for the case p = 3.
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2. Preliminaries
In this section, we give some results that will be used in the sequel.

Lemma 2.1. Any odd power of an integer of the form 4a + 3, a > 0 is of the form
4B + 3, i.e., for every odd integer k ≥ 1, we have (4a + 3)k = 4B + 3, where B is
a positive integer.

Proof. We prove that by induction on k. For k = 1, we have (4a + 3)1 = 4a + 3.
Hence the assertion is true when k = 1.

Assume that the induction is true for all odd powers less than or equal to
k = 2r + 1, where r ≥ 0 is an integer. Then we have

(4a + 3)2r+3 = (4a + 3)2(4a + 3)2r+1.

By inductive assumption, there exists a positive integer b such that

(4a + 3)2r+1 = 4b + 3.

Hence we have

(4a + 3)2r+3 = (4a + 3)2(4b + 3)
= 4[b(4a + 3)2 + 12a2 + 18a + 6] + 3.

We put B = b(4a + 3)2 + 12a2 + 18a + 6. Then (4a + 3)2r+3 = 4B + 3, the claim
is proved.

For the case y = 0, we have the following lemma.

Lemma 2.2. The Diophantine equation

(3n)x + 1 = z2

has only solution is (x, z) = (1, 2) if n = 1 and has no non-negative integer solutions
if n > 1.

Proof. Let x and z be non-negative integers such that (3n)x + 1 = z2. We have

(3n)x = z2 − 1 = (z + 1)(z − 1). (2.1)

Since 3 is prime, we get by Equation (2.1) that there exists integers a > b with
a + b = nx such that

z + 1 = 3a and z − 1 = 3b. (2.2)
From Equation (2.2), we get that

3b(3a−b − 1) = 2. (2.3)

Since 2 and 3 are primes, we get by Equation (2.3) that b = 0, and therefore 3nx = 3.
Hence nx = 1. Thus, if n > 1 then the Diophantine equation (3n)x + 1 = z2 has
no solutions, and if n = 1 then the Diophantine equation (3n)x + 1 = z2 has only
solution is (x, z) = (1, 2).
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For the case x = 0, we have the following lemma.

Lemma 2.3. Let m be a positive integer such that 4m + 3 is prime. Then the
Diophantine

1 + (4m + 3)y = z2

has no non-negative integer solutions.

Proof. Let y and z be non-negative integers such that (3 + 4m)y + 1 = z2. We
have

(3 + 4m)y = z2 − 1 = (z + 1)(z − 1). (2.4)

Since 3 is prime, we get by Equation (2.4) that there exists integers a > b with
a + b = y such that

z + 1 = (3 + 4m)a and z − 1 = (3 + 4m)b. (2.5)

From Equation (2.5), we get that

(3 + 4m)b[(3 + 4m)a−b − 1] = 2. (2.6)

Since 2 and 3 + 4m are primes, we get by Equation (2.6) that b = 0, and therefore
(3 + 4m)y = 3. Since 3 + 4m > 3, Equation (2.6) has no solutions.

The following lemma is the key to the proof of the main results of this paper.

Lemma 2.4. Let A be a positive integer of the form 4m +3. Then A−1 has always
a prime divisor q such that q ̸= 2 and q ̸= 3 for all m ≥ 3.

Proof. We have A − 1 = 4m + 2 = 2(2 · 4m−1 + 1). It clear that 2 is not divisor of
2 · 4m−1 + 1. Suppose that A − 1 has only two prime divisors, 2 and 3. Then there
exists an positive integer x such that 2 ·4m−1 +1 = 3x that means 2 ·4m−1 = 3x −1.
So, we have the following equation

2 · (2m−1)2 = 3x − 1. (2.7)

We divided it into three cases.

