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ABSTRACT

Associative learning tests are cognitive assessments that evaluate the ability of individuals to learn and
remember relationships between pairs of stimuli. The Rutgers Acquired Equivalence Test (RAET) is an
associative learning test that utilizes images (cartoon faces and colored fish) as stimuli. RAET exists in
various versions that differ in the degree of the complexity of the stimuli used in the given version. It has
been observed that differences in stimulus complexity can lead to marked differences in test performance,
but the related cortical functional differences remain to be elucidated. In the present study, we introduce a
Machine Learning- and Independent Component Analysis-based EEG signal processing pipeline, which
can detect such differences. RAET and its reduced stimulus complexity variant, Polygon was administered
to 32 healthy volunteers and EEG recordings were made with a 64-channel system. The most remarkable
differences between RAET and Polygon were detected in the frontal regions, which can be connected to
decision making. On the other hand, the parietal regions showed the lowest number of differences between
RAET and Polygon. Some task-related activity in the temporo-occipital region was identified, which shows
different dynamics depending on visual stimulus complexity.
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INTRODUCTION

Associative learning is a well-known learning mechanism in which different stimuli (antecedents
and consequents) are linked to a given stimulus based on a behavioral response. The Rutgers
Acquired Equivalence Test (RAET) [1, 2] investigates this learning function with visual stimuli.
In the original version of RAET [1], the subjects’ task is to pair cartoon faces with colored fish.
In a later version called Polygon [3], greyscale circles are paired with polygons. Polygon was
created with the aim of studying the effects of reduced stimulus complexity on associative
learning, retrieval and generalization.

It was recently demonstrated [3–7] that the complexity of visual stimuli can significantly
influence associative learning. This may be because more complex stimuli offer more visual cues,
increasing the likelihood of evoking associations, and they may also be easier to verbalize. In the
case of the RAET, it must be highlighted that the test uses human faces, which have significant
importance in social interactions, they can even be recognized by newborns [8]. Several differ-
ences in cognitive performance under RAET-like tests have been observed between different
groups recently, but the electrophysiological aspect of these differences remains largely unex-
plored [9, 10].

In this study, we compared the cortical activity of two equivalence learning tests with ma-
chine learning algorithms. Besides the original RAET [1, 2], we also used Polygon [3], which
follows the same structure as the original RAET, but utilizes different visual stimuli. While the
original RAET uses relatively feature-rich, easily verbalizable stimuli (see Fig. 1), Polygon utilizes
two-dimensional geometric shapes that are less complex and more difficult to verbalize.

We aimed to determine how the complexity of visual stimuli affects cortical activity during
associative learning. Specifically, we sought to identify the EEG activity of the two learning tests,
which are distinguishable. To address this, we applied automated machine learning algorithms
to compare the independent components of EEG recordings of patients performing the RAET
and the Polygon tests. Machine learning is not new to EEG signal processing; it has been
effectively used in single-trial classifications before [11]. This study may advance our under-
standing of the different psychophysical performances in the RAET and the Polygon tests [3]
and could contribute to understand human associative learning in general.

MATERIALS AND METHODS

Participants

The study protocol followed the tenets of the Declaration of Helsinki in all respects and was
approved by the Regional Research Ethics Committee for Medical Research at the University of
Szeged, Hungary (27/2020-SZTE). Participation was voluntary and without any compensation.
Potential volunteers were recruited through the personal networks of the authors. They were
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informed about the aims and procedures of the study, and that participation was voluntary and
could be terminated at any time without any negative consequences. If they agreed to partic-
ipate, they provided written informed consent.

Young adults between 18 and 30 years of age were eligible for the study. Exclusion criteria
included any neurological or psychiatric condition, or any other condition that could potentially
interfere with the volunteer’s ability to perform the study tasks, including color blindness.

Altogether thirty-two individuals volunteered, and they were all eligible to participate.
However, the data of only 26 of them (14 adult males and 12 adult females) were evaluated
due to recording errors. The average age of the volunteers was 23.81 years (with a standard
deviation of 5.33 years).

