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ABSTRACT

In the 1990°s dedicated radio telescopes will be launched into Earth orbit and will be
integrated in the ground-based VLBI networks. A straightforward extension from present
ground-based VLBI to space is called space VLBI, which uses radio-antennas in space. In
the simplest version of the space VLBI technique, one station in orbit observes in
conjunction with a second station on the ground. However, in practice we have a number
of networks of ground antennas observing the common celestial radio sources
simultaneously with a conventional VLBI technique. Moreover, joint observations of two
or more space VLBI satellites will supposedly be performed in the future. Therefore, in
our research work a combined use of simultaneous space and ground-based VLBI

observations are considered from the geodetic and geodynamic point of view.

This investigation studies the feasibility of space VLBI observables for geodesy and
geodynamics. A brief review of space VLBI systems from the point of view of potential
geodetic application is given. A selected notational convention is used to jointly treat the
VLBI observables of different type of baselines within a combined ground/space VLBI
network. The basic equations of the space VLBI observables appropriate for covariance
analysis are derived and included. The corresponding equations for the ground-to-ground
baseline VLBI observables are also given for a comparison. The simplified expression of
the mathematical models for both space VLBI observables (time delay and delay rate)
include the ground station coordinates, the satellite orbital elements, the earth rotation
parameters, the radio source coordinates, and clock parameters. The observation equations
with these parameters have been examined in order to determine which of them are
separable or nonseparable. Singularity problems arising from coordinate system definition
and critical configuration are studied. Linear dependencies between partials are analytically

derived.

The mathematical models for ground-space baseline VLBI observables have been
tested with simulation data in the frame of some numerical experiments. Singularity due to

datum defect is confirmed.

Recommendations are given for future research work.
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1. INTRODUCTION

Two dedicated space VLBI projects are currently in preparation to launch one or
more VLBI radio telescopes in orbit. The first space VLBI mission that will be
implemented in the near future is RADIOASTRON in the Soviet Union. It is already an
approved and funded mission. The satellite will be launched in 1993. Its trajectory is
planned to be 3,000 km in perigee and 69,000 km in apogee.  The satellite will carry a
10 m antenna. The second project is a Japanese orbiting VLBI mission called VSOP. The
expected launch date of the satellite is 1995. Its trajectory is planned to be 1,000 km in
perigee and 20,000 km in apogee. Both projects are now in progress. Most probably, a
combined use of RADIOASTRON and VSOP observations will be performed in the future.
There is a Western European mission with NASA participation in Phase A Study at ESA
called QUASAT. Although this project was not approved by ESA at the selection round of
October 1988, a second generation space VLBI mission called IVS has been proposed to
ESA at the end of 1989.

The feasibility of and potential for using a dedicated VLBI observatory in space has
already been demonstrated successfully by the NASA TDRSS satellite with a nearly five
meter antenna. In 1987 during the XIX General Assembly of IUGG in Vancouver, IAG
Special the Study Group 2.109—Application of space VLBI in the Field of Astronomy and
Geodesy—was established to study the usefulness of space VLBI for astrometry and
geodesy.

It is expected that space VLBI will be a reality in the current decade. Orbiting radio
telescopes will be used to make interferometric observations of extragalactic radio sources
in conjunction with the major ground-based VLBI arrays in Europe, USA, Australia, Japan
and the USSR. It is planned to determine the orbits of these radio telescopes in space with
high accuracy by the missions themselves and possibly using additional tracking systems
(e.g., GPS, PRARE). The main goals of all space VLBI projects are to carry out
astrophysical investigations. The current missions are devoted to improve imaging quality
and angular resolution of compact galactic and extragalactic radio sources. At the same
time, the radioastronomers are going to plan the scientific goals of space VLBI missions to

be as wide-ranging as possible.



The anticipated use of a space VLBI system poses several important questions with
respect to its usefulness in geodesy and geodynamics.

The potential applications of the space VLBI system in these areas are related to the
connection and unification of reference systems and frames inherent in the technique.
Since the currently available space geodetic techniques are effectively used for these
applications by station collocation in the frame of the International Earth Rotation Service
(IERS) [Boucher et al., 1988] and [Mueller, 1988], one should investigate how the space
VLBI system could complement these techniques. The capabilities of the new space
techniques to provide valuable information on the systematic differences between the
frames of the various Conventional Inertial Systems (CIS) and Conventional Terrestrial
Systems (CTS) is now widely investigated [Kovalevsky et al., 1989] because of the high
importance of the connection and unification of all reference frames in geodesy and
geodynamics. In principle, a space VLBI system offers an opportunity to connect the
reference frames of the CTS and two types of CIS: 1) Radio Source-CIS, and 2) Dynamic
(that is Satellite Orbit)-CIS inherent in a space VLBI system. The establishment of the
relationship between them would be of scientific interest. Note that the currently adopted
Conventional Celestial Reference System (CCRS) is based on radio source positions.

Another important problem area that needs investigation is that related to the
usefulness of space VLBI data for gravity field determination. The present gravity field
determinations using artificial satellites are based mainly on range and range-rate
observations which contain no direct directional information [Marsh et al., 1988] and
[Rapp, 1989]. Therefore, they are only indirectly linked to the inertial reference frame.
One should investigate how the space VLBI observation containing directional information
could be applied to improve the gravity field determination. The space VLBI missions
offer and provide new types of satellite observables (VLBI time delay, delay rate, and
differential VLBI tracking data) with high accuracy for these potential applications as well.

Earlier investigations on the potential applications of space VLBI for astrometry,
geodesy and geodynamics include Adam (1989), Adam and Mueller (1989), Bartel (1989),
Fejes et al., (1986, 1987 and 1989a,b), Kawaguchi (1989), Koyama (1989), and
Takahashi (1989).

On the basis of the background mentioned above, it was considered appropriate and
worthwhile to pursue the present investigation. The aim of which is to briefly review the



space VLBI systems in progress emphasizing the geodetic aspects, to derive mathematical
models for both space VLBI observables (time delay and delay rate) suitable for least
squares covariance analysis of the parameters of geodetic interest, and to explore
estimability problems inherent in the space VLBI technique. An additional important aim is

to numerically check the mathematical models by test computations.

Consequently, the whole work is divided into five chapters, each of which treats
aspects of the geodetic applicability of space VLBI. Chapter 2 gives a brief review of space
VLBI missions in progress. Chapter 3 derives the mathematical models for space VLBI
observables and studies the estimability of geodetic parameters involved in the models.
Chapter 4 describes the theoretical basis of the datum problem of a space VLBI network

within singular Gauss-Markov model and shows the results of test computations.



2. BRIEF REVIEW OF SPACE VLBI SYSTEMS
2.1 Introduction

The application of the VLBI technique to the investigation of the nuclei of galaxies
and quasars has allowed the mapping of their angular radio brightness distributions and the
studying of the kinematics of their cores. Substantial improvements in the resolving power
of VLBI might enable the proper motion of a galaxy or a quasar to be measured.
Microarcsecond angular resolution will allow community of radio astronomers to study
several phenomena, see, e.g., [Bartel et al., 1986 and 1988], [Kardashev and Slysh,
1988]. Annual parallax, proper motion and position determinations (quasar cores, nearby
galaxy cores, galactic centers, pulsars and radio stars) at microarcsecond (plas) level are
also very important for geodesy and geodynamics.

There are two ways of increasing the angular resolution: (1) use of short radio
wavelengths (mm-VLBI), and (2) use of radiotelescopes in space (space VLBI). The first
encounters problems caused by atmospheric phase fluctuations and technical difficulties.
The second is more straightforward and has no limitations in principle to the baseline
length, see [Burke, 1983], [Kardashev and Slysh, 1988}, [Preston, 1983], [Sagdeev,
1984] and [Schilizzi et al., 1984].

A very straightforward extension from present ground-based VLBI 1is called space
VLBI, which uses radio antennas in space. Moreover, radioastronomers need multiple
elements in space (introducing space-space VLBI) in order to go to higher angular
resolution and/or higher dynamic range mapping. One of such conceptions is suggested by
Hirabayashi (1989b) for two orbiting VSOP observatory with modestly near earth orbits.

2.2 Basic Concept of Space VLBI

The usual geodetic VLBI system shown in Fig. 1a [Counselman and Shapiro, 1978]
consists of an array of at least two antennas that observe the same radio source
simultaneously. A direct electrical connection is not maintained between the antennas, thus
allowing them to be separated by thousands of kilometers. At each antenna station, the
radio interferometry signal (RF) received from the observed radio source is converted to a

4



lower, “intermediate” frequency (IF) by mixing with a local oscillator (LO) signal. At each
site, the IF signal is tape recorded with a reference time base derived from the same

frequency standard. Tapes recorded simultaneously at the antenna sites are later collected
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RECORDER RECORDER
Q& &) (@) Lte
8 \ / =

0 \ )
TAPES ¢
0SC | poe—d N, L osce
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Fig. la Ground-based geodetic VLBI system

and played back together at a central processing station where the reproduced signals are

cross-correlated to obtain the basic VLBI observables.

The space VLBI system does not differ conceptually from the case of a ground-based
array of radio telescopes. A schematic diagram of the space/ground VLBI system is
represented in Fig. 1b [Schilizzi et al., 1984] and [Schilizzi, 1988a). The space-borne
antenna will observe the same radio sources in conjunction with networks of antennas, and
relay the received signals via a digital or analogue link directly to telemetry stations on the
ground. A phase/frequency reference for the antenna in space will be based on hydrogen
maser oscillators on the ground and relayed directly to the satellite from the telemetry
stations in turn (phase transfer). The stability required for this phase transfer is very high
(about 1x10-14). After transmission to the ground, the IF data will be recorded on VLBI
magnetic tapes on the ground in exactly the same way as for the ground based elements of
the array. The tapes will then be brought together with tapes from the ground VLBI arrays
at a central processing station for cross-correlation and image processing. After cross-
correlation and calibration, the obtained basic VLBI data will be used for scientific

investigations.



7

A
Q/\Y gSIGNAL RECEPTION IN SPACE +

-\ N -
S 7

R

QQ\G\\ SIGNAL
2 RECEPTION
ON GROUND

- S 1
0 < B8
FREQUENCY RECORDING R'r%T'ZAT'ON FREQUENCY
STANDARD TAPE RECORDING STANDARD

TRANSPORT

CENTRAL CORRELATION
FACILITY

Fig. 1b A schematic diagram of a Space/ground VLBI system

All communication with the space VLBI antenna will be through one or more
telemetry/control (T/C) stations in the network. The two way or multiple way coherent
link(s) by telemetry stations provide range, range-rate, and phase data which can be used

for orbit determination.
2.3 TDRSS-OVLBI Demonstration Experiment

The feasibility of and potential for using a dedicated VLBI observatory in space has
already been demonstrated (see [Levy et al., 1986, 1987 and 1989], [Linfield et al., 1988
and 1989], [Hirabayashi, 1988], and [Nishimura and Hirabayashi, 1988]. A
communications satellite in the Tracking and Data Relay Satellite System (TDRSS) of
NASA was successfully used for the first space VLBI test experiment in 1986-87. The
idea of using existing TDRSS for demonstrating space VLBI has been proposed by
scientists at the Jet Propulsion Laboratory (JPL). The TDRS has two identical high-gain
antennas with a 4.9 m diameter for S- and K-bands (see Fig. 2). The TDRSE which is
situated at 41° W in the geostationary orbit was used in combination with ground 64 m



diameter antennas in Tidbinbilla, Australia, and in Usuda, Japan. It was the most suitable
existing satellite for orbiting VLBI (OVLBI) because of the design of its local oscillator
chain and its sensitivity. The test experiment called TDRSS-OVLBI experiment was done
with the observing frequency of 13 cm (2.3 GHz). The received signal from radio sources
at TDRSS is down-linked to the ground, frequency converted, and recorded on magnetic
tapes. The reference signal in turn is uplinked to the satellite to phase lock the receivers on
board to maintain coherence of the interferometer. Fig. 3 shows the concept of the
TDRSS-OVLBI demonstration experiment.

The TDRSS-OVLBI experiment was performed in two phases (July-August, 1986
and January, 1987). For the observation, radio sources in the Southern Hemisphere
ranged in declination from 0°to -30° were selected due to the limits of the TDRSE satellite.
In the July-August 1986 session, fringes were successfully obtained among three stations
(TDRSE, Usuda and Tidbinbilla) for three quasars. The maximum projected baseline
obtained was 17,800 km (about 1.4 times Earth’s diameter) by the TDRSS-Usuda
baseline. In January, 1987, additional observations were made using the same ground
antennas. Of the 25 observed sources, 23 were detected on orbiter-ground baselines, with
baseline lengths as large as 2.16 Earth diameters. Also, the radio source structures were
estimated from the January, 1987, session. Note that in 1988 an experiment at 2.3 GHz

(13 cm) and 15 GHz (2 ¢m) frequencies was also successful.

Tracking information for TDRSE is obtained through triangulation with ground
transponders located at White Sands Ground Terminal (WSGT) in New Mexico (32° N
latitude, 107°W longitude) and Ascension Island (8° S latitude, 15° W longitude) (see
[Levy et al., 1989]. The forward link uses a pseudo-noise code. The return link uses a
different but synchronized pseudo-noise code modulation. By comparing epochs of the
pseudo-noise code (all measurements are referenced to the WSGT cesium standard), the
range is obtained. The Doppler frequency is also extracted and counted to obtain the range
rate. The ranging and Doppler tracking data were processed by K.B. Blaney at Goddard
Space Flight Center (GSFC) for orbit determination by a differential correction technique
(ibid.). The calculation procedure is a least-squares fitting of weighted range and Doppler
residuals to a corrected orbit. A data span (and solution interval) of 30-34 hr was used.
The solution yielded three position components, their associated velocity components, and

their time derivatives at 60 s intervals.
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Fig. 2 Geometry of the TDRSE spacecraft. The antennas used in the OVLBI experiment
are labeled [Levy et al., 1989].
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Fig. 3 The concept of TDRSS-OVLBI demonstration experiment [Hirabayashi, 1988].
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As a summary, the test of the technical concept and the probe of the scientific
potential for space VLBI were successful. The TDRSS-OVLBI experiment shows that an
accurate knowledge of the spacecraft orbit is essential in order to achieve the coherence of

the measured data with high sensitivity and calibration accuracy.

2.4 Future Space VLBI Missions

Projects to place one or more telescopes in space for VLBI purposes have been

proposed or planned by several space agencies:

* QUASAT (Quasar Satellite) by ESA and NASA, see, e.g., [Schilizzi et al., 1984]
and [Schilizzi, 1988a]

* RADIOASTRON (Radio Astronomical Satellite) by The Space Research Institute
(IKT) of the Academy of Sciences in the USSR, see, e.g., [Sagdeev, 1984],
[Kardashev and Slysh, 1988] and [Kardashev, 1989]

* VSOP (VLBI Space Observatory Program) by The Institute for Space and
Astronautical Science (ISAS) in Japan, see, e.g., [Hirabayashi, 1984 and 1988] and
[Nishimura and Hirabayashi, 1988].

« IVS (International VLBI Satellite), a proposal to ESA to follow RADIOASTRON and
VSOP [Schilizzi et al., 1989].

The orbital parameters of the planned space VLBI satellites are given in Table 1.

2.4.1 The RADIOASTRON Mission. The first space VLBI mission that will
be implemented in the near future is RADIOASTRON. Tt is an approved and funded
mission in the Soviet Union. The design study is in progress with significant contributions
from abroad. The RADIOASTRON satellite will carry a 10 m antenna, and its trajectory is
planned to be 3,000 km in perigee and 69,000 km in apogee. The launching is expected
around the end of 1993.

Fig. 3 is an overall schematic diagram of the Radioastron system. The satellite radio
telescope (Fig. 4) will be a prime focus system with a deployable parabolic reflector 10 m
in diameter. The reflector has a fixed inner part of 3 m diameter and 24 unfoldable panels.



Table 1. Comparison of the.
RADIOASTRON and VSOP Satellites.

Orbital

Parameters

of QUASAT,

QUASAT RADIOASTRON YSOP
hg (km) 36,000 & 22,000 69,000 20,000
hp (km) 5,000 & 5,000 3,000 1,000
T (hrs) 12.2 & 7.75 24 6.06
i(®) 30 65 fixed 46.4 or 31.0
o (°) variable 285 + 315 variable
to be chosen
€ 0.82 0.379
Q to be chosen variable

ha = apogee height, hp = perigee height, T = period, i = inclination
o = argument of the periapsis, € = eccentricity, {2 = longitude of the ascending node

The reflector is made of reinforced carbon fiber and has an rms surface accuracy of
0.5 mm. Four dual circular polarization receivers will be provided on the satellite. The

spacecraft operation time will be from two to five years.

The down-link to the ground station is at X-band (8.2 GHz) with a two-channel
transmitter and high-gain parabolic antenna. The ground-based station of the
RADIOASTRON mission in Suffa, USSR consists of one transmitting (command and S-
band local oscillator up-link) antenna and two receiving antennas (S-band local oscillator
down-link and X-band high-data rate down-link). The 70 m antenna will be used as a
radio telescope to receive signals from a radio source. Both X-band data and 70 m radio

telescope outputs will be recorded on two tape recorders in the VLBA format.
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Fig. 4 The basic configuration of the space-ground radio interferometer in the
RADIOASTRON mission [Kardashev and Slysh, 1988].
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2.4.2 The VSOP Mission. The Japanese VSOP satellite will carry a 10-m
antenna, and its trajectory is 1,000 km in perigee and 20,000 km in apogee. This orbit
provides good imaging capability of VSOP with the combination of the telescope arrays on
the Earth. Fig. 6 is a rough sketch of the VSOP satellite. The surface accuracy of the 10m
antenna will be better than 0.5mm RMS to be operable up to 22 GHz (wavelength of 1.3
cm) reception. The pointing accuracy of the high gain antenna is planned to be 0.01° and
thus a high precision star sensor will be employed. The local oscillators on-board the
VSOP satellite must be phase-locked to the frequency standard on the ground. VSOP will
have cooled amplifiers, giving more than one order of magnitude better sensitivity than
TDRS.

The position and the velocity of the satellite will be tracked much more precisely than
other satellites by a sophisticated tracking scheme. VSOP is now in progress and the
expected launch date is 1995. The space VLBI program VSOP itself has been informally
approved by the Japanese government Vvery recently [Hirabayashi, personal
communication, May 30, 1989]. More details about VSOP mission can be found in
[Hirabayashi, 1984; 1988, 1989 a, b, c¢] and [Nishimura and Hirabayashi, 1988].

——— approx. 7.6 [m}—

Fig. 6 The VSOP satellite [Nishimura and Hirabayashi, 1988].
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2.4.3 The QUASAT Mission. The proposed QUASAT mission is a free-
flying spacecraft carrying a 15 m radio antenna (Fig. 7). Two orbital situations have been
considered for the mission. One of the orbital situations is featured by the first operational
elliptic orbit with perigee of about 5,000 km and apogee of about 36,000 km. It was
planned that the spacecraft’s apogee be lowered later to 22,000 km in order to fulfill the
various scientific requirements. The orbiting radio telescope was planned to make
interferometric observations of radio sources in conjunction with the major ground-based
VLBI arrays in Europe, USA, Australia and the USSR. The mission design lifetime was
planned to be two years, but an operational lifetime of five years was expected. More
details about QUASAT mission can be found in, e.g., [Proc. of Workshop on QUASAT:
1984], [Schilizzi et al., 1984], [Frisk et al., 1988] and [Schilizzi, 1988a].

Fig. 7 The QUASAT satellite [Schilizzi, 1988a].

2.4.4 The IVS Mission. The IVS mission is conceived to be a major radio
telescope in space funded by the principal space agencies. Orbiting the Earth, the 25 m
diameter telescope will provide high quality images of radio sources to wavelengths
spanning the radio band from meters to millimeters will resolutions as high as 25 micro
arcseconds. It is proposed that IVS be placed initially in an orbit whose apogee height is in
the range 20,000 km (VSOP-like) to 40,000 km (QUASAT-like), but whose inclination is
higher than either VSOP or QUASAT. Possible orbital parameters are therefore: apogee
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height 20,000-40,000 km, perigee height about 5,000 km and inclination about 60 degrees.
Maximum baseline lengths of 30,000-50,000 km can be generated in this manner, three to
five times longer than the maximum available on Earth. IVS is a second generation mission
well matching the ground VLBI arrays in both sensitivity and wavelength coverage. The
goals of the IVS mission will require the position of the satellite to be known to 30 cm or
better at all times [Schilizzi et al., 1989].