1. If x = 3t for some positive integer t. Then Equation (2.7) becomes

42 · (2m−1)2 = 2333t − 23. (2.8)

We put Y = 4 · 2m−1 and X = 2 · 3t then Equation (2.8) becomes

Y 2 = X3 − 23

is an elliptic curve. Using the Magma Calculator this equation has non-
negative solutions (X, Y ) is (2, 0). Hence Equation (2.8) has no non-negative
integer solutions.
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2. If x = 3t + 1 for some non-negative integer t. Then Equation (2.7) becomes

32 · 42 · (2m−1)2 = 23 · 33t+3 − 23 · 32. (2.9)

We put Y = 12 · 2m−1 and X = 2 · 3t+1 then Equation (2.9) becomes

Y 2 = X3 − 23 · 32

is an elliptic curve. Using the Magma Calculator this equation has non-
negative solutions (X, Y ) is (6, 12). Hence t = 0 and m = 1, a contradiction
since m ≥ 3. Hence Equation (2.9) has no non-negative integer solutions.

3. If x = 3t + 2 for some non-negative integer t. Then Equation (2.7) becomes

34 · 42 · (2m−1)2 = 23 · 33t+6 − 23 · 34. (2.10)

We put Y = 36 · 2m−1 and X = 2 · 3t+2 then Equation (2.10) becomes

Y 2 = X3 − 23 · 34

is an elliptic curve. Using the Magma Calculator this equation has non-
negative solutions (X, Y ) are (9, 9), (18, 72), (22, 100), (54, 396), (97, 955),
(1809, 76941). Hence 2.3t+2 = 18, 36.2m−1 = 72, that means t = 0, m =
2, a contradiction. Therefore, Equation (2.10) has no non-negative integer
solutions.

3. Main results
The purpose of this section is to present some results on solutions to the Diophan-
tine equation

(3n)x + (4m + 3)y = z2

where m is an integer such that q = 4m + 3 is a prime number, for example,
(m, q) ∈ {(1, 7), (2, 19), (3, 67), . . .}. For x = 0 or y = 0, according to Lemma 2.2
and Lemma 2.3. Therefore, from now on, we always consider x, y ≥ 1. Firstly, we
consider x an even integer, and m ≥ 3 is an integer. Then we have the following
theorem.

Theorem 3.1. Let m ≥ 3 be an integer such that 4m + 3 is prime and x is even.
Then the Diophantine equation

(3n)x + (4m + 3)y = z2

has no non-negative integer solutions.

Proof. Since x = 2t for some t > 0, we have

(4m + 3)y = z2 − (3n)2t = (z + 3nt)(z − 3nt). (3.1)
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Since 4m + 3 is prime and y ≥ 1, we get by Equation (3.1) there exists integers
a > b such that

z + 3nt = (4m + 3)a, z − pnt = (4m + 3)b

where a + b = y. Therefore,

(4m + 3)b[(3 · 4m + 1)a−b − 1] = 2 · 3nt. (3.2)

Since 4m + 3 > 3 and 2, and 3 are distinct primes, we get by Equation (3.2) that
b = 0. Combined with the condition y ≥ 1, Equation (3.2) becomes

2 · 3nt = (4m + 3)y − 1 = (4m + 2)[(4m + 3)y−1 . . . + 1]. (3.3)

By Equation (3.3) that (4m + 2) | 2 · 3nt. Since m ≥ 3, we get by Lemma 2.4 that
4m+2 has always a prime divisor q such that q ̸= 2 and q ̸= 3. Since (4m+2) | 2·3nt,
we have q | 3nt, a contradiction.

For the case m = 1 then the Diophantine equation (pn)x + (p + 4m)y = z2

becomes (3n)x + 7y = z2. Then we have the following theorem.

Theorem 3.2. Let x = 2t be even for some positive integer t. Then the Diophan-
tine equation

(3n)x + 7y = z2

has only solution is (x, y, z) = (2, 1, 4) if n = 1, and has no solutions if n ≥ 2.

Proof. Since x = 2t are even integers, we have

7y = z2 − (3n)2t = (z + 3nt)(z − 3nt). (3.4)

Since 7 is prime and y ≥ 1, we get by Equation (3.1) there exists integers a > b
such that

z + 3nt = 7a, z − 3nt = 7b

where a + b = y. Therefore,

7b[7a−b − 1] = 2 · 3nt. (3.5)

Since 7 and 2, and 3 are distinct primes, we get by Equation (3.5) that b = 0.
Hence Equation (3.5) becomes

2 · 3nt = 7y − 1. (3.6)

We put nt = u then Equation (3.6) becomes

2 · 3u = 7y − 1. (3.7)

We divided it into two cases.