Study procedures

The research was conducted in a quiet, dark room. The learning tests were executed on a
personal computer with a cathode-ray tube (CRT) screen (refresh rate: 60 Hz). The participants
were sitting at a distance of 57 cm from the computer screen. Regardless of the test (RAET or
Polygon), every stimulus fits within a 5 cm by 5 cm square, so when viewed from a given
distance, every stimulus appears under the same viewing angle (58 in this case). Each participant
was tested individually, no other participants or study personnel were present in the room
during the recording. The order of the learning tests was randomized, thus minimizing carry-
over effects. To avoid performance anxiety, there was no time limit or forced responses in either
of the applied learning tests and there was no time constraint for the individual responses either.

Study protocol

Regardless of the specific test (RAET or Polygon), the test paradigm comprises two main phases:
the acquisition phase and the test phase. The tests are divided into trials.

In each trial, the subject’s task is to pair an antecedent stimulus with a consequent stimulus.
In the acquisition phase, the subject learns the association between the antecedents and the
consequents through trial-and-error learning. The computer provides immediate visual feedback
on the correctness of the subject’s guess (the word “Right” or “Wrong” with a green checkmark
or a red X, respectively). The subject must achieve a certain number of consecutive correct
answers after the presentation of each new association to be allowed to proceed. This number
is 4 when the first association is presented and is increased by 2 upon the presentation of each
new association that follows (up to a maximum of 12). Thus, the length of the acquisition phase
varies among subjects, depending on how efficiently they learn. There are altogether 4 anteced-
ents and 4 consequents. Out of the 8 possible associations, 6 are taught in the acquisition phase.

In the test phase, no further feedback is given about the correctness of the responses, and the
subject must recall the already acquired six associations (retrieval). Two new, hitherto unknown
associations are presented as well, where the correct answer can be deduced based on the
previously learned associations (generalization or transfer). The retrieval and generalization
trials are mixed in the test phase. We excluded the data from the generalization trials in this
study because, on the one hand, the number of these trials is low (a total of 12 for one
participant), and on the other hand, this process is not closely related to associative learning
and its discussion in itself would add up to a separate study. A graphical summary of the
possible associations is shown in Fig. 1.
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The subjects were instructed to learn the associations between four possible antecedents (A1,
A2, B1, B2) and four possible consequents (X1, X2, Y1, Y2) (see table in the Appendix section).
The antecedents were cartoon faces in RAET and greyscale circles in Polygon (Fig. 2). The
consequents were drawn fish of different colors (red, green, blue, yellow) in RAET and polygons
(triangle, square, rhombus and concave deltoid) in Polygon. A more detailed description of the
learning tests can be found in [2, 3].

The timing of the learning tests is illustrated in Fig. 3. The moment of the decision for each
trial depends entirely on the volunteer and is free from any time pressure. After pressing the
button, feedback is displayed for one second. This sequence is repeated during the learning
phase. In the test phase, no feedback is given, but the timing remains the same. The selection
indicator (green circle) is always shown, regardless of the study phase.

Data acquisition

Simultaneously with the RAET and Polygon tests, the volunteers’ EEG waveforms were recorded
using a 64-channel Biosemi Active Two device at a sampling rate of 2048 Hz. This system
provides a very high isolation mode rejection ratio, hence the expected common-mode interfer-
ence signal has low power. The Biosemi ActiveTwo EEG device uses active electrodes that
amplify the signal within the scalp electrodes to reduce the potential interference from environ-
mental electromagnetic noise sources. This removes the need to use an electrically shielded room
for the EEG measurements [12–14]. The headcap and electrode positions remained unchanged
between recordings, and the recordings were not interrupted during the tests. The internal filter
of the unit had low-pass characteristics with a corner frequency of 400 Hz. The electrode layout
used was the standard Biosemi 64-channel configuration (International 10–10 system) [15, 16].