2.4.5 Joint Space VLBI Observations. The space VLBI missions are
expected to be operational in the next decade. However, QUASAT was not approved by
ESA at the end of 1988. Therefore, the Soviet RADIOASTRON and the Japanese VSOP
will be the first two dedicated space VLBI missions in the 1990’s. Supposedly, QUASAT
will again be considered by ESA to realize. These missions will have many improvements
compared to the TDRSS which was used for the first space VLBI test experiment. The u-v
coverage in the TDRSS-OVLBI experiment was not satisfactory because of the
geostationary nature of the satellite and of the small number of ground radio telescopes

which joined the experiment.

The RADIOASTRON and VSOP orbits are complementary in the u-v coverage they
will provide. A simulation study by Murphy (1989) shows that joint space-VLBI
observations can produce better results in imaging processing. Therefore, further
simulation tests will be carried out to determine the optimal orbital elements of
RADIOASTRON for possible simultaneous observation with VSOP. Their combined use
is most probable and desirable. It is expected that a combined use of
RADIOASTRON and VSOP observations will be performed in order to have

much improved images.

Radioastronomers need multiple elements in space for higher angular resolution
and/or higher dynamic range mapping. There are plans to have multiple elements in space
within both missions introducing space-space VLBI. Hirabayashi (1989b) presented a plan
for two orbiting VSOP observatory with modestly near earth orbits. VSOP mission with
two space elements might be very appropriate particularly for geodetic and geodynamical
purposes as well.

The coordination for international collaboration is a critical item for both projects—
RADIOASTRON and VSOP. The design study of both missions is in progress with
significant contributions from abroad. For space VLBI to become operational,
coordination of observing, management of ground telescopes and tracking operations, data
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transfer and processing is needed. Therefore, international workshops are organized. The
first was to discuss QUASAT in June 18-22, 1984 in Austria [Proc. of Workshop in
QUASAT 1984]. The International Radioastron Review Meetings have been held twice a
year. The eighth meeting was held in Green Bank, West Virginia, USA [Memorandum of
the 8th RADIOASTRON Meeting 1989]. The ninth one was in Tashkent, USSR in
November, 1989. Domestic VSOP meetings have been held in Japan [Proc. of a Domestic
Workshop on “The Research of Space VLBI” 1989]. An international symposium was
organized also in Japan December 5-7, 1989 in order to discuss worldwide the VSOP
mission. An other international meeting “Space VLBI—The Missions and the Science”
organized by Committee on Space Research (COSPAR) in The Hague, Netherlands, July
2-3, 1990 reviewed all aspects of space VLBI, with special emphasis on the two approved
missions RADIOASTRON and VSOP.

2.5 The Ground-Based VLBI Networks

The ground-based arrays are the other major element of the space VLBI missions.
All missions assume an orbiting observatory to be coherently connected to the
radiotelescopes distributed widely on the earth. They require a global network of ground
antennas to be able to form subnets. Therefore, the involvement of all possible ground
antennas is important not only for radioastronomical purposes but for application of them in

the field of geodesy and geodynamics as well.

There are two main networks in operation—the European VLBI Network (EVN)
and the U.S. Very Long Baseline Array (VLBA), both of which provide observing
opportunities on regional as well as international scales, see [Romney, 1988] and
[Schilizzi, 1988b]. Networks of both types, tracking/link and observing, respectively in
the USSR and in Japan, are very important from the viewpoint of their space VLBI
missions. They will constitute the main support to the orbiting elements. However,
other networks in the Southern Hemisphere (e.g., the Australia Telescope (AT) and
Australian VLBI antennas), in Asia (e.g., China, India) and in Canada are also likely to
participate. Stations of these networks will be the co-observing stations for the space VLBI

missions.

Note that VLBA construction is now in progress with expected completion of 1992.
EVN and AT constructions are also in progress. A construction of dedicated VLBI
network “QUASAR” of six radiotelescopes in the Soviet Union with possible extensions

by other telescopes from abroad (China, India) has been started very recently |Finkelstein
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and Yatzkiv, 1989]. These VLBI networks (and correlators) are expected to work jointly
with space VLBI missions.

Tracking networks like the NASA/JPL Deep Space Network (DSN) will collaborate
on precise tracking of both RADIOASTRON and VSOP satellites. The different networks
of VLBI antennas are shown in Figs. 8 and 9, which reflect the strong international
character of this research. The observing schedule, data processing, the managements of
ground telescopes and tracking operations need to be discussed and organized worldwide.

2.6 Orbital Tracking of Space VLBI Satellites

The astrometric, geodetic and geodynamic potential of the space VLBI missions is
strongly dependent on orbit determination accuracy of the satellites. Therefore, high
accurate knowledge of the satellite orbit is very important for the space VLBI missions. The
following tracking techniques are recommended for precise orbit determination of space
VLBI satellites, see [Fejes, 1989] memorandum of the 8th RADIOASTRON Review
Meeting 1989 [Tang, 1984].

The first category which requires no systems modifications or additional equipment:

1. Two-way or multiple-way coherent link(s) by telemetry stations (range, range-
rate, phase). A good telemetry coverage is essential.

2. VLBI delay and delay-rate as tracking data.
3. Differential VLBI (AVLBI) using extended (worldwide) network of ground radio

telescopes during selected observing programs.

Results of a computational simulation study by Konopliv (1989) show that it might
be possible to reach meter-level position accuracy in orbit determination of
RADIOASTRON satellite with range and AVLBI measurements by NASA/JPL. DSN
stations. Borza et al., (1990) show by simulations that the dominant part of the orbital
errors of space VLBI satellites originates from errors in the solar reflectivity models. All
other effects can be modeled so accurately that they only yield small or negligible errors.
According to the test computations carried out by Fejes et al., (1989b), the space VLBI
time delay and delay-rate observables can contribute significantly to orbit accuracy
improvement for the missions. It is in a good agreement with the statement of Tang
(1984).
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Fig. 9  Stations of the European VLBI Network (EVN). Station currently in
operation (full circles) or expected to be operational by 1995 (open circles).
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The second category which requires system modification and additional ground and
space equipment:

1. Microwave techniques: (a) One-way satellite-based systems (GPS, GLONASS);
and (b) two-way satellite-based systems (PRARE)

2. Laser ranging

3. Micro-accelerometer on board

Note that the inclusion of PRARE System for Radioastron is considered. It is
planned that the VSOP satellite will carry a Global Positioning System (GPS) receiver on
board to provide tracking data for orbit determination. A set of corner-cube reflectors on
board of a space VLBI satellite (e.g., VSOP) would increase the potential of space VLBl in
geodesy and geodynamics.

18



3. MATHEMATICAL MODELS FOR SPACE VLBI OBSERVABLES

3.1 Introduction

Since there are no conceptual differences between ground-based and space-based
VLB, existing formalism of the ground-based geodetic VLBI carries over easily to the
space-based case. In ground-based VLBI the necessary relative motion of the stations is
provided by the Earth’s rotation. In space-based VLBI the relative motion of the antennas
is provided by both Earth’s rotation and orbital motion of the space VLBI satellite around
the Earth.

In the simplest version of space VLBI, one station in orbit observes in conjunction
with a second station on the ground. However, in practice we have a number of networks
of ground antennas observing the common celestial radio sources simultaneously with a
conventional VLBI technique. Moreover, joint observations of two or perhaps more space
VLBI satellites will supposedly be performed in the future. Therefore, a combined use of
simultaneous space and ground VLBI observations should be considered.

3.2 Basic Observables and Their Models

We have selected notational conventions which allow us to treat the VLBI
observables of the different types of baselines within a combined ground/space VLBI
network uniquely. A space VLBI network is formed by ground VLBI stations P;,P; and
orbiting VLBI satellites’ positions ST and SJ. The lower index with small letters (i,j) refers
to ground points while the upper index with capital letters (I,J) to satellite points at high
altitude. Therefore, in our conventions we can distinguish a ground-to-ground baseline
between two ground VLBI stations P; and P;j by Bjj , a ground-to-space baseline between
a ground VLBI station Pj and an orbiting VLBI telescope S! by B!, and a space-to-space
baseline between two orbiting VLBI telescopes S! and ST by BU. We use these notations
to distinguish the corresponding VLBI observables, i.e., time delay and delay 1ate as well.

The basic geometry for a typical baseline in the ground-based VLBI and space-based
VLBI or simply space VLBI is shown in Figs. 10-12. Generally, a certain segment of a
wavefront from the natural radio source will arrive at one site before it arrives at another

(Figs. 10-12). This time delay is the basic observable of VLBI. Delay observations are
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composed of three components. The first component is due to the geometry of the station
locations and source location, as illustrated in Figs.10-12. This component contains all of
the information about the geodetic and astrometric parameters that are of interest. The
second component is due to instrumental effects, principally clock errors. The third
component is due to effects of the propagation medium (e.g., the atmosphere and the
ionosphere). This latter component is not considered here.

In the ground-based VLBI network, two ground radio telescopes P; and P; form a
ground-to-ground baseline Bjj (Fig. 10). The signal from the £th radio source arrives at the
kth epoch of observation to the ground VLBI stations with time delay 7jjk¢ which can be

written as
Tijkt = % dijke = % Bij(ty) cos ¢, (1)

or in vector notation, the dot denoting the inner product,
1jké c Pii Yk { (2)

where ey is the unit vector in the direction of the £th radio source, Bij is the vector
separation of the receiving stations Pj and Pj, and c is the speed of light. The minus sign is
introduced to follow convention. The changing geometrical configuration gives rise to the
delay rates iy

HREETT g 3)

assuming thate, =0 .

The third VL.BI observable is phase delay ®ijke which is related to time delay (2)
by

Dijke = OTijke » 4)

where  is the angular frequency (2xf) of the received radio signal. The phase delay is the
difference in phase of the signals received at each site.

Note that time (group) delay Tijke is the derivative of (fringe) phase ijk¢ with
respect to angular frequency. The time delay contains the same information as phase for
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astrometric and geodetic purposes but is inherently less accurate than phase. On the other
hand, it can be estimated unambiguously. The delay observable yields a full baseline
solution and, therefore, plays the most important role in geodetic VLBI. The delay rate is
not often used in ground-based VLBI. However, the role of the rate observable will be

more important in space VLBL

In the following the speed of light will be set to unity so that the time delay and
delay rate will be expressed in units of distance and its time variation, respectively.
Assume that they have been corrected for discrepancies between modeled and true distance
(or distance variation), €.g., atmospheric errors, relativistic effects and abberation. The

time delay is now
dijke = € Tijke = — Bij(td - ez, (5)

and the time delay rate is

: . dB;j(to)
dijce = € Tijkt =~ gt K oep. ©)

Adding a two term polynomial, whose coefficients ACqy; and ACy;; correspond to a relative
offset and rate, respectively, between the two clocks at the ends of the Pin‘h baseline, the
geometric time delay (expressed in units of length) can be modelled as

die = — Bij(t) - e¢ + ¢ [ACq; + AC1;(tk — to)] » 7)

where t, is the initial epoch of observation. The time delay rate is then

. 4By
The clock parameters ACo; ACy;; are nuisance parameters, included here to make the

model more realistic.

In space VLBI network, an Earth-orbiting VLBI telescope S! with two ground
VLBI stations P; and Pj at a moment tk forms two ground-to-space baselines Bl(t) , le(tk)
in addition to the ground-to-ground baseline B;i(t) (Fig. 11). The corresponding time
delays The The and delay rates e » the , including the clock parameters, can be
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expressed by similar observation equations which are for the ground-to-space baseline
Bl(t) as follows:

I
d}u =cthy=-Blt)-er+c [ACq,; + AC},j(tk - to)] )

and

dBl(t)
dt

.I .
die=c "lekt = er+c ACLj (10)
where the delay rate (’fjlkt) plays a more important role than at the ground-based VLBI

network due to the larger relative motions between a ground and an orbiting antenna.

The lower index r of the clock parameters in Eqs. (9) and (10) refers to the
reference clock at the telemetry/control (T/C) ground station. There will be no clock on-
board of the orbiting radio telescope (see Chapter 2.2).

Let us suppose that there will be two orbiting space VLBI satellites in operation in
the future (e.g., RADIOASTRON and VSOP, IVS may be later in addition, or two VSOP
satellites as a system in themselves) having simultaneous observations for the same
extragalactic radio source. Two orbiting VLBI satellites, Sland SJ, at a moment ty form a
space-to-space baseline BU(ty) (Fig. 12). Then, including the clock parameters, the

corresponding time delay and delay rate are modelled

di = c = BU() - eg + c[ACH, + ACE, (tx- to)] (11)

o

U dBU(1})
— Irq » (12)

dEz=C’tk[=— dt -eg+ cAC

where the lower indexes r and q refer to the clocks at telemetry/control ground stations r

and g, respectively for the satellites ST and SJ.

By examining the geometric part of the time delay observable models we recognize
that the time delays will change if the length of the baseline changes, or if the orientation of
the baseline changes with respect to the plane of the wavefront, or if both change
simultaneously. In the case of a ground-to-ground baseline, the time delay changes due to
the variation of baseline orientation with respect to the plane of the wavefront. In the

ground-based VLBI, the length of a baseline is supposed to be unchanged for a short
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period (the geodynamical effects, e.g., tides, can be accounted for). It is evident that time
delay (and delay rate) observations can be used to recover baseline length and baseline
orientation with respect to the radio source direction or recover the source orientation with
respect to the baseline direction. The first two applications are of geodetic interest while the
last one is of astrometric.

In the space VLBI the time delay changes because of the continuous changes of
baseline length and of baseline orientation with respect to the plane of the wavefront. Both
changes are due to the continuous relative motion between both ends of the baseline. For
the case of a ground-to-space baseline, the relative motion between both ends of the
baseline is a result of the Earth’s rotation and satellite motion. Changes in both length and
orientation of a space-to space baseline, result from the relative motion of satellites with
respect to each other. Since the baselines in space VLBI do not repeat themselves, their
length and orientation therefore can not be recovered from the usual VLBI technique itself.
Some of the parameters (e.g., satellite’s coordinates and/or source coordinates) should be

determined by some other means.

3.3 Datum Content of Space VLBI Observables

Following an evaluation by Wells et al., (1987) for GPS datum definition, in this
chapter we describe datum content of the space VLBI time delay observables. For this
purpose, consider a space VLBI network of points divided into satellite points with an
orbiting radio telescope SI and a ground-based VLBI station Py. A single time delay
observation (ignoring clock parameters, and expressing the time delay in units of distance)

is given by

d}kl=—BJH(' et=—-[Rka—X}JT et

in matrix form, where Xj contains the Earth-fixed coordinates of the station Pj, Xll( contains
the coordinates of satellite S in a true-of-date geocentric inertial coordinate frame at epoch
tx , Rk is a transformation matrix (transpose of the matrix S), see Egs. (7-11) in [Moritz
and Mueller, 1987; p. 417], the dot denotes the scalar product and the T is the transpose

sign.
Translating the datum by AX we have

RiX;=RiXj + AX
XL = x| +AX
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. S |
djlk[ = - [Rka - XII(] (7}
- [(kaj +AX) - (X} + AX)]T ey

- [kaj - x}JT ey

I
ke

1l
[oR

that is, time delays are invariant with respect to translation.

Rotating the datum, we have

RiXj= Ro(RiX))
Xk = RoXL
€r=Ryey

where R, represents a proper orthogonal transformation (RITR,=1). Then

~]

dje = - [ﬁj - ixl«]TEz

=— [Ro(Rka) - RoXﬂTRoez
=— [kaj — XL]TR(T Roer
=-R{R, {kaj - x}(]T e
= [kaj - xﬂr e
= dj,
that is, time delays are invariant with respect to rotation.

Changing the datum scale by s, we have

@ﬁstXj
)?istﬂ
e =sey

Then
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ait==—[ﬁ55§-—52£réz
=—- [SRka - SX{]Tsct
= S[Rka - X}(}Tsez

= Sz{Rka - XLP )

_agl
=52 djj

(15)

that is, time delays are not invariant with respect to scale change.

For the sake of completeness and a comparison, the corresponding equations for
the ground-based VLBI time delay observable can be derived in order to show its
translational and rotational invariance. In the following only the translational invariance
will be deduced pointing at some difference in the sequel. Consider a network of ground-
based VLBI stations P; and Pj. A single time delay observation (ignoring again clock
parameters and expressing the time delay in units of distance) is given here in matrix form

dijie = —(Xj — Xi)T Ry ex

where Xj and X is the ith and jth station within a ground-based geodetic VLBI network,

Ry is a transformation matrix, see Eq. (19).

Translating the datum by AX we have

X =X;+AX
X; = X; + AX .

Then

dije = — (Xj — X)T Reey
= _[(X; + AX) — (X; + AX)]" Rycey
=—(X;— X" R e
= diju (13b)

that is, ground-based VLBI time delays are invariant with respect to translation. A
comparison of Eqgs. (13a) and (13b) is discussed in section 3.5.1.
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Therefore, time delay observations cannot provide datum origin and orientation.
Consequently, the basic formulations are independent of the reference frame used. Since
the geometric observables are the dot product of two vectors (B(t) and ey, dB(t)/dt, and ey,
respectively) it is evident that they do not depend on the location and orientation of the

coordinate frame in which the components of these vectors refer.

Egs. (7-12) can be applied for covariance analysis either in terrestrial frame or in the

true celestial frame. In the former case, ey is transformed from the true celestial to the

terrestrial frame, and in the latter case the baseline vector (Bjj, BiI or BY) is transformed
from the terrestrial to the true celestial frame. On the other hand, the observables are
affected by the scale of the coordinate frame which is implied by the adopted speed of light.
Therefore, from observations of both time delay and delay rate it is impossible to recover

the origin and absolute orientation of the coordinate frame.

3.4 Mathematical Model for Ground-to-Ground VLBI Observations

The basic theory of ground-based geodetic VLBI is very well documented by, e.g.,
Whitney (1974), Robertson (1975), Counselmann (1976), Counselmann and Shapiro
(1978), Ma (1978), Shapiro (1978), Bock (1980), Brouwer (1985), Harvey (1985),
Campbell (1987), Moritz and Mueller (1987) and Sovers and Fanselow (1987). Therefore,
only those aspects of the theory which are essential to the research in this report, are briefly

summarized.

Since a combined use of ground-based and space VLBI observables will be used in
the future, a detailed comparison of the corresponding mathematical models is desirable.
Only the essentially necessary equations for ground-to-ground baseline observables are
given here in order to make a comparison between the mathematical models for different

type of baseline observations.

Therefore, some of the important mathematical equations will be derived in rigorous

manner.