1. The case u = 2r. Then Equation (3.7) becomes

2 · (3r)2 = 7y − 1. (3.8)
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• If y = 3l, then Equation (3.8) becomes

(4 · 3r)2 = 23 · 73l − 23. (3.9)

We put Y = 4 · 3r and X = 2 · 7l then Equation (3.9) becomes

Y 2 = X3 − 23

is an elliptic curve. Using the Magma Calculator this equation has
non-negative solutions (X, Y ) is (2, 0). Hence Equation (3.9) has no
non-negative integer solutions.

• If y = 3l + 1, then Equation (3.8) becomes

23 · 72 · 2 · (3r)2 = 23 · 73l+3 − 23 · 72. (3.10)

We put Y = 4 · 7 · 3r and X = 2 · 7l+1. Then Equation (3.10) becomes

Y 2 = X3 − 23 · 72

is an elliptic curve. Using the Magma Calculator this equation has no
non-negative solutions (X, Y ). So, in this case, Equation (3.8) has no
solutions.

• If y = 3l + 2, then Equation (3.8) becomes

23 · 74 · 2 · (3r)2 = 23 · 73l+6 − 23 · 74. (3.11)

We put Y = 4 · 72 · 3r and X = 2 · 7l+2. Then Equation (3.11) becomes

Y 2 = X3 − 23 · 74

is an elliptic curve. Using the Magma Calculator this equation has non-
negative solutions (X, Y ) is (6402, 512240) that means 2 · 7l+2 = 6402,
a contradiction. So, in this case, Equation (3.11) has no solutions.

2. The case u = 2r + 1 is odd. Then Equation (3.7) becomes

(6 · 3r)2 = 6 · 7y − 6. (3.12)

• If y = 3l, then Equation (3.12) becomes

62(6 · 3r)2 = 63 · 73l − 63. (3.13)

We put Y = 36 · 3r and X = 6 · 7l. Then Equation (3.13) becomes

Y 2 = X3 − 63

is an elliptic curve. Using the Magma Calculator this equation has
non-negative solutions (X, Y ) are (6, 0), (10, 28), (33, 189). So Equa-
tion (3.12) has no non-negative solutions.
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• If y = 3l + 1, then Equation (3.12) becomes

62 · 72(6 · 3r)2 = 63 · 73l+3 − 63 · 72. (3.14)

We put Y = 252 · 3r and X = 6 · 7l+1. Then Equation (3.14) becomes

Y 2 = X3 − 63 · 72

is an elliptic curve. Using the Magma Calculator this equation has
non-negative solutions (X, Y ) are (22, 8), (25, 71), (42, 252), (105, 1071),
(294, 5040), and (394, 7820). Hence 6 · 7l+1 = 42 or 6 · 7l+1 = 294, that
means l = 0 or l = 1. If l = 0 then y = 1 and nt = 1 that means
y = 1 and n = t = 1, and so x = 2, z = 4. If l = 1 then y = 4. So,
Equation (3.7) becomes 3nt = 1200, a contradiction.

• If y = 3l + 2, then Equation (3.12) becomes

62 · 74(6 · 3r)2 = 63 · 73l+6 − 63 · 74. (3.15)

We put Y = 62 · 72 · 3r and X = 6 · 7l+2. Then Equation (3.15) becomes

Y 2 = X3 − 63 · 74

is an elliptic curve. Using the Magma Calculator this equation has only
non-negative solution (X, Y ) is (106, 820). Therefore, Equation (3.15)
has no non-negative solutions.
Thus if x is even, then (x, y, z) = (2, 1, 4) is only solution of the Dio-
phantine equation (3n)x + 7y = z2 when n = 1.

For the case m = 2 then the Diophantine equation (pn)x + (p + 4m)y = z2

becomes (3n)x + 19y = z2. With the same of the proof of Theorem 3.2, we have
the following theorem.