Signal processing and data analysis

The raw recordings from the 64 channels were resampled at 256 Hz after brick-wall low-pass
filtering in the Python-MNE 1.6.1 environment [17, 18] using default parameters. Subsequently,
the built-in notch filter of MNE was applied at the 50 Hz line frequency and its first harmonic, as
well as at the 60 Hz scan frequency of the CRT screen and its first harmonic. A high-pass filter of
1 Hz was used to remove the DC offset and to prepare the data for independent component
analysis [19].

After preprocessing, the EEG dataset was segmented into one-second stimulus and response
(button press) locked epochs. These epochs were then labeled with the associated event (button
press or stimulus appearance), the type of test (RAET or Polygon), and the experiment phase
(acquisition or test).

Muscle artifacts were detected in the raw data by their spectral footprint [20]. Epochs
containing muscle artifacts were excluded from further analysis.

The remaining epochs were manually inspected for signs of electrode contact errors or
artifacts originating from static discharges. These artifacts appear as spikes with ringing on
one or more channels. As a result, a few epochs were dropped from each recording. On average,
20 to 60 good epochs remained per recording. Channels with signal fluctuations that were an
order of magnitude larger than those of other channels were also excluded during this process-
ing step. Additionally, epochs associated with incorrect answers were excluded by the analysis
software. Figure 4 shows a simplified structure of the stored data.
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To remove the source mixing effect from the scalp EEG signals, we used the Independent
Component Analysis (FastICA [21] algorithm included in the Python-MNE environment). The
ICA method can decompose EEG signals into true unmixed sources based on the assumption of
mutual independence of non-Gaussian sources. This method is routinely used to detect and
remove unwanted ocular, muscle and hear-related artifacts but it can also identify distinct neural
sources. Here it is used as a feature reduction technique. Since these components are indepen-
dent, they can be processed individually and separately, so in every iteration the Machine
Learning algorithm will operate on a smaller number of features.

Components representing EEG artifacts (such as blinks) were processed like the others;
however, in the end the EEG artifacts were excluded from the results.

Machine learning

To identify differences between the independent components of the two learning tests, we
employed machine learning classifier algorithms (Long-Short Term Memory, and Support Vec-
tor Classification). The epochs were divided into four groups: learning phase-stimulus appear-
ance, learning phase-button press, test phase-stimulus appearance, and test phase-button press.
Each group of epochs was analyzed using four distinct classification algorithms. A component
was considered to be different in the Polygon and RAET tests if any of the four classification
algorithms detected a difference. Figure 5 visualizes this process.

The following classification algorithms were used. Although we employ two types of machine
learning algorithms, four distinct models are generated due to differences in feature selection.
Long Short-Term Memory and Support Vector Classification are applied to the raw time-
domain signals of the epoched components. Additionally, two more SVC models are trained
and evaluated using features derived from the Fourier spectrum of the epochs.

These two Support Vector Classification models differ in their approach to feature extraction:
one uses the Fourier-transformed spectrum of the epoch prior to the locking event, and the other
uses the spectrum after the locking event. It is important to note that the locking events are
positioned in the middle of the epochs. Practically, this means that one model applies the Fourier
transformation to the first half of the epoch, while the other applies it to the second half. One of
the classifiers used was a 64 layer Long Short-Term Memory (LSTM) neural network [22],
configured with a recurrent dropout of 0.2, a dropout of 0.2, and a dense layer with sigmoid
activation. The validation split was 20 percent, the batch size was 32, and 70 training epochs were
employed during fitting. The model used bias vectors. The activation function was hyperbolic
tangent, while the recurrent activation function was sigmoid. The kernel was initialized with the
Glorot uniform initializer, while the recurrent initializer was an orthogonal one. The biases were
initialized with zeros. The forget gates increased the bias by one at their initialization. None of the
kernels, recurrent kernels, output biases vectors were regularized. No kernel or recurrent kernel
constraints were implemented. No bias constraints were implemented. The random seed was not
initialized. Only the last outputs were considered as the output. The states of the LSTM networks
were not stored to help further optimizations. Instead of an unrolled network, a symbolic loop
was used as a possible implementation. The remaining hyperparameters were the default values
of TensorFlow 2.15.0 [23]. In case of LSTM, the feature variables were the time-series represen-
tations of the investigated ICA component for each epoch. The outcome variable was a class
label, if the time-series belongs to a RAET or a Polygon test.
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Additionally, Support Vector Classification (SVC) [24, 25] with a Radial Basis Function kernel
was applied to the time-domain signals as features, with further SVCs used in the frequency
domain. In the latter case, the power spectra of the signal are used as features. The spectra of the
signal before and after the synchronizing event were analyzed separately. The regularization
parameter of the classifier was one. The gamma coefficient for the Radial Basis Function
kernel was scaled by the number of features. The classifier used shrinking heuristics. The toler-
ance stopping threshold was one of one thousand. Having gigabytes of memory on the evaluation
computer, a two hundred megabyte cache was provided to the classifier. All classes were
equal-weighted. No iteration limit was set. The decision function had a shape like a one-vs-rest
decision function. The tie breaking option was not set. No seed was given to the pseudorandom
number generator. All the hyperparameters of the SVC algorithm were the default parameters
of scikit-learn 1.4.1.post1 [25]. The outcome variable was a class label if the time-series belonged
to a RAET or a Polygon.