3.4.1 Time Delay Model. In the ground-based geodetic VLBI, the mathematical
model for the time delay observable can basically be written as the inner product of the
baseline vector rotated from an Earth-fixed system into the true-of-date inertial system and
the quasar unit vector in the true-of-date inertial system plus polynomial terms of clock
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parameters. For baseline PiP; observing source £ at epoch k the path difference (time delay
times the speed of light) which the incoming signal must travel after its reception at station
P; till its arrival at station P; (see Fig. 10) can be expressed in a simplified manner suitable

for least squares covariance analysis as follows (the T is the transpose sign),

cosdy  cosOy
+
(16)

AXjj T
dijke ={ AYjj } Ro(-€)R1(-n)R3(6k) { cosdy  sinay
AZ;; sindy
+c [AC%. +ACy;; (- to)],

where

AXjj, AYjj, AZ;; are the coordinate differences of the baseline PiPjin an Earth-fixed

system;

o, Oy are the true right ascension and declination of the £th quasar;

E,n are the components of polar motion that relate the true celestial
pole to the terrestrial pole;

Ok is the Greenwich Apparent Sidereal Time (GAST) at epoch tk, that
is

Ok =0+ WqUTlx
=8, + Wg [TAI - (TAI - UTC) - (UTC - UTD) + Eq.E a17)
0o GAST at initial epoch to

TAI International Atomic Time

UTC  Coordinated Universal Time

UT1 observed Universal Time corrected for polar motion
Wy conversion factor from Universal to Sidereal Time
Eq.E  Equation of Equinox

ACp;;, ACy;; are the clock offset and drift between the ground stations P;
and Pj,

R;i(¢) is the rotation matrix for a right handed rotation ¢ about the axis i, see
[Moritz and Mueller, 1987; p. 4171
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cos & 0 sin &
R0 =| 0 1 0

~sin & 0 cos & (183)
1 0 0
Ri(-=m) = 0 cosm —sinm
0 sinmn cosm (18b)
cos O  sin O 0
R36 =| —sinBx cosB O (18¢c)
0 0 1
that is
R =Ry(-8) Ri(-M) R3(8y) =
cos & cos Ox—sin & sin 1 sin O _ cos & sin Ok+sin € sin 1 cos O _ sin £ cos n
—COos M sin By : cos 1M cos O : -sin M
—sin § cos Ox—os & sin M sin O —sin & sin Og+cos E sinncos B cos § cos M
(19)
Expression of Eq. (16) may be rewritten as
dijke = — AXjj [cos &§ cos &4 cos (B — oty) —sin & sin 1 cos 8, cos (B — )
+ sin € cos M cos Oy] +
§ cos M ¢ 20)

+ AYjj [cos 1 cos B sin (B — oy) + sin 7 sin &y +
+ AZ;; [sin § cos 8y cos (Bk — o1y) + cos & sin 1 cos 8; sin (B — o)
—cos & cos M sin §] +
+¢[ACy; + ACy; (o~ 10)]

Differentiation of Eq. (20) yield the usual form of the adjustment model (error equations),

d(dijk) = Y, ApdPy,
P (21
where the index p stands for the unknowns

{AXij, AYjj, AZij, 0z, 8¢, &, M, K, ACy;;, ACy) (22)

The parameter x is used to model the departure of the earth’s sidereal rotation from

uniformity, thus, e.g.,
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k = UT1 - UTC. (23)

The partial derivatives Ap are as follows:

AAXij = [cos & cos & cos (Bk — 0tg) —sin § sin 1 cos d¢ cos (Bx — 0p)

+ sin € cos M cos d¢] (24)
AAYij = cos M cos dy sin (B — o) + sin M sin O¢ (25)
AA7Z.. = sin & cos dg cos (Bk — o) + cOS € sin M cos &g sin (Bx — 0p)
1)
—cos & cos M sin &y (26)
Ag = AXjj [sin & cos 8¢ cos (B — aup)+ cos € sinm cos O sin (Bx —0tp)
—cos £ cos 1 sin O] +
+ AZjj [cos & cos d¢ cos (Bk — 0Lp) — sin & sin 1] cos ¢ sin (Bk — 0y)
+ sin & cos M sin &) Q27
Aq = AXjj [sin € cos M cos Oy sin (B — Op) + sin E sin M sin O¢] —
— AYjj [sinn cos 8¢ sin (Bx — 0p) — cos M sin dg] +
+ AZjj [cos & cos M cos 8¢ sin (B — Op) + cos & sin 1 sin O¢] (28)

A = Wy {AXjj [cos § cos 8¢ sin (B — 0p) + sin & sin 1 cos 8¢ cos (O — o] +
+ AYjj cos M cos 8z cos (B — oup) —
— AZ;; [sin § cos B¢ sin (Bk - o) — cos & sin 1 cos &g cos (Bk - o) (29)

Aq, = — {AXij [cos & cos 8¢ sin (O — 0p) + sin & sin M cos &g cos (Ok — 0] +

£
+ AYjj cos M cos d¢ cos (Ok - ap) —

— AZj; [sin & cos ¢ sin (B — arp) — cos & sin 1 cos d¢ cos (B — opl} (30)

Ag, =sin 8¢ {AXjj [cos & cos (Bk - o) — sin & sin M cos (Bk — otp)] -
— AYjj cos M sin (B — otp) —
— AZjj [sin § cos (B — orp) + cos € sin M sin (Bk — 0tp)]} —

— cos 8 [AXj sin § cos  — AYij sin M + AZjj cos  cos ] (31)
ACy; =¢ (32)
AAChj =c (tk—to) (33)
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The set of unknown parameters in Eq. (22) can usually be determined in a standard
Jeast squares adjustment from the information present in the observables. It is not the
purpose of this report to describe the adjustment procedure in detail. However, the
estimability aspect of the adjustment problem will be emphasized. In the present context
the term simply refers to parameters which can be estimated through the adjustment
process. The detection of what is estimable and what is not is through the design matrix A
of the partial derivatives. Therefore, it has particular significance in the following. If there
exist linear relationships between the columns of the design matrix A, its column rank will
be deficient (will not be full) and the normal matrix ATPA (P is the weight matrix of the
observables) will consequently be singular implying that not all of the parameters are

estimable and the establishment of a new set of the parameters is required.

The following linear relationships can be detected among the partial derivatives in
Eqgs. (24) - (30):

A= AXij Apz. ~AZij Apx,

(34)
ATl = COS ﬁ (AZij AAYij - AYij AAZij )+
+sin & (AXjj AAYij — AYj; AAXij ) (35)
Ay = Wy [sin M (AXj; AAZij - AZj; AAXij )+
+ sin  cos M (AYjj AAZij — AZj AAYij )+
+ cos £ cos 1 (AXjj AAYij - AYjj AAXij )] (36)
Aoy =-Ar/Wq 7
The equations (34) to (36) with
sin§=sinn=0
cosE=cosn=1 (38)
yield in matrix form
AAX"
Ag -AZ;; 0 AXj !
An =] 0 AZy -AY;j|| AAY;
AWy -AYij AXj 0 AAZi'
! (39)
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Since there exist linear dependencies among the partial derivatives, it is not possible
to estimate all of the parameters of interest from ground-to-ground baseline VLBI time
delay observations. Of the initial 10 parameters of interest only six may be estimated

simultaneously.

It is obvious that the system of normal equations N = ATPA of the least squares
adjustment will be singular. Two reasons have to be mentioned for this: 1) rank
deficiencies due to coordinate system definition, and 2) rank deficiencies due to a critical

configuration.

There are certain conventions to overcome rank deficiencies of a ground-based
geodetic VLBI network due to coordinate system definitions, see Bock (1980), Brouwer
(1985), Dermanis and Mueller (1978), and Papo and Saleh (1988). Since in a Euclidean
space, the coordinate system definition requires seven parameters; therefore, in practice the
most common way to define the coordinate system is to constrain seven well-chosen
“conventions” in the least squares adjustment. One possible choice for these seven

parameters for ground-based geodetic VLBI is [Brouwer, 1985]:
« the X,Y and Z coordinate of one station to define the origin (three translations)
» the epoch ephemeris pole positioh to define the equatorial plane (two rotations)
« the right ascension of one source to define the orientation in the equatorial plane

(one rotation)

» the velocity of light in vacuo as a scale parameter

An other convention for the coordinate system definition may be the use of a
minimum norm solution. This procedure yields a minimal trace for the variance-covariance
matrix so that smoother looking variances appear (for details see Chapter 4.1). Here we
mention that there exists a rectangular matrix G of m rows and r linear independent
columns such that AGT = 0. The result is that a nullspace L of N = ATPA is described.
The basis of the nullspace is formed by the column vectors of the G matrix, the dimension
of the nullspace is . Such a matrix for the ground-based geodetic VLBI is given by, e.g.,
Brouwer (1985; Appendix E) and Dermanis and Mueller (1978).

In order to circumvent the estimability problem, the earth rotation parameters (ERP:
£, 1, K) as one of the possibilities and right ascension (o) may be redefined by introducing
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A& =5 -8 (40a)

Ang=m-"p (40b)
AKy =K —Kp (40c)
AO(OZ=OL4—(XO, (41)

where Eo, Mo, Ko are the adopted ERP providing the initial reference orientation of the
network (CTS) with respect to the true equator and equinox, and o is the fixed right
ascension of one radio source (3C273B or B Persei) providing the reference origin of right
ascension. Therefore, the corresponding estimable parameters are the ERP differences
(Ao, ANo, AKo) as changes in the network orientation relative to the initial orientation and
the right ascension differences Aato,with respect to the fixed right ascension 0,. However,
the errors in the four adopted basic parameters of orientation bias the baseline components.
Thus, from this point of view, the baseline components AXij, AYjj, AZjj are nonestimable
and are replaced by the corresponding set of estimable components AX'jj, AY'jj, AZ'jj,
contaminated by the above errors and defined by the following equations [Arnold, 1974],
[Bock, 1980] and [Moritz and Mueller, 1987}

dAXij dAX'i | |-AzZy 0 AY; || 4o
dAYj| =| dAYS |-| 0 AZj; -AXjj dno |,

dAZ;; dAZ'ij AXjj -AY; 0 dBo 42)

where dAXjj, dAYjj, dAZ;; are the differential changes of the baseline components and

dBo = doo — Wy dxo, (43)
implying that the two differential rotations dop and dk, are inseparable,
d&p, dno, and dP, are the small errors of the initial reference orientations. Note that the
baseline length is unaffected by the errors in the reference orientation being invariant of

coordinate system definition.

A list of estimable parameters recoverable from delay observations is:

(AXij, AY 55, AZ'yj, B, Acyy, Abo, AN, AKo, ACoij, ACy ij} (44)
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A number of limiting conditions should be considered in the geodetic analysis phase
of VLBI observations, among others some critical configurations. These are the result of
an insufficient measurement design that yield a (nearly) singular system of normal
equations in the least squares adjustment. The following two equations are useful to
describe critical configuration situations.

Rearranging Eq. (39) we arrive at the equation
AZ;; A = Wy (AY;5 Ag + AXj Aqg) - (45)

Furthermore, under the assumptions in Eq. (38) ,

As, = AZijj AAZij ctgds —
- (AXj AAXij + AYjj AAYij ) 12d¢ (46)

can be derived which with Eq. (45) is appropriate for studying critical baseline
configurations, cf., [Bock, 1980], [Dermanis, 1980] and [Moritz and Mueller, 1987]. A
well-known example of critical configuration in ground-based geodetic VLBI that yields a
singular case is the single baseline experiment with observed sources at only one
declination, see Eq. (46).

Recognizing that
cosE=cosn=1, (47a)
sin§ = ¢, (47b)
sinn=nm, 47¢)

and neglecting products €N, an examination of Egs. (1) and (20) reveals that since

dijke = K1 cos (Bk — 0p) + K2 sin (B — oty) + K3 + Ka(tx — to) (48)
where

K = - (AX;jj — § AZjj) cos d¢ (49a)

K2 = (AYjj + N AZ;j) cos Oy (49b)

K3 =—(AZ;j+ & AXjj—-1n AYjj) sin &z +¢ ACq; (49¢)

Ks =c aCyy (49d)
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or more simply

dijke = K sin (@etk + ¢) + K3 + Ka(tk — to) (50)
where
12
K = (K +K3) (51a)
d=oy—0p (51b)

o is the right ascension of the baseline at the initial epoch tg,

a time delay observation of a single ground-to-ground baseline using a single source
represents a sinusoid superimposed on a straight line. Eq. (48) and (50) may help us in
obtaining a better understanding of the dependencies among the unknown parameters.

Counselmann and Shapiro (1978), Bock (1980), Dermanis and Grafarend (1981),
Shapiro (1978), and Moritz and Mueller (1987) show which parameters are estimable from
ground-based VLBI measurements. Of the geodetic parameters only baseline lengths and
source declinations are estimable from time delay. All other parameters are variational in
nature, that is they are determined relative to the initial orientation of the inertial and
terrestrial reference frames. Only their variations (changes) are estimable. Therefore the
initial values for right ascension and earth rotation parameters (polar motion components
and UT1-UTC value) must be held fixed at a priori values with the use of external
information (e.g., derived from an independent technique). Geocentric site coordinates are
not estimable because the observations are primarily a function of the differences of these
coordinates for each baseline. In addition these baseline components are contaminated by

errors in the reference orientation, polar motion and UT1-UTC variations.

Note that from one baseline time delay observations, only two of the earth rotation
parameters are estimable. Therefore, multi-baseline configurations are needed to estimate

all three earth orientation parameters.

3.4.2 Time Delay Rate Model. Differentiating Eq. (20) with respect to time

we get

dijks = 0e {AXj[cos & cos 8y sin (B — o) + sin Esin 1 cos & cos (O — 0y)]
+ AYj; cos 1 cos 6y cos (B — o) —
— AZ;;[sin § cos 8 sin (8x — oty) — cos & sin 1 cos 8, cos (B — 0p)]} +
+C AClij ,

(52)
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where
_dBx _
e =~ o (53)

is the spin rate of the earth, ® the instantaneous earth rotation vector.

One sees that time delay rate is effectively insensitive to the AZ;; component of the
baseline, consequently, only the equatorial projection of the baseline can be estimated. In

addition, the delay rate is uneffected by clock offset variations, ACoij.

Furthermore, since

dB_% «B
a - QexB (54)

is orthogonal to @ and, thus, the origin of declination is undefined as well as the right

ascension origin.

Taking the differential of dijk, with respect to the parameters

d(dijke) = 2 B, dP;,
P (55)

where the index p stands for the unknowns

{AX;j, AY3j, AZij, oup, 8g, &, M, X, AC35} (56)

The Bp’s in Eq. (55) are the required partial derivatives of the time delay with

respect to the parameters subscripted p as follows:

Bax;; = O [cos & cos 8 sin (B — o) + sin E sin M cos 8y cos (B — 0] (57)
Bayj; = 0 €0 T cos 8y cos (B — o) (58)
Bz;; = — e [sin & cos 8 sin (B — o) —cos £ sin 1 cos 8¢ cos (6x — 0ty))] (59)

Be = 0 {AXj [cos & sin M cos & cos (Ox — 0p) — sin & cos 8 sin (B — o))~ (60)
— AZ;;[cos & cos By sin (Bk — &g) + sin & sin M cos 3¢ cos (B — 0]}
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B, = @, [AX; sin & cos 1 cos 8y cos (B — o) —
— AYjj sin 1 cos 8 cos (B — o) +
+ AZ;; cos & cos 1 cos By (O — o) |

(61)

By = @, Wg {AXj [cos & cos 8, cos (B — o) —sin & sin M cos O sin (B — o] -
— AYjj cos 1 cos 8 sin (O — o) — (62)
~ AZ;[sin & cos 84 cos (B — 0y) + cos & sin M cos 8 sin (B — o))}

Bo, = “’e{AXij [sin & sin M cos 8 sin (B — &tg) — cos & cos 8y cos (B — )] +
+ AY;j cos 1 cos Oy sin (B — o) + “
+ AZij[sin & cos 8y cos (B — 0g) + cos & sin 1 cos & sin (6 — apl}

Bﬁz = — W, Sin 8( {AXij [ cos & sin (B — o) + sin g sin M cos (6y — Oﬁz)] +

+ AYjjcos M cos (B — o) — 6
— AZj; [sin € sin (B — o) — cos & sin 1 cos (8 — 051)]}

Bacy; =¢. (65)
The following linear relationships are evident
Be = AXij Baz;; — AZ;j Bax;; (66)

Bﬂ = COS & (AZU BAYij — AYij BAZij)
+sin § (AXjj Bay; — AYj; BAYU) (67)
Be=Wy [Sin N (AXj Baz;; — AZ;j Bax,)

+sin & cos M (AY;; BAZij ~AZ; BAYij) (68)
+ cos & cos M (AX; Bay;; - AYj; BAxij)J

Ba, = - B, (69)

indicating that it is impossible to estimate all of the parameters of interest from ground-to
ground baseline VLBI delay rate observations. Egs. (66) - (69) are formally very similar to
Egs. (34) - (37).

The Egs. (66) - (68) with assumptions in Eq. (38) yield in matrix form
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By
Bax:.
~AZ;; 0 AXj B Y
By |= AOY ﬁ}z(ij —AOYij AY; (70)
—Alj; ij Ba7..
] B“/Wd AZ;

The discussion of the parameters estimable from delay rate is identical to that of
time delays except that in this case AZ; (M;j) and AC,; are deleted, and declination

differences
A8or =87~ 8o (71)

replace 8, . Thus, the list of the estimable parameters recoverable from delay rate

observations is

’ ’ 72
{AXij, AYy;, ABot, Alos, Ao, Ao, AKo , ACy; } . (72)

It can easily be shown that the equatorial baseline components are also contaminated by the

errors of the initial orientation in the following sense

dGo
dﬁo (73)
dPo

dax;] |98%| [-az; 0 AYy
dAYj;

where dPo equals with Eq. (43) implying again that the two differential rotations do, and
dx, are inseparable.

Similar derivation to the Egs. (45) and (46) gives
AZ;; Bx = Wq (AY;; Be + AX;; By) (74)

le =—tgdy (AX; BAXij + AYijBAYij + AZ;; BAZij) (75)

Egs. (74) and (75) can be used to detect critical configurations and for sensitivity analysis

as well.
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An examination of Eq. (52) or differentiating the Eq. (50) with respect to time, we

get

dijke = K e cos (0tx + 0) + Ky, (76)

which is useful for an analysis. The coefficients K and K4 are the same expressed by Egs.
(51a) and (49d).

The delay rate model includes a reduced parameter set in comparison with the time
delay model. The third component of the baseline is non-estimable and only declination
differences may be estimated, see [Bock, 1980] and [Moritz and Mueller, 1987].
Therefore, it is not possible with delay rates alone to estimate all of the parameters of

geodetic and astrometric interest.

3.5 Mathematical Models for Ground-to-Space VLBI Observables

We are interested in forming equations which relate to observables to the unknown
parameters suitable for least squares covariance analysis. Our main purpose is not to derive
explicit observation equations, but rather to develop qualitative expressions to demonstrate
the relationship between the observables (time delay and delay rate) and the parameters and

to explore estimability problems inherent in the space VLBI system.

3.5.1 Time Delay Model. From Eq. (9) we can get a simplified expression
(similar to Eq. (16) [Pavlis, 1986]) suitable for the analysis as follows (the T is the

transpose sign), see Fig. 13:

T xt
: X; cos &y cos oy
die=—11Yj| Rz (&) Ri(-1) R3(6¢) — YL sin &y sinoy | +
Z; 7 sin &, 77)

+c|ACh; +ACl; (4 -1)|
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where
X; Y;, Z
X}, YL, ZL

Oy, O

&,n

orbit

Earth

Fig. 13 Space VLBI time delay observable

Earth center

are the Earth-fixed coordinates of the station Pj,

are the coordinates of satellite ST in a true-of-date geocentric inertial
coordinate frame at the epoch t, ,

is the right ascension and declination of the £ radio source in the same as
above true-of-date coordinate frame,

are the polar motion components that relate the instantaneous rotation axis of
the Earth with the average terrestrial pole,

is the Greenwich Apparent Sidereal Time (GAST) at epoch tx,
is the speed of light,

is the initial epoch of observation,

is the clock offset and drift between the reference clock at the
telemetry/control station and the clock of station Pj, and

is the rotation matrix for a right handed rotation ¢ about the axis 1.
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The expression of Eq. (77) may be rewritten as

d}u =— X [cos & cos 8 cos (B — 0ty) — sin & sin M cos 8 sin (B — op) +
+ sin & cos 1 sin 8, +
+Y;[cos M cos 8 sin (B — o) + sin M sin 8] +
+Z; [sin & cos 8y cos (8 — o) + cos & sin M cos 8 sin (B — oty) —
—cos & cos M sin & +
+X1 cos 8, cos oy +

+ YL cos 8, sin oty +
+ Z]I( sin 54 +

+¢|ACG, + ACT; (b — 1)

In the following, the Cartesian coordinates Xk, Y&, Zk of satellite Slare
transformed into Keplerian orbital elements consisting of the semimajor axis a, the
eccentricity e specifying the elongation of the orbital conic section, the inclination i
specifying the orientation of the satellite’s orbital plane with respect to the equator of the
Earth, the right ascension Q of the ascending node, i.e., the angle measured eastward
along the equator between the vernal equinox and the point where the satellite crosses the
equator traveling in a northerly direction, the argument ® of perigee, i.e., angle between
the ascending node and the perifocal point measured positive with increasing mean
anomaly, and the mean anomaly M, i.e., the sum of the mean anomaly at epoch and the
product of the mean motion and the elapsed time from epoch. A transformation of Kepler

elements
{a, ei, 0, Q, M} 79
into geocentric orthogonal coordinates {X,Y,Z} is given by the following formulas

(dropping the lower and upper indexes) [El’yasberg, 1967; p. 63] and [Grafarend and
Livieratos, 1978]:

X cos € cos u —sin £ sin u cos i
Y |=T |sin Qcosu+cos Q sinucosi (80)
Z sin u sin i
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where

r=a(l—-ecosE) (81a)
u=+f (81b)
tg 2 =Y(1 +e)/(1-e) tgE2 (81c)
M=E-esinE (81d)
sin f = Y1 —¢? sin E/(1 —e cos E) (81e)
cos f=(cos E —e)/(1 —ecos E) (81f)

E is the eccentric anomaly.

