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ABSTRACT

In the 1990's dedicated radio telescopes will be launched into Earth orbit and will be

integrated in the ground-based VLBI networks. A straightforward extension from present

ground-based VLBI to space is called space VLBI, which uses radio-antennas in space. In

the simplest version of the space VLBI technique, one station in orbit observes in

conjunction with a second station on the ground. However, in practice we have a number

of networks of ground antennas observing the common celestial radio sources

simultaneously with a conventional VLBI technique. Moreover, joint observations of two

or more space VLBI satellites will supposedly be performed in the future. Therefore, in

our research work a combined use of simultaneous space and ground-based VLBI

observations are considered from the geodetic and geodynamic point of view.

This investigation studies the feasibility of space VLBI observables for geodesy and

geodynamics. A brief review of space VLBI systems from the point of view of potential

geodetic application is given. A selected notational convention is used to jointly treat the

VLBI observables of different type of baselines within a combined ground/space VLBI

network. The basic equations of the space VLBI observables appropriate for covariance

analysis are derived and included. The corresponding equations for the ground-to-ground

baseline VLBI observables are also given for a comparison. The simplified expression of

the mathematical models for both space VLBI observables (time delay and delay rate)

include the ground station coordinates, the satellite orbital elements, the earth rotation

parameters, the radio source coordinates, and clock parameters. The observation equations

with these parameters have been examined in order to determine which of them are

separable or nonseparable. Singularity problems arising from coordinate system definition

and critical configuration are studied. Linear dependencies between partials are analytically

derived.

The mathematical models for ground-space baseline VLBI observables have been

tested with simulation data in the frame of some numerical experiments. Singularity due to

datum defect is confirmed.

Recommendations are given for future research work.
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1. INTRODUCTION

Two dedicated space VLBI projects are currently in preparation to launch one or

more VLBI radio telescopes in orbit. The first space VLBI mission that will be

implemented in the near future is RADIOASTRON in the Soviet Union. It is already an

approved and funded mission. The satellite will be launched in 1993. Its trajectory is

planned to be 3,000 km in perigee and 69,000 km in apogee. The satellite will carry a

10 m antenna. The second project is a Japanese orbiting VLBI mission called VSOP. The

expected launch date of the satellite is 1995. Its trajectory is planned to be 1,000 km in

perigee and 20,000 km in apogee. Both projects are now in progress. Most probably, a

combined use of RADIOASTRON and VSOP observations will be performed in the future.

There is a Western European mission with NASA participation in Phase A Study at ESA

called QUASAT. Although this project was not approved by ESA at the selection round of

October 1988, a second generation space VLBI mission called IVS has been proposed to

ESA at the end of 1989.

The feasibility of and potential for using a dedicated VLBI observatory in space has

already been demonstrated successfully by the NASA TDRSS satellite with a nearly five

meter antenna. In 1987 during the XIX General Assembly of IUGG in Vancouver, IAG

Special the Study Group 2.109--Application of space VLBI in the Field of Astronomy and

Geodesy--was established to study the usefulness of space VLBI for astrometry and

geodesy.

It is expected that space VLBI will be a reality in the current decade. Orbiting radio

telescopes will be used to make interferometric observations of extragalactic radio sources

in conjunction with the major ground-based VLBI arrays in Europe, USA, Australia, Japan

and the USSR. It is planned to determine the orbits of these radio telescopes in space with

high accuracy by the missions themselves and possibly using additional tracking systems

(e.g., GPS, PRARE). The main goals of all space VLBI projects are to carry out

astrophysical investigations. The current missions are devoted to improve imaging quality

and angular resolution of compact galactic and extragalactic radio sources. At the same

time, the radioastronomers are going to plan the scientific goals of space VLBI missions to

be as wide-ranging as possible.



The anticipateduseof aspaceVLBI systemposesseveralimportantquestionswith

respectto its usefulnessin geodesyandgeodynamics.

The potentialapplicationsof thespaceVLBI systemin theseareasarerelatedto the
connectionand unification of referencesystemsandframesinherent in the technique.

Sincethe currently available spacegeodetic techniquesareeffectively used for these

applicationsby stationcollocationin theframeof theInternationalEarthRotationService

(IERS) [Boucheret al., 1988]and[Mueller, 1988],oneshouldinvestigatehow the space

VLBI systemcould complementthesetechniques. The capabilitiesof the new space

techniquesto provide valuable information on the systematicdifferencesbetweenthe
framesof thevariousConventionalInertial Systems(CIS) and ConventionalTerrestrial

Systems(CTS) is now widely investigated[Kovalevskyet al., 1989]becauseof the high

importanceof the connectionand unification of all referenceframes in geodesyand

geodynamics. In principle, a spaceVLBI systemoffers anopportunity to connectthe
referenceframesof theCTSandtwo typesof CIS: 1)RadioSource-CIS,and2) Dynamic

(thatis SatelliteOrbit)-CIS inherentin a spaceVLBI system. Theestablishmentof the

relationshipbetweenthemwould beof scientificinterest.Note thatthecurrentlyadopted
ConventionalCelestialReferenceSystem(CCRS)is basedon radiosourcepositions.

Another important problem areathat needsinvestigation is that related to the

usefulnessof spaceVLBI datafor gravity field determination.Thepresentgravity field
determinations using artificial satellites are basedmainly on range and range-rate
observationswhich contain no direct directional information [Marsh et al., 1988] and

[Rapp,1989]. Therefore, they areonly indirectly linked to theinertial referenceframe.

OneshouldinvestigatehowthespaceVLBI observationcontainingdirectionalinformation

could be appliedto improve thegravity field determination. The spaceVLBI missions

offer andprovide new typesof satelliteobservables(VLBI time delay, delayrate, and
differentialVLBI trackingdata)with highaccuracyfor thesepotentialapplicationsaswell.

Earlier investigationson the potential applicationsof spaceVLBI for astrometry,

geodesyandgeodynamicsincludeAdam(1989),AdamandMueller (1989),Bartel (1989),

Fejes et al., (1986, 1987 and 1989a,b), Kawaguchi (1989), Koyama (1989), and
Takahashi(1989).

On thebasisof thebackgroundmentionedabove,it wasconsideredappropriateand

worthwhile to pursuethepresentinvestigation. Theaimof which is to briefly reviewthe
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space VLBI systems in progress emphasizing the geodetic aspects, to derive mathematical

models for both space VLBI observables (time delay and delay rate) suitable for least

squares covariance analysis of the parameters of geodetic interest, and to explore

estimability problems inherent in the space VLBI technique. An additional important aim is

to numerically check the mathematical models by test computations.

Consequently, the whole work is divided into five chapters, each of which treats

aspects of the geodetic applicability of space VLBI. Chapter 2 gives a brief review of space

VLBI missions in progress. Chapter 3 derives the mathematical models for space VLBI

observables and studies the estimability of geodetic parameters involved in the models.

Chapter 4 describes the theoretical basis of the datum problem of a space VLBI network

within singular Gauss-Markov model and shows the results of test computations.



2. BRIEF REVIEW OF SPACE VLBI SYSTEMS

2.1 Introduction

The application of the VLBI technique to the investigation of the nuclei of galaxies

and quasars has allowed the mapping of their angular radio brightness distributions and the

studying of the kinematics of their cores. Substantial improvements in the resolving power

of VLBI might enable the proper motion of a galaxy or a quasar to be measured.

Microarcsecond angular resolution will allow community of radio astronomers to study

several phenomena, see, e.g., [Bartel et al., 1986 and 1988], [Kardashev and Slysh,

1988]. Annual parallax, proper motion and position determinations (quasar cores, nearby

galaxy cores, galactic centers, pulsars and radio stars) at microarcsecond (_as) level are

also very important for geodesy and geodynamics.

There are two ways of increasing the angular resolution: (1) use of short radio

wavelengths (mm-VLBI), and (2) use of radiotelescopes in space (space VLBI). The first

encounters problems caused by atmospheric phase fluctuations and technical difficulties.

The second is more straightforward and has no limitations in principle to the baseline

length, see [Burke, 1983], [Kardashev and Slysh, 1988], [Preston, 1983], [Sagdeev,

1984] and [Schilizzi et al., 1984].

A very straightforward extension from present ground-based VLBI is called space

VLBI, which uses radio antennas in space. Moreover, radioastronomers need multiple

elements in space (introducing space-space VLBI) in order to go to higher angular

resolution and/or higher dynamic range mapping. One of such conceptions is suggested by

Hirabayashi (1989b) for two orbiting VSOP observatory with modestly near earth orbits.

2.2 Basic Concept of Space VLBI

The usual geodetic VLBI system shown in Fig. la [Counselman and Shapiro, 1978]

consists of an array of at least two antennas that observe the same radio source

simultaneously. A direct electrical connection is not maintained between the antennas, thus

allowing them to be separated by thousands of kilometers. At each antenna station, the

radio interferometry signal (RF) received from the observed radio source is converted to a
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lower, "intermediate" frequency (IF) by mixing with a local oscillator (LO) signal. At each

site, the IF signal is tape recorded with a reference time base derived from the same

frequency standard. Tapes recorded simultaneously at the antenna sites are later collected

ANTENNA I ANTENNA 2

LI RECORDER l I RECORDER• 1.1_

%TAPES\/ t t ('OS
q 1_ TIME

SIGNAL I
REPRODUCTION I__ PHASE

8
CROSSCORREL ATION_ DIFFERENCE

R.F

L.O.

Fig. la Ground-based geodetic VLBI system

and played back together at a central processing station where the reproduced signals are

cross-correlated to obtain the basic VLBI observables.

The space VLBI system does not differ conceptually from the case of a ground-based

array of radio telescopes. A schematic diagram of the space/ground VLBI system is

represented in Fig. lb [Schilizzi et al., 1984] and [Schilizzi, 1988a]. The space-borne

antenna will observe the same radio sources in conjunction with networks of antennas, and

relay the received signals via a digital or analogue link directly to telemetry stations on the

ground. A phase/frequency reference for the antenna in space will be based on hydrogen

maser oscillators on the ground and relayed directly to the satellite from the telemetry

stations in turn (phase transfer). The stability required for this phase transfer is very high

(about lx10-14). After transmission to the ground, the IF data will be recorded on VLBI

magnetic tapes on the ground in exactly the same way as for the ground based elements of

the array. The tapes will then be brought together with tapes from the ground VLBI arrays

at a central processing station for cross-correlation and image processing. After cross-

correlation and calibration, the obtained basic VLBI data will be used for scientific

investigations.
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Fig. lb A schematic diagram of a Space/ground VLBI system

All communication with the space VLBI antenna will be through one or more

telemetry/control (T/C) stations in the network. The two way or multiple way coherent

link(s) by telemetry stations provide range, range-rate, and phase data which can be used

for orbit determination.

2.3 TDRSS-OVLBI Demonstration Experiment

The feasibility of and potential for using a dedicated VLBI observatory in space has

already been demonstrated (see [Levy et al., 1986, 1987 and 1989], [Linfield et al., 1988

and 1989], [Hirabayashi, 1988], and [Nishimura and Hirabayashi, 1988]. A

communications satellite in the Tracking and Data Relay Satellite System (TDRSS) of

NASA was successfully used for the first space VLBI test experiment in 1986-87. The

idea of using existing TDRSS for demonstrating space VLBI has been proposed by

scientists at the Jet Propulsion Laboratory (JPL). The TDRS has two identical high-gain

antennas with a 4.9 m diameter for S- and K-bands (see Fig. 2). The TDRSE which is

situated at 41 ° W in the geostationary orbit was used in combination with ground 64 m



diameterantennasin Tidbinbilla, Australia,andin Usuda,Japan.It wasthemostsuitable

existingsatellitefor orbiting VLBI (OVLBI) becauseof thedesignof its local oscillator

chainandits sensitivity. ThetestexperimentcalledTDRSS-OVLB1 experiment was done

with the observing frequency of 13 cm (2.3 GHz). The received signal from radio sources

at TDRSS is down-linked to the ground, frequency converted, and recorded on magnetic

tapes. The reference signal in turn is uplinked to the satellite to phase lock the receivers on

board to maintain coherence of the interferometer. Fig. 3 shows the concept of the

TDRSS-OVLBI demonstration experiment.

The TDRSS-OVLBI experiment was performed in two phases (July-August, 1986

and January, 1987). For the observation, radio sources in the Southern Hemisphere

ranged in declination from 0°to -30" were selected due to the limits of the TDRSE satellite.

In the July-August 1986 session, fringes were successfully obtained among three stations

(TDRSE, Usuda and Tidbinbilla) for three quasars. The maximum projected baseline

obtained was 17,800 km (about 1.4 times Earth's diameter) by the TDRSS-Usuda

baseline. In January, 1987, additional observations were made using the same ground

antennas. Of the 25 observed sources, 23 were detected on orbiter-ground baselines, with

baseline lengths as large as 2.16 Earth diameters. Also, the radio source structures were

estimated from the January, 1987, session. Note that in 1988 an experiment at 2.3 GHz

(13 cm) and 15 GHz (2 cm) frequencies was also successful.

Tracking information for TDRSE is obtained through triangulation with ground

transponders located at White Sands Ground Terminal (WSGT) in New Mexico (32 ° N

latitude, 107°W longitude) and Ascension Island (8" S latitude, 15 ° W longitude) (see

[Levy et al., 1989]. The forward link uses a pseudo-noise code. The return link uses a

different but synchronized pseudo-noise code modulation. By comparing epochs of the

pseudo-noise code (all measurements are referenced to the WSGT cesium standard), the

range is obtained. The Doppler frequency is also extracted and counted to obtain the range

rate. The ranging and Doppler tracking data were processed by K.B. Blaney at Goddard

Space Flight Center (GSFC) for orbit determination by a differential correction technique

(ibid.). The calculation procedure is a least-squares fitting of weighted range and Doppler

residuals to a corrected orbit. A data span (and solution interval) of 30-34 hr was used.

The solution yielded three position components, their associated velocity components, and

their time derivatives at 60 s intervals.