Each classification was performed on ten different train-test splits, with a test size of 20
percent [26]. Following each fitting, the accuracy distribution was used to estimate the differ-
entiation factor of the component between the RAET and Polygon tests. If the average accuracy
of a method exceeded 90 percent, the Independent Component Analysis (ICA) component was
plotted.

Human evaluation was performed to determine if the component was due to a channel with
a loose contact during recording (indicated by the component involving only one channel). If
the component was frontally weighted and the evoked signals contained spikes, it could have
been identified as a blink component; however, this scenario was not typical, as the blink
components did not distinguish between the learning tests according to the applied learning
algorithms. If the component exhibited the same asymmetry as the A/D card of the EEG
instrument [20], it was identified as an instrument artifact. As all the other components were
considered to be of physiological origin, they were included in the working set of the analysis.

RESULTS

The EEG recordings of 32 participants were collected for this study, with each participant
completing both the RAET and Polygon tests. Due to issues with data integrity, high noise
levels, or a low number of evaluable epochs, six recordings were excluded from further analysis.
Additionally, one recording was dropped because of a high number of artifacts. After these
exclusions, EEG recordings from 25 participants were analyzed in detail.

As a result of the described methods, composite plots similar to the one shown in Fig. 6 were
generated for every component of each participant if the accuracy of any classifier strategy
exceeded 90 percent. This section shows and discusses an example of the generated plots, then
summarizes the results of all the plots.

Figure 6 displays an ICA component that shows a difference when using the SVC time-
domain classifier. The grouping event was the stimulus appearance in the test phase. The
topographic plot indicates that this component is weighted in the frontal region. The evoked
potentials of this component exhibit a peak, as shown in the heatmap, in nearly all epochs.
However, the timing of this peak differs between the Polygon and RAET tests. The averaged
evoked potentials confirm this, as the global maxima occur at different times. The spectrum also
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shows a noticeable difference. Examining the variance between epochs does not reveal any
outliers. A component like this was categorized as a frontal-weighted component that differen-
tiates the two tests.

Table 1 shows how many recordings/participants resulted in being differentiable by any of
the four algorithms. The table clearly shows that the most significant differences between RAET
and Polygon were detected in the frontal region. This suggests that the frontal region was the
most sensitive to the differences between RAET and Polygon.

On the other hand, the fewest differences were found in the parietal brain area, particularly
during the test phase, with only 2 participants showing detectable differences during the “Stim-
ulus appearance” event and 3 during the “Button press” event. This indicates that the parietal
region was less sensitive to differences between RAET and Polygon, especially during the test
phase.

Overall, the data suggest that the frontal brain area was the most responsive to the differ-
ences between RAET and Polygon, while the parietal region showed the least responsiveness
during the test phase.