Equation (78) with Eq. (80) [and Eq. (77)] expresses the functional relationship of
the time delay observation with the listed parameters. Of direct geodetic interest are the
station coordinates Xj, Y, Z;, the Keplerian orbital elements Eq. (79) of the orbiting
radiotelescope S and the earth rotation parameters (ERP) €, M, k. The source coordinates

o and 8y are of astrometric interest, while the clock offset AC(I)U. and rates AC}rj are

nuisance parameters defined to make the mathematical model more realistic.

The GAST, 6, as well as the Earth rotation parameters K are reformulated
identically to that of ground-to-ground baseline VLBI observables, see Chapter 3.4, i.e.,
Egs. (17) and (23). Assume that for an observation session (one day or one revolution of
Keplerian orbit) only one set of earth rotation parameters (¢, M, ¥) is determined. Thus,

our parameter set will contain the following 16 parameters:

(X, Y, Zjp a, e i, 0, Q, M, &, 1, %, 0, B, AC{,;, ACT} 82)

In the following we examine the complete observation eqation Eq. (78) with Eq.
(80) for the parameters, the coordinates of the ground VLBI station Pj, the Keplerian orbital
elements of the orbiting radiotelescope SI the #th radio source positions, the earth rotation
parameters, and the clock parameters to determine which of them are separable or
nonseparable and, therefore, design experiments in which those parameters of primary

interest will be estimable.

Since Eq. (78) is non-linear with respect to that parameter set, we proceed as usual

to linearize Eq. (78). Taking the differential of djlk, with respect to the parameters,

d(d}u) = CpdPy, (83)
P
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where the Cp’s are the required partial derivatives of the time delay with respect to the
parameters of interest, indexed by p. They are as follows:
Cx; = —[cos & cos 87cos (B — 0p) - sin & sin M cos 8 sin (B — 0t))

J . (84)
+ sin & cos M sin 8]

Cyj = cos M cos dy sin (O — o) + sin M sin J (85)

CZj = sin & cos 8 cos (B — o) + cos & sin 1 cos Oy sin (B — oty) —
—cos & cos M sin & (86)

Ce = X;[sin & cos 8y cos (B — oy) + cos & sin | cos 8 sin (B — o) —
—cos & cos 1 sin &) +
+Z;[cos & cos 8 cos (B — 0tg) — sin & sin 1 cos 8y sin (B — i) +
+ sin £ cos 1 sin 8] (87)

Cr, = Xj[sin & cos 1 cos & sin (O — atg) + sin § sin 1 sin 8¢ -
—Y;[sin M cos 8 sin (Bx — o) — cos 1 sin &) +
+Z;[cos & cos 1 cos 8 sin (B — o) + cos & sin M sin 8] (88)

Cx =Wq {X;[ cos & cos 8 sin (8 — 0,p) + sin & sin | cos &, sin (B — op)] +
+ Yj cos M cos & sin (B — arp) —
—Zj[ sin & cos 9, sin (6, — 0p) — cos & sin 1 cos & cos (O — oc,)]}

(89)
Ca=(1-ecos E) {cos 8¢[cos u cos (Q — o) —
—sinucosisin (Q-oy)]+sind;sinusini} (90)
C; =r[sin u sin i sin (Q — ) cos 8; + sin u cos i sin 3] 1)
Co =—1 {cos 8;[sin u cos (Q — o) + cos u cos i sin (Q —8p)] -
—sin §g cos usini} (92)
Cq =-rcos Oy [cos u sin (Q — &) + sin u cos i cos (Q — 83)] (93)
a(e —cos E) inf inf
- ae-cost) ~ | __sin + sinf | o
(1 —e cos E)? [l—ecosE 1-e2| ©
94
Cum = aesinE L+ — sin f C
(1—e cos E)2 sinE(1—-ecosE) © 95)
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Co, =—{X; [cos & cos &; sin (B — o) + sing sin 1| cos & cos (Bk - o)) +
+ Yjcosm cos Oy cos (B — ay) — (96)
—Z;[sin & cos 8 sin (B — o) — cos§ sin M cos §; cos (B - o))} +
+ 1 cos 8 [cos u sin (Q — o) + sin u cos i cos (Q — o))

Cs, = sin 8; {X;[cos § cos (B — &) —sin& sin 1 sin (B — o] -
—Y;cos M sin (B — 0tg) —
—Z;[sin & cos (B — o) + cos§ sin M sin (B — ap)] - o7
—r[cos u cos (Q — 0ty) — sin u cos i sin (Q - 0ty) 1} -
— cos 8y[X;sin § cos M — Yjsin M +Z; cos § cos M —1 sin u sin i]

C =
Aoy = © (98)

C =c (tx —
ACy, ¢ (tx—to) (99)

In order to get the partial derivatives of time delay (d}kl = d) with respect to

Keplerian orbital elements, the following relationship:

c o9 || xoayoz
* Oa da oa oa
o - X Y 3Z | -
" e de de de ~ai=CI
) axavoz ||
T3 | | o oi o ad .
oo || xavaz || T
om 0w dw Jdw —a—d—=C1
coodd | | xoavaz || (10
aQ 0Q dQ 9Q B -
o o | | X oY oz
oM oM oM oM

was applied, where the partial derivatives of time delay with respect to the orbiting

radiotelescope’s cartesian coordinates are as follows:

CyxI = cos Oy cos Oy (101)
CylI = cos d; sin 0y (102)
Cyl = sin &, (103)



The elements of the coefficient matrix in Eq. (100), called as a linear Kepler transformation
matrix K by Grafarend and Livieratos (1978), are given in Appendix A. We call this
matrix here as a linear Kepler transformation matrix K of position (or coordinate) type.

A useful check of the partial derivatives of the Cartesian inertial coordinates with
respect to Keplerian orbital elements (BX/ aKj) is their use with the corresponding partial
derivatives of Keplerian elements with respect to the Cartesian parameters (aK/an to
confirm the relation

K; aX; (104)

i=1
forall i,ke {1,2,3}

where ik is the Kronecker-delta, X represents the Cartesian coordinates {X, Y, Z} and
K represents the Keplerian orbital elements {a, €, i, ®, Q, M} . Both types of partial
derivatives in Eq. (104) are collected in Appendix A. To compute the partial derivatives of
Keplerian elements with respect to the Cartesian parameters, the partials given in Hill
(1989) are used. Appendix A also includes a computer program with subroutines as well
as a practical example to confirm the relation in Eq. (104).

The partial derivatives [Eqgs. (84) - (99) and Egs. (101) - (103)] of the time delay
observable with respect to the corresponding parameters of the mathematical model Eq.
(78) with Eq. (80) constitute the elements of the design matrix C in Eq. (83) that forms
the normal matrix N = CTPC (P is the weight matrix of the observables). The inverse of
that normal matrix yields the a priori covariance matrix of parameters. The magnitude of a
particular partial derivative which reflects the sensitivity of an observation to a particular
parameter determines its numerical contribution to the normal matrix. Most of the partial
derivatives listed in Eq. (84) - (99) are diurnal sinusoids, some others are composed of
diurnal sinusoids, functions of station coordinates, and Keplerian orbital elements (or

varying satellite positions).

Examining the analytical expressions for the partial derivatives we can derive some
interesting sensitivity relations between the time delay observable and the parameters to be
solved for. Since the partial derivatives of delay with respect to the polar components of
the ground station and satellite position and to the declination of the sources (when Z; = Zk)
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g0 to zero as the declination goes to zero, the sensitivity of delay to these parameters
decreases as the declinations go to zero. The tendency of the sensitivity to the right
ascension of the sources and the earth rotation parameters K is just opposite, that is, from
Cxand Cq, it is evident that the time delay is sensitive to the declinations of sources near
the equator. The orbiting radiotelescope’s coordinates (Keplerian elements) effect only the
partial derivatives of delay with respect to radio source position components, see Egs. (96)
- (97). From the analytical expression of these partial derivatives (Cg, and Cg,) we can
gather that their numerical values will in general increase as the coordinate separation
between the station and the orbiting radiotelescope increases (advantage of space VLBI).

With three coordinates for the ground station, six Keplerian orbital elements for the
orbiting radiotelescope, two parameters for the radio source position, three for the ERP and
two for the clock, there are 16 parameters in total in the model Eq. (78). Therefore, the
design matrix C given in Eq. (83) will have a minimum of 16 columns, if one ground
station and one radio source is considered. In identifying linear dependencies between the
parameters, we can separate C into five submatrices according to the five major groups of
parameters, namely, the station coordinates, the orbital elements, earth rotation parameters,
radio source positions and clock parameters. From Egs. (84) - (99) we can state that there
are no linear dependencies between columns of the design matrix within the same group.
However, dependencies do exist between columns of the design submatrices among
different groups with the exception of the ones belonging to the clock parameters. The
columns of the station coordinates can be written as linear combinations of those of the
earth rotation parameters. Therefore, we cannot separate the ground station parameters and

the ones for the earth rotation in a simultaneous adjustment.

Furthermore, one can easily write the linear relationship between columns of the
station coordinates, the right ascension of radio sources and the longitude of satellite orbit’s
ascending node (). The linear dependence between the columns of the right ascension
(o) and earth rotation parameter (k) is also obvious. Consequently, the following linear
relationships are evident among the partial derivatives:

Ce =X Cz;— Z; Cx; (105)

Cy = cos § (Z; Cy; - Y; Cz)

+sin § (X; Cy; - Y; Cx;) (106)
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Cx =Wy [sin n (X; Cz; - Z; Cx;)

+sin § cos M (Y; Cz, - Z; Cy;)

+cos&cosnN(X;Cy. - Y; Cx.)
E,w 11(] Y; j X}} (107)

_ Cef _
Co, =~ Sy, —Ca (108)

Recognizing that sin & = sin = 0 and cos & = cos 1 = 1, the linear relationships through
Egs. (105) and (107) are reduced to the following matrix form which is more clearly

indicating the dependencies among the corresponding partial derivatives:

Ce Cy.
Z 0 X X
Ch |=| 0 Z -Y;|| Sy
-Y; X 0 Cy,
CK/Wd j
L i (109)

The linear dependencies derived analytically by Eqs. from (105) to (108) are
formally very similar to ones existing among the partial derivatives of ground-based time
delay observable (see Eqgs. (34) - (37)). It is quite obvious from a comparison of Eqgs.
(109) and (39). The only difference is the use of station coordinates instead of baseline
components. However, a comparison of the Egs. (37) and (108) shows that in the latter
equation a new term (Cgq) appears due to the additional linear dependency of radio source’s
right ascension with the ascending node € of the satellite’s Keplerian orbit in the space
VLBI. A geometric interpretation of this reason is that all three parameters, i.e., right
ascension o, Greenwich Apparent Sidereal Time (8y) (or earth rotation parameter )
and ascending node Q of the Keplerian orbit are “measured” in the same plane, that is, in

the equator (see Fig. 14).

In the following, it is useful to present the geometric interpretations of the rank
deficiencies expressed in Eqgs. (109) and (108). Eq. (109) shows a linear dependence
between various combinations of ground station coordinates X, Y;j, Z; and the earth
rotation parameters €. 1M, X . These indicate a rank deficiency of three due to a lack of
absolute orientation of the network of ground stations with respect to the true-of-date
celestial frame which cannot be sensed by the observables. Eq. (108) is due to a lack of

reference direction (origin or right ascension of the radio source and of the ascending node
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of satellite orbit), for the true-of-date celestial frame, i.e., the observables are insensitive to
the orientation of the true-of-date inertial frame in right ascension (see Fig. (14)).

"2

vernal
equinox

Fig. 14 A geometric configuration of the Greenwich Apparent Sidereal Time (GAST),

the right ascension (o ) of a radio source and the ascending node ( €2) of the
Keplerian orbit.

It has been shown in Chapter 3.3 that the time delay observables (or time delay
times the speed of light as the path difference) are invariant under datum translations and
rotations, but not invariant under datum scale change. The observable is insensitive in the
location and orientation of the coordinate system where the coordinates of the end points of
the baseline are given. Therefore, time delay observations cannot provide datum origin and
orientation, but only scale. The missing origin and orientation components are the datum
defect.

There are principally two reference frames associated with the mathematical model.
The first is an earth-fixed frame, anc the second is a true-of-date inertial frame. Since time
delay can only provide scale, nine parameters define the two frames—three for the origin
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* source

Earth center

Fig. 15 Geometry of time delay observable

and three for the orientation of the earth-fixed frame, plus three for the orientation of the
true-of-date inertial frame with respect to the earth-fixed frame. The design matrix C
contains partial derivatives of time delay with respect to parameters which include station,
satellite and radio source coordinates. Because such coordinates are not estimable
quantities, the design matrix should have a column defect of at least nine, provided there

are no configuration defects.

However, the time delay observable will remain unchanged if the wavefront rotates
in such a way that it remains tangent to a cone with axis the baseline and half angle equal to
v (Fig. 9 and 15), see [Counselman and Shapiro, 1978]. From that fact, two additional
degrees of freedom exist (three rotations of a plane minus one constraint of tangency to the
cone). Furthermore, in practice, instead of three coordinates we need only two directional
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coordinates of source, that is, the right ascension o and declination & to define the true-
of-date inertial reference frame. Thus, seven rank deficiencies should appear in the
mathematical model Eq. (77) of the observable.

We have shown that the three translational and the three rotational parameters
cannot be found from the either ground-based and space VLBI time delay observations.
There are certain conventions in ground-based VLBI to define the origin, that is, e.g., to
fix the X,Y and Z coordinates of one station or to use a minimum norm solution. In the
latter case, we will have an optimal datum definition in the classical sense with the help of
the standard inner constraints for 3D networks [Brouwer, 1985; Appendix E].

Note that we were searching to analytically find linear constraints for “translational”
datum defect for space VLBI observation equations. In the case of ground-based VLBI, it
is easy to get a nullspace basis in such a way that AGT =0 for translational defect in the
time delay observation equation [Brouwer, 1985] and [Dermanis and Mueller, 1978].
However, a comparison of Egs. (13a) and (13b) shows that in the case of space VLBI, the
derivation of such a GI matrix (CG{ = 0) for definition of the origin in the minimum norm
solution is impossible. Therefore, it implies that some fixed values should be applied to fix
the origin of the coordinate system for space VLBI observables.

Contrary to ground-based VLBI network, in the space-VLBI the origin of the
reference frames is fixed by the given Keplerian orbital elements at some reference epoch,
T, . In fact, the orbital elements are not time invariant, i.e., their derivatives with respect to
time, E; , will not be zero. The variation of a given element from some reference epoch,

T, , to the epoch of utilization, T , can symbolically be described by the following equation

T
Ei=E,°+I E; dT

- (110)

where EP is the element in question at the initial epoch Ty, and Ejat T (Fig. 16),
see [Moritz and Mueller, 1987; pp. 368-369]. The integral represents the perturbation of
the element E;.

A rank deficiency of a normal equation system may easily occur as a combined
effect of coordinate system definition and critical configurations which are the result of an
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insufficient measurement set-up. Therefore, the consideration of critical configurations is

also very important.

From Eq. (109) one obtains

Z; Ce=Wq (Y; Cg + X; Cy) (111)
Considering the assumptions in Eq. (38)

Cs, =ctg &y Z; CZj —1g O¢ (X ij +Y; CYj +a C,) + r sin u sin i/cos J; (112)

is derived. In searching of the rank deficiencies the following equation

l North Celestial Pole

satellite
Ee
true (time of perigee passage)
anomal /
g, Eg
f
Earth centey -
E ,
E 8 orbit
equator
Ea

vernal equinox

Fig. 16 Keplerian orbital elements: Right ascension of node, E1 ; inclination, E3 -
argument of perigee, E3; semidiameter of the elliptic orbit, E4 ; eccentric of the
ellipse, Es ; time of perigee passage, Eg
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cosiCy=ctgusiniC+ Cq (113)

has been obtained. Eqs. (111) - (113) can be used for studying the critical station and
satellite configurations. They may be useful in observation design works as well. For
instance, additional rank defect occurs by a special choice of Keplerian orbital elements. If
i =0°, then from Equation (113) it follows that

Co=Ca (114)

indicating an inseparable situation for the parameters @ and Q. In the space VLBI
network this special situation gives a rank defect of internal type [Graferend and Livieratos,
1978]

Because of the linear relationships Eqs. (108) and (109) among the coefficients Cp
of the error Eq. (83), it is not possible to determine all of the 16 unknowns in Eq. (82).
Therefore, a new set of estimable parameters must be introduced. Concerning the linear
relationships expressed in Eqgs. (105) - (107) [or see Eq. (109)] and in Eq. (108), the ERP
differences A&, , AN, , AKX, and right ascension difference ACos may be introduced as
the corresponding new estimable parameters like that of the ground-based VLBI time delay
observable, see Egs. (40) - (41). However, the errors in the four adopted basic parameters
of the initial orientation (§,, Mo, Ko» Cog) biase the station coordinates. Thus, from this

point of view, the station coordinates X}, Y;”, Z;” are non estimable. They are replaced
by the new set of estimable station coordinates X;, Y;, Z; contaminated by the errors of the

initial orientation (d&,, dno, dK,, ddto) . It can be shown that the errors of the

corresponding parameters can be expressed in the following manner:

dX;
dX; , Z 0 Y || d&
dy; | =| dY; |- 0 Z =X || do |,
dz; , X; Y5 O dBo
dz;
AN (115)

where dX;, dY;, dZ; are the differential changes of the station coordinates and df, is

identical with Eq. (43), that is, the two differential relations do, and dx, are inseparable.

Furthermore, the error of the initial reference orientation in right ascension makes
its influence in the space coordinates of the orbiting radiotelescope. Consequently, the
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satellite coordinates (only the equatorial ones, X and YL ) will be contaminated by the
error do,, in the following manner:

Xt
Yk

dx}
dyl

dXy
dy;

?

| 0 do,
—do, O

(116)

where dX} and dY} are the differential changes of the orbiting radiotelescope’s equatorial

coordinates.

Note that the declination of the reference source should be nearly equatorial to
provide a strong definition, similarly to that of the case of ground-based VLBI. This can
be seen by an examination of Cgy 0 Eq. (96).

In order to show the main differences between the ground-based and space VLBI
time delay observables, under the assumptions of Eq. (47) we rewrite Eq. (78) in a similar
way to that of Eq. (48) as follows:

dJIu =K cos (B — atp) + K3 sin (B — otp) + K3 (te) + K4 (t — to) , (117)
where
K =-(Xj-8§Z) cos & (118a)
Kz =(Yj+MZ) cos &, (118b)
K3(t) = — (Zj+ X;§ - Y; 1) sin & + C ACY,,
+ X} cos 8, cos oy (118c)
+ Y[ cos 8 cos o
+ 7} sin 8,
I
Ke=cACy (118d)
or more simply
dje = K sin (@e ti + 0) + K3 (t) + Kg (t — t0) (119)

where ¢ is the phase of the sinusoids relative to some initial epoch, ®, is the rotation
rate of the earth, and
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K- (ki +Kp"% (120)

Eqgs. (117) and (119) shows that a space VLBI time delay observation between a
single ground station and the orbiting radio telescope using a single source represents a
combined function of a sinusoid and a periodic function with a period of the orbital

revolution.
3.5.2 Time Delay Rate Model

The geometric delay rate is the time derivative of the geometric delay. Including the
clock parameters, the delay rate may be expressed by Eq. (10). Differentiating Eq. (78)
with respect to time we get

d}u = 0 { X [cos & cos 8 sin (B — 1) + sin £ sin n cos &, cos (O — o) +
+Y; cos 1 cos & cos (Ox — 0p) —
—Z;[ sin & cos 8 sin (B — atg) — cos £ sin 1 cos 8y cos (B — )]}
+ XL cos 8y cos o +
+ Y& cos 8 sin o +
+ Z}( sin &y +

I
+eACy, (121)

where

®. is the spin rate of the earth expressed by Eq. (53) and
Xllc , Y{( , Z}( . are the velocity components of satellite S!in a true-of-date geocentric
inertial coordinate frame at the epoch tx.