HIGH
GAIN ANTENNAS

(2.3 AND 15 GHz)

Fig. 2

2-meter SPACE TO
GROUND LINK
ANTENNA
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Geometry of the TDRSE spacecraft. The antennas used in the OVLBI experiment
are labeled [Levy et al., 1989].
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Fig. 3 The concept of TDRSS-OVLBI demonstration experiment [Hirabayashi, 1988].
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As a summary, the test of the technical concept and the probe of the scientific

potential for space VLBI were successful. The TDRSS-OVLBI experiment shows that an

accurate knowledge of the spacecraft orbit is essential in order to achieve the coherence of

the measured data with high sensitivity and calibration accuracy.

2.4 Future Space VLBI Missions

Projects to place one or more telescopes in space for VLBI purposes have been

proposed or planned by several space agencies:

QUASAT (Quasar Satellite) by ESA and NASA, see, e.g., [Schilizzi et al., 1984]

and [Schilizzi, 1988a]

RADIOASTRON (Radio Astronomical Satellite) by The Space Research Institute

(IKI) of the Academy of Sciences in the USSR, see, e.g., [Sagdeev, 1984],

[Kardashev and Slysh, 1988] and [Kardashev, 1989]

VSOP (VLBI Space Observatory Program) by The Institute for Space and

Astronautical Science (ISAS) in Japan, see, e.g., [Hirabayashi, 1984 and 1988] and

[Nishimura and Hirabayashi, 1988].

IVS (International VLBI Satellite), a proposal to ESA to follow RADIOASTRON and

VSOP [Schilizzi et al., 1989].

The orbital parameters of the planned space VLBI satellites are given in Table 1.

2.4.1 The RADIOASTRON Mission. The first space VLBI mission that will

be implemented in the near future is RADIOASTRON. It is an approved and funded

mission in the Soviet Union. The design study is in progress with significant contributions

from abroad. The RADIOASTRON satellite will carry a 10 m antenna, and its trajectory is

planned to be 3,000 km in perigee and 69,000 km in apogee. The launching is expected

around the end of 1993.

Fig. 3 is an overall schematic diagram of the Radioastron system. The satellite radio

telescope (Fig. 4) will be a prime focus system with a deployable parabolic reflector 10 m

in diameter. The reflector has a fixed inner part of 3 m diameter and 24 unfoldable panels.

9



Table 1. Comparison of the Orbital Parameters of QUASAT,
RADIOASTRON and VSOP Satellites.

QUASAT RADIOASTRON VSOP

ha (kin) 36,000 & 22,000 69,000 20,000

hp (km) 5,000 & 5,000 3,000 1,000

24 6.06

65 fixed 46.4 or 31.0

285 - 315 variable

to be chosen

0.82 0.379

to be chosen variable

T (hrs) 12.2 & 7.75

i (o) 30

(o (o) variable

E

f_

ha = apogee height, hp = perigee height, T = period, i = inclination

c0 = argument of the periapsis, c = eccentricity, f_ = longitude of the ascending node

The reflector is made of reinforced carbon fiber and has an rms surface accuracy of

0.5 mm. Four dual circular polarization receivers will be provided on the satellite. The

spacecraft operation time will be from two to five years.

The down-link to the ground station is at X-band (8.2 GHz) with a two-channel

transmitter and high-gain parabolic antenna. The ground-based station of the

RADIOASTRON mission in Suffa, USSR consists of one transmitting (command and S-

band local oscillator up-link) antenna and two receiving antennas (S-band local oscillator

down-link and X-band high-data rate down-link). The 70 m antenna will be used as a

radio telescope to receive signals from a radio source. Both X-band data and 70 m radio

telescope outputs will be recorded on two tape recorders in the VLBA format.

10
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2.4.2 The VSOP Mission. The JapaneseVSOP satellite will carry a 10-m

antenna,andits trajectory is 1,000km in perigeeand20,000km in apogee.This orbit

providesgoodimagingcapabilityof VSOPwith thecombinationof thetelescopearrayson

theEarth. Fig. 6 is aroughsketchof theVSOPsatellite. Thesurfaceaccuracyof the 10m
antennawill bebetterthan0.5mmRMS to beoperableup to 22GHz (wavelengthof 1.3

cm) reception.Thepointing accuracyof thehigh gainantennais plannedto be0.01° and

thus a high precision star sensor will be employed. The local oscillators on-board the

VSOP satellite must be phase-locked to the frequency standard on the ground. VSOP will

have cooled amplifiers, giving more than one order of magnitude better sensitivity than

TDRS.

The position and the velocity of the satellite will be tracked much more precisely than

other satellites by a sophisticated tracking scheme. VSOP is now in progress and the

expected launch date is 1995. The space VLBI program VSOP itself has been informally

approved by the Japanese government very recently [Hirabayashi, personal

communication, May 30, 1989]. More details about VSOP mission can be found in

[Hirabayashi, 1984; 1988; 1989 a, b, c] and [Nishimura and Hirabayashi, 1988].

• .

Fig. 6 The VSOP satellite [Nishimura and Hirabayashi, 1988].
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2.4.3 The QUASAT Mission. The proposedQUASAT mission is a free-

flying spacecraftcarryinga 15m radioantenna(Fig.7). Two orbital situationshavebeen
consideredfor themission. Oneof theorbital situationsis featuredby thefirst operational

elliptic orbit with perigeeof about5,000 km andapogeeof about 36,000km. It was

plannedthat thespacecraft'sapogeebe loweredlater to 22,000km in orderto fulfill the

various scientific requirements. The orbiting radio telescopewas plannedto make
interferometricobservationsof radiosourcesin conjunctionwith themajor ground-based

VLBI arraysin Europe,USA, AustraliaandtheUSSR. Themissiondesignlifetime was

plannedto be two years,but anoperationallifetime of five yearswasexpected. More

detailsaboutQUASAT missioncanbe foundin, e.g., [Proc.of Workshopon QUASAT:
1984],[Schilizzi et al., 1984],[Frisk et al., 1988]and[Schilizzi, 1988a].

Fig. 7 TheQUASATsatellite[Schilizzi, 1988a].

2.4.4 The IVS Mission. The IVS mission is conceived to be a major radio

telescope in space funded by the principal space agencies. Orbiting the Earth, the 25 m

diameter telescope will provide high quality images of radio sources to wavelengths

spanning the radio band from meters to millimeters will resolutions as high as 25 micro

arcseconds. It is proposed that IVS be placed initially in an orbit whose apogee height is in

the range 20,000 km (VSOP-like) to 40,000 km (QUASAT-like), but whose inclination is

higher than either VSOP or QUASAT. Possible orbital parameters are therefore: apogee
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height20,000-40,000km, perigeeheightabout5,000km andinclinationabout60degrees.
Maximumbaselinelengthsof 30,000-50,000km canbegeneratedin thismanner,threeto

five timeslongerthanthemaximumavailableonEarth. IVS is asecondgenerationmission

well matchingthe groundVLBI arraysin bothsensitivityandwavelengthcoverage.The

goalsof theIVS missionwill requirethepositionof thesatelliteto beknownto 30cm or
betteratall times[Schilizzietal., 1989].

2.4.5 Joint Space VLBI Observations. The space VLBI missions are

expected to be operational in the next decade. However, QUASAT was not approved by

ESA at the end of 1988. Therefore, the Soviet RADIOASTRON and the Japanese VSOP

will be the first two dedicated space VLBI missions in the 1990's. Supposedly, QUASAT

will again be considered by ESA to realize. These missions will have many improvements

compared to the TDRSS which was used for the first space VLBI test experiment. The u-v

coverage in the TDRSS-OVLBI experiment was not satisfactory because of the

geostationary nature of the satellite and of the small number of ground radio telescopes

which joined the experiment.

The RADIOASTRON and VSOP orbits are complementary in the u-v coverage they

will provide. A simulation study by Murphy (1989) shows that joint space-VLBI

observations can produce better results in imaging processing. Therefore, further

simulation tests will be carried out to determine the optimal orbital elements of

RADIOASTRON for possible simultaneous observation with VSOP. Their combined use

is most probable and desirable. It is expected that a combined use of

RADIOASTRON and VSOP observations will be performed in order to have

much improved images.

Radioastronomers need multiple elements in space for higher angular resolution

and/or higher dynamic range mapping. There are plans to have multiple elements in space

within both missions introducing space-space VLBI. Hirabayashi (1989b) presented a plan

for two orbiting VSOP observatory with modestly near earth orbits. VSOP mission with

two space elements might be very appropriate particularly for geodetic and geodynamical

purposes as well.

The coordination for international collaboration is a critical item for both projects--

RADIOASTRON and VSOP. The design study of both missions is in progress with

significant contributions from abroad. For space VLBI to become operational,

coordination of observing, management of ground telescopes and tracking operations, data
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transfer and processing is needed. Therefore, international workshops are organized. Tile

first was to discuss QUASAT in June 18-22, 1984 in Austria [Proc. of Workshop in

QUASAT 1984]. The International Radioastron Review Meetings have been held twice a

year. The eighth meeting was held in Green Bank, West Virginia, USA ]Memorandum of

the 8th RADIOASTRON Meeting 1989]. The ninth one was in Tashkent, USSR in

November, 1989. Domestic VSOP meetings have been held in Japan [Proc. of a Domestic

Workshop on "The Research of Space VLBI" 1989]. An international symposium was

organized also in Japan December 5-7, 1989 in order to discuss worldwide the VSOP

mission. An other international meeting "Space VLBI--The Missions and the Science"

organized by Committee on Space Research (COSPAR) in The Hague, Netherlands, July

2-3, 1990 reviewed all aspects of space VLBI, with special emphasis on the two approved

missions RADIOASTRON and VSOP.

2.5 The Ground-Based VLBI Networks

The ground-based arrays are the other major element of the space VLBI missions.

All missions assume an orbiting observatory to be coherently connected to the

radiotelescopes distributed widely on the earth. They require a global network of ground

antennas to be able to form subnets. Therefore, the involvement of all possible ground

antennas is important not only for radioastronomical purposes but for application of them in

the field of geodesy and geodynamics as well.

There are two main networks in operation--the European VLBI Network (EVN)

and the U.S. Very Long Baseline Array (VLBA), both of which provide observing

opportunities on regional as well as international scales, see [Romney, 1988] and

[Schilizzi, 1988b]. Networks of both types, tracking/link and observing, respectively in

the USSR and in Japan, are very important from the viewpoint of their space VLBI

missions. They will constitute the main support to the orbiting elements. However,

other networks in the Southern Hemisphere (e.g., the Australia Telescope (AT) and

Australian VLBI antennas), in Asia (e.g., China, India) and in Canada are also likely to

participate. Stations of these networks will be the co-observing stations for the space VLBI

missions.

Note that VLBA construction is now in progress with expected completion of 1992.

EVN and AT constructions are also in progress. A construction of dedicated VLBI

network "QUASAR" of six radiotelescopes in the Soviet Union with possible extensions

by other telescopes from abroad (China, India) has been started very recently IFinkelstein
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and Yatzkiv, 1989]. These VLBI networks (and correlators) are expected to work jointly

with space VLBI missions.

Tracking networks like the NASA/JPL Deep Space Network (DSN) will collaborate

on precise tracking of both RADIOASTRON and VSOP satellites. The different networks

of VLBI antennas are shown in Figs. 8 and 9, which reflect the strong international

character of this research. The observing schedule, data processing, the managements of

ground telescopes and tracking operations need to be discussed and organized worldwide.

2.6 Orbital Tracking of Space VLBI Satellites

The astrometric, geodetic and geodynamic potential of the space VLBI missions is

strongly dependent on orbit determination accuracy of the satellites. Therefore, high

accurate knowledge of the satellite orbit is very important for the space VLBI missions. The

following tracking techniques are recommended for precise orbit determination of space

VLBI satellites, see [Fejes, 1989] memorandum of the 8th RADIOASTRON Review

Meeting 1989 [Tang, 1984].

The first category which requires no systems modifications or additional equipment:

1. Two-way or multiple-way coherent link(s) by telemetry stations (range, range-

rate, phase). A good telemetry coverage is essential.

2. VLBI delay and delay-rate as tracking data.

3. Differential VLBI (AVLBI) using extended (worldwide) network of ground radio

telescopes during selected observing programs.

Results of a computational simulation study by Konopliv (1989) show that it might

be possible to reach meter-level position accuracy in orbit determination of

RADIOASTRON satellite with range and AVLBI measurements by NASA/JPL DSN

stations. Borza et al., (1990) show by simulations that the dominant part of the orbital

errors of space VLBI satellites originates from errors in the solar reflectivity models. All

other effects can be modeled so accurately that they only yield small or negligible errors.

According to the test computations carried out by Fejes et al., (1989b), the space VLBI

time delay and delay-rate observables can contribute significantly to orbit accuracy

improvement for the missions. It is in a good agreement with the statement of Tang

(1984).
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Fig.8 TheVeryLongBaselineArray--VLBA.

I' ,.. 0, s, I" z0,

Fig. 9 Stations of the European VLBI Network (EVN). Station currently in

operation (full circles) or expected to be operational by 1995 (open circles).
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The secondcategorywhichrequiressystemmodificationandadditionalgroundand

spaceequipment:

1. Microwavetechniques:(a)One-waysatellite-basedsystems(GPS,GLONASS);

and(b) two-waysatellite-basedsystems(PRARE)

2. Laserranging

3. Micro-accelerometeronboard

Note that the inclusion of PRARE Systemfor Radioastronis considered. It is

plannedthattheVSOPsatellitewill carryaGlobalPositioningSystem(GPS)receiveron
boardto provide trackingdatafor orbit determination.A setof comer-cubereflectorson
boardof a spaceVLBI satellite(e.g.,VSOP)would increasethepotentialof spaceVLBI in

geodesyandgeodynamics.
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3. MATHEMATICAL MODELS FOR SPACE VLBI OBSERVABLES

3.1 Introduction

Since there are no conceptual differences between ground-based and space-based

VLBI, existing formalism of the ground-based geodetic VLBI carries over easily to the

space-based case. In ground-based VLBI the necessary relative motion of the stations is

provided by the Earth's rotation. In space-based VLBI the relative motion of the antennas

is provided by both Earth's rotation and orbital motion of the space VLBI satellite around

the Earth.