Theorem 3.3. Let x = 2t for some positive integer t. Then the Diophantine
equation

(3n)x + 19y = z2

has only solution is (x, y, z) = (4, 1, 10) if n = 1 and (x, y, z) = (2, 1, 10) if n = 2,
and has no solutions if n ≥ 3.

Proof. Similar to the proof of Theorem 3.2, we have the equation

2 · 3nt = 19y − 1. (3.16)

We put nt = u. Then Equation (3.16) becomes

2 · 3u = 19y − 1. (3.17)

We divided it into two cases.
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1. The case u = 2r. Then Equation (3.17) becomes

2 · (3r)2 = 19y − 1. (3.18)

• If y = 3l, then Equation (3.18) becomes

(4 · 3r)2 = 23 · 193l − 23. (3.19)

We put Y = 4 · 3r and X = 2 · 19l. Then Equation (3.19) becomes

Y 2 = X3 − 23. (3.20)

is an elliptic curve. Using the Magma Calculator, Equation (3.20) has
non-negative solutions (X, Y ) is (2, 0). Hence 4 ·3r = 0, a contradiction.
Therefore, Equation (3.19) has no non-negative integer solutions.

• If y = 3l + 1, then Equation (3.18) becomes

23 · 192 · 2 · (3r)2 = 23 · 193l+3 − 23 · 192. (3.21)

We put Y = 4 · 19 · 3r and X = 2 · 19l+1. Then Equation (3.21) becomes

Y 2 = X3 − 23 · 192

is an elliptic curve. Using the Magma Calculator, this equation has
non-negative solutions (X, Y ) are (17, 45), (38, 228), (114, 1216) and
(209, 3021). Hence

2 · 19l+1 = 38 and 4 · 19 · 3r = 228

that means l = 0, r = 1. Therefore, we have nt = 2, y = 1. So,
Equation (3.16) has no solutions if n ≥ 3, and the non-negative inte-
ger solutions of Equation (3.16) are (x, y, z) = (4, 1, 10) if n = 1 and
(x, y, z) = (2, 1, 10) if n = 2.

• If y = 3l + 2, then Equation (3.18) becomes

23 · 194 · 2 · (3r)2 = 23 · 193l+6 − 23 · 194. (3.22)

We put Y = 4 ·192 ·3r and X = 2 ·19l+2. Then Equation (3.22) becomes

Y 2 = X3 − 23 · 194

is an elliptic curve. Using the Magma Calculator this equation has no
non-negative solutions. So, in this case, Equation (3.18) has no solutions.

2. The case u = 2r + 1. Then Equation (3.17) becomes

(6 · 3r)2 = 6 · 19y − 6. (3.23)
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• If y = 3l, then Equation (3.23) becomes

62(6 · 3r)2 = 63 · 193l − 63. (3.24)

We put Y = 36 · 3r and X = 6 · 19l. Then Equation (3.24) becomes

Y 2 = X3 − 63

is an elliptic curve. Using the Magma Calculator, Equation (3.24) has
non-negative solutions (X, Y ) are (6, 0), (10, 28), (33, 189). So, Equa-
tion (3.24) has no non-negative solutions.

• If y = 3l + 1, then Equation (3.23) becomes

62 · 192(6 · 3r)2 = 63 · 193l+3 − 63 · 192. (3.25)

We put Y = 36 ·19 ·3r and X = 6 ·19l+1. Then Equation (3.25) becomes

Y 2 = X3 − 63 · 192

is an elliptic curve. Using the Magma Calculator this equation has no
non-negative solutions. So, in this case, Equation (3.23) has no solutions.

• If y = 3l + 2, then Equation (3.23) becomes

62 · 194(6 · 3r)2 = 63 · 193l+6 − 63 · 194. (3.26)

We put Y = 62 ·192 ·3r and X = 6·19l+2. Then Equation (3.26) becomes

Y 2 = X3 − 63 · 194

is an elliptic curve. Using the Magma Calculator this equation has
no non-negative solutions. So, in this case, Equation (3.23) has no
solutions.

Next, we consider y to be an even number. Then we have the following theorem.

Theorem 3.4. Let m be an integer such that 4m + 3 is prime and y = 2s be even
for some positive integer s. Then the Diophantine equation

(3n)x + (4m + 3)y = z2

has no non-negative integer solutions.