Instead of the Cartesian velocity components XL Y& 7L of the orbiting radiotelescope SI,
their equivalents expressed in Keplerian orbital elements are used by the following

formulas (dropping the lower and upper indexes) [El’yasberg, 1967; p. 63]:

X = v, (cos Q cos u —sin Q sin u cos i) —
— vy (cos Q sin u + sin Q cos u cos 1) (122a)

Y = v, (sin Q cos u + cos € sin u cos i) —
— vy (sin Q sin u - cos Q cos u cos 1) (122b)
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Z=v;sinu sini+ vycosusini, (122¢)

where
vi=YU/p esinf (123a)
vu=Yu/p (1+ecosf) (123b)

p=a(l-e?) (123¢)
L is the gravitational constant times the mass of the Earth .

Our parameter set contains the same unknown parameters indicating by Eq. (82)

with the exception of clock offset AC(I)rj to which the time delay rate is uneffected,

{X_]7 Yja Z_]’ aa e) ia ('07 Qs Ma &, ns Kv al: 6[: ACIIrJ} (124)

Taking the differential of djlk, with respect to the parameters listed in the previous

chapter

d(dje) = 2. Dy dPp
P (125)

where the Dp’s are the required partial derivatives of the time delay with respect to the

parameters subscripted p as follows:

Dy; = @ [cos € cos 8 sin (B — 0ty) + sin & sin M cos 8 cos (B — o)) (126)
DYJ- = W, COS T COS Oy cos (B — tp) 127
Dy, = — [sin & cos & sin (B — &tg) — cos & sin 1 cos &, cos (B —0)] (128)

De = 0, {Xj[cos & sinm cos 8; cos (Bk — o) — sin & cos 8y sin (O — )] -
—Z;[cos & cos 8 sin (B — o) + sin & sin M cos 8, cos (B — op)]} (129)

Dr = 0 [Xj sin & cos 1 cos 8, cos (B — o) —
— Y sinm cos & cos (B — arp) +
+ Z; cos & cos M cos 8, cos(Bx — 0p)] (130)
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Dy = 0, W {X;[cos & cos 8 cos (B — &ty) — sin & sin M cos 8y sin (8 — 8p)] —
—Y; cos 1 cos Oy sin (B — otp) —
~Z; [sin & cos & cos (Bx — o) + cos & sin ) cos Oy sin (O — 54)]} 131)

M

o [cos u cos (@~ o) —sin u cos i sin (Q - ap)] +

D, = cos &
+%;l[sin u cos (Q — 0y) + cos u cos i sin (Q — Otz)]} -
i Vi .- Vg s
sin Oy (Za smusm1+2a cosusml) (132)

D; = cos 8 [v; sin u sin i sin (Q — ) +
+ vy cos u sini sin (Q — o)) +
+ sin 8y ( vy sin u cos i + vy COS 1 COS 1) (133)

Dy, = — cos 8; {v;[sin u cos (Q — 0p) + cos u cos i sin (Q-op]+
+ vy [cos u cos (Q — o) — sin u cos i sin (Q - o]} +
+ sin 8y ( vy cos u sin i — vy sin u sin 1) (134)

Dg = —cos 8y {v;[cos u sin (Q — &) + sin u cos i cos (Q - o] —
— vy[sin u sin (Q - otg) — cos u cos i cos (2 - o} (135)

D, = cos 0y { —v,m [cos u cos (Q — o) —sin u cos i sin (Q—ou)]—

-V e + cosf sin u cos (2 — o) + cosucosisin (Q—-op)|} +
"(1-e2)(1 +ecosf) [ ( 0 ( ol}

+ sin & —v,——1 _ _sinusini+
l{ e (l-ecosE)

e+cosf cosusini} (136)

+
Vu (1 -¢2) (1 +ecosf)

_vecosf—vysinf
Dw sin E (1 —e cos E)
+sin 8y sinusini} . (137)

{cos 8 [cos ucos (Q— o) —sin u cosi sin (- o) +
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Dq, = @e {X; [sin & sin 7 cos &; sin (8 — o) — cos & cos 8y cos (B — 0p)] +
+ Y cos 1 cos & sin (B — o) +
+Z;[sin & cos 8, cos (B — &) + cos & sin 1 cos 8y sin (B — otp)]} +
+ cos 8; {v;[cos u sin (Q ~ o) + sin u cos i cos (Q — op)] -
— vy [sin u sin (Q - o) — cos u cos i cos (Q - o))} (138)

Ds, = — 0 sin & {X;[cos & sin (B — ) + sin § sin M cos (B — o)) +
+ Y cos 1 cos (B — atp) —
—Z;[sin & sin (8 — oty) —cos & sin M cos (B — 0p)]} -
—sin &y {vr [cos u cos (Q — o) — sin u cos i sin (Q - ou)} -
— vy [sin u cos (Q — oty) + cos u cos i sin (Q —ap)]} +
+ v, sin u sin i cos 8y + vy coOs u sin i cos cos Oy . (139)

DAyl =c
ACTy4 (140)

In order to get the partial derivatives of time delay rate (d}u =d) with respect to
Keplerian orbital elements, the following chain-rule differentiation

b, X 3 3z
“ Oa da da oa
b, Xavazr | ]
© oe de oe de od Dol
o1 Yx
b A xavor || X
'oai di oi ai ad _
ad X Y a7 oY’
Dy = —— @22 es
ow 0w 0w dw od Dot
. o VS Baag’s
Do =24 axayaz | L9
2730 30 9Q 00
ad 0X oY 9Z
Dy =5 - o8 ot 92
B oM | | oMoMM | (4

was applied, where the partial derivatives of time delay rate with respect to the orbiting
radiotelescope’s Cartesian velocity components are as follows:

Dy = cos 8, cos o (142)
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Dyl = cos g sin o (143)
Dyl = sin oy (144)

The elements of the coefficient matrix in Eq. (141) are derived and given in Appendix A. A
useful check of the partial derivatives of the Cartesian velocity components with respect to
Keplerian orbital elements BXi/aKj is their use with the corresponding partial derivatives
of Keplerian elements with respect to the rectangular velocity components aKjlan to

confirm the relation

i 0X; 9K _ "

e, .. — ViKk >

j=19K; 09Xy

foralli, ke {1,2, 3} (145)

where &, is the Kronecker-delta, X represents the Cartesian velocity components
(X, Y, Z) and K stands for the Keplerian orbital elements {a, e, i, ®, Q, M} .

The magnitude of the terms containing & and 1 in Eq. (121) are small, indicating that
the delay rate is effectively insensitive to the Z; component of the ground station. More
precisely, it is completely insensitive to the coordinate component of the ground station
parallel to the Earth’s angular velocity vector. This is a disadvantage for geodetic
applications of space VLBI delay rate observables. In addition, the delay rate is unaffected

by clock offset variations, AC(I)rj . From Dz}( it is evident that the delay rate is insensitive

to the polar component of the orbiting radiotelescope’s velocity as the declination goes to
zero. Only the partial derivatives of delay rate with respect to radio source position

components contain the velocity components of orbiting radiotelescope.

In the ground-based VLBI, the delay rate observable is insensitive to the declinations of
sources near equator due to the fact that B, in Eq. (64) contains only the polar component
of the declination. However, in the space VLBI the delay rate observable is more sensitive
to the declinations of sources near the equator, since the corresponding partial derivative
Ds, in Eq. (139) contains the equatorial component of the radio source’s declination as
well. Therefore, an advantage of space VLBI over ground-based VLBI is that the space
VLBI may be used for accurate determination of the declination of those radio sources near
equator by the use of such ground-to-space baselines that possess large polar components
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and relatively large values for the polar component of the radiotelescope’s velocity,
compare Eqgs. (64) and (139).

The following linear relationships can be detected among the partial derivatives Dp:

Dg =X Dz; -Z; Dx; (146)
Dy = cos § (Zj Dy; - Y; Dz) +

+sin & (Xj Dy, - Y; Dx) (147)
Dy =Wy {sin M (X; Dz;-Z; Dx;) +

+ sin & cos M (Y Dz;,-ZiDy) +
+cos § cos M (X; Dy, - Y; ij)]

(148)
Da, =-D/Wa-Da (149)
Egs. (146) - (148) with assumptions in Eq. (38) yield in matrix form
Dx
De Z 0 X !
Dy =10 -Y; || Dy
Dy/W4 =Y, Xi O
J ] Dzj
(150)

The relations from (146) to (150) are formally similar to the ones derived for the time
delay model, see Egs. (105) - (109). There is a formal similarity even with the analytically
derived equations of the linear dependencies among parameters of the ground-based VLBI
time dely and delay rate observation models. Compare the Egs. (34) - (39), Egs. (66) -
(70), Egs. (105) - (109) and Egs. (146) - (150).

From (150) we can write

ZjDK=Wd(YjD§+Xan) (151)

Similar to Egs. (112) and (113) for time delay observable, we can derive

D5t =—1g 5( (Xj ij + Yj DYj + Zj DZj —2aD,)

+ (v; sin u + vy cos u) sin i/cos 9, (152)
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and

Vv, COS U —Vy Sinu
T u D

cosiDgy=Dgq +sini - ;
vy sinu + vy cosu (153)

Egs. (151), (152) and (153) are useful to study the critical configurations.

The discussion of the parameters estimable from delay rate is identical to that of time
delays except that in this case Z; (Zj) and AC(I,,j are deleted. Initial reference orientation
parameters o, Mo, Ko and o, may be introduced again in order to overcome the datum
rank defect problem. However, their errors effect the equatorial coordinates of the ground
station and the equatorial velocity components of the orbiting radiotelescope in the

following manner:

BN R b
. (154a)

where dp, is identical with Eq. (43), that is, the two differential rotations do, and dx,
are inseparable and

. N . 1
{dxllc | Xk | _| 0 doo [Xk

. v _ .

dYh dYx dao 0 ||y (154b)
Differentiating Eq. (117) we get
d}k[=K0)e Cos ((De tk+¢)+K3 (tk)+K4, (155)
where

K3 (1) = Xk cos 8y cos o

+ YL cos 8 sin o

+Zy sin 8y, (156)



showing that a space VLBI time delay rate observable represents a combined function of a
sinusoid and a periodic function of satellite’s velocity components with a period of the

orbital revolution.

3.6 Mathematical Models for Space-to-Space VLBI Observations
3.6.1 Time Delay Model. Eq. (11) may be rewritten as

Xt -Xxt
cos Oy cosOly
dig= | Yk-YL || cos 3, sina J +0ACE, + ACH (ko)
ZL _ Zﬁ sin Oy (157)

where Xll(, YII(, ZII( and XIJ(, YIJ(, ZI{ are the coordinates of the orbiting radiotelescope S!
and S, respectively, in the true-of-date inertial reference frame at the epoch t.

In the model Eq. (157) we have ten unknown parameters

{X]I(, Y]I(, Z]I(, XI!, Y{, Z{a g, 61’ AC(Hq’ ACHq } (158
)

to be determined. Taking the differential of dE, with respect to the parameters,

diy = D EpdPy,
P (159)

where the Ey’s are the required partial derivatives of the time delay with respect to the
parameters of interest, indexed by p. They are as follows:

EXII( = —c080; COSQly (160)
Eyi = —cosd; sinoy (161)
Eg} = -sind, (162)
Ey] = c0sdy COSOLy (163)
Ey] = cosdy sinay (164)
E] = sin, (165)
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Eq, = cosd; [(X{ — X sinoty — (Y- YD) COSO‘!] (166)

Es, = sind; [(X{ —X{) coso + (Y - Y;{)] sinoy, — (ZE ~ Z§) cosd, (167)
Fach, =° (168)

EAC{Jrq =c (tx—to)

(169)

The following relationships are immediately apparent from above set
Exf = —Ex] (170)
Evi=-Ex; 171)
Bz =—F (172)

These parameters cannot be separated at all, and new combined unknowns must be

introduced:
AXP =X} -X{ (173)
AYY = Y- Yi (174)
AZE =7L-7} , (175)
with partial derivatives
Exx =Ex] (176)
Eayll =Ey] (177)
Enzl) =Bzl (178)

The new parameters are coordinate differences of the orbiting radiotelescopes Sland SJ at

the epoch tx .

If the Keplerian orbital elements are used instead of the satellite’s Cartesian
coordinates, then the partials in Egs. (90) - (95) may be used for the formulation. In this
case, it can be shown that the ascending nodes () and Q;) of these two satellites (S! and
S7) and the right ascension (cty) of the radio source cannot be separated in a common
adjustment, since they are appeared in the partials through (€21 — o) and (€ —ot). This
fact indicates that a space-to-space VLBI time delay observable is insensitive in the location
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of the true-of-date coordinate system where the coordinate difference components
(coordinates of the endpoints) of a space-to-space baseline are given. Because of this
linear interrelationship between these parameters, a new estimable parameter, namely Ao,
given by Eq. (41) must be introduced as unknown similarly to that of the cases of ground-
to-ground and ground-to-space baseline VLBI observables. However, it can be shown that
the equatorial components of the space-to-space baseline will be contaminated by the error

doy, of the initial reference right ascension in the following manner

AXP
AYY

daxy
dAYY

dax,”
g
dAY,

+[ 0 do, }
—d 0
%o (179)
where dAX]I(J and dAX,I(J are the differential changes in the equatorial components of the

space-to-space baseline B,

3.6.2 Time Delay Rate Model. Differentiating Eq. (157) with respect to

time we get

Sl )
- Kie— Xk cosdy cosoty
da=-| Yi—YiL || cosd,sino, |+ cACHq

Z}I( _ ZLJ( SmB(
(180)

o0 R o R . ..
where Xj, Yk,ZII( andX;J(, Yk,Z;J( are the velocity components of the orbiting
radiotelescope S! and S7, respectively, in the true-of-date inertial reference frame at the
epoch tx . The model Eq. (180) contains nine unknown parameters

vg BERyS QIPCH QRS R G |
{Xk7 Yk: Zk! st Yk’ Zk’ al’ 8[7 Acllzq} (181)

to be determined. Taking the differential of d& with respect to the parameters,

dig =, F,dP,,
P (182)

where the Fp’s are the required partial derivatives of the time delay with respect to the

parameters of interest, indexed by p. They are as follows:

Fyj = —cos 8, cos oy (183)

Fy} = —cos & sin oy (184)
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Fﬁ(=—5in 8[ (185)

Fg = cos 8y cos oy (186)
Fyl = cos & sin oy (187)
Fz = sin Y, ' (188)
B - [ 5 S S | }
o, = €08 8¢ | (X — Xio) sin oy — (Yic— Yio cos oy (189)
Fs, = sin & [(X‘I( — X} cos O + (Y- Y1) sin 0(1] — (% Z4) cos 8y (190)
o =
FAcqu c (191)
Eqs. (183) - (188) indicate a complete linear dependence

(Fed =-Fy . Fyl =-Fy¢ . Fy1 =-F;1) between the corresponding velocity components
of the orbiting radiotelescope S! and SJ, respectively. Since they cannot be separated at
all, the velocity component differences of the orbiting radiotelescope Sland SJ

AXY = X~ Xi (192)

AYY = Yi- Yx (193)
=11 H G |

AZy =74 - (194)

are, therefore, introduced as new combined unknowns with the partial derivatives

Faxl =Fxf (195)
Favf =Fyf (196)
Fprl =Fg (197)

Instead of satellite’s Cartesian coordinates, Keplerian orbital parameters should be
used in practice. For this purpose, the partials given in Egs. (132) - (137) are useful.
Using this parametrization, it can be shown that the ascending nodes (Q; and Q) of the
orbiting radiotelescopes S and SJ and the right ascension (o) of radio source are linearly
interrelated, that is, they cannot be separated in a common adjustment. This inseparable
situation for the parameters 1, Q2 and o indicates that the space-to-space baseline time
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delay rate observable is also insensitive to the orientation of the true-of-date inertial

reference system in right ascension.

In order to circumvent to estimability problem, the right ascension of one
(reference) source may be constrained to an adopted value and will not be included in the
parameter set. Therefore, the corresponding estimable parameters are the right ascension
differences Ao,y similarly to that of the previous observation models. However, the
equatorial velocity components of the space-to-space baseline will be contaminated by the

error dog of the initial reference right ascension in the following manner:

AXP

il - I
dAXik | _ | 98Xk +{ 0 da, I (198)
AYy

dAY} dAYD ~da, 0

where d AX;I(J andd AYII(J are the differential changes in the equatorial velocity components
of the space-to-space baseline BU.

3.7 Differential VLBI Observations

Besides the usual VLBI observables (time delay, delay rate and phase delay),
another very important tracking method is the differential VLBI (AVLBI) which can be
applied to the determination of angular separation and its time derivative between a
transponder on the orbiting radio observatory and natural extragalactic radio sources. As
the name suggests, AVLBI is a measurement of the differential position between the
satellite and a radio source; the measurement is made using VLBI and treating the satellite
as a radio source. For an orbiting radiotelescope having a transponder on board, AVLBI
observations from the ground of both the satellite and extragalactic radio sources in
neighboring parts of the sky can serve to orient the satellite orbit with respect to the inertial
frame formed by these sources. Since the positions of the natural radio sources are known
with an accuracy of 0001 as a result of astrometric programs, therefore the relative
satellite coordinates are measurable with comparable accuracy if the satellite passes close to,

and slowly by, one of the natural sources that constitute the inertial frame.

In the AVLBI technique signals received simultaneously from a satellite and a radio
source located close together in the sky are compared. The difference between the phases
of the signals received simultaneously from a radio source at the two ground stations,
usually called the interferometric “fringe phase”, is
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dije (t) =L By () - er, (199)

where  is the angular frequency of the transmitted signal, ¢ is the speed of light, and
B;; - e¢ is the pathlength difference [King, 1975].

If an orbiting transmitter and a natural radio source are observed simultaneously,

the differential fringe phase is given by

AbSe (1) = 0l (1) — 0ff (1) =L Byj (6 - (e —ef) 200)

where we have supposed that the two transmitter frequencies are the same. Because
AVLBI involves taking differences not only between receiving points but also between
transmitting points, it follows that any potential source of error will cancel if it is common

either to all receivers or to all transmitters.

Expressing the small term (e¢—el) in terms of the small differential right
ascension, Aoqld and differential declination, ASII(, between the directions to a natural radio

source and an orbiting transmitter, we can write
ol = o + Aaity (201a)
&L =8, + ASL, (201b)

Whenever the orbiting radiotelescope passes close to the direction of an
extragalactic radio source, AVLBI may be useful to determine the ground station —
orbiting radiotelescope direction relative to that of the source to about 0'001. Such
measurements could be used to determine precisely the orientation of the radio observatory
orbits with respect to an inertial frame and to improve the estimates of the Earth’s gravity

model parameters.
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4. ESTIMATION PROCESS AND SOME NUMERICAL TESTS

Some numerical computations were performed partly to check the mathematical
models derived for space VLBI observables and partly to explore the overall applicability of
space VLBI. In the following, first we discuss the datum definition problem in a general
sense. This is followed by a short description of the numerical adjustment. Finally, results

of the test computations are discussed.

4.1 Datum Definition for the Space/Ground VLBI Network

The general theory of network design including the geodetic datum problem and
transformations is extensively discussed in the contributions, e.g., in Grafarend and Sansé
(1985) and Teunissen (1985). In the following, the theoretical basis of the datum problem
for a combined space/ground geodetic VLBI network will be shortly described.

The parameters in Eq. (82) we are looking for cannot be derived uniquely from the
space VLBI time delay measurements. This typical situation in a combined space/ground
VLBI geodetic network can be characterized by a rank defect of the design matrix C within
the Gauss-Markov Model, see [Schaffrin, 1985 and 1990],

y-e=E(y)=Cx; o(C)=nxm, rk(C) =q<m<n, (202a)

D(y) = D(e) = Z.. = 62 P! positive-definite, (202b)

leading to the singular normal equations

NX=b; N:=CTPC,rk N=q<m, b:=CTPy (203)

Here y is the n x 1 observation vector, e the n x 1 error vector, C the n x m coefficient
matrix (positive-semidefinite), x the m x 1 parameter vector, Xee the n x n positive-
definite variance-covariance matrix of the observations, and P the respective n x n weight

matrix (as well positive-definite). E denotes “expectation” and D “dispersion”.

Eq. (203) yields a whole class of different estimates X

67



X = (CTPC)~ CTPy = (CTPC); CTPy (204)

with accordingly different variance-covariance matrices

D(X) = 62 Ni; positive-semidefinite , (205)
out of the class of reflexive symmetric g-inverses of N. Note that
Cx= C(CTPC)~ CTPy (206)
is Best Linear Uniformly Unbiased Estimation (BLUUE) being unique for any choice of
the g-inverse (CTPC)~.