In the simplest version of space VLBI, one station in orbit observes in conjunction

with a second station on the ground. However, in practice we have a number of networks

of ground antennas observing the common celestial radio sources simultaneously with a

conventional VLBI technique. Moreover, joint observations of two or perhaps more space

VLBI satellites will supposedly be performed in the future. Therefore, a combined use of

simultaneous space and ground VLBI observations should be considered.

3.2 Basic Observables and Their Models

We have selected notational conventions which allow us to treat the VLBI

observables of the different types of baselines within a combined ground/space VLBI

network uniquely. A space VLBI network is formed by ground VLBI stations Pi,Pj and

orbiting VLBI satellites' positions S! and SJ. The lower index with small letters (i,j) refers

to ground points while the upper index with capital letters (I,J) to satellite points at high

altitude. Therefore, in our conventions we can distinguish a ground-to-ground baseline

between two ground VLBI stations Pi and Pj by Bij, a ground-to-space baseline between

a ground VLBI station Pi and an orbiting VLBI telescope SJ by B_, and a space-to-space

baseline between two orbiting VLBI telescopes S I and S J by B IJ. We use these notations

to distinguish the corresponding VLBI observables, i.e., time delay and delay late as well.

The basic geometry for a typical baseline in the ground-based VLBI and space-based

VLBI or simply space VLBI is shown in Figs. 10-12. Generally, a certain segment of a

wavefront from the natural radio source will arrive at one site before it arrives at another

(Figs. 10-12). This time delay is the basic observable of VLBI. Delay observations are
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composed of three components. The first component is due to the geometry of the station

locations and source location, as illustrated in Figs. 10-12. This component contains all of

the information about the geodetic and astrometric parameters that are of interest. The

second component is due to instrumental effects, principally clock errors. The third

component is due to effects of the propagation medium (e.g., the atmosphere and the

ionosphere). This latter component is not considered here.

In the ground-based VLBI network, two ground radio telescopes Pi and Pj form a

ground-to-ground baseline Bij (Fig. 10). The signal from the gth radio source arrives at the

k th epoch of observation to the ground VLBI stations with time delay '_ijkg which can be

written as

_ 1 1 Bij(tk ) cos ,'_ijk/-- _- dij_ = _- xl/t (1)

or in vector notation, the dot denoting the inner product,

1__B.. (tk)" et
%jk! =- C 1j (2)

where et is the unit vector in the direction of the gth radio source, Bij is the vector

separation of the receiving stations Pi and Pj, and c is the speed of light. The minus sign is

introduced to follow convention. The changing geometrical configuration gives rise to the

delay rates 'tijkt

dBij (tk)

"_ijkg = -- 1 dt -" et (3)

assuming that 6t = 0.

The third VLBI observable is phase delay _)ijk/ which is related to time delay (2)

by

_ijkt = ¢0Xijkt, (4)

where co is the angular frequency (2nf) of the received radio signal. The phase delay is the

difference in phase of the signals received at each site.

Note that time (group) delay '_ijkt is the derivative of (fringe) phase Oijkt with

respect to angular frequency. The time delay contains the same information as phase for
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astrometric and geodetic purposes but is inherently less accurate than phase. On the other

hand, it can be estimated unambiguously. The delay observable yields a full baseline

solution and, therefore, plays the most important role in geodetic VLBI. The delay rate is

not often used in ground-based VLBI. However, the role of the rate observable will be

more important in space VLBI.

In the following the speed of light will be set to unity so that the time delay and

delay rate will be expressed in units of distance and its time variation, respectively.

Assume that they have been corrected for discrepancies between modeled and true distance

(or distance variation), e.g., atmospheric errors, relativistic effects and abberation. The

time delay is now

dij_ = c "Cijkt = - Bij(tl0 • et, (5)

and the time delay rate is

dBij(tk)

dijkt = c '_ijkt - dt eg.
(6)

Adding a two term polynomial, whose coefficients ACoij and ACqj correspond to a relative

offset and rate, respectively, between the two clocks at the ends of the PiPj _h baseline, the

geometric time delay (expressed in units of length) can be modelled as

dij_ = - Bij(tk) • et + c [AC0ij + AClij (tk - to)] , (7)

where to is the initial epoch of observation. The time delay rate is then

dBij(tk)
dijkt=- _- 'et+ cAC_ij. (8)

The clock parameters AC0ij , AClij are nuisance parameters, included here to make the

model more realistic.

In space VLBI network, an Earth-orbiting VLBI telescope SI with two ground

VLBI stations Pi and Pj at a moment tk forms two ground-to-space baselines B_(tk) , BI(tk)

in addition to the ground-to-ground baseline Bij(tk) (Fig. 11). The corresponding time

delays xI,,_I and delay rates _It, 'tlkt, including the clock parameters, can be
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expressedby similar observationequationswhich are for the ground-to-spacebaseline

BJ(tk)asfollows:

dljkg = c "g]kg = -- BJ(tk)" el + c [ACIrj + AC_rj(tk - to)l (9)

and

dlj_ -- c "_Ikt = dBJ(tl0-- dt "et+cAClrj (10)

where the delay rate ('CIkt) plays a more important role than at the ground-based VLBI

network due to the larger relative motions between a ground and an orbiting antenna.

The lower index r of the clock parameters in Eqs. (9) and (10) refers to the

reference clock at the telemetry/control (T/C) ground station. There will be no clock on-

board of the orbiting radio telescope (see Chapter 2.2).

Let us suppose that there will be two orbiting space VLBI satellites in operation in

the future (e.g., RADIOASTRON and VSOP, IVS may be later in addition, or two VSOP

satellites as a system in themselves) having simultaneous observations for the same

extragalactic radio source. Two orbiting VLBI satellites, SI and SJ, at a moment tk form a

space-to-space baseline BIJ(tk)(Fig. 12). Then; including the clock parameters, the

corresponding time delay and delay rate are modelled

d_t = c '_t = - BIJ(tk) " et + c[aC_rq + AC_q (tk- to)] (11)

dkUg = C "_g = - dBIJ(tk)
dt • et + cAC_rq, (12)

where the lower indexes r and q refer to the clocks at telemetry/control ground stations r

and g, respectively for the satellites S I and SJ.

By examining the geometric part of the time delay observable models we recognize

that the time delays will change if the length of the baseline changes, or if the orientation of

the baseline changes with respect to the plane of the wavefront, or if both change

simultaneously. In the case of a ground-to-ground baseline, the time delay changes due to

the variation of baseline orientation with respect to the plane of the wavefront. In the

ground-based VLBI, the length of a baseline is supposed to be unchanged for a short
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period (thegeodynamicaleffects,e.g.,tides,canbeaccountedfor). It is evidentthattime

delay (and delayrate)observationscanbeusedto recoverbaselinelength andbaseline
orientationwith respectto theradiosourcedirectionor recoverthesourceorientationwith

respectto thebaselinedirection.Thefirst two applicationsareof geodeticinterestwhile the
lastoneis of astrometric.

In the spaceVLBI thetime delaychangesbecauseof thecontinuouschangesof

baselinelengthandof baselineorientationwith respectto theplaneof thewavefront.Both

changesaredueto thecontinuousrelativemotionbetweenbothendsof thebaseline.For

the caseof aground-to-space baseline, the relative motion between both ends of the

baseline is a result of the Earth's rotation and satellite motion. Changes in both length and

orientation of a space-to space baseline, result from the relative motion of satellites with

respect to each other. Since the baselines in space VLBI do not repeat themselves, their

length and orientation therefore can not be recovered from the usual VLBI technique itself.

Some of the parameters (e.g., satellite's coordinates and/or source coordinates) should be

determined by some other means.

3.3 Datum Content of Space VLBI Observables

Following an evaluation by Wells et al., (1987) for GPS datum definition, in this

chapter we describe datum content of the space VLBI time delay observables. For this

purpose, consider a space VLBI network of points divided into satellite points with an

orbiting radio telescope Sr and a ground-based VLBI station Pj. A single time delay

observation (ignoring clock parameters, and expressing the time delay in units of distance)

is given by

d_kt =-Bj_. et=-[RkXj-X_et,

in matrix form, where Xj contains the Earth-fixed coordinates of the station Pj, X_ contains

the coordinates of satellite SI in a true-of-date geocentric inertial coordinate frame at epoch

tk, Rk is a transformation matrix (transpose of the matrix S), see Eqs. (7-11) in [Moritz

and Mueller, 1987; p. 417], the dot denotes the scalar product and the T is the transpose

sign.

Translating the datum by AX we have

R X7 RkXj+ AX
=x{ + ax
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=-[(RkX j + AN)- (X{ + Ax)]T el

= - [RkXj - x{]T el

= djIkt

that is, time delays are invariant with respect to translation.

Rotating the datum, we have

R---_j = Ro(RkXj)

_i: RoX[
et = Roet

where Ro represents a proper orthogonal transformation (R T Ro = I). Then

-- Xk] etdlkg = -[R_j _I T

= - [Ro(RkXj) - RoX_ffRoel

=-[RkX j -- x[]Tp_Roet

= - RTRo [RkXj- x[IT et

--- x( e,
=d]kt

that is, time delays are invariant with respect to rotation.

Changing the datum scale by s, we have

(13a)

(14)

Then

A

RkXj = s RkXj
"I
X k = s X_
A

et = s e t
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-- s Tse,
s[Rk×j× se,

-- X(
= S2 dlkl

that is, time delays are not invariant with respect to scale change.

(15)

For the sake of completeness and a comparison, the corresponding equations for

the ground-based VLBI time delay observable can be derived in order to show its

translational and rotational invariance. In the following only the translational invariance

will be deduced pointing at some difference in the sequel. Consider a network of ground-

based VLBI stations Pi and Pj. A single time delay observation (ignoring again clock

parameters and expressing the time delay in units of distance) is given here in matrix form

dijk/= -(Xj - Xi) T Rk et,

where Xi and Xj is the ith and jth station within a ground-based geodetic VLBI network,

Rk is a transformation matrix, see Eq. (19).

Translating the datum by

xj:xj+ :
Xi = Xi + AX.

AX we have

Then

d-ijU = - (Xj - X-i)T Rk e£

=-[(Xj+AX)-(X i+Ax)] TR ke l

= - (Xj - Xi) T Rk et

= diju (13b)

that is, ground-based VLBI time delays are invariant with respect to translation. A

comparison of Eqs. (13a) and (13b) is discussed in section 3.5.1.
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Therefore,time delayobservationscannotprovidedatumorigin and orientation.

Consequently, the basic formulations are independent of the reference frame used. Since

the geometric observables are the dot product of two vectors (B(t) and et, dB(t)/dt, and eg,

respectively) it is evident that they do not depend on the location and orientation of the

coordinate frame in which the components of these vectors refer.

Eqs. (7-12) can be applied for covariance analysis either in terrestrial frame or in the

true celestial frame. In the former case, et is transformed from the true celestial to the

terrestrial frame, and in the latter case the baseline vector (Bij, B_ or B IJ) is transformed

from the terrestrial to the true celestial frame. On the other hand, the observables are

affected by the scale of the coordinate frame which is implied by the adopted speed of light.

Therefore, from observations of both time delay and delay rate it is impossible to recover

the origin and absolute orientation of the coordinate frame.

3.4 Mathematical Model for Ground-to-Ground VLBI Observations

The basic theory of ground-based geodetic VLBI is very well documented by, e.g.,

Whitney (1974), Robertson (1975), Counselmann (1976), Counselmann and Shapiro

(1978), Ma (1978), Shapiro (1978), Bock (1980), Brouwer (1985), Harvey (1985),

Campbell (1987), Moritz and Mueller (1987) and Sovers and Fanselow (1987). Therefore,

only those aspects of the theory which are essential to the research in this report, ,are briefly

summarized.

Since a combined use of ground-based and space VLBI observables will be used in

the future, a detailed comparison of the corresponding mathematical models is desirable.

Only the essentially necessary equations for ground-to-ground baseline observables are

given here in order to make a comparison between the mathematical models for different

type of baseline observations.

Therefore, some of the important mathematical equations will be derived in rigorous

manner.

3.4.1 Time Delay Model. In the ground-based geodetic VLBI, the mathematical

model for the time delay observable can basically be written as the inner product of the

baseline vector rotated from an Earth-fixed system into the true-of-date inertial system and

the quasar unit vector in the true-of-date inertial system plus polynomial terms of clock
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parameters. For baseline PiPj observing source £ at epoch k the path difference (time delay

times the speed of light) which the incoming signal must travel after its reception at station

Pi till its arrival at station Pj (see Fig. 10) can be expressed in a simplified manner suitable

for least squares covariance analysis as follows (the T is the transpose sign),

where

[_iJl T I cOsSt
dijkt =- aYij R2(-_) R1(-1"1) R3(0k) cos8£

 Zij

+C [ACoij + AClij (tk- to)],

c.osat]smat

sintSt

+
(16)

AXij, AYij, AZij

Ok

Ok = Oo + Wd UTlk

= 0o + Wd [TAI - (TAI - UTC) - (UTC - UT1)]k + Eq.E

are the coordinate differences of the baseline PiPj in an Earth-fixed

system;

are the true fight ascension and declination of the £th quasar;

are the components of polar motion that relate the true celestial

pole to the terrestrial pole;

is the Greenwich Apparent Sidereal Time (GAST) at epoch tk, that

is

(17)

0o

TAI

UTC

UT1

Wd

Eq.E

GAST at initial epoch to

International Atomic Time

Coordinated Universal Time

observed Universal Time corrected for polar motion

conversion factor from Universal to Sidereal Time

Equation of Equinox

AC0ij, AClij are the clock offset and drift between the ground stations Pi

and Pj,

Ri(_) is the rotation matrix for a right handed rotation _ about the axis i, see

[Moritz and Mueller, 1987; p. 417]:
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R2(--_) =
cos _ 0 sin

0 1 0

-sin _ 0 cos (18a)

I 1 0 0
Rl(-rl) = 0 cos rl -sin 1]

0 sin r 1 cos (18b)

that is

COS Ok sin Ok
R3(0k) = -sin Ok cos Ok

0 0

0

1
(18c)