Instead of the accuracy, the area under the Receiver operating characteristic (ROC) curve
[11] was considered as a possible metric for the method. In the case of the LSTM, we measured

Fig. 1. An overview of the test paradigm with the antecedent–consequent pairs of RAET. The antecedents
are cartoon faces of a man (A1) a girl (A2), a boy (B1), and a woman (B2). The consequents are drawings of

colored fish: yellow (X1), green (X2), red (Y1), and blue (Y2) [3]
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this area (AUC) [11], and found that it is correlating with the accuracy value. (Correlation
coefficient: 0.74.) Most of the outliers are located at very low and very high accuracy or AUC
values as shown on Fig. 7. The figure also shows that using the accuracy to determine a threshold
is a stronger condition. Furthermore, the AUC value cannot be interpreted the classical way in
case of the SVC algorithm. We choose the accuracy as an only metric during the evaluation.

DISCUSSION

To the best of our knowledge, this is the first study that aims to differentiate two RAET-like
associative learning tasks with varying stimulus complexity using EEG signals and machine
learning. Using the listed results, the comparison of the cortical activity between the original
RAET and the feature-reduced Polygon is made possible.

Fig. 2. A trial in the acquisition phase of RAET (A) and Polygon (B). Above is the antecedent and below are
the two possible consequents. By selecting the “left” or the “right” fish or polygon, the subject guesses which
consequent belongs to the given antecedent. Immediate visual feedback is given. If the guess is right, a green

checkmark appears. If the guess is wrong, it is indicated by a red X mark [3]
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The fact that the basal-ganglia take an important role in the memory processes is well-known
[27]. However, the basal-ganglia cannot be measured with EEG, only their indirect activity along
with the connected brain networks. To investigate the specific role of the inner structures of the
brain, functional magnetic resonance imaging (fMRI) can be utilized, with which we can mea-
sure the changes in oxygen levels, and estimate the brain activity from it. There are several fMRI
studies about cognitive tasks [28]. Using fMRI, it would be possible to deduce if the RAET and
the Polygon utilize different brain networks. Comparing such networks is a possible next step in
this field.

The EEG signals of 24 out of the 25 evaluated participants (96%) showed differences between
the RAET and the Polygon tests. These differences were primarily localized to the frontal region,
with the most significant difference observed during the acquisition phase, aligned with the
appearance of the stimuli. It is important to note that this timing could overlap with the po-
tential memorization process from the previous trial.

Frontal activity could reflect executive functions [29], attention [30], and working memory
load [31]. The only difference between the two tests (RAET vs Polygon) was the complexity
(semantic content and verbalizability) of the figures. The differences in cortical activity in the
frontal lobe could potentially originate from varying levels of attention, which could affect the
decision making. This may result from different learning modes, such as explicit and implicit
strategies, including the concealed verbalization of figures. To discuss this appropriately, future
research should survey the learning methods used by the volunteers.

The temporal region plays an active role in information processing, language comprehen-
sion, and memory processes. Verbalization processes could also affect the results from this
region in cases of verbalized learning [32]. To eliminate this possible confounding factor,
post-surveying should be conducted in future recordings, as previously mentioned. If we

Fig. 3. The timing of the learning tests
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Fig. 4. Organization of the stored data. Every volunteer took both the RAET and the Polygon learning tests.
These recordings were separated by the phase of the test, so the acquisition and the test phases are

separated. Every trial was further cut into two, aiming to separate the appearance and the answer processes.
Some epochs were excluded from the analysis for various reasons discussed in the subsection ‘Signal

processing and data analysis’