From the rank deficiency of matrix C in (202a) [or (83)] follows that the unknowns x
cannot be determined uniquely, even if y € R(C). Thus, the information contained in y
is not sufficient to determine x uniquely. Note that the question of how to define vector x
so that it is estimable from y involves the so-called datum-problem. The datum-problem
deals with coordinate system definition, since coordinates are not estimable quantities from
observations alone.

One can overcome this problem by adding the minimum information needed to
determine x uniquely. Therefore, it is sufficient to introduce r additional minimal

constraints

Kx=%x,; o K)=rxm, rk(K)=r:=m—q (207)

such that the space conditions
R(KT) URCH=R™ (208a)
and

R(KT) nR(CT) = {0} (208b)

hold, where R(*) denotes the range space of the corresponding matrices. From Eqgs. (208a)
and (208b) it follows that

RKNH@®RCH=R™ (2092)
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or

RKH®LIC)=R™, (209b)

where L(C) is the nullspace of the design matrix C. (Note that the concepts of nullspace
and range space are very important for singular matrices.)

The famous restriction

r=m-q (210)

is for the number of minimal constraints which are needed to overcome the rank deficiency
of the matrix C. Eq. (208b) says that the rows of the matrices C and K ought to be
complementary (but not necessarily orthogonal). An equivalent condition with Eq. (208a)
the

N := N + KK regular, 21D

is fulfilled. In this case, we obtain the estimated parameters X and their dispersion matrix
D(X) from the extended normal equations

INEN

(212)
where A denotes some r x 1 vector of “Langrange multipliers.”
In practice, special datum constraints
Gx=0; oG)=rxm,1k(G)=r:=m—q (213)
can be obtained through the orthogonality relation
CGT=0. (214)

The rows of matrix G yield a basis of the nullspace L(C) so that condition Eq. (2092a) then
reads as

Ty .L Ty _ P m
RGN g RCH=R™ , 215)
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i.e., the range spaces R(CT) and R(GT) are perpendicular to each other, thereby

automatically implying complementarity.
If
K:=G (216)

is available for an arbitrary, but fixed r x m matrix G with 1k(G) =1 and CGT =0, then the

“free net adjustment” leads to the estimates
X =N'b (217a)
D(X) = 62 N*, (217b)
where N+ denotes the pseudo-inverse of N = CTPC . N*is found directly by
N* = (N + GTG)! - GT(GGTGGT)-IG, (218)
which is independent of the choice of the matrix G.

If G matrix is taken, the so-called minimum norm solution is found, which has a

minimal value for the trace of the variance-covariance matrix.

Adding the minimal constraints Eqgs. (207) or (213) to the model Eq. (202a) removes
the datum rank deficiency of the model. Applied to our combined space/ground VLBI
geodetic network it means, that by adding the either minimal constraints the datum is
established.

Note that if we collect the eigenvectors belonging to the r-multiple eigenvalue 0 of
the normal equation matrix CTC, we may even obtain an orthogonal basis (butitis nota
necessary requirement). Therefore, we may apply a formal Singular Value Decomposition
(SVD) to the positive semi-definite matrix CTC. Since CTC is a real symmetric semi-
positive definite matrix, it follows that its eigenvalues are non-negative. Denoting these
eigenvalues by oZ, i=1,2,3,.,m, wecanarrange themin decreasing order that

012022..20¢q>0=0g41=... =Om (219)
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For CTC, there exist q different positive eigenvalues and a r-fold (r = m-g)
eigenvalue zero. Associated with these eigenvalues exist m different mutual orthogonal

eigenvectors.

The corresponding orthogonal eigenvectors are denoted by (v1, v2, ..., vim) and we

separate them into
VO = (vla V2, s Vl') (2203)
V1= (Vg+ls Vg+2s - Vm)- (220b)

With Ac]l/2 = diag (01, 02, ..., Og) we thus have

CTCVo=VoAq 221)
and

CTC V=0 (2222)
or

CV1=0 (222b)

Since the coordinate system defining subspace R(KT) only needs to fulfill the
complementarity condition Eq. (209b), it follows that there are many more coordinate
frames possible, giving the same solutions in principle. Therefore, a relation exists
between these solutions which is called S-transformation. For instance, a very special
datum choice is given with Eq. (216). The condition Eq. (209b) is for practical purposes

most manageable, since
R(V1) =L(C) (223)

is given by the linearized S-transformation [Teunissen, 1985] and K (or K := G) is

chosen in order to define the coordinate system.
4.2 Numerical Adjustment

In the mathematical models of space VLBI time delay and delay rate observables
different type of parameters are included. However, in practice we are primarily interested
in some of them, that is, e.g., earth rotation parameters (€, 1, K) are of most interest for
geodynamical studies, or in order to improve the Earth’s gravity field, only the corrections
to the Keplerian orbital elements are to be determined. Furthermore, supposedly we have
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stochastic prior information on certain parameters. Therefore, a solution for a group of
parameters in primary interest is often sought from a partitioned system of normal
equations of the following form [Schaffrin, 1990]

[Nu le] Xl] _ ct p?
N2; N2z J{ %2 cJ 224)
where

C=[C (9] (225)

is the partitioning of the design matrix C of the space VLBI network and
X = [x1 x2] (226)

is the partitioning of the unknown parameters into a sub-vector xj with stochastic prior
information and a sub-vector xp of the parameters of interest without prior information.

The inversion of normal equation system (224) is

[ N1 Nz ]‘1 _ st -S7' N12 N3}
Nai N2z NzbNpy ST Nzi Ny Si! Nz Nab+ Nz
227)
where
S1 = N1 -Nj2 N7 Ny (228)

is the so-called “1st Schur complement”. Consequently, the estimated dispersion of the
estimated parameters X, of interest is given by

D {X2) = 62 (N3} + N3} Nag S7% N2 N3j) - (229)

However, the system of normal equations cannot be inverted because of the datum rank
defect. In practice the datum rank defect may be overcome by using certain conventions for
the coordinate system definition, that is, e.g., by the use of a minimum norm solution (see
the previous paragraph). In that case, in order to get the dispersion of the estimated
parameters Xp of interest, the pseudoinverse N* of N = CTPC given by Eq. (218) has to be
used in partitioning in the practical computations.
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4.3 Results of Test Computations

In Section 3.5, the analytical partials and linear dependency are derived for both space
VLBI observables. In the case of time delay observable, the rank defect of the normal
equation matrix N = CTC is discussed in detail. Numerical checking of rank defect by
evaluating numerical values of partials has been done in the frame of test computations.
For this purpose we computed the normal equation matrix N = CTC . Eigenvalue analysis
was used to check the rank defect of N = CTC.

In order to derive the normal equation system matrix N=CTC numerically, generated
data was used within a simulated ground/space VLBI network. For this purpose,
minimum numbers were derived for participating stations, observed satellite positions and
radio sources. The basic configuration consists of one satellite orbit for VSOP mission,
three ground-based VLBI stations with three different radio source positions.

The stations used in test computations are: Crimea, Jodrel 2 and Ovro 130. Their
coordinates are given in Table 2. The used source positions as published in [Carter et al.,
1989] are collected in Table 3.

In order to compute satellite spatial coordinates, initial orbital parameters of the VSOP
satellite were used. A standard orbit simulation parameter set for VSOP is given in Table
4. On the basis of these parameters, simulated orbit was generated for date of 01/01/1996
using a space VLBI related program package developed at the Satellite Geodetic
Observatory in Hungary and made available by I Fejes. After computation of satellite
Cartesian position and velocity component, a set of “approximate” Keplerian orbital
parameters was generated to use it for the numerical evaluation of analytical partials.

The distribution of the three ground stations and the subsatellite track of the VSOP is
shown in Fig. 17. An overall view of the stations and VSOP configuration is represented
in Fig. 18.

Simulated earth rotation parameters (€, n, x) for epoch MJID50083 (01/01/1996)
were calculated by using the prediction formulas given in [IERS Bulletin-A, 1990]. Their
numerical values of § = -("142486, n = 1"193437 and x = -0.17271 ms were used.
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Satellite: VSOP
Epoch: Start 960101 00.00
Stop 960102 00.00

Fig. 17 Subsatellite track line of VSOP and Location of the
Ground-Based VLBI Stations Used in the Test Computations

Source: 18034784
ST: 56792d 2h 24 m
UT: 50083d 19h 41 m

LY [Ty

SATELLITE : VSOP

Fig. 18 Stations and VSOP Configuration Overall View
from the Radio Source Direction
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Table 2

Station Coordinates Used in Test Computations

Station X (m) Y (m) Z(m)
Crimea 378 5227.20 255 1211.80 443 9806.93
Jodrel 2 382 2842.66 —15 3800.13 508 6287.22
Ovro 130 —240 9626.30 -447 8405.30 383 8606.70

Table 3

Source Positions Used in Test Computations

Source Right Ascension |[Declination of Arc
H M S °c "

0212 + 735 2 17 30.813210] 73 49 32.62230
1641 + 399 16 42 58.809930| 39 48 36.99380
1803 + 784 18 0 45.683850] 78 28 4.01790
Table 4

Initial Orbit Parameter Set for VSOP Satellite

Keplerian Orbital Elements of VSOP Satellite
Epoch of orbital elements 47894.00000 [MJD]
Semi major axis 16878.00000 km
Eccentricity 0.56300
Inclination 31.000 deg
Argument of perigee 0.0000 deg
Longitude of ascending node 90.0000 deg
Mean anomaly 0.0000 deg

Table 5

Observations and Unknown Parameters of the Basic
Configuration for Test Computations

Observations

Estimated Parameters

12 x 3 time delays
36

3x3 station coordinates
3x2 source coordinates
Ix6 Keplerian elements
1x3 ERP parameters
3x2 clock parameters
30
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The Greenwich Apparent Sidereal Time (GAST = ©y) was computed from observed
Universal Time UT1 data in MJD for the observation time epochs t, using formula given in
[Obenson, 1970; p.25].

The relevant numbers which show the basic configuration for the test computation are
shown in Table 5. On the basis of this configuration, there are 30 unknown parameters.
Since we have three delay observations at each epoch, we need observations at ten different
epoch for a unique solution. Instead of this minimum requirement, 12 satellite points were
included to form our basic configuration for a space/ground VLBI network. Four satellite

positions belong to one radio source observation period.

The input metric data (station coordinates and semi-major axis) were used in Mm
unit, and the angle type data unit was in radian. The speed of light was used in unit of
Mm/msec.

Using this generated data set, the partials of the time delay and delay rate with respect
to the parameters involved have been calculated. Then the design matrix C for the time
delay observable was found, and the elements of the normal equation system matrix N =
CTC was computed. The dimension of the design matrix C and the normal equation system
matrix N = CTC is 36x30 and 30x30 respectively.

Two cases were considered in the computations concerning the orbit length: 1) short-
arc (1/5 part of a full orbit), and 2) full orbit was used. In the first case, satellite positions
were taken every six minutes, and for the second case the integration time period was 30

minutes.

It is not surprising that the normal equations derived from observation equations
results in a singular system. This is confirmed by an eigenvalue analysis and using LU and

Cholesky decomposition.

The normal matrix N = CTC derived from the simulated data possesses a peculiar
eigenvalue spectrum. The spectrum resembles that of a poorly conditioned system of
equations with corresponding eigenvalues ranging from 10-7 to 10*3 in the case of “Short-
arc” configuration. In the “full orbit” situation, the eigenvalue spectra is in the range of
10-11to 10*4. As a result, the condition number (Amax/Amin), Tepresenting a measure for
the numerical stability of the system, is of the order of 1012 and 1015 respectively. In an
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ideal situation, the condition number should lie in the range from 1 to 103. This is not our
case; that is, our normal equation system is poorly conditioned in both geometric

configuration of the used space/ground VLBI network.

The only cause of the poor condition number can be the observation equations
themselves and results in an unstable normal equation matrix having approximately five
order of magnitude difference in the values of its diagonal elements. The eigenvalue
spectrum of the normal equation matrix can be improved by transformation of the design
matrix C. It can be done with multiplication of the design matrix by a diagonal matrix P
resulting a normal matrix N = ¢'C having diagonal elements approximately the same
order of magnitude in values. A multiplication of the design matrix C by a diagonal matrix

P gives

C=CP (230)

and the normal equation system matrix becomes
N=P'CTCP. 231)
The inverse of this normal matrix N is (with PT = f)')

N7 =@®cTch) =p" (cToy 1 5. (232)

The normal matrix N = C'C , found after the transformation of the design matrix C,
shows an eigenvalue spectrum having better properties. The results of this analysis are
presented in Table 6. The computed eigenvalues of the normal matrix N show nine small
eigenvalues indicating a considerable jump between the fourth and fifth eigenvalue, and in
addition a system which is still poorly conditioned. The first four small eigenvalues may
be due to true singularity. The eigenvalue spectra of the “full-orbit” network configuration
is improved. It clearly shows four small eigenvalues which may be considered as zero
with respect to the other 26 eigenvalues. The latter eigenvalues are in the range of 3.52 to
3.67 x 108. The four zero eigenvalues clarify our results for linear dependencies derived
analytically.
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Table 6

Eigenvalues of the Normal Matrices in Case

“Short-arc’” and “Full Orbit”

No. “Short-arc” “Full Orbit”
1 827 x 10~% 2.88 x 10~/
2 2.37 x 10~/ 3.24 x 10~/
3 442 x 10~/ 5.33x 10~/
4 8.14 x 10~/ 7.01x 10~/
5 1.84 x 104 3.52
6 1.59 x 10-3 9.18
7 6.85 x 10—> 6.24 x 10
8 291 x 102 1.89 x 104
9 9.67 x 102 7.47 x 102

10 3.99 6.13x 10°

11 198 x 10 1.43 x 10%

12 9.60 x 10 3.36 x 10¢

30 4,58 x 109 3.67 x 100

The eigen vectors belonging to the four zero eigenvalues are the nullspace base
vectors of the design matrix. They can be used to form the column vectors of a G matrix to
derive the pseudo-inverse N* in Eq. (218) for a minimum norm solution. Therefore,
another numerical test is to check the orthogonality of these eigen vectors with respect to
the column vectors of the design matrix, that is, to check the numerical validity of Egs.
(222a) and (222b). The results obtained for the elements of matrix multiplication expressed
by Egs. (222a) and (222b) are of the order of 10-6to 104,

As discussed in section 3.5.1 singularity of the normal equations is caused by linear
dependency of the column vectors in the design matrix. In order to confirm our results
given by Egs. (108) and (109) in another way, the so-called LU- decomposmon and
Cholesky decomposition of the normal equation system matrix N = C'C have been
performed as an independent procedure. For LU- decomposition a routine in [Press et al.,
1986] has been used. The Cholesky reduction algorithm is given by Stewart (1973; p.
142). The parameters to be solved for are involved in the normal equation system in the

following order:

(X1, Y1, Z1, X2, Y2, Zo, X3, Y3, Z3,3,¢,1, 0, &, M, §, 1, K,

al’ 81: 0«2a 829 (x'3s 63a Acérl’ ACIIr17 AC(I)rz, AC{TZ’ AC(I)I:;’ ACL@} (223)
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Both types of decomposition of normal matrix show small values for the diagonal elements
corresponding to the earth rotation parameters and the right ascension of the third radio
sources. In the case of LLU-decomposition of c'c , the small values in question are in the
range of 107 to 10-5. The corresponding values from Cholesky decomposition are of the
order of 10-3. They may be considered as zero with respect to the other diagonal elements
in both decomposed forms of normal matrix. A zero value means complete dependence on

(a linear combination of) other unknown parameters.

A simple checking for linear dependencies has also been performed by calculation
of the numerical values of the Eqgs. (108) - (109) and Eqgs. (149) - (150). The validity of
Egs. (111) - (113) and Eqgs. (151) - (153) derived for critical configuration study has been

checked numerically as well.
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5. SUMMARY AND RECOMMENDATIONS
Investigations presented in this study are summarized as follows:

(1) Qualitative expressions have been developed to demonstrate the relationship
between the space VLBI observables (time delay and delay rate) and the solve for
parameters, and to explore estimability problems inherent in the space VLBI system.
Instead of Cartesian satellite coordinates, Keplerian orbital elements were introduced into
the observation equations and partial derivatives of space VLBI observables with respect to
the parameters of interest were derived. A sensitivity analysis using these partials has been
carried out. The mathematical models for ground-to-ground baseline VLBI observables are
also given for comparison. Simplified models were used for the space-to-space VLBI

observation equations.

(2) Linear dependencies between partial derivatives have been derived analytically.
Their expressions for both space VLBI (ground-to-space baseline time delay and delay rate)
observables are formally similar. Four independent linear dependencies were found
indicating that the number of the rank defect of the corresponding normal equation matrix is
four. It has been shown through analytical derivation that the linear dependencies between
partials of the ground-to-space baseline VLBI observables are formally very similar to ones
of the ground-to-ground VLBI observables. However, in the case of both ground-to-space
baseline VLBI observables the expression of linear dependency between earth rotation
parameter ¥ and the right ascension of radio source o were extended by a new term for
ascending node Q of the satellite orbit indicating that these three parameters are
nonseparable in a common adjustment.

(3) A geometric interpretation of datum rank defect (analytically derived linear
dependencies) in the space VLBI time delay observation equations has been presented. The
rank defects expressed by linear dependencies are confirmed using different numerical
methods with simulated data set in the frame of test computations. The eigenvalue analysis
and both decomposition (Cholesky and LU of a lower and an upper triangular matrix) of
the normal equation matrix indicate that the number of datum rank defects is four
concerning the mathematical model used for the space VLBI time delay observable.
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the normal equation matrix indicate that the number of datum rank defects is four
concerning the mathematical model used for the space VLBI time delay observable.

(4) In searching linear dependencies, analytical expressions were derived to study
critical configuration in the case of both ground-based and space VLBI. They are useful in
observation design work. A check of these relations was performed by test computation.

(5) Datum definition problem for space VLBI network is theoretically described
within the framework of rank defect Gauss-Markov Model. Proper numerical adjustment
procedure is given which can be used for covariance analysis of the parameters of geodetic

interest.

In order to use successfully and efficiently the space VLBI observations in geodesy
and geodynamics, several additional studies need to be made in order to investigate in full
detail the potential advantages and the possible problems of the space VLBI technique.
There have been no simulation studies so far to indicate the expected accuracies of the space
VLBI system in the determination of the parameters of astrometric and geodetic-
geodynamic interest. Therefore, a feasibility study should be undertaken in order to show
whether or not space VLBI can provide real improvements in the potential application in
geodesy and geodynamics. Hence, in order to give a feeling of what one should expect
from such a system, a detailed sensitivity analysis needs to be carried out in order to
estimate the accuracy achievable in determining various parameters. More emphasis should
be given to the determination of earth rotation parameters for reference frame studies and to
the estimation of orbit parameters to improve the gravity field determination. On the basis
of this work, we would recommend that:

a) The mathematical model be augmented to include additional effects like variation
of Keplerian orbital elements. Using the extended mathematical model, the rank defect

analysis should be repeated.

b) Simulations in order to determine optimum global station network and orbit
configuration, and accuracy estimates for the various parameters are needed. These would
require extended simulation studies and error analysis using data from a realistic

observational pattern.

81



¢) Another area which needs to be developed in the near future is the software
development for different tasks involved in space VLBI geodetic data analysis.

d) Such investigations should provide sufficient background for the inclusion of
space VLBI observable in geodetic data processing programs (e.g., GEODYN).
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APPENDIX A

Keplerian—Cartesian Transformations

First, the transformation between Keplerian orbital elements {a, e, i, ®, Q, M} and
Cartesian orbital (rectangular) coordinates {X, Y, Z, X, Y, Z} is considered. This is
followed by the description of partial derivatives of the Cartesian orbital coordinates with
respect to the Keplerian elements and partial derivatives of the Keplerian elements with

respect to the Cartesian elements.

A1l. Kepler Transformation of Coordinate and Velocity Type
Transformation of Kepler elements {a, e, i, ®, Q, M} into inertial Cartesian

position vector T :

X cos Qcosu-—sin Q sinucosi
F='Y |= Tl sinQcosu+cosQsinucosi|:
Z sinu sin i (A.1)
where
r=a(l —ecosE)
u=w+f &g
M=E-esinE (AS)
sin f=V1 —e? sin E(1 —e cos E) (A.6)
cosf=(cos E-e)/(1 —ecosE) (A7)

E is the eccentric anomaly.
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Transformation of Kepler elements {a, e, i, ®, Q, M} into inertial Cartesian velocity vector

I
B _ cochosu—sianinucosi
F=1Y |=Vr igin Qcosu+cos Qsinucosi
7 sinusini
cos Qsinu +sin Q cos u cos i (A.8)
—vy | sin Q sin u—cos £ cos u cos i
—cosusini
where
ve=Yu/pesinf (A.9)
vy =VYu/p (1 +ecosf) (A.10)
p=a(l-e? (A.11)

[L is the gravitational constant times the mass of the Earth.