R = R2(--_) RI(-rl) R3(0k) =

cos _ cos 0k-sin _ sin rl sin Ok-cos 1] sin Ok

k-sin _ cos 0k-COS _ sin 1] sin Ok

cos _ sin 0k+sin _ sin r 1 cos Ok

cos 1] cos Ok

-sin _ sin 0k+COS _ sin 1] cos Ok

Expression of Eq. (16) may be rewritten as

sin _ cos 1"1

-sin T1

cos _ cos rl

(19)

dijkg = - AXij [cos _ cos 8g cos (Ok - Oct) - sin _ sin 1] cos 8t cos (Ok - Oct)

+ sin _ cos 1] cos St] +

+ AYij [cos r I cos 8g sin (Ok - 0¢t) + sin r l sin St] +

+ AZij [sin { cos 8t cos (Ok - Oct) + cos { sin 11 cos 8t sin (Ok - Ocg)

- cos _ cos rl sin St] +

+ C [AC0ij + AClij (tk - to) j

(20)

Differentiation of Eq. (20) yield the usual form of the adjustment model (error equations),

d(dijkl) = E Ap dPp,

P (21)

where the index p stands for the unknowns

{AXij, AYij, AZij, Oct, St, _, 1+1,_, AC0ij, AClij} (22)

The parameter 1< is used to model the departure of the earth's sidereal rotation from

uniformity, thus, e.g.,
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= UT1 - UTC. (23)

ThepartialderivativesAp areasfollows:

AAXij = - [cos_cos6t cos(Ok- cxt) - sin _ sin rl cos [it cos (Ok - 0_t)

+ sin _ cos rl cos lit] (24)

AAYij = cos rl cos 8t sin (Ok - a t) + sin T1 sin 6t (25)

AAZij = sin _ cos St cos (Ok - o_t) + cos _ sin 1] cos St sin (Ok - ¢_t)

- cos { cos rl sin 8t (26)

A_ = AXij [sin _ cos St cos (Ok - at)+ cos { sin rl cos 8t sin (Ok - Cxt)

- cos { cos 11 sin St] +

+ AZij [cos _ cos St cos (Ok - tx t) - sin _ sin rl cos St sin (Ok - ctt)

+ sin _ cos rl sin _St] (27)

A n = AXij [sin _ cos 1] cos St sin (O k -- O_t) + sin _ sin 11 sin St] -

- AYij [sin r i cos St sin (Ok - at) - cos rl sin St] +

+ AZij [cos _ cos rl cos St sin (Ok - txt) + cos _ sin rl sin St] (28)

AK = Wd {AXij [cos { cos St sin (Ok - at) + sin _ sin T1 COS St COS (Ok - (It)] +

+ AYij cos ri cos St cos (Ok - C_t) -

- AZij [sin _ cos St sin (Ok - CXt) - cos _ sin rl cos 8t cos (Ok - al)] } (29)

Acx t = - {AXij [cos _ cos St sin (Ok - _l) + sin _ sin T1cos St COS (Ok - 0tt)] +

+ AYij cos r I cos _g cos (Ok - O_g)-

- AZij [sin _ cos 8t sin (Ok - o_t) - cos _ sin rl cos St cos (Ok - at)] } (30)

ASt = sin St [AXij [cos _ cos (Ok - tx t) - sin _ sin rl cos (Ok - me)] -

- AYij cos r I sin (Ok - 0tt) -

- AZij [sin _ cos (Ok - CXt) + cos _ sin rl sin (Ok - Ctt)] } -

- cos 8t [AXij sin _ cos B - AVij sin 1] + AZij cos _ cos 1]] (31)

AAC0ij = C (32)

Aachj = c (tk - to) (33)
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The set of unknown parameters in Eq. (22) can usually be determined in a standard

least squares adjustment from the information present in the observables. It is not the

purpose of this report to describe the adjustment procedure in detail. However, the

estimability aspect of the adjustment problem will be emphasized. In the present context

the term simply refers to parameters which can be estimated through the adjustment

process, The detection of what is estimable and what is not is through the design matrix A

of the partial derivatives. Therefore, it has particular significance in the following. If there

exist linear relationships between the columns of the design matrix A, its column rank will

be deficient (will not be full) and the normal matrix ATpA (P is the weight matrix of the

observables) will consequently be singular implying that not all of the parameters are

estimable and the establishment of a new set of the parameters is required.

The following linear relationships can be detected among the partial derivatives in

Eqs. (24) - (30):

A_ = zXXij AAZij-AZij AAXij (34)

Arl = cos { (AZij AAYij - AYij AAZij ) +

+ sin _ (AXij AAYij -AYij AAXij ) (35)

A_: = W d [sin rI (AXij AAZij - AZij AAXij ) +

+ sin _ cos 1"1(AYij AAZij - AZij AAYij ) +

+ cos _ cos 11 (AXij AAYij - AYij AAXij )] (36)

Aoq = -AI_]W d (37)

The equations (34) to (36) with

sin _ _=sin i"1-=-0

cos _ _--cos 11-- 1 (38)

yield in matrix form

A_ )[_aZ o 0 aX o
An = 0 AZ_j-AYij

Ar,/Wd -kYij kXij 0

AAXij

AAYij

A&j ]
(39)
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Since there exist linear dependencies among the partial derivatives, it is not possible

to estimate all of the parameters of interest from ground-to-ground baseline VLBI time

delay observations. Of the initial 10 parameters of interest only six may be estimated

simultaneously.

It is obvious that the system of normal equations N = ATpA of the least squares

adjustment will be singular. Two reasons have to be mentioned for this: 1) rank

deficiencies due to coordinate system definition, and 2) rank deficiencies due to a critical

configuration.

There are certain conventions to overcome rank deficiencies of a ground-based

geodetic VLBI network due to coordinate system definitions, see Bock (1980), Brouwer

(1985), Dermanis and Mueller (1978), and Papo and Saleh (1988). Since in a Euclidean

space, the coordinate system definition requires seven parameters; therefore, in practice the

most common way to define the coordinate system is to constrain seven well-chosen

"conventions" in the least squares adjustment. One possible choice for these seven

parameters for ground-based geodetic VLBI is [Brouwer, 1985]:

• the X,Y and Z coordinate of one station to define the origin (three translations)

• the epoch ephemeris pole position to define the equatorial plane (two rotations)

• the right ascension of one source to define the orientation in the equatorial plane

(one rotation)

• the velocity of light in vacuo as a scale parameter

An other convention for the coordinate system definition may be the use of a

minimum norm solution. This procedure yields a minimal trace for the variance-covariance

matrix so that smoother looking variances appear (for details see Chapter 4.1). Here we

mention that there exists a rectangular matrix G of m rows and r linear independent

columns such that AG T = 0. The result is that a nullspace L of N = ATpA is described.

The basis of the nullspace is formed by the column vectors of the G matrix, the dimension

of the nullspace is r. Such a matrix for the ground-based geodetic VLBI is given by, e.g.,

Brouwer (1985; Appendix E) and Dermanis and Mueller (1978).

In order to circumvent the estimability problem, the earth rotation parameters (ERP:

_, rl, _c) as one of the possibilities and fight ascension (_1) may be redefined by introducing
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A_o = _ - to (40a)

Ario = ri - rio (40b)

A_:o = _- V..o (40c)

Ao_o t = at - Oto, (41)

where to, rio, _:o are the adopted ERP providing the initial reference orientation of the

network (CTS) with respect to the true equator and equinox, and Oto is the fixed right

ascension of one radio source (3C273B or ]3 Persei) providing the reference origin of right

ascension. Therefore, the corresponding estimable parameters are the ERP differences

(A_o, Arlo, A_co) as changes in the network orientation relative to the initial orientation and

the fight ascension differences Ao_otwith respect to the fixed right ascension Oto. However,

the errors in the four adopted basic parameters of orientation bias the baseline components.

Thus, from this point of view, the baseline components ,SXij, AYij, AZij are nonestimable

and are replaced by the corresponding set of estimable components zSX'ij, AY'ij, AZ'ij,

contaminated by the above errors and defined by the following equations [Arnold, 1974],

[Bock, 1980] and [Moritz and Mueller, 1987]

dAYij [ = dAY'ij -
d, j j 0

--AZij 0 AYij

0 AZij -AXij

z_(ij-AYij 0

drio ,

d13o
(42)

where dAXij, dAYij, dAZij are the differential changes of the baseline components and

d]3o = dcxo - Wd dr:o, (43)

implying that the two differential rotations dO_o and dr,:o are inseparable,

d_o, drio, and d]3o are the small errors of the initial reference orientations. Note that the

baseline length is unaffected by the errors in the reference orientation being invariant of

coordinate system definition.

A list of estimable parameters recoverable from delay observations is:

{AX'ij, AY'ij, AZ'ij, St, At%t, A_o, Ario, A_;o, AC0ij, ACIij} (44)
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A number of limiting conditions should be considered in the geodetic analysis phase

of VLBI observations, among others some critical configurations. These are the result of

an insufficient measurement design that yield a (nearly) singular system of normal

equations in the least squares adjustment. The following two equations are useful to

describe critical configuration situations.

Rearranging Eq. (39) we arrive at the equation

/_Zij A_ = Wd (AYij A_ + AXij A_). (45)

Furthermore, under the assumptions in Eq. (38),

A_5t = AT.ij AAZij ctgSt -

- (AXij AAXij + AYij AAYij ) tgSt (46)

can be derived which with Eq. (45) is appropriate for studying critical baseline

configurations, cf., [Bock, 1980], [Dermanis, 1980] and [Moritz and Mueller, 1987]. A

well-known example of critical configuration in ground-based geodetic VLBI that yields a

singular case is the single baseline experiment with observed sources at only one

declination, see Eq. (46).

Recognizing that

cos _ ----cos 1"1= 1, (47a)

sin _ ___-_, (47b)

sin rl = rl, (47c)

and neglecting products _rl, an examination of Eqs. (1) and (20) reveals that since

dijkt = K1 cos (Ok - at) + K2 sin (Ok - c_t) + K3 + K4(tk - to) (48)

where

K1 = - (AXij - _ AZij) cos St

K2 = (AYij + 1] AZij) cos St

K3 = -(AZij + _ AXij -1"1 AYij) sin St + c AC0ij

K 4 = c AC1 ij

(49a)

(49b)

(49c)

(49d)
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or moresimply

dijkt = K sin(t-0etk+ ¢) + K3+ K4(tk- to)

where

K = (K 2 + K2) If2

_= _t-_0

or0 is the right ascension of the baseline at the initial epoch tO,

(5O)

(51a)

(51b)

a time delay observation of a single ground-to-ground baseline using a single source

represents a sinusoid superimposed on a straight line. Eq. (48) and (50) may help us in

obtaining a better understanding of the dependencies among the unknown parameters.

Counselmann and Shapiro (1978), Bock (1980), Dermanis and Grafarend (1981),

Shapiro (1978), and Moritz and Mueller (1987) show which parameters are estimable from

ground-based VLBI measurements. Of the geodetic parameters only baseline lengths and

source declinations are estimable from time delay. All other parameters are variational in

nature, that is they are determined relative to the initial orientation of the inertial and

terrestrial reference frames. Only their variations (changes) are estimable. Therefore the

initial values for right ascension and earth rotation parameters (polar motion components

and UT1-UTC value) must be held fixed at a priori values with the use of external

information (e.g., derived from an independent technique). Geocentric site coordinates are

not estimable because the observations are primarily a function of the differences of these

coordinates for each baseline. In addition these baseline components are contaminated by

errors in the reference orientation, polar motion and UT1-UTC variations.

Note that from one baseline time delay observations, only two of the earth rotation

parameters are estimable. Therefore, multi-baseline configurations are needed to estimate

all three earth orientation parameters.

3.4.2 Time Delay Rate Model.

we get

dij_ = 6% {Axij [cos _ cos St sin (Ok - o_t) + sin _sin 1"1cos 8t cos (Ok - 0¢t)]

+ AYij COS Tl COS S%COS (Ok -- 0_%)-

-AZij[sin _ cos 8tsin (0k-0_t)-COS _ sinr 1 cos 8tcos (0k-at)I} +

+ C AClij ,

Differentiating Eq. (20) with respect to time

(52)
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where

d0k _Nd (53)
rOe- dt

is the spin rate of the earth, Ne the instantaneous earth rotation vector.

One sees that time delay rate is effectively insensitive to the AZij component of the

baseline, consequently, only the equatorial projection of the baseline can be estimated. In

addition, the delay rate is uneffected by clock offset variations, ACoij.

Furthermore, since

(54)

is orthogonal to Ne and, thus, the origin of declination is undefined as well as the right

ascension origin.

Taking the differential of dijkt with respect to the parameters

d(dij_) = 2 Bp dPp,

P (55)

where the index p stands for the unknowns

{AXij, z_Yij, _Zij, at, St, _, _, lq, z_Cij} (56)

The Bp's in Eq. (55) are the required partial derivatives of the time delay with

respect to the parameters subscripted p as follows:

Btxij = rOe [cos _ cos fit sin (Ok - at) + sin _ sin rl cos St cos (Ok - atl (57)

BAYij = rOe COS T1 COS _t COS (Ok -- (Zt) (58)

B_zij = - rOe [sin _ cos _Stsin (Ok - O_t) - COS _ sin rl cos fit cos (Ok -- O_t)] (59)

B% = rOe {AXij [cos _ sin 1"1cos 5t cos (Ok - at) - sin _ cos 5t sin (Ok -- at)] -- (60)

-- AZij [cos _ cos St sin (Ok -- at) + sin _ sin aq cos St cOS (Ok - at)]}
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Bn = o_e [AXij sin _ cos 1] cos 5t cos (Ok - at) -

- AYij sin 11cos 8t cos (Ok -- 0_t) +

+ AZij COS _ COS 1] COS _t (Ok -- (Xg) ]

(61)

Br = toe Wd {AXij [cos _ cos 5t cos (Ok - at) - sin _ sin 11 cos 5t sin (Ok - ctt)] -

- AYij cos lq cos [it sin (Ok - oft) -

-- z_Zij [sin _ cos [it cos (Ok - O_t) + cos _ sin 11 cos [it sin (Ok -- 0_t)]}

Ba t = c%{AXij [sin _ sin rl cos [it sin (Ok - 0_t) -cos _ cos [it cos (Ok -- 0tt)] +

+ AYij cos 11 cos [it sin (Ok - 0tt) +

+ AZij [sin _ cos [it cos (Ok - o_t) + cos _ sin 11 cos [it sin (Ok - o_t)]}

(62)

(63)

B_st = - toe sin [it {AXij [ cos _ sin (Ok - _Xt) + sin _ sin 1"1cos (Ok -- C_t)] +

+ AYij cos 11 cos (Ok - (Xg) -

- AZij [sin _ sin (Ok - Ctt) - cos _ sin 11 cos (Ok -- _t)]}

BACli j = C.

The following linear relationships are evident

B_, = AXij BAZij - AZij BAXij

Brl = cos _ (_Zij BAYij - AYij BAZij)

+ sin _ (AXij BAy_j - AYij BAYij)

B_ = Wd [sin 1] (AXij Bazij - z_,ij BAX_j)

+ sin _ cos 11 (AYij Bt, zij - AZij BAYij)

+ COS _ COS TI (z_ij BzxYij - AYij Baxij)l

Ba t = _ B_W d

(64)

(65)

(66)

(67)

(68)

(69)

indicating that it is impossible to estimate all of the parameters of interest from ground-to

ground baseline VLBI delay rate observations. Eqs. (66) - (69) are formally very similar to

Eqs. (34)- (37).

The Eqs. (66) - (68) with assumptions in Eq. (38) yield in matrix form
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B_

Bn
--hT_j 0 Axij

o _j -_xYij
-AYij AXij 0

B_ij

BAYij

B_j
(70)

The discussion of the parameters estimable from delay rate is identical to that of
r

time delays except that in this case AZij (AZij) and ACoij are deleted, and declination

differences

ASot = _St - _5o (71)

replace St. Thus, the list of the estimable parameters recoverable from delay rate

observations is

{ ' , }AXij, AYij, ASot, Aaot, A{o, Arlo, Ano, AClij (72)

It can easily be shown that the equatorial baseline components are also contaminated by the

errors of the initial orientation in the following sense

0 ]= - - dno (73)

L_xYijjLdaVl o_j _zij-_ijj di3o

where dido equals with Eq. (43) implying again that the two differential rotations dcco and

d_ are inseparable.

Similar derivation to the Eqs. (45) and (46) gives

AZij B n = Wd (AYij B_ + AXij Bn)

B8 t = - tgSt (AXij B_xxij + AYijBAYij + z_Z4j BAZij)

(74)

(75)

Eqs. (74) and (75) can be used to detect critical configurations and for sensitivity analysis

as well.
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An examination of Eq. (52) or differentiating the Eq. (50) with respect to time, we

get

dijkt = K m e COS (metk + _) + K4,
(76)

which is useful for an analysis. The coefficients K and K4 are the same expressed by Eqs.

(51 a) and (49d).

The delay rate model includes a reduced parameter set in comparison with the time

delay model. The third component of the baseline is non-estimable and only declination

differences may be estimated, see [Bock, 1980] and [Moritz and Mueller, 1987].

Therefore, it is not possible with delay rates alone to estimate all of the parameters of

geodetic and astrometric interest.

3.5 Mathematical Models for Ground-to-Space VLBI Observables

We are interested in forming equations which relate to observables to the unknown

parameters suitable for least squares covariance analysis. Our main purpose is not to derive

explicit observation equations, but rather to develop qualitative expressions to demonstrate

the relationship between the observables (time delay and delay rate) and the parameters and

to explore estimability problems inherent in the space VLBI system.

3.5.1 Time Delay Model. From Eq. (9) we can get a simplified expression

(similar to Eq. (16) [Pavlis, 1986]) suitable for the analysis as follows (the T is the

transpose sign), see Fig. 13:

I× lT]

R2 (-_) Rl(-rl) R3(01<) -[Zy_J j

+ C [ACOIrj + AC_r j (tk - to)

cos 8 t cos Ott

sin 8t sin ott

sin 8t

+

(77)
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orbit

Earth
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Earth center

Fig. 13 Space VLBI time delay observable

where

xj, Yj, zj

,q,,

St, 8t

Ok

C

to

AcI j,Aclrj

Ri(0)

are the Earth-fixed coordinates of the station Pj,

are the coordinates of satellite S_ in a true-of-date geocentric inertial
coordinate frame at the epoch tk,

is the right ascension and declination of the £th radio source in the same as
above true-of-date coordinate frame,

are the polar motion components that relate the instantaneous rotation axis of
the Earth with the average terrestrial pole,

is the Greenwich Apparent Sidereal Time (GAST) at epoch t_,

is the speed of light,

is the initial epoch of observation,

is the clock offset and drift between the reference clock at the

telemetry�control station and the clock of station Pj, and

is the rotation matrix for a right handed rotation _ about the axis i.
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Theexpressionof Eq.(77)mayberewrittenas

dj/ = - Xj [cos _ cos 5t cos (Ok - OCt) - sin _ sin r1 cos 5t sin (Ok -- OCt)+

+ sin { cos rl sin 8t] +

+ Yj [cos 11cos 5t sin (Ok -- OCt)+ sin rl sin St] +

+ Zj [sin _ cos _St cos (Ok - at) + cos _ sin rl cos 8t sin (Ok -- OCt)--

-- COS _ COS q sin St] +

cos 8t cos czt+

+ Y_ cos 5t sin at +

+ Z_ sin 5t +

+ c [AC  j + lXC[ j(tk- to)]

(78)

In the following, the Cartesian coordinates X_,Y_,Z_of satellite S I are

transformed into Keplerian orbital elements consisting of the semimajor axis a, the

eccentricity e specifying the elongation of the orbital conic section, the inclination i

specifying the orientation of the satellite's orbital plane with respect to the equator of the

Earth, the right ascension f_ of the ascending node, i.e., the angle measured eastward

along the equator between the vernal equinox and the point where the satellite crosses the

equator traveling in a northerly direction, the argument ca of perigee, i.e., angle between

the ascending node and the perifocal point measured positive with increasing mean

anomaly, and the mean anomaly M, i.e., the sum of the mean anomaly at epoch and the

product of the mean motion and the elapsed time from epoch. A transformation of Kepler

elements

{a, e i, co, f2, M} (79)

into geocentric orthogonal coordinates {X,Y,Z} is given by the following formulas

(dropping the lower and upper indexes) [El'yasberg, 1967; p. 631 and [Grafarend and

Livieratos, 1978]:

I ]cos f2 cos u - sin f2 sin u cos i

= r sin f2cos u + cos _ sin u cos i (80)
sin u sin i
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where

r = a(1 -e cosE)
u=o0+f

tg f/2 = _t(1+ e)/(1--e)tg E/2
M = E - e sinE

sin f = _ sinE/(1 - ecosE)
cosf = (cosE - e)/(1- ecosE)

E is theeccentric anomaly.

(81a)
(81b)
(81c)
(81d)
(81e)
(81f)

Equation(78)with Eq. (80) [andEq. (77)] expressesthefunctionalrelationshipof
the time delayobservationwith the listedparameters.Of directgeodeticinterestare the

stationcoordinatesXj, Yj, Zj , the Keplerian orbital elementsEq. (79) of the orbiting
radiotelescopeS! andtheearthrotationparameters(ERP)_, r1,_c. Thesourcecoordinates

o_tand 5t are of astrometric interest, while the clock offsetACoIrjandratesAClrj are

nuisanceparametersdefinedto makethemathematicalmodelmorerealistic.

The GAST, Okas well as the Earth rotation parameters _ are reformulated

identically to that of ground-to-groundbaselineVLBI observables,seeChapter3.4, i.e.,

Eqs.(17)and (23). Assumethatfor anobservationsession(onedayor onerevolutionof
Keplerianorbit) only one setof earthrotation parameters(_, rl, _:)is determined. Thus,

ourparametersetwill containthefollowing 16parameters:

{Xj, Yj, Zj, a,e i, c0,n, M, _, v1,_:,at, fit, ACoIrj, AC_rj} (82)

In the following we examine the complete observation eqation Eq. (78) with Eq.

(80) for the parameters, the coordinates of the ground VLBI station Pj, the Keplerian orbital

elements of the orbiting radiotelescope SI, the gth radio source positions, the earth rotation

parameters, and the clock parameters to determine which of them are separable or

nonseparable and, therefore, design experiments in which those parameters of primary

interest will be estimable.

Since Eq. (78) is non-linear with respect to that parameter set, we proceed as usual

to linearize Eq. (78). Taking the differential of d_kt with respect to the parameters,
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wherethe Cp's

parameters of interest, indexed by p. They are as follows:

Cxj = -[cos _ cos fitcos (0_- at)- sin _ sin rl cos 8t sin (Ok - Oct)l

+ sin _ cos 1] sin 8t]

are the required partial derivatives of the time delay with respect to the

(84)

Cyj = COS 1] COS _g sin (Ok - at) + sin 1"1sin 8t (85)

Czj = sin _ cos 5t cos (Ok - at) + COS _ sin 1] cos 8t sin (O k -- at) -

- cos _ cos 1] sin 8/ (86)

C_ = Xj [sin { cos 8t cos (Ok - at) + cos _ sin 11 cos 8t sin (Ok - at) -

- cos _ cos 11 sin 8t] +

+ Zj [cos _ cos 5t cos (Ok - at) -- sin _ sin 1"1cos 8t sin (Ok - at) +

+ sin _ cos r1 sin St] (87)

C n = Xj [sin _ cos rl cos 8t sin (O k -- ag) + sin _ sin 11 sin 8tl -

- Yj [sin 1"1cos 8t sin (Ok -- at) - cos 1] sin St] +

+ Zj [cos _ cos 1"1cos 8t sin (Ok - al) + COS _ sin 1] sin 8t] (88)

CK = W d {Xj[ COS _ COS Sg sin (Ok -- at) + sin _ sin rl cos _5t sin (Ok - at)] +

+ Yj cos 1"1cos St sin (Ok - OCt) -

-Zj[ sin _ cos St sin (Ok--at)--COS _ sin rl cos 8t cos (Ok--at)I}
(89)

Ca = (1 - e cos E) {cos St [cos u cos (f_ - at) -

- sin u cos i sin (f2 - at) 1 + sin 8t sin u sin i} (90)

Ci = r [sin u sin i sin (_2 - at) cos 8t + sin u cos i sin 8t] (91)

Co_ = - r {cos 8t [sin u cos (f2 - at) + cos u cos i sin (f2 - 8t)l -

- sin 8t cos u sin i} (92)

Cn = - r cos 8t [cos u sin (_ - St) + sin u cos i cos (_ - 8t)] (93)

Ce = a(e - cos E) Ca +
(1 - e cos E) 2

sin f
1 -e cos E

(94)

CM _ a e sin E Ca + sin f Co_
(1 - e cos E) 2 sin E (1 - e cos E) (95)
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Cat =- {Xj[cos _ cos8t sin (0k-at) + sink sinn cos 8t cos (0k-at)] +

+ Yj cos 1"1cos _t cos (Ok - OCt) --

- Zj [sin _ cos 8t sin (Ok - at) - cost sin rl cos 8t cos (Ok - at)]} +

+ r cos 8t [cos u sin (0 - at) + sin u cos i cos (O - at)]

(96)

Cst = sin 8t {Xj [cos _ cos (0k-at) - sin_ sin n sin (Ok-at)]-

- Yj cos 11 sin (Ok - at) -

- 7_5 [sin _ cos (Ok -- at) + COS_ sin rl sin (Ok -- at)] --

-- r [cos u cos (_ - at) - sin u cos i sin (f_ - at) ]} -

- cos 8t [Xj sin _ cos rl - Yj sin T1+ Zj cos _ cos rl - r sin u sin i]

(97)

CACo_j = C (98)

CAClr_j = c (tk - to) (99)

In order to get the partial derivatives of time delay (-d_t = d) with

Keplerian orbital elements, the following relationship:

3d

C_ 3a

3d

Ce 3e

3d

3i

3d

=

3d

Cn 3f_

3d

CM 3M

3X 3Y 3Z

3a 3a 3a

3X 3Y 3Z

3e 3e 3e

3X 3Y 3Z

3i 3i 3i

3X 3Y 3Z

3X 3Y 3Z

30 30 30

3X 3Y 3Z

3M 3M 3M

3d

--X-_= CxI

3d = CvI
3y I

3d

-_ = CzI

respect to

(100)

was applied, where the partial derivatives of time delay with respect to the orbiting

radiotelescope's cartesian coordinates are as follows:

Cx I = cos 8t cos at (101)

CyI = cos S t sin at (102)

CZI = sin St (103)
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Theelementsof thecoefficientmatrix in Eq. (100),calledasalinearKepler transformation

matrix K by Grafarend and Livieratos (1978), are given in Appendix A. We call this

matrix here as a linear Kepler transformation matrix Kc of position (or coordinate) type.

A useful check of the partial derivatives of the Cartesian inertial coordinates with
f J \

respect to Keplerian orbital elements [0X)/oKj]\ J is their use with the corresponding partial

derivatives of Keplerian elements with respect to the Cartesian parameters (_K/_xk) t o

confkrm the relation

_lOXi 0Kj _ 5ik,
j__ bKj 0Xk (104)

for all i, k e { 1,2,3 }

where _ik is the Kronecker-delta, X represents the Cartesian coordinates {X, Y, Z} and

K represents the Keplerian orbital elements {a, e, i, 03, f2, M} . Both types of partial

derivatives in Eq. (104) are collected in Appendix A. To compute the partial derivatives of

Keplerian elements with respect to the Cartesian parameters, the partials given in Hill

(1989) are used. Appendix A also includes a computer program with subroutines as well

as a practical example to confh'm the relation in Eq. (104).

The partial derivatives [Eqs. (84) - (99) and Eqs. (101) - (103)] of the time delay

observable with respect to the corresponding parameters of the mathematical model Eq.

(78) with Eq. (80) constitute the elements of the design matrix C in Eq. (83) that forms

the normal matrix N = cTpc (P is the weight matrix of the observables). The inverse of

that normal matrix yields the a priori covariance matrix of parameters. The magnitude of a

particular partial derivative which reflects the sensitivity of an observation to a particular

parameter determines its numerical contribution to the normal matrix. Most of the partial

derivatives listed in Eq. (84) - (99) are diurnal sinusoids, some others are composed of

diurnal sinusoids, functions of station coordinates, and Keplerian orbital elements (or

varying satellite positions).

Examining the analytical expressions for the partial derivatives we can derive some

interesting sensitivity relations between the time delay observable and the parameters to be

solved for. Since the partial derivatives of delay with respect to the polar components of

the ground station and satellite position and to the declination of the sources (when Zj ___-Z_ )
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go to zeroas the declinationgoesto zero, the sensitivity of delay to theseparameters
decreasesas the declinationsgo to zero. The tendencyof the sensitivity to the right

ascension of the sources and the earth rotation parameters _c is just opposite, that is, from

C_ and Ca t it is evident that the time delay is sensitive to the declinations of sources near

the equator. The orbiting radiotelescope's coordinates (Keplerian elements) effect only the

partial derivatives of delay with respect to radio source position components, see Eqs. (96)

- (97). From the analytical expression of these partial derivatives (Cc_l and C_ t) we can

gather that their numerical values will in general increase as the coordinate separation

between the station and the orbiting radiotelescope increases (advantage of space VLBI).

With three coordinates for the ground station, six Keplerian orbital elements for the

orbiting radiotelescope, two parameters for the radio source position, three for the ERP and

two for the clock, there are 16 parameters in total in the model Eq. (78). Therefore, the

design matrix C given in Eq. (83) will have a minimum of 16 columns, if one ground

station and one radio source is considered. In identifying linear dependencies between the

parameters, we can separate C into five submatrices according to the five major groups of

parameters, namely, the station coordinates, the orbital elements, earth rotation parameters,

radio source positions and clock parameters. From Eqs. (84) - (99) we can state that there

are no linear dependencies between columns of the design matrix within the same group.

However, dependencies do exist between columns of the design submatrices among

different groups with the exception of the ones belonging to the clock parameters. The

columns of the station coordinates can be written as linear combinations of those of the

earth rotation parameters. Therefore, we cannot separate the ground station parameters and

the ones for the earth rotation in a simultaneous adjustment.

Furthermore, one can easily write the linear relationship between columns of the

station coordinates, the right ascension of radio sources and the longitude of satellite orbit's

ascending node (f_). The linear dependence between the columns of the right ascension

(or) and earth rotation parameter (_) is also obvious. Consequently, the following linear

relationships are evident among the partial derivatives:

C{ = Xj Czj - Zj Cxj (105)

= cos (zj Cyj - Yj Czp

+ sin (xj cvj - Yj Cxj) (106)
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C_= Wd[sinrl (Xj Czj- Zj Cxj)

+ sin_ cos1"1(Yj Czj - Zj Cyj)

+ cos_ cosq (Xj Cyj - Yj Cxj)I (107)

Cot t = - C4W d - CE_ (108)

Recognizing that sin _ _=_sin rl -=-0 and cos _ = cos 1"1=- 1 , the linear relationships through

Eqs. (105) and (107) are reduced to the following matrix form which is more clearly

indicating the dependencies among the corresponding partial derivatives:

C_

Cn

CI¢/W d

-Zj
= 0

-Yj

0 Xj

Zj -Yj

Xj 0

%
Cyj

%
(109)

The linear dependencies derived analytically by Eqs. from (105) to (108) are

formally very similar to ones existing among the partial derivatives of ground-based time

delay observable (see Eqs. (34) - (37)). It is quite obvious from a comparison of Eqs.

(109) and (39). The only difference is the use of station coordinates instead of baseline

components. However, a comparison of the Eqs. (37) and (108) shows that in the latter

equation a new term (Cn) appears due to the additional linear dependency of radio source's

right ascension with the ascending node f_ of the satellite's Keplerian orbit in the space

VLBI. A geometric interpretation of this reason is that all three parameters, i.e., right

ascension o_t, Greenwich Apparent Sidereal Time (Ok) (or earth rotation parameter _c )

and ascending node f_ of the Keplerian orbit are "measured" in the same plane, that is, in

the equator (see Fig. 14).

In the following, it is useful to present the geometric interpretations of the rank

deficiencies expressed in Eqs. (109) and (108). Eq. (109) shows a linear dependence

between various combinations of ground station coordinates Xj, Yj, Zj and the earth

rotation parameters _, rl, _:. These indicate a rank deficiency of three due to a lack of

absolute orientation of the network of ground stations with respect to the true-of-date

celestial frame which cannot be sensed by the observables. Eq. (108) is due to a lack of

reference direction (origin or right ascension of the radio source and of the ascending node
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of satelliteorbit), for thetrue-of-datecelestialframe,i.e., theobservablesareinsensitiveto

theorientationof thetrue-of-dateinertial framein rightascension(seeFig. (14)).

Z

P

X

vernal

equinox
luator

Fig. 14 A geometric configuration of the Greenwich Apparent Sidereal Time (GAST),

the fight ascension ((z_) of a radio source and the ascending node (f_) of the

Keplerian orbit.

It has been shown in Chapter 3.3 that the time delay observables (or time delay

times the speed of light as the path difference) are invariant under datum translations and

rotations, but not invariant under datum scale change. The observable is insensitive in the

location and orientation of the coordinate system where the coordinates of the end points of

the baseline are given. Therefore, time delay observations cannot provide datum origin and

orientation, but only scale. The missing origin and orientation components are the datum

defect.

There are principally two reference frames associated with the mathematical model.

The first is an earth-fixed frame, and the second is a true-of-date inertial frame. Since time

delay can only provide scale, nine parameters define the two frames--three for the origin
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* source

I
dj_

R I

Earth center

Fig. 15 Geometry of time delay observable

and three for the orientation of the earth-fixed frame, plus three for the orientation of the

true-of-date inertial frame with respect to the earth-fixed frame. The design matrix C

contains partial derivatives of time delay with respect to parameters which include station,

satellite and radio source coordinates. Because such coordinates are not estimable

quantities, the design matrix should have a column defect of at least nine, provided there

are no configuration defects.

However, the time delay observable will remain unchanged if the wavefront rotates

in such a way that it remains tangent to a cone with axis the baseline and half angle equal to

gt (Fig. 9 and 15), see [Counselman and Shapiro, 1978]. From that fact, two additional

degrees of freedom exist (three rotations of a plane minus one constraint of tangency to the

cone). Furthermore, in practice, instead of three coordinates we need only two directional
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coordinatesof source,thatis, theright ascensionct anddeclination_5to definethetrue-

of-date inertial referenceframe. Thus, sevenrank deficienciesshould appearin the

mathematicalmodelEq. (77)of theobservable.

We have shownthat the three translationaland the three rotational parameters

cannotbefound from the either ground-basedand spaceVLBI time delayobservations.
Therearecertainconventionsin ground-basedVLBI to definetheorigin, that is, e.g., to
fix theX,Y andZ coordinatesof one stationor to useaminimum normsolution. In the

lattercase,wewill haveanoptimaldatumdefinitionin theclassicalsensewith thehelpof

thestandardinnerconstraintsfor 3D networks[Brouwer,1985;AppendixEl.

Notethatweweresearchingto analyticallyfind linearconstraintsfor "translational"

datumdefectfor spaceVLBI observationequations.In thecaseof ground-basedVLBI, it
is easyto geta nullspacebasisin sucha way that AGtT = 0 for translationaldefectin the

time delay observationequation [Brouwer, 1985]and [Dermanisand Mueller, 1978].
However,acomparisonof Eqs.(13a)and(13b)showsthat in thecaseof spaceVLBI, the
derivationof suchaGtTmatrix (CGtT= 0) for definitionof theorigin in theminimumnorm

solutionis impossible.Therefore,it impliesthatsomefixedvaluesshouldbeappliedtofix
theoriginof thecoordinatesystemfor spaceVLBI observables.

Contrary to ground-basedVLBI network, in the space-VLBI the origin of the

referenceframesis fixed by thegivenKeplerianorbitalelementsat somereferenceepoch,
To• In fact,theorbitalelementsarenot timeinvariant,i.e.,theirderivativeswith respectto

time,_ , will not bezero. The variationof agivenelementfrom somereferenceepoch,

To, to theepochof utilization,T, cansymbolicallybedescribedby thefollowing equation

(110)

where El' is theelementin questionat theinitial epochTo, and Ei at T (Fig. 16),

see [Moritz and Mueller, 1987; pp. 368-369]. The integral represents the perturbation of

the element Ei.

A rank deficiency of a normal equation system may easily occur as a combined

effect of coordinate system definition and critical configurations which are the result of an
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insufficientmeasurementset-up.Therefore,theconsiderationof critical configurationsis

alsovery important.

FromEq. (109)oneobtains

Zj C K = W d (gj C_ -t- Xj C__I )

Considering the assumptions in Eq. (38)

Cst = ctg 8t Zj Czj - tg 8t (Xj CXj + Yj Cyj -t- a Ca) + r sin u sin i/cos 8t

is derived. In searching of the rank deficiencies the following equation

North Celestial Pole

(111)

(112)

Earth cente

true

anomal

E3

satellite

E6
(time of perigee passage)

equator

I
vernal equinox

Fig. 16 Keplerian orbital elements: Right ascension of node, E1 ; inclination, E2 ;
argument of perigee, E3; semidiameter of the elliptic orbit, E4 ; eccentric of the
ellipse, E5 ; time of perigee passage, E6
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cosi Coo= ctg u sin i Ci + Cn (113)

hasbeenobtained. Eqs. (111) - (113) canbeusedfor studyingthe critical stationand

satelliteconfigurations. They may be usefulin observationdesignworks aswell. For
instance,additionalrankdefectoccursby a specialchoiceof Keplerianorbitalelements.If

i = 0° , thenfrom Equation(113)it follows that

Coo= Cta (114)

indicating an inseparable situation for the parameters ¢0 and f_. In the space VLBI

network this special situation gives a rank defect of internal type [Graferend and Livieratos,

1978]

Because of the linear relationships Eqs. (108) and (109) among the coefficients Cp

of the error Eq. (83), it is not possible to determine all of the 16 unknowns in Eq. (82).

Therefore, a new set of estimable parameters must be introduced. Concerning the linear

relationships expressed in Eqs. (105) - (107) [or see Eq. (109)] and in Eq. (108), the ERP

differences A_o, Ario, A_:o and right ascension difference AOtot may be introduced as

the corresponding new estimable parameters like that of the ground-based VLBI time delay

observable, see Eqs. (40) - (41). However, the errors in the four adopted basic parameters

of the initial orientation (_o, rio, r,o, trot) biase the station coordinates. Thus, from this

point of view, the station coordinates Xjw, yjW, Z_ are non estimable. They are replaced
• • t

by the new set of estimable station coordinates Xj, Yj, Zj contaminated by the errors of the

initial orientation (d_o, drlo, dr, o, dC_o). It can be shown that the errors of the

corresponding parameters can be expressed in the following manner:

IdXjl t

- 0

xj

o Yj
-xj

-Yj o
f d_o ]

drio

d13o

(115)

where dXj, dYj, dZj are the differential changes of the station coordinates and d[3o is

identical with Eq. (43), that is, the two differential relations d0_o and d_Co are inseparable.

Furthermore, the error of the initial reference orientation in right ascension makes

its influence in the space coordinates of the orbiting radiotelescope. Consequently, the
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satellitecoordinates(only theequatorialones,
error dcxoin thefollowing manner:

dY_ dYkq -dtXo

X[ andY_ ) will becontaminatedby the

(116)

where d_X[anddY[ arethedifferentialchangesof theorbiting radiotelescope'sequatorial
coordinates.

Note that the declination of the reference source should be nearly equatorial to

provide a strong definition, similarly to that of the case of ground-based VLBI. This can

be seen by an examination of Ca t , Eq. (96).

In order to show the main differences between the ground-based and space VLBI

time delay observables, under the assumptions of Eq. (47) we rewrite Eq. (78) in a similar

way to that of Eq. (48) as follows:

dJkt = K1 cos (Ok - (Xg)+ K2 sin (Ok -- Ctg) + K3 (tk) + K4 (tk -- to), (1 17)

where

K1 = - (Xj - _ Zj) cos 5t

K2 = (Yj + 1] Zj) cos 5t

K3(tk) = - (Zj + Xj _ - Yj TI) sin 5t + C ACoIrj

+ X[ cos 5t cos at

+ Y[ cos 8t cos ott

+ Z[ sin 8t

(118a)

(l18b)

(118c)

K4 = c AC[_j (118d)

or more simply

d_kt = K sin (c0e tk + 0) + K3 (tk) + K4 (tk -- to) (119)

where ¢ is the phase of the sinusoids relative to some initial epoch, 0,¥ is the rotation

rate of the earth, and
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K = (_ i + K_)1/2. (120)

Eqs.(117)and (119) showsthat a spaceVLBI time delayobservationbetweena

singlegroundstationandtheorbiting radio telescopeusinga singlesourcerepresentsa
combined function of a sinusoidand a periodic function with a period of the orbital
revolution.

3.5.2 Time Delay Rate Model

The geometric delay rate is the time derivative of the geometric delay. Including the

clock parameters, the delay rate may be expressed by Eq. (10). Differentiating Eq. (78)

with respect to time we get

dJ_ = o_e {xj [cos _ cos fit sin (0k- cxt) + sin _ sin n cos 8tcos (0k- O_t)] +

+ Yj cos rl cos 5t cos (Ok - Oct) -

- Zj [ sin _ cos 8t sin (Ok - O_L)- cos _ sin rl cos 8t cos (Ok - cot)I}

+ cos cos +
+ yI cos 5t sin cot +

+ 7__ sin 5t +

+ C AClr j , (121)

where

coc is the spin rate of the earth expressed by Eq. (53) and

are the velocity components of satellite SI in a true-of-date geocentric

inertial coordinate frame at the epoch tk.

Instead of the Cartesian velocity components XI, y[, 7__of the orbiting radiotelescope S I,

their equivalents expressed in Keplerian orbital elements are used by the following

formulas (dropping the lower and upper indexes) [El'yasberg, 1967; p. 63]:

= vr (cos f2 cos u - sin f_ sin u cos i) -

- Vu (cos _ sin u + sin f2 cos u cos i)

"iz = vr (sin f2 cos u + cos fl sin u cos i) -

- Vu (sin f2 sin u - cos f2 cos u cos i)

(122a)

(122b)
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= Vr sin u sin i + Vu cos u sin i, (122c)

where

Vr = fg/p e sin f

Vu= Trg/p (1 + e cos f)

p = a (1 -e 2)

g is the gravitational constant times the mass of the Earth.

(123a)

(123b)

(123c)

Our parameter set contains the same unknown parameters indicating by Eq. (82)

with the exception of clock offset AC_rj to which the time delay rate is uneffected,

{X j, Yj, Zj, a, e, i, co, _, M, _, 1"1,_:, oct, St, AfIrj} (124)

Taking the differential of d_kt with respect to the parameters listed in the previous

chapter

d (d]kt)= Z Dp dPp,
P (125)

where the Dp's are the required partial derivatives of the time delay with respect to the

parameters subscripted p as follows:

Dxj = me [cos _ cos _it sin (Ok - OCt)+ sin _ sin rl cos 8t cos (Ok -- OCt)] (126)

Dyj = me cos T1 COS 5t COS (Ok -- OCt) (127)

DZj = - me [sin _ cos 8t sin (Ok -- OCt)-- COS _ sin 1] cos 5t cos (Ok --at)] (128)

D{=me {Xj [cos _ sin 1] cos 5t cos (0k-OCt)- sin _ cos _St sin (0k--OCt)]-

-Zj [cos { cos _it sin (Ok - OCt)+ sin _ sin 1] cos 8t cos (Ok - oct)l} (129)

D n = me [Xj sin _ cos 11 cos 5t cos (Ok - OCt) -

- Yj sin 11 cos 5t cos (Ok - OCt)+

+ Zj cos _ cos 1] cos 5t COS(0k -OCt)] (130)
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D_ = O_eW d {Xj [COS _ COS _g COS (Ok- 0_/)- sin _ sin _ cos 8t sin (Ok - St)] -

- Yj cos lq cos [it sin (Ok -- _t) --

-Zj [sin _ cos 8tcos (Ok - o_t) + cos _ sin rl cos 8t sin (Ok-St)]}

Da = cos St { -_[cos u cos (_'2- 0tt)- sin u cos i sin (f_ -at)] +

[sin u cos (f2 -ott) + cos u cos i sin (_ - ¢z/)] } -
Vu

- sin g¢ _aa sin u sin i + cos u sin i

Di = cos St [Vr sin u sin i sin (f_ - ¢zt) +

+ Vu cos u sin i sin (f_ - at)] +

+ sin St ( Vr sin u cos i + Vu cos u cos i)

Dco =-cos St {vr [sin u cos (n-at) + cos u cos i sin (f2 -ett)] +

+ Vu[cos u cos (_- czt)- sin u cos i sin (_ - czt)]} +

+ sin St ( vr cos u sin i - Vu sin u sin i)

(131)

(132)

(133)

(134)

Dn = --cos St {vr [cos u sin (f2 - at) + sin u cos i cos (f_ - at)] -

- Vu [sin u sin (¢2 - o_t) - cos u cos i cos (X'-2- o_t)]} (135)

De =cOsSt { -Vr

DM

1 [cos u cos (f_ - czt) - sin u cos i sin (f_ - 0tt)] -
e (1 - e cos E)

-- Vu
e + cosf

(1 - e2) (1 + e cos f)
[sin u cos (f_ - at) + cos u cos i sin (f_ - at)]} +

f

+ sin St _- Vr 1 sin u sin i +e (1 - e cos E)

e + cos f cos u sin i -I_ (136)
+ Vu(1 - ez) (1 + e cos t3 J

Vr cos f - Vu sin f {cos St [cos u cos (f2 - ¢zt) - sin u cos i sin (_ - ctt)] +
sin E (1 - e cos E)

+ sin St sin u sin i}. (137)
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Dat = me {Xj [sin _ sin rl cos 8t sin (Ok--C_t)-cos _ COS 8t cos (Ok- Ctt)] +

+ Yj cos 11 cos 8t sin (Ok - at) +

+ Zj [sin _ cos 8tcos (0k-at) + COS _ sin rl cos 8t sin (0k--at)]} +

+ COS 8t {Vr [COS U sin (f2 - at) + sin u COS i cos (£2 - C_t)] -

- Vu [sin u sin (_ - oct) - cos u cos i cos (_ - C_t)l} (138)

D_ t = - toe sin 8t {Xj [cos _ sin (Ok - 0_t) + sin _ sin rl cos (Ok - at)] +

+ Yj cos 1"1cos (Ok - at) -

-Zj[sin _ sin (0k-at) -cos _ sinrl cos (0k-at)I}-

- sin 8t {Vr [COS U COS (f2 - at) - sin u COS i sin (f2 - o_t)l -

- Vu [sin u cos (_q - at) + cos u cos i sin (_q - st)I} +

+ Vr sin u sin i cos 8t + Vu cos u sin i cos cos 8t • (139)

DAC_rj = c (140)

"I
In order to get the partial derivatives of time delay rate (djkt = d) with respect to

Keplerian orbital elements, the following chain-rule differentiation

bd
Da ba

bd
De be

bd
m

Di bi

bd
Dco bm

bd
D_q-

bf_

bd
DM-

aM

OX bY 3Z

3M OM OM

bd

_-_ = D_:I

b__d_d= D_A

ad

_-_ = D2I

(141)

was applied, where the partial derivatives of time delay rate with respect to the orbiting

radiotelescope's Cartesian velocity components are as follows:

DxI = cos 8t cos o_t (142)
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D,i,I= cos8t sino_t (143)

D_I = sin at (144)

The elements of the coefficient matrix in Eq. (141) are derived and given in Appendix A. A

useful check of the partial derivatives of the Cartesian velocity components with respect to

Keplerian orbital elements _Xi/OKj is their use with the corresponding partial derivatives

of Keplerian elements with respect to the rectangular velocity components OKj/0Xk to

confirm the relation

6 _)(i _Kj _ _ik,

j=l

for alli, kc{1,2,3} (145)

where _ik is the Kronecker-delta, X represents the Cartesian velocity components

{X, "Y, 2;} and K stands for the Keplerian orbital elements {a, e, i, co, f2, M} .

The magnitude of the terms containing _ and 11in Eq. (121) are small, indicating that

the delay rate is effectively insensitive to the Zj component of the ground station. More

precisely, it is completely insensitive to the coordinate component of the ground station

parallel to the Earth's angular velocity vector. This is a disadvantage for geodetic

applications of space VLBI delay rate observables. In addition, the delay rate is unaffected

clock offset variations, AC_j. From D2[ it is evident that the delay rate is insensitiveby

to the polar component of the orbiting radiotelescope's velocity as the declination goes to

zero. Only the partial derivatives of delay rate with respect to radio source position

components contain the velocity components of orbiting radiotelescope.

In the ground-based VLBI, the delay rate observable is insensitive to the declinations of

sources near equator due to the fact that Bat in Eq. (64) contains only the polar component

of the declination. However, in the space VLBI the delay rate observable is more sensitive

to the declinations of sources near the equator, since the corresponding partial derivative

Dlit in Eq. (139) contains the equatorial component of the radio source's declination as

well. Therefore, an advantage of space VLBI over ground-based VLBI is that the space

VLBI may be used for accurate determination of the declination of those radio sources near

equator by the use of such ground-to-space baselines that possess large polar components
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and relatively large values for the polar component of the radiotelescope's velocity,

compare Eqs. (64) and (139).

The following linear relationships can be detected among the partial derivatives Dp"

De = Xj Dzj - Zj Dxj (146)

D_ = cos ¢ (Zj Dyj - Yj D7_) +

+ sin ¢ (Xj Dyj - Yj Dx) (147)

D_¢ = W d Isin rl (Xj Dzj - Zj Dxj) +

+ sin _ cos q (Yj DZj - Zj Dyj) +

+ cos _ cos 1"1(Xj Dyj - Yj Dxj)] (148)

Dat = - DIc/'Wd - Dn (149)

Eqs. (146) - (148) with assumptions in Eq. (38) yield in matrix form

D']{ X'O-Zj 0 Xj

= . -yj

Dr,/Wd -Yj 0

(150)

The relations from (146) to (150) are formally similar to the ones derived for the time

delay model, see Eqs. (105) - (109). There is a formal similarity even with the analytically

derived equations of the linear dependencies among parameters of the ground-based VLBI

time dely and delay rate observation models. Compare the Eqs. (34) - (39), Eqs. (66) -

(70), Eqs. (105) - (109) and Eqs. (146) - (150).

From (150) we can write

Zj D_: = W d (Yj D_ + Xj D n) (151)

Similar to Eqs. (112) and (113) for time delay observable, we can derive

Dft = - tg 8t (Xj Dxj + Yj Dyj + Zj Dzj - 2aDa)

+ (vr sin u + Vu cos u) sin i/cos 8t (152)
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and

cos i D0_ = Dn + sin i
Vr cos u - Vu sin u

Vr sin u + Vu cos u
Di

(153)

Eqs. (151), (152) and (153) are useful to study the critical configurations.

The discussion of the parameters estimable from delay rate is identical to that of time
t

delays except that in this case 7-5 (Zj) and ACoIrj are deleted. Initial reference orientation

parameters _o, rio, _o and 0% may be introduced again in order to overcome the datum

rank defect problem. However, their errors effect the equatorial coordinates of the ground

station and the equatorial velocity components of the orbiting radiotelescope in the

following manner:

dXj

dX

I d_o ]0 -xj 090
(154a)

where dl]o is identical with Eq. (43), that is, the two differential rotations doto

are inseparable and

dYIk dy I -dOto 0 L,YIk]

and d_.o

(154b)

Differentiating Eq. (117) we get

d'_t = K foe cos (foe tk + _)) + I_3 (tk) + K4, (155)

where

I(3 (tk) = XI cos 8t cos _t

"I
+ Y_ cos 5t sin c_t

+ _ sin St, (156)
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showingthataspaceVLBI timedelayrateobservablerepresentsacombinedfunctionof a
sinusoidand a periodic function of satellite'svelocity componentswith a periodof the
orbitalrevolution.

3.6 Mathematical Models for Space-to-Space VLBI Observations

3.6.1 Time Delay Model. Eq. (11) may be rewritten as

dk_

X[-X_

v[-yt

z -zt
[cosaecosat] [ 1cos 8t sinott + c ACotlrq + AC_rq(tk-to )

sin 8t

where X I, yI, ZIk and X J, YJ, Z J

(157)

are the coordinates of the orbiting radiotelescope SI

and S J, respectively, in the true-of-date inertial reference frame at the epoch tk.

In the model Eq. (157) we have ten unknown paJ:ameters

{X[, Y]¢, Z_, X_, Y_, Z_, 0_ t, _1, AC01_rq, AC/Jrq }

to be determined. Taking the differential of d_t with respect to the parameters,

(158)

p (159)

where the Ep's are the required partial derivatives of the time delay with respect to the

parameters of interest, indexed by p. They are as follows:

Ex[ = -cosSt cos(xe (160)

E_ = -cosSt sin_t (161)

Ez_ = -sinSt (162)

ExJ = cos_St cosc_t (163)

EyJk = cosSt sincxt (164)

EZ_ = sinSt (165)
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Eat = cosSt [(X[ - X_) sincxt -(Y_: - Y_) cosott] (166)

E_t = sin5 t [(X_-X_)cost_t+(Y_-Y_)]sint_t-(Z_-Z_)cosSt (167)

EAc_Jrq = c (168)

EaClIJrq = c (tk - to) (169)

The following relationships are immediately apparent from above set

EXIk = -ExJ (170)

EyIk = -EYkJ (171)

F-,ztk= -EzJ (172)

These parameters cannot be separated at all, and new combined unknowns must be

introduced:

(173)

(174)

(175)

ax[J =x[-

Ay_ = YI -Y/k

Az J=zt,-z ,

with partial derivatives

EaxklJ =ExI

gAyklJ =EyI

EaZ_ = EZIk

(176)

(177)

(178)

The new parameters are coordinate differences of the orbiting radiotelescopes S I and S J at

the epoch tk.

If the Keplerian orbital elements are used instead of the satellite's Cartesian

coordinates, then the partials in Eqs. (90) - (95) may be used for the formulation. In this

case, it can be shown that the ascending nodes (f_l and _2) of these two satellites (S I and

SJ) and the right ascension (c_t) of the radio source cannot be separated in a common

adjustment, since they are appeared in the partials through (_21 -- O_g) and (k") 2 ---_g). This

fact indicates that a space-to-space VLBI time delay observable is insensitive in the location
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of the true-of-date coordinate system where the coordinate difference components

(coordinates of the endpoints) of a space-to-space baseline are given. Because of this

linear interrelationship between these parameters, a new estimable parameter, namely Ao%t

given by Eq. (41) must be introduced as unknown similarly to that of the cases of ground-

to-ground and ground-to-space baseline VLBI observables. However, it can be shown that

the equatorial components of the space-to-space baseline will be contaminated by the error

dff.o of the initial reference right ascension in the following manner

:E 1+ro 1r 1
dAY? dAYklJ L-dr 0 _L AYkIJ (179)

where dAX_ and dAXku are the differential changes in the equatorial components of the

space-to-space baseline B IJ.

3.6.2

time we get

Time Delay Rate Model. Differentiating Eq. (157) with respect to

x'__xJ1

eL ,J/I
Z'kZJ3

c°sSt c°s°tt 1
cosSt sinc_t +cAC_q

sinSt

(18o)

where J_Ik, ,yI, _ and)_k J, _,J, 7__ are the velocity components of the orbiting

radiotelescope SI and SJ , respectively, in the true-of-date inertial reference frame at the

epoch tk. The model Eq. (180) contains nine unknown parameters

{XIk, K/I, _-]¢, XkJ, _ZJk, Zl{, Otg, _g, ACl_q } (181)

to be determined. Taking the differential of d_J with respect to the parameters,

dk_=E FpdPp,

p (182)

where the Fp's are the required partial derivatives of the time delay with respect to the

parameters of interest, indexed by p. They are as follows:

F_ k = - cos 8t cos o_t

F,i;k = -cos 8t sin at

(183)

(184)
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F_ = - sin 8t

FX'R= cos 5t cos at

F_ = cos _Stsin at

F_ = sin _it

Fa t = cos _t [()(Ik - XJ)sin 0tt - (_'Ik - _'_) cos at]

F_t = sin 5t [(XIk - X_) cos t_t + (_,I_ _,_) sin ctt] - (2 - 2_) cos 5t

FAClIlrq = C

Eqs. (183) - (188) indicate a complete linear

(185)

(186)

(187)

(188)

(189)

(190)

(191)

dependence

(F_ = -FxAk , F_.Ik =-F_, F_ = -F_k .) between the corresponding velocity components

of the orbiting radiotelescope S I and S J, respectively. Since they cannot be separated at

all, the velocity component differences of the orbiting radiotelescope S I and SJ

_klJ "I "J= Xk -- Xk (192)

AY_ = YIk-_J (193)

A?,_ = _- _ (194)

are, therefore, introduced as new combined unknowns with the partial derivatives

Ft0t_ = F_ (195)

Fa£kU = F_ (196)

Fa2_ = F_ (197)

Instead of satellite's Cartesian coordinates, Keplerian orbital parameters should be

used in practice. For this purpose, the partials given in Eqs. (132) - (137) are useful.

Using this parametrization, it can be shown that the ascending nodes (f21 and f22) of the

orbiting radiotelescopes S I and SJ and the right ascension (oct) of radio source are linearly

interrelated, that is, they cannot be separated in a common adjustment. This inseparable

situation for the parameters f_l, _22 and at indicates that the space-to-space baseline time
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delay rate observableis also insensitive to the orientation of the true-of-date inertial

reference system in right ascension.

In order to circumvent to estimability problem, the right ascension of one

(reference) source may be constrained to an adopted value and will not be included in the

parameter set. Therefore, the corresponding estimable parameters are the right ascension

differences A0%t similarly to that of the previous observation models. However, the

equatorial velocity components of the space-to-space baseline will be contaminated by the

error d_.o of the initial reference right ascension in the following manner:

dAX k dAXkIJ 0 do%
•4J = + (198)

dAYk dAYk_ -dCzo 0 [ A'Yku

where d AXk° and d A'Y_ are the differential changes in the equatorial velocity components

of the space-to-space baseline B IJ.

3.7 Differential VLBI Observations

Besides the usual VLBI observables (time delay, delay rate and phase delay),

another very important tracking method is the differential VLBI (AVLBI) which can be

applied to the determination of angular separation and its time derivative between a

transponder on the orbiting radio observatory and natural extragalactic radio sources. As

the name suggests, AVLBI is a measurement of the differential position between the

satellite and a radio source; the measurement is made using VLBI and treating the satellite

as a radio source. For an orbiting radiotelescope having a transponder on board, AVLBI

observations from the ground of both the satellite and extragalactic radio sources in

neighboring parts of the sky can serve to orient the satellite orbit with respect to the inertial

frame formed by these sources. Since the positions of the natural radio sources are known

with an accuracy of 0Y001 as a result of astrometric programs, therefore the relative

satellite coordinates are measurable with comparable accuracy if the satellite passes close to,

and slowly by, one of the natural sources that constitute the inertial frame.

In the AVLBI technique signals received simultaneously from a satellite and a radio

source located close together in the sky are compared. The difference between the phases

of the signals received simultaneously from a radio source at the two ground stations,

usually called the interferometric "fringe phase", is
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_)ijt(tk) = COBij (tk)" ee (199)-c-

where CO is the angular frequency of the transmitted signal, c is the speed of light, and

Bij. et is the pathlength difference [King, 1975].

If an orbiting transmitter and a natural radio source are observed simultaneously,

the differential fringe phase is given by

A_It (tk) = _It (tk)__I (tk) = _ Bij (tk)" (et- e_k) (200)

where we have supposed that the two transmitter frequencies are the same. Because

AVLBI involves taking differences not only between receiving points but also between

transmitting points, it follows that any potential source of error will cancel if it is common

either to all receivers or to all transmitters.

Expressing the small term (et-e I) in terms of the small differential right

ascension, A0_Ikt and differential declination, ASkIt between the directions to a natural radio

source and an orbiting transmitter, we can write

aIk = _t + AaIt (201 a)

51 = 5t + aSkIt (201b)

Whenever the orbiting radiotelescope passes close to the direction of an

extragalactic radio source, AVLBI may be useful to determine the ground station--

orbiting radiotelescope direction relative to that of the source to about 01'001. Such

measurements could be used to determine precisely the orientation of the radio observatory

orbits with respect to an inertial frame and to improve the estimates of the Earth's gravity

model parameters.
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4. ESTIMATION PROCESS AND SOME NUMERICAL TESTS

Some numerical computations were performed partly to check the mathematical

models derived for space VLBI observables and partly to explore the overall applicability of

space VLBI. In the following, first we discuss the datum definition problem in a general

sense. This is followed by a short description of the numerical adjustment. Finally, results

of the test computations are discussed.

4.1 Datum Definition for the Space/Ground VLBI Network

The general theory of network design including the geodetic datum problem and

transformations is extensively discussed in the contributions, e.g., in Grafarend and Sans6

(1985) and Teunissen (1985). In the following, the theoretical basis of the datum problem

for a combined space/ground geodetic VLBI network will be shortly described.

The parameters in Eq. (82) we are looking for cannot be derived uniquely from the

space VLBI time delay measurements. This typical situation in a combined space/ground

VLBI geodetic network can be characterized by a rank defect of the design matrix C within

the Gauss-Markov Model, see [Schaffrin, 1985 and 1990],

y - e = E(y) = Cx; o(C) = n x m, rk(C) = q<m<n, (202a)

D(y) = D(e) = Eee = cY2 p--1 positive-definite, (202b)

leading to the singular normal equations

N_" = b ; N := cTpc, rk N = q<m, b := CTpy (203)

Here y is the n x 1 observation vector, e the n x 1 error vector, C the n x m coefficient

matrix (positive-semidefinite), x the m x 1 parameter vector, Zee the n x n positive-

definite variance-covariance matrix of the observations, and P the respective n x n weight

matrix (as well positive-definite). E denotes "expectation" and D "dispersion".

Eq. (203) yields a whole class of different estimates _"
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_"= (cTpc) - CTpy= (cTpC)TsCTpy (204)

with accordinglydifferentvariance-covariancematrices

D(x")= _e2N?spositive-semidefmite,

outof theclassof reflexivesymmetricg-inversesof N. Note that

(205)

C_" = c(cTpc) - CTpy (206)

is Best Linear Uniformly Unbiased Estimation (BLUUE) being unique for any choice of

the g-inverse (cTpc) - .

From the rank deficiency of matrix C in (202a) [or (83)] follows that the unknowns x

cannot be determined uniquely, even if y e R(C). Thus, the information contained in y

is not sufficient to determine x uniquely. Note that the question of how to define vector x

so that it is estimable from y involves the so-called datum-problem. The datum-problem

deals with coordinate system definition, since coordinates are not estimable quantifies from

observations alone.

One can overcome this problem by adding the minimum information needed to

determine x uniquely. Therefore, it is sufficient to introduce r additional minimal

constraints

Kx = _ ; o(K) = r x m, rk(K) = r := m-q (207)

such that the space conditions

R(K T) u R(C T) = ]R m (208a)

and

R(K T) AR(C T)= {0} (208b)

hold, where R(.) denotes the range space of the corresponding matrices. From Eqs. (208a)

and (208b) it follows that

R(K T) _ R(C T) = ]R m (209a)
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or

where

R(K T) _ L(C) = 1_ m,

L(C) is the nullspace of the design matrix C.

(209b)

(Note that the concepts of nullspace

and range space are very important for singular matrices.)

The famous restriction

r=m-q (210)

is for the number of minimal constraints which are needed to overcome the rank deficiency

of the matrix C. Eq. (208b) says that the rows of the matrices C and K ought to be

complementary (but not necessarily orthogonal). An equivalent condition with Eq. (208a)

the

N- := N + KTK regular, (211)

is fulfilled. In this case, we obtain the estimated parameters _ and their dispersion matrix

D(_') from the extended normal equations

(212)
I ]I l:I lo

where _, denotes some r x 1 vector of "Langrange multipliers."

In practice, special datum constraints

Gx = 0; o(G) = r x m, rk(G) = r := m-q (213)

can be obtained through the orthogonality relation

CG T = 0. (214)

The rows of matrix G yield a basis of the nullspace L(C) so that condition Eq. (209a) then

reads as

R(GT) _ R(cT) = I;{m ' (215)
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i.e., the range spaces R(CT) and R(GT) are perpendicular to each other, thereby

automaticallyimplyingcomplementarity.

If

K := G (216)

is availablefor anarbitrary,but fixed r x m matrixG with rk(G) = r andCGT = 0,thenthe

"freenetadjustment"leadstotheestimates

= N+b

D(_ = cr2N+ ,

(217a)

(217b)

where N + denotes the pseudo-inverse of N = cTpc. N + is found directly by

N + = (N + GTG) -1 - GT(GGTGGT)-IG, (218)

which is independent of the choice of the matrix G.

If G matrix is taken, the so-called minimum norm solution is found, which has a

minimal value for the trace of the variance-covariance matrix.

Adding the minimal constraints Eqs. (207) or (213) to the model Eq. (202a) removes

the datum rank deficiency of the model. Applied to our combined space/ground VLBI

geodetic network it means, that by adding the either minimal constraints the datum is

established.

Note that if we collect the eigenvectors belonging to the r-multiple eigenvalue 0 of

the normal equation matrix cTc, we may even obtain an orthogonal basis (but it is not a

necessary requirement). Therefore, we may apply a formal Singular Value Decomposition

(SVD) to the positive semi-definite matrix cTc. Since cTc is a real symmetric semi-

positive definite matrix, it follows that its eigenvalues are non-negative. Denoting these

eigenvalues by _ia , i = 1,2,3,..., m, we can arrange them in decreasing order that

(Yl > (Y2 >- ... -> (Yq > 0 = (Yq+l = ... = (Ira (219)
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For cTc, there exist q different positive eigenvalues and a r-fold (r = m-g)

eigenvalue zero. Associated with these eigenvalues exist m different mutual orthogonal

eigenvectors.

The corresponding orthogonal eigenvectors are denoted by (Vl, v2 ..... Vm) and we

separate them into

Vo = (Vl, v2 ..... Vr) (220a)

V1 = (Vq+l, Vq+2 ..... Vm).

With Aqlr2 = diag (_1, c2 ..... _q) we thus have

(220b)

and

or

cTc Vo = VoAq (221)

cTc V1 = 0 (222a)

CV1 = 0 (222b)

Since the coordinate system defining subspace R(K T) only needs to fulfill the

complementarity condition Eq. (209b), it follows that there are many more coordinate

frames possible, giving the same solutions in principle. Therefore, a relation exists

between these solutions which is called S-transformation. For instance, a very special

datum choice is given with Eq. (216). The condition Eq. (209b) is for practical purposes

most manageable, since

R(V1) = L(C) (223)

is given by the linearized S-transformation [Teunissen, 1985] and K (or K := G) is

chosen in order to define the coordinate system.

4.2 Numerical Adjustment

In the mathematical models of space VLBI time delay and delay rate observables

different type of parameters are included. However, in practice we are primarily interested

in some of them, that is, e.g., earth rotation parameters (_, 1"1,_c) are of most interest for

geodynamical studies, or in order to improve the Earth's gravity field, only the corrections

to the Keplerian orbital elements are to be determined. Furthermore, supposedly we have
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stochastic prior information on certain parameters. Therefore, a solution for a group of

parameters in primary interest is often sought from a partitioned system of normal

equations of the following form [Schaffrin, 1990]

NilN21
(224)

where

C = [C1 C2] (225)

is the partitioning of the design matrix C of the space VLBI network and

x = [Xl x2] (226)

is the partitioning of the unknown parameters into a sub-vector Xl with stochastic prior

information and a sub-vector x2 of the parameters of interest without prior information.

The inversion of normal equation system (224) is

Nll N12 ]-1N21 N22

S_ 1

-N2_ N21 S1"1

1 N12

N21N21S11N12N21+ N21
(227)

where

S1 = Nil -N12 N_ Nal (228)

is the so-called "lst Schur complement". Consequently, the estimated dispersion of the

estimated parameters _2 of interest is given by

^ ^2
fi {x2} = _5o (N_ + N_ 1 N21 S11 N12 N21). (229)

However, the system of normal equations cannot be inverted because of the datum rank

defect. In practice the datum rank defect may be overcome by using certain conventions for

the coordinate system definition, that is, e.g., by the use of a minimum norm solution (see

the previous paragraph). In that case, in order to get the dispersion of the estimated

parameters _2 of interest, the pseudoinverse N + of N = cTpc given by Eq. (218) has to be

used in partitioning in the practical computations.
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4.3 Results of Test Computations

In Section 3.5, the analytical partials and linear dependency are derived for both space

VLBI observables. In the case of time delay observable, the rank defect of the normal

equation matrix N = cTc is discussed in detail. Numerical checking of rank defect by

evaluating numerical values of partials has been done in the frame of test computations.

For this purpose we computed the normal equation matrix N = cTc. Eigenvalue analysis

was used to check the rank defect of N = cTc.

In order to derive the normal equation system matrix N=CTC numerically, generated

data was used within a simulated ground/space VLBI network. For this purpose,

minimum numbers were derived for participating stations, observed satellite positions and

radio sources. The basic configuration consists of one satellite orbit for VSOP mission,

three ground-based VLBI stations with three different radio source positions.

The stations used in test computations are: Crimea, Jodrel 2 and Ovro 130. Their

coordinates are given in Table 2. The used source positions as published in [Carter et al.,

1989] are collected in Table 3.

In order to compute satellite spatial coordinates, initial orbital parameters of the VSOP

satellite were used. A standard orbit simulation parameter set