Fig. 5. The data selection pipeline for the machine learning algorithms. The evaluation was done for all the
trials groups (learning phase-stimulus appearance, learning phase-button press, test phase-stimulus

appearance, and test phase-button press). To utilize the feature reduction property of the FastICA, each
component was separately evaluated. For the different trainings, different test-training sets were split
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Fig. 6. Example composite plot from the classification algorithms. This ICA component of a patient is frontally weighted and is well distinguishable by
the time domain SVC algorithm. The averaged waveform shows a persistent increase in the Polygon test and a decrease in the RAET test. The

distribution of this phenomenon is nearly equal, as shown in the B-G subplots. When translating the signal to the frequency domain, a slight elevation
differentiates the two learning tests. The processing does not involve outliers, as seen in the variance distribution graphs. The upper plots (B–E)
describe the Polygon test, while the lower plots (G–J) describe the RAET test. In the bottom left corner (F), the weights of the ICA component are
shown on a topoplot. In the top left figure (A), the accuracies of the different machine learning trainings are plotted. For each learning test, the first
image (B, G) shows the epochs on a heatmap. The vertical axes represent epochs and the horizontal axes represent time; Event Related Potential
amplitude is represented by color: warmer colors indicate positive, while colder colors indicate negative amplitudes. Plots in the third column (C, H)
show the averaged evoked potentials. Plots D and I present the average spectral density of the epochs. The last plots (E, J) show the variance of each
epoch. This plot was used as a checkpoint and did not reveal any outliers in the analysis. The dashed line represents the synchronizing event (in this

example, the stimulus appearance)
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establish that verbalization occurred during the test and influenced the temporal lobe, it would
indicate that verbalization differs between the two tests. Since this difference primarily appears
in the learning phase, it suggests that the learning process differs in the two scenarios.

The functions of the occipital lobe are connected primarily to visual information processing,
which include face recognition [33] and also color determination [34]. It also plays a role in
working memory [35] and object recognition [36], and it is connected to the frontal lobe [37].

Table 1. Number of identified differences by region and locking eventp

Acquisition – Stimulus
appearance

Acquisition –
Button press

Test – Stimulus
appearance

Test – Button
press

Frontal 11 (13) 10 (14) 10 (14) 10 (16)
Occipital 5 (5) 8 (11) 6 (10) 10 (10)
Temporal 7 (9) 7 (10) 5 (13) 5 (7)
Parietal 4 (4) 3 (6) 2 (2) 3 (3)
Overlapping 2 (4) 2 (4) 7 (8) 2 (2)

pThe numbers indicate the number of participants for whom differences were detectable over the given
brain areas during the corresponding phases of the learning tests at the same events (stimulus appearance
or button press). The numbers in parentheses represent the number of ICA components involved. For each
person, there are approximately 50 ICA components. Some components were detectable over multiple
areas. These are counted in the “Overlapping” row.

Fig. 7. The relation between AUC and accuracy metrics in the case of the LSTM algorithm
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This area has less differentiability than the frontal lobe, but more deviation between the “Stim-
ulus appearance” and “Button press” events of the study.

Our results indicated that the parietal region was less sensitive to showing activation differ-
ences between RAET and Polygon. The parietal regions seem to contribute similarly to the
learning and retrieval functions independently from the stimulus complexity and verbalizability.

The main limitation of the study is the small sample size. But the analysis of this limited data
set already demonstrated that artificial intelligence could find some stimulus complexity and
verbalizability related cortical activity patterns in associative learning of healthy humans. Due to
the nature of machine learning, if we need to show the cortical activity differences more pre-
cisely, further biomathematical analysis of the EEG data is required.
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Appendix

Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited, a link to the CC License is provided, and changes
– if any – are indicated. (SID_1)

Table 2. A summary of the associative learning tests. A, B: antecedents (drawn faces in the RAET,
greyscaled circles in the Polygon), X, Y: consequents (differently colored fishes in the RAET and

simple geometric forms in Polygon tests) [3]

Shaping

Acquisition Phase Test Phase

Equivalence training New consequents Retrieval Generalization

A1 -> X1 A1 -> X1 A1 -> X1 A1 -> X1
A2 -> X1 A2 -> X1 A2 -> X1

A1 -> X2 A1 -> X2
A2 -> X2

B1 -> Y1 B1 -> Y1 B1 -> Y1 B1 -> Y1
B2 -> Y1 B2 -> Y1 B2 -> Y1

B1 -> Y2 B1 -> Y2
B2 -> Y2
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