An equivalent conversion from Keplerian elements to inertial Cartesian position and
velocity vectors (r and 1):

} acosE—ae

a(l_e2 cosf '

=-(-1+Lcc—ss)5'{sinf a¥l—eZsinE
0 0
—-sinE

= na —

q 1 —ecosE) Y1-e2cosE

0

R, =R; (-Q)- Ri(-) - Rs ()

r=RmR

f=RMq

where n isthe mean motion.

A2. Conversion from Inertial Cartesian Position and Velocity Vectors to Keplerian
Elements (Inverse Kepler Transformation)

Compute radial distance r and tangential velocity v :

r=|r| =VX2+Y?+Z2 (A.17)
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v=|i| =YX+ Y+ 22
Compute angular momentum vector h:
YZ-ZY
h=rxr =| ZX X7 {
XY - YX

h = Yh&+ h¢ + hZ

Compute inclination angle i:
. h
—cos-1 [ 2z
i=cos ( h )
Compute ellipse semi-major axis a :

a

=;__\i'l
¢ [r GM}

vz=cM[z_L]
T

Compute ellipse eccentricity e :

h2=GM a(l -2

o<[1-[2]”

Compute longitude of ascending node €2 :

Q =tan’! (_}L—XY)
Compute true anomaly f:

f=tan’ (sin f)
cosf)’

where
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(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



a(l-e?) 1

cosf=
er e

a(l—e?)(r-r)
reh

sinf=

Compute eccentric anomaly E:

E =tan-! [ SInE
a (cosE

where

COSE:LQ‘S—flc—
l1+ecosf

. Y1—¢2 sinf
sinE=———
l+ecosf
Use Kepler’s equation
M=E-esinE

to compute the mean anomaly M.

Compute geocentric angle u :

u= tan'l (_Sl_u_)
cosu

where

XcosQ+Ysin
T

cosu=

(Ycos Q-XsinQ)cosi+Zsini

sinu =
r

Compute argument of perigee :

w=u-f
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(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
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(A.37)



A3. Partial Derivatives of Inertial Cartesian Coordinates and Velocity Components

with respect to Keplerian Elements (Linear Kepler transformation)

Elements of the linear Kepler transformation matrix of position type:

aai=(1—e cos E) (cos Q cos u—sin Q sinucos i)

a

Y . . .

a—=(1—ecosE) (sin  cosu +cos  sinu cos 1)
a

a—Z:(l—e cos E) sinu sini

da

%2(~ = [a(e —cos E)/(1 —ecos E)] (cos Q cosu—sin Q sinu cosi)—
e

—asinf [14_1_—1?%5_]3_} (cos Q sinu +sin Q cosu cos i)
—e
Y ) . .
a—z[a(c—cos E)/(1 —e cos E)] (cos Q cosu+sin€ sinu cosi)—
e
. 1-e cosE . . .
—a sinf 1+———1—2 (sin Q sinu—cos Q cosu cosi)
—e
a—Z=[a(e—cosE)/(1—ccosE)]sinusini+asinf 14 L8 cos
de 1-¢e2
aﬁ=—r(cosQ sin u + sin £ cos u cos i)
o)
a—Y=—r(sinQ sinu—cos Q cosu cos i)
0w
0Z .
—=rT cosu sini
W
—),(= r sinQ sinu sini
di
a—Y.=—rcostinusini
di
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(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)



dZ

—=r sinu cosi

i (A.49)
i)—(-=—r(sin Q cos u+cos Qsinucosi)
0Q (A.50)
B_Y= r (cos Q cos u — sin £ sin u cos i)
0Q (A.51)
9Z _
0Q (A.52)
X . . . .
51\—/[ =[a e sin E/(1 —e cos E)] (cos Q cos u—sin Q sinu cos 1) —
— [a sin f/sin E] (cos €2 sin u + sin Q cos u cos 1)

(A.53)
aY . . . .
M [aesin E/(1 —e cos E)] (sin Q cos u + cos Q sin u cos i) —

—[a sin f/sin E] (sin  sin u —cos Q cos u cos i)

(A.54)
0Z . . . . . .
—=[aesin E/(1 -ecosE)] sinusini+ [asinf{/sin E] cosusini
oM (A.55)
Elements of the linear Kepler transformation matrix of velocity type:
aX VI‘ N . . Vu . N .
— =—=L (cos Q cos u —sin £ sin u cos i) + =2 (cos £ sin u + sin £ cos u cos i)
da 2a 2a (A.56)
oY \ W . o, Vg oo . .
—=—2—(31chosu + cos €2 sin u cos 1)+Z(s1anmu—cos Q cosucosi)
da  2a (A.57)
a—z=—(XL sinu sini+~% cosu sini)
da  \2a 2a (A.58)
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0X 1

_—= - Q —sinQ cosi sinu) -
% Vi e (1_c cosE) (cos 2 cosu-—sin in u)
—Vy ¢ +cos f (cos Q sinu+sin Q cosi cosu)
(1 —e2)(1 +ecosf) (A.59)
%§—= - vre (1_; cosE) (sin Q cosu+cos Q sinu cosi)—

e+cosf (sin Q sinu—cos Q cosu cosi)

_Vu

(1-e2)(1 +ecosf) (A.60)
g = -V 1 sinu sini
de e (1-¢ cosE)

+ vy ¢ +cosf cosu sini

(1 -e2)(1 +ecosf) (A.61)
—=—v; (cos Q sin u + sin  cos u cos i) — v, (cos €2 cos u — sin 2 sin u cos i)
0w (A.62)
oY . . : : . .
—=—v; (sin Q sin u —cos Q2 cos u cos i) — v, (sin Q cos u + cos € sin u cos i)
om (A.63)
oZ . . .
— = v, cosu sini—vy sinu sini
om (A.64)
QZ,(— =v, sinQ sinu sini+ vy sin Q cosu sini
odi (A.65)
aY . . .
~——= —v;, cosu sinu sini—v, cos Q cosu sini
oi (A.66)
dZ . . .
— = Vv, sinu cosi+vy, cosu cosi
oi (A.67)
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0X

2 = — v, (sin Q cos u + cos £ sin u cos i) + vy, (sin Q sin u — cos L cos u cos i)

0Q (A.68)
oY . : . . : .

— = v; (cos Q cos u — sin Q sin u cos i) — v, (cos Q sin u + sin L cos u cos 1)

0Q (A.69)
9Z _

9Q (A.70)

9X _ Vr cos f— vy sin f (cos Q cosu—sin Q sinu cos i)
oM sinE (1 —e cosE) (A.71)

oY vy cosf—vysinf . . .
=L U (sin Q cosu+cos Q sinu cos i)

oM sinE (1-—e cosE) (A.72)
0Z _vicosf-wysinf . oo .
oM sinE (1 —e cosE) (A.73)

A 4. Partal Derivatives of Keplerian Elements with respect to Inertial Cartesian
Coordinates and Velocity Components (Inverse Linear Kepler Transformation)

Notation:

s=X,Y,Z X,Y,7Z respectively (A.74)

Partial derivative of the radial component:

_81 =X , 1, L, 0,0,0 respectively

gs T T (A.75)
Partial derivative of the velocity component:

oV =0,0,0, XY Z respectively

ds vV (A.76)
Partial derivative of the angular momentum h :

oh 1 chx ohy ohyz

—=21|h +h +h ,

os h ( X 3s Yos % os

(A.77)
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where

dhx _ 0,Z,-Y,0,-Z,Y respectively,

S

ohy

vl -7,0,X,Z,0,-X respectively ,
s

dhz

= Y,-X,0,-Y,X,0 respectively .
s

Partial derivative of (r - ) :
r-r=XX+YY +Z7Z7Z

d(r-r)

o= X,Y,Z,X,Y,Z respectively
s

Partial derivative of the inclination i:

ahY ahz

ohx
hxh —(h h
i xhz= (%+%)

ds h? (h&+ h%)”2

+ hyh

Partial derivative of the semi-major axis a:

da _ 2 (;_alJrZ_VQX)

ds | r*ds GM os
242 Or :
da_ | r29s’ S=X Y2
. 2 X, =X Y.2
s

Partial derivative of the eccentricity e:

de_1-c2da 1-edh
Js 2ae Js he Qs
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(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)
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Partial derivative of the ascending node 2 :

0Q 1 ohy , odhx
o2 _ hx Y _h
s h§+h%(xas Yasj

Partial derivative of the true anomaly f:

Of 1-€2|cosf rn. oy«
—a;———rg—[——(r-r)—smf
de

h
_~alcosf (r.p)—sinf | =
2r{ b (r-r) smf]aS

_a(l—ez) cos f ]_82
reh [ h (r- ) os

da

Js

N a(l-e?

o(r - r)
reh f]

os

[cos

Q

3 r
+Smf
re

&

Partial derivative of the eccentric anomaly E:

E_ {I-¢& [g_sinf a_e}

§;=1+ecosf os 1—e2 0s

Partial derivative of the mean anomaly M :

. .0e
oVt ___ e T 41 EX=
ds alyl-e2 os {az'dl—e2+ }sm os
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Partial derivative of u:

Ju

™ %{[—Y sin Q cos icosu~X cos L2 cosicosu
S

+ X sin Q sin u — Y cos Q sin u] aaQ
s

oi

ds

+[XsinQsinicosu—Ycostinicosu+Zcosicosu]

+[~ sin Q cos i cos u — cos Q sin u] =—
s

+[cos Q cos i cos u — sin Q sin u] —

os
+ [sin icos u] B_Z_ }
J (A91)
Partial derivative of the argument of perigee ®:
o0 _du_df
s ds ds (A.92)

AS. Let the matrix K. representing the linear Kepler transformation matrix whose

elements are the partial derivative of the Cartesian orbital elements with respect to the
Keplerian elements:

dX dX dX dX 9X dX

da de 9 0w oQ M

dY dY dY dY oY oY

da de 9 dm 9Q oM

0Z 0Z 0Z dZ dZ JZ

da de di 0w dQ oM

9X 9X X 9X 9% 9X

da de 0i dmw 3Q2 oM
dY oY dY 9Y 9Y 9Y

da de 0i o 0Q oM

azazar oz o o

da de di dw d) oM

— (A.93)
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Let the partial derivatives of the Keplerian orbital elements with respect to the
Cartesian elements be the elements of the inverse linear Kepler transformation matrix K¢ in
the following form:

0X dY 9Z 9X 9Y 0Z
de de de de de de

di di di di di oi

K° =

0X 9Y 90Z 39X 9Y 97
0Q 9Q 9Q 9Q Q2 0Q

0X oY 9Z 9X 9Y oZ
dM oM oM dM dM dM

| 09X dY 0Z 9X 9Y 9Z _ (A.94)

Then
KK*=KK.=1. (A.95)

where K. and K€ are the Jacobians of transformation from Keplerian orbital elements into
Cartesian coordinates respectively from Cartesian coordinates into Keplerian orbital

elements.

In order to be safe from the unavoidable typing errors in the relations given in this
Appendix, the program listing of these relations is given in Appendix B for a comparison
and practical use. The program was tested for numerical data. The output values of a test
run are also given in Appendix B.
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APPENDIX B

Fortran Program DOKEPLER for Keplerian-Cartesian Transformations

The program is written in Fortran 77 and consists, beside the main program unit, of
two subroutines. The main program unit reads the input data, organizes the work of the

subroutines and creates two new data files. The subroutines are as follows:

1) Subroutine LIKEPTRA calculates the Cartesian position and velocity components
of the satellite and their partial derivatives with respect to the Keplerian orbital elements,
provided the Keplerian orbital elements (a, e, i, ®, Q, M, and f,E) and the Earth’s
gravitational constant, GM are known. The output values are the Cartesian satellite
coordinates X,Y,Z and velocity components X,Y,Z as well as the elements of the 6 x 6
Jacobian K¢ of transformation from Keplerian orbital elements into Cartesian coordinates.

2) Subroutine INKEPTRA calculates the Keplerian orbital elements (a, e, i, ®, Q,
M, and f,E) together with the elements of the 6 x 6 Jacobian K€ of transformation from
Cartesian coordinates into Keplerian orbital elements. The input data, which should be
defined before calling the subroutine, are the rectangular components of position and

velocity of the satellite and the Earth’s gravitational constant.

The program calculates the elements of both multiplication matrices of the Jacobians,
K¢ and K€ in order to check Eq. (A.95) in Appendix A.

After the listing of the program and the subroutines, this Appendix contains numerical
examples for Keplerian-Cartesian Transformations and for checking the multiplication
products of the Jacobians. Instantaneous VSOP satellite position and velocity components
respectively Keplerian orbital elements at epoch MJD 50083.000 (or GAST =
105854.567125788) have been used.
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********************************'k***************************** *

*x*** PROGRAM DOKEPLER *#***%*
TO CCMPUTE THE KEPLERIAN-CARTESIAN TRANSFORMATIONS AND THE
ELEMENTS OF THE CORRESPONDING LINEAR KEPLER TRANSFORMATION
MATRICES (KC,KCI) USING SUBROUTINES LIKEPTRA AND INKEPTRA
FINAL PROGRAM TESTED FOR DATA
**************************************************************

IMPLICIT REAL*8(A-H,0-Z)

DOUBLE PRECISION KC(6,6),KCI(6,6)

DIMENSION UN(6,6),UNI(6,6)

OPEN(UNIT=1,FILE="'A:¢DATA¢KEPLERCA.DAT')

OPEN(UNIT=2,FILE='A:¢DATACKEPLERCA.QUT"')

OPEN(UNIT=3,FILE='A:¢DATA¢CKEPLERUN.OUT')

READ(1,*)A0,EQ,XIO

READ(1, *)OMO,OMEC, XMO

READ(1,*)F0,EAQ

READ(1, *)X0,Y0,2Z0

READ(1, *)XD0O,¥YDG, ZDO

CALL LIKEPTRA(AO,EO,XIO,OMC,OMEO,XMO,FO0,EAQ,XS,YS,2S,XSD,
*YSD, ZSD, KC)

WRITE(2,6)XS,Y¥S,2S

WRITE(2,6)XSD,Y¥SD,ZSD

* % % F % ¥ ¥
* ok * * % *

6 FORMAT(3(1X,F23.11))
Do 1 I=1,6
WRITE(2,7) (KC(I,J),J=1,3)
WRITE(2,7) (KC(I,J),J=4,6)
1 CONTINUE
7 FORMAT(3(1X,F23.13))

CALL INKEPTRA(XO,YO,Z0,XD0,Y¥YD0,ZD0,AS,ES, XIS,
*OMS,OMES, XMS,FS,EAS,KCI)

WRITE(2,*)AS,ES,XIS

WRITE(2,*)OMS,OMES, XMS

WRITE(2,*)FS,EAS

DO 2 I=1,6

WRITE(2,8) (KCI(I,J),J=1,3)

WRITE(2,8) (KCI(I,J),J=4,6)

2 CONTINUE

8 FORMAT(3(1X,F23.17))
CALL MATMULT(KC,KCI,UN,6,6,6)
DO 3 I=1,6

WRITE(3,4) (UN(I,J),J=1,3)
WRITE(3,4) (UN(I,J),J=4,6)

3 CONTINUE

4 FORMAT(3(1X,F23.20))
CALL MATMULT(KCI,KC,UNI,6,6,6)
DO 5 I=1,6

WRITE(3,4) (UNI(I,J),J=1,3)
WRITE(3,4) (UNI(I,J),J=4,6)
S CONTINUE

CLOSE(1l)

CLOSE(2)

CLOSE(3)

STOP

END
CSINCLUDE A:¢SVLBIC¢LIKEPTRA
CSINCLUDE A:¢SVLBI¢INKEPTRA
CSINCLUDE A:¢SVLBI¢MATMULT
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**xx%* SUBROUTINE LIKEPTRA **#**%

TO CONVERT THE KEPLERIAN ELEMENTS INTO SATELLITE'S CARTESIAN
POSITION AND VELOCITY VECTORS AND TO COMPUTE THE ELEMENTS OF

THE LINEAR KEPLER TRANSFORMATION MATRIX (KC)

LER R AR REERE RS RSS2 22 22 XX 22 a2 X222 X2 222X R R R R R R R R FY

TO

TO

TO

TO

TO

TO

TO

SUBROUTINE LIKEPTRA(A,E,XI,OM,OME,XM,F,bEA,X,Y,2,XD,YD,2ZD,KC
IMPLICIT REAL*8(A-H,0-2)

DOUBLE PRECISION KC(6,6)

GM=398600.436D9

COMPUTE THE COEFFICIENTS
U=0OM+F
COM=DCOS (OME)

SOM=DSIN(OME)
SU=DSIN(U)

CU=DCOS (U)
SI=DSIN(XI)
CI=DCOS(XI)
SF=DSIN(F)
CF=DCCS(F)
SE=DSIN(EA)
CE=DCOS(EA)
P=A*(1.0-E*E)
R=A*(1.0-E*CE)
VR=E*SF*DSQRT(GM/P)
VU=(1.0+E*CF)*DSQRT(GM/P)

COMPUTE SATELLITE COORDINATES
X=R* (COM*CU-SOM*SU*CI)

Y=R* ( SOM*CU+COM*SU*CI)
Z=R*SU*SI

COMPUTE SATELLITE VELOCITY COMPONENTS
XD=VR* (COM*CU-SOM*SU*CI ) -VU* (COM*SU+SOM*CU*CI )
YD=VR* (SOCM*CU+COM*SU*CI ) -VU* (SOM*SU-COM*CU*CI )
ZD=VR*SU*SI+VU*CU*SI

COMPUTE THE COEFFICIENTS OF THE PARTIALS
Al=(A*(E-CE))/{(1.0-E*CE)
A2=1.0+(1.0-E*CE)/(1.0-E*E)
A3=(A*E*SE)/(1.0-E*CE)

A4=-1.0/(E*(1.0-E*CE))
AS5=(E+CF)/((1.0-E*E)*(1.0+E*CF))
A6=(VR*CF~VU*SF)/(SE*(1.0-E*CE) )

COMPUTE THE PARTIALS of X
KC(1,1)=(1.0-E*CE)*(COM*CU-SOM*SU*CI)
KC(1,2)=A1*(COM*CU-SOM*SU*CI)-A*SF*A2*(COM*SU+SOM*CU*CI)
KC(1l,3)=R*SOM*SU*SI
KC(1,4)=-R*(COM*SU+SOM*CU*CI)
KC(1,5)=-R*(SOM*CU+COM#*SU*CI)
KC(1,6)=A3*(COM*CU~-SOM*SU*CI)-(A*SF/SE)* (COM*SU+SOM*CU*CI)

COMPUTE THE PARTIALS of Y
KC(2,1)=(1.0-E*CE)*(SOM*CU+COM*SU*CI)
KC(2,2)=A1*(SOM*CU+COM*SU*CI)-A*SF*A2*(SOM*SU-COM*CU*CI)
KC(2,3)=-R*COM*SU*SI
KC(2,4)=-R*(SOM*SU-COM*CU*CI)
KC(2,5)=R*(COM*CU-SOM*SU*CI)

KC(2,6)=A3* (SOM*CU+COM*SU*CI)~(A*SF/SE)* (SOM*SU-COM*CU*CI )

COMPUTE THE PARTIALS of 2
KC(3,1)=(1.0-E*CZ)*SU*SI
KC(3,2)=A1*SU*SI+A*SF*A2*CU*SI
KC(3,3)=R*SU*CI
KC(3,4)=R*CU*SI

*
*
*
*
*
*
)



KC(3,5)=0.0
KC(3,6)=A3*SU*SI+(A*SF/SE)*CU*SI

C TO COMPUTE THE PARTIALS of XD
KC(4,1)=(~-VR*(COM*CU-SOM*SU*CI)+VU*(COM*SU+SOM*CU*CI))/(2.0*A)
KC(4,2)=VR*A4*(COM*CU-SOM*CI*SU)-VU*AS* (COM*SU+SOM*CI*CU)
KC(4,3)=VR*SOM*SU*SI+VU*SOM*CU*SI
KC(4,4)=-VR* (COM*SU+SOM*CU*CI)-VU* (COM*CU-SOM*SU*CI)
KC(4,5)=-VR*(SOM*CU+COM*SU*C1I)+VU* (SOM*SU-COM*CU*CI)
KC(4,6)=A6*(COM*CU-SOM*SU*CI)

C TO COMPUTE THE PARTIALS of YD
KC(5,1)=(-VR*(SOM*CU+COM*SU*CI)+VU*(SOM*SU-COM*CU*CI))/(2.0*A)
KC(5,2)=VR*A4*(SOM*CU+COM*CI*SU)-VU*AS5* (SOM*SU-COM*CI*CU)
KC(5,3)=-VR*COM*SU*SI-VU*COM*CU*SI
KC(5,4)=-VR* (SOM*SU-COM*CU*CT ) -VU* ( SOM*CU+COM*SU*CI )
KC(5,5)=VR* (COM*CU-SOM*SU*CI)-VU* (COM*SU+SOM*CU*CI)
KC(5,6)=A6*(SOM*CU+COM*SU*CI)

C TO COMPUTE THE PARTIALS of ZD
KC(6,1)=(-VR*SU*SI-VU*CU*SI)/(2.0*A)
KC(6,2)=VR*A4*SU*SI+VU*AS*CU*SI
KC(6,3)=VR*SU*CI+VU*CU*CI
KC(6,4)=VR*CU*SI-VU*SU*SI

KC(6,5)=0.0
KC(6,6)=A6*SU*SIL
RETURN

END
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*xx%k* SUBROUTINE INKEPTRA ****%*
TO CONVERT THE SATELLITE'S CARTESIAN POSITION AND VELOCITY
VECTORS INTO KEPLERIAN ORBITAL ELEMENTS AND TO COMPUTE THE
ELEMENTS OF THE INVERZ LINEAR KEPLER TRANSFORMATION MATRIX
khkhkhkhhkhkhhkhhkhhkhhkhkhhkhhhhhhhohkhkdhhhhkhkhdhhhhkhddkdedhdddddhhdddhhikihdikiki
SUBROUTINE INKEPTRA(X,Y,Z,XD,Y¥YD,ZD,A,E,XI,OM,OME,XM,F,EA,KCI)
IMPLICIT REAL*8(A-H,0-2)
DOUBLE PRECISION KCI(6,6)
GM=398600.436D9
R=DSQRT(X**2+Y**2+Z**2)
V=DSQRT (XD**2+YD**2+ZD**2)
RRD=X*XD+Y*YD+Z*ZD
C MOMENTUM VECTOR
HX=Y*ZD-Z*¥YD
HY=Z2*XD-X*ZD
HZ=X*YD-Y*XD
H=DSQRT(HX**2+HY**2+HZ**2)
INCLINATION (i)
XI=DACOS(HZ/H)
SEMI-MAJOR AXIS (a)
A=(R*GM)/(2.DO*GM-R*V*V)
ECCENTRICITY (e)
E=DSQRT(1.DO-(H*H)/(A*GM))
LONGITUDE OF ASCENDING NODE (OMEGA)
OME=DATANZ (HX, -HY)
TRUE ANOMALY (f)
COSF=(A*(1.0-E*E)/(E*R))-{1.DO/E)
SINF=A*(1.DO-E*E)*RRD/(R*E*H)
F=DATAN2 (SINF,COSF)
C ECCENTRIC ANOMALY (E)
COSEA={COSF+E)/(1.D0+E*COSF)
SINEA=({DSQRT(1.DO-E*E) ) *SINF/(1.DO+E*COSF)

* ¥ * * X *
* R A A * F

N Q0 Q0 Q 0



EA=DATAN2(SINEA,COSEA)

C MEAN ANOMALY (M)

=EA-E*SINEA

C GEOCENTRIC ANGLE (U)

COSU=(X*DCOS(OME ) +Y*DSIN(OME) ) /R
SINU=((Y*DCOS(OME)-X*DSIN(OME))*DCOS(XI)+Z*DSIN(XI))/R
U=DATAN2 (SINU,COSU)

C ARGUEMENT OF PERIGEE (omega)

OM=U-F

C PARTIALS OF A (semi-major axis)

KCI(1,1)=2.0%(A**2)*X/(R**3)
KCI(1,2)=2.0%(A**2)*Y/(R**3)
KCI(1,3)=2.0*(A**2)*Z/(R**3)

KCI(1,4)=2.0*%(A**2)*XD/GM
KCI(1,5)=2.0*(A**2)*YD/GM
KCI(1,6)=2.0*(A**2)*ZD/GM

C PARTIALS OF E (eccentricity)

RCI(2,1)=(1.0-E*E)*KCI(1,1)/(2.0*A*E)~-(1.0-E*E)* (HZ*YD-HY*ZD)/

* (E*H*H)
RC1(2,2)=(1.0-E*E)*KCI(1,2)/(2.0%A*E)~(1.0-E*E)*(HX*ZD-HZ*XD)/

* (E*H*H)
KCI1(2,3)=(1.0-E*E)*KCI(1,3)/(2.0%A*E)-(1.0-E*E)* (HY*XD-HX*YD) /

* (E*H*H)
RCI(2,4)=(1.0-E*E)*KCI(1,4)/(2.0%A%E)-(1.0-E*E)*(HY*Z-HZ+Y)/

* (E*H*H)
KCI(2,5)=(1.0-E*E)*KCI(1,5)/(2.0%A*E)-(1.0-E*E)*(HZ*X-HX*Z)/

* (E*H*H)
RCL1(2,6)=(1.0-E*E)*KCI(1,6)/(2.0%A%E)-(1.0-E*E)* (HX*Y-HY*X)/

* ( E*H*H)

C PARTIALS OF I (inclination)

KCI(3,1)=(—HY*HZ*ZD—(HX*HX+HY*HY)*YD)/(H*H*DSQRT(HX*HX+HY*HY))
KCI(3,2)=(HX*HZ*ZD+(HX*HX+HY*HY)*XD)/(H*H*DSQRT(HX*HX+HY*HY))
KCI(3,3)=(—HX*HZ*YD+HY*HZ*XD)/(H*H*DSQRT(HX*HX+HY*HY))
KCI(3,4)=(HY*HZ*Z+(HX*HX+HY*HY)*Y)/(H*H*DSQRT(HX*HX+HY*HY))
KCI(3,5)=(—HX*HZ*Z—(HX*HX+HY*HY)*X)/(H*H*DSQRT(HX*HX+HY*HY))
KCI(3,6)=(-HY*HZ*X+HX*HZ*Y)/(H*H*DSQRT(HX*HX+HY*HY))

C PARTIALS of OMEGA (ascending node)

KCI(5,1)=(—HX*ZD)/(HX*HX+HY*HY)
KCI(S,2)=(—HY*ZD)/(HX*HX+HY*HY)
KCI(5,3)=(HX*XD+HY*YD)/(HX*HX+HY*HY)
KCI(5,4)=(HX*Z)/(HX*HX+HY*HY)
KCI(5,5)=(HY*Z)/(HX*HX+HY*HY)
KCI(5,6)=(-HX*X-HY*Y)/(HX*HX+HY*HY)

C PARTIALS of M (mean anomaly)

Fl=(1.0~E*E)*(COSF*RRD/H—SINF)*KCI(l,l)/(R*E)—Z.*A*(COSF*RRD/H-
*SINF)*KCI(Z,I)/R—(A*(l.O—E*E)/(R*E*H))*(COSF*RRD/H)*(HZ*YD-HY*ZD
*)/H+(A*(1.0-E*E)/(R*E*H))*COSF*XD+(SINF*X/(R*R*E))

F2=(l.O—E*E)*(COSF*RRD/H—SINF)*KCI(l,Z)/(R*E)—Z.*A*(COSF*RRD/H—
*SINF)*KCI(Z,Z)/R—(A*(l.O-E*E)/(R*E*H))*(COSF*RRD/H)*(HX*ZD—HZ*XD
*)/H+(A*(l.O—E*E)/(R*E*H))*COSF*YD+(SINF*Y/(R*R*E))

F3=(1.0-E*E)*(COSF*RRD/H-SINF)*KCI(1,3)/(R*E)—2.*A*(COSF*RRD/H—
*SINF)*KCI(2,3)/R—(A*(l.O—E*E)/(R*E*H))*(COSF*RRD/H)*(HY*XD—HX*YD
*)/H+(A*(l.O—E*E)/(R*E*H))*COSF*ZD+(SINF*Z/(R*R*E))

F4=(l.O—E*E)*(COSF*RRD/H—SINF)*KCI(1,4)/(R*E)—2.*A*(COSF*RRD/H-
*SINF)*KCI(2,4)/R—(A*(l.O—E*E)/(R*E*H))*(COSF*RRD/H)*(HY*Z-HZ*Y)
*/H+(A*(1.0-E*E)/(R*E*H) ) *COSF*X

F5=(1.0—E*E)*(COSF*RRD/H—SINF)*KCI(l,S)/(R*E)—Z.*A*(COSF*RRD/H—
*SINF)*KCI(2,S)/R-(A*(1.0~E*E)/(R*E*H))*(COSF*RRD/H)*(HZ*X-HX*Z)
*/H+(A*(1.0-E*E)/(R*E*H) ) *COSF*Y

F6=(1.0—E*E)*(COSF*RRD/H-SINF)*KCI(l,G)/(R*E)—Z.*A*(COSF*RRD/H—



*SINF)*KCI(2,6)/R—(A*(l.O—E*E)/(R*E*H))*(COSF*RRD/H)*(HX*Y-HY*X)
*/H+(A*(1.0—E*E)/(R*E*H))*COSF*Z
El=((DSQRT(1.0-E*E))/(1.0+E*COSF))*(Fl-SINF*KCI(2,1)/(1.0-E*E))
E2=((DSQRT(1.0—E*E))/(1.0+E*COSF))*(FZ—SINF*KCI(2,2)/(1.0—E*E))
E3=((DSQRT(1.0—E*E))/(1.0+E*COSF))*(F3-SINF*KCI(2,3)/(1.0—E*E))
E4=((DSQRT(1.0—E*E))/(1.0+E*COSF))*(F4—SINF*KCI(2,4)/(1.0—E*E))
E5=((DSQRT(1.0—E*E))/(1.0+E*COSF))*(FS—SINF*KCI(2,5)/(1.0—E*E))
E6=((DSQRT(1.0—E*E))/(1.0+E*COSF))*(FG-SINF*KCI(2,6)/(1.0-E*E))
KCI(6,1)=(1.0—E*COSEA)*El—SINEA*KCI(Z,l)
KCI(6,2)=(1.0—E*COSEA)*EZ—SINEA*KCI(2,2)
KCI(6,3)=(l.O—E*COSEA)*E3—SINEA*KCI(2,3)
KCI(6,4)=(1.0—E*COSEA)*E4—SINEA*KCI(2,4)
KCI(6,5)=(1.0-E*COSEA)*ES—SINEA*KCI(Z,S)
KCI(6,6)=(1.0-E*COSEA)*E6—SINEA*KCI(2,6)
C PARTIALS of omega
U1=(1.0/R)*((—Y*DSIN(OME)*DCOS(XI)*COSU—X*DCOS(OME)*DCOS(XI)*
*COSU+X*DSIN(OME)*SINU—Y*DCOS(OME)*SINU)*KCI(5,1)+(X*DSIN(OME)*
*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(S,l
*)+(—DSIN(OME)*DCOS(XI)*COSU-DCOS(OME)*SINU))
U2=(1.0/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU—X*DCOS(OME)*DCOS(XI)*
*COSU+X*DSIN(OME)*SINU—Y*DCOS(OME)*SINU)*KCI(S,2)+(X*DSIN(OME)*
*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,2
*)+(DCOS(OME)*DCOS(XI)*COSU~DSIN(OME)*SINU))
U3=(1.0/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU—X*DCOS(OME)*DCOS(XI)*
*COSU+X*DSIN(OME)*SINU-Y*DCOS(OME)*SINU)*KCI(5,3)+(X*DSIN(OME)*
*DSIN(XI)*COSU—Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,3
*)+DSIN(XI)*COSU)
U4=(1.0/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU—X*DCOS(OME)*DCOS(XI)*
*COSU+X*DSIN(OME)*SINU—Y*DCOS(OME)*SINU)*KCI(5,4)+(X*DSIN(OME)*
*DSIN(XI)*COSU—Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,4
*})
US=(1.0/R)*((—Y*DSIN(OME)*DCOS(XI)*COSU—X*DCOS(OME)*DCOS(XI)*
*COSU+X*DSIN(OME)*SINU—Y*DCOS(OME)*SINU)*KCI(S,S)+(X*DSIN(OME)*
*DSIN(XI)*COSU—Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,5
*))
U6=(1.0/R)*((—Y*DSIN(OME)*DCOS(XI)*COSU—X*DCOS(OME)*DCOS(XI)*
*COSU+X*DSIN(OME)*SINU—Y*DCOS(OME)*SINU)*KCI(5,6)+(X*DSIN(OME)*
*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,6
*))
KCI(4,1)=Ul-F1l
KCI(4,2)=U2-F2
KCI(4,3)=U3-F3
KCI(4,4)=U4-F4
KCI(4,5)=U5-F5
KCI(4,6)=U6-F6
RETURN
END



***INPUT DATA:AQ,E0,XIO0,OMO,OMEC,XM0,F0,EAQ,X0,Y0,20,XD0,YDO,ZDO***+*
***_******************************************************t**********
* 17570925.77037010
*-0.881968672701392
* 1.929121467522410
*-7615946.972994897
* 2396.747150406745

Akhkhkhhhhhkhkhhkkhhhhhhhhkhkhkhrhhhhkhkkkkdkdohhhhhhrhhkhhhhhhkdhkkhkhhhhkhhhhkkhkkhk

*xx* ELEMENTS OF THE SATELLITE STATE VECTOR (XS,YS,ZS,XSD,¥SD,ZSD)

-7615946.97299500000
2396.74715040671

*kx*xxx*x ELEMENTS OF THE

-0.
12744314.
-0.

-6587846
0

4334402792730
0219510000000
6197473576625

.0049455100000
.3768837715431
3823722.
-0.
5026.

0.

2031.
-0.
-1273.

2809170100000
0000682020737
1010036825600
0001229214764
2430250534000
0000731299877
1729165956700

0.568848843824957
3.124086383674180
1.294798081992500
-10889534.81787064
-4319.688274669979

J K K K do ok de Kk ok ke kR

-10889534.81787060000
-4319.68827467000

0.
0.

66
25

6

541052068118242*
747478091842417+*

*
22196.773840833*
69.923171671754*

* k% kk

622196.77384083000
2569.92317167176

LINEAR KEPLER TRANSFORMATION MATRIX KC ****k**%

28607803.1683634000000
10889534.8178706000000
-20941688.6224014000000
-7615946.9729950000000
12280202.6842647000000
0.000000000000Q0
4895.4299974719600
4319.6882746700000
3878.7401494792500
2396.7471504067100
-2381.7166470278200
0.0000000000000

11
884
662

-1593
1102
948

5924.0427484690000
1893.9377193300000
1182.0491344800000
5859.3843162000000
1186.2187911000000
0761.5013344300000

44.9874707423364
3421.8010333312000
2569.5293802118000
4892.6051644543400
4277.0704058304800
2975.3148024795100
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xxx**x%* KEPLERIAN ORBITAL ELEMENTS (AS,ES,XIS,OMS,OMES,XMS,FS,EAS) *****x*
1.757092577037010D+007
-0.881968672701392
1.929121467522410

0.568848843824957
3.124086383674180
1.294798081992500

0.541052068118242
0.747478091842417

*kxxkkkxxxxx* JNVERSE LINEAR KEPLER TRANSFORMATION MATRIX KCI ***kkwdkkix
-1.43685580235904000
3712.81862519266000000
0.00000003821214436
-0.00009454042695639
0.00000000032380779
0.00000097249246146
-0.00000008348546989
0.00049142428946580
-0.00000000126905576
0.00000327011214863
0.00000004091773235
-0.00022446651641490

************************************************************************

-2.05446431593198000
-6691.66085312722000000
-0.00000003442479720
-0.00011261293567051
0.00000001849478572
0.00005554541988079
-0.00000000487797231
-0.00052188742069056
-0.00000007248409427
0.00018677754281016
0.00000010672721602
0.00055778897052638

1.

3981

OO0OO0O00

-0
-0

.

-0
-0

24937081266399000
.08687246287000000
.00000002027940900
.00006864871363555
.00000003078520965
.00009245726995033
.00000014456563439
.00005433900188108
.00000012065227854
00031089767137094
.00000006454873928
.00033274106616196



FULFILMENT OF KC*KCI=I
***********************************************************************
1.00000000000000000000 0.00000000000000591861 -0.00000000000000149414
-0.00000000000725564053 -0.00000000000042099657 0.00000000000037148062
khhkhkhkthhhhhhhkhhhhhhhhkhhhkhhhhhikkhkhhkhk
-0.00000000000001013875 1.00000000000000000000 0.00000000000000232355
0.00000000000916000609 -0.00000000001096189806 -0.00000000000075761619
khkhkhhkhkhkhkhkhkhkhkhkhhhkhkhhhkhhhhhkhkhhhhkkiAhkhhhk
0.00000000000000400881 0.00000000000000253020 1.00006000000600000000
-0.00000000000583844084 -0.00000000000010880186 -0.00000000001283706474
R AR R R REERERERE RS R RS ERRR R RS RXR SRR R R X 3
0.00000000000000000072 -0.00000000000000000120 0.00000000006600000070
1.00000000000000000000 0.00000000000000301040 0.00000000000000069714
dhkhkhkhkhkhkhkhkhkhhkrthkhhhkhkhkhhhkhhkhkhkhhkikhkhkhhhhki
-0.00000000000000000062 0.0000000000C000000096 0.00000000000000000043
-0.00000000000000469340 1.00000000000000000000 -0.00000000000000116671
dkkhhkhhkhkhkhhhkhrhkhhhbhhkdhkhkhhkhkhkrhhhhkhkhtihhkkirk
0.00000000000000000041 0.00000000000000000052 0.00000000000000000138
0.00000000000000055576 -0.00000000000000099508 1.00000000006000000000

khhkhhkhkhhkhkhhhhhhkhkhhkhhdehkhkhhkhhkhkhkhhhhdhkhhhhhkhkhkhhhhhhkhkhhhkhhhkhrhkhhhhkhhkhkdkhkk

e de de ke do de g de e ke de Kk

FULFILMENT OF KCI*KC=I
kdehkhkddeddhhhdhhkhhhkhkhkhkhhhhohkhhhhhhkhhkhkhhhhhkhhhkhkhkhkhkhkhkhkkhkhkhkhhkhkhhhhkhkhkhkhkhkhkhkhkhkkkk
1.00000000000000000000 0.00000137576353154145 0.00000000985528458841
0.00000062681783674634 0.00000055624150263611 0.00000072245620685862
IS 822 222X 2R RRR AR RE SRR TR RRRRR R RRRR X
0.00000000000000000000 1.00000000000001000000 0.00000000000000018922
0.00000000000000450163 0.00000000000000328440 -0.00000000000000115492
hkhhkhkhhhkhkhkkhhkhkhhkhhkhkdhhhhhohkhhhkhkhhhkhkhkhhkihhi
0.00000000000000000000 -0.00000000000000293900 1.00000000000000000000
-0.00000000000000185891 -0.00000000000000358525 -0.00000000000000122450
khkkkhkhhkhhkkhkhkhkkkthhhhhhhhhkhhhhhhkhhhhkhiih
0.00000000000000000000 0.00000000000007482006 -0.00000000000000375618
1.00000000000004000000 0.00000000000003101946 0.00000000000004706265
khkhkhkhkhkkhkhkhhkhkhkhhhkhhhhkhhkrhhhhkhkrhkhhhhkikkhkhdh
0.00000000000000000000 ©0.00000000000000450378 0.00000000000000818540
0.00000000000000009552 1.00000000000000000000 0.00000000000000027067
de dedede de ok dode deodede ke deode ko de ok dede e de deode ek de ke de ok de g ok dk ok k R
0.00000000000000000000 -0.,00000000000008301422 -0.00000000000000178362
-0.00000000000003955419 -0.00000000000003490144 0.99999999999996000000

AhkdhhkhkhkhRhhkhkkhkhhhkhhkhkhkhhkhhkhhhkhkhkhkkhkkkhkhkhkhkkhkhkhhhkhkkhkkhkkdkhkhkhhhkhhidkhhkikkkkkik