Proof. Since y = 2s, s > 0, the Diophantine equation

(3n)x + (4m + 3)y = z2

becomes
3nx = z2 − (4m + 3)2s = [z + (4m + 3)s][z − (4m + 3)s]. (3.27)
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Since 3 is prime and x ≥ 1, we get by Equation (3.27) there exists integers a > b
such that

z + (4m + 3)s = 3a, z − (4m + 3)s = 3b

where a + b = nx. Therefore,

3b[3a−b − 1] = 2 · (4m + 3)s. (3.28)

Since 4m + 3 > 3 and 2, and 3 are distinct primes, we get by Equation (3.28) that
b = 0. Combined with the condition x ≥ 1, Equation (3.28) becomes

2 · (4m + 3)s = (3n)x − 1.

We set nx = u. Since 4m + 3 is a prime number, we have

34m+2 ≡ 1 (mod (4m + 3)).

Let i and j be integers such that 0 ≤ i, j < 4m + 2 and i ̸= j. Then we have

3i+(4m+2)k ̸≡ 3j+(4m+2)k (mod(4m + 3))

for all integers k. We divided it into two cases.

1. Let u = i + (4m + 2)k be a positive integer, where 0 < i < 4m + 2 and k is a
non-negative integer. Then

2 · (4m + 3)s = 3u − 1 ̸≡ 0 (mod(4m + 3))

a contradiction.

2. Let u = (4m +2)k be a positive integer, where k is a positive integer. Clearly,
3 is a divisor of 4m + 2 for all positive integers m. Hence, there exists a
positive integer v such that 4m + 2 = 3v. Therefore,

2 · (4m + 3)s = 33vk − 1 = 27vk − 1 = 2 · 13 · [27vk−1 + . . . + 1]

a contradiction, because 13 is not divisor of 2 · (4m + 3)s. Thus, in this case,
the Diophantine equation

(3n)x + (4m + 3)y = z2

has no non-negative integer solutions.

Finally, we consider x and y to be both odd integers. Then we have the following
theorem.
Theorem 3.5. Let m be an integer such that 4m + 3 is prime. Suppose that
x = 2t + 1, y = 2s + 1 for some positive integers s, t. Then the Diophantine
equation

(3n)x + (4m + 3)y = z2

has no non-negative integer solutions for all m ≥ 3 and has only solution is
(x, y, z) = (1, 1, 4) if n = 2 and m = 1, and has only solutions is (x, y, z) = (1, 1, 10)
if n = 2 and m = 2.
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Proof. We divided it into two cases.

1. Let n is even. Then n = 2l for some integer l. The equation (3n)x + (4m +
3)y = z2 becomes

(3l)2x + (4m + 3)y = z2 (3.29)

• Let m ≥ 3. By Theorem 3.1, Equation (3.29) has no non-negative
integer solutions.

• Let m = 1. We get by Theorem 3.2 that Equation (3.29) has only
solution is (2x, y, z) = (2, 1, 4) if l = 1. Hence (x, y, z) = (1, 1, 4) if
n = 2.

• Let m = 2. Since x is odd, we get by Theorem 3.3 that Equation (3.29)
has only solution is (2x, y, z) = (2, 1, 10) if l = 2. Hence (x, y, z) =
(1, 1, 10) if n = 4.

2. Let n be odd and x = 2t + 1, and y = 2s + 1 for some positive t and s. We
get by Lemma 2.1 that there exists integers A, B such that (3n)2t+1 = 4A+3
and (4m + 3)2s+1 = 4B + 3. Since 3 and 4m + 3 are odd prime numbers, we
have z2 = (3n)x + (4m + 3)y is even. Hence z is even, which means z = 2c
for some integer c. Therefore, z2 = 4c2, which means 4 is a divisor of z2. On
the other hand, we have

z2 = (3n)2t+1 + (4m + p)2s+1 = 4(A + B) + 2,

a contradiction.

4. Conclusion
In this paper, we give methods to solve the Diophantine equation (3n)x+(3+4m)y =
z2. This method is perfectly applicable to similar Diophantine equations.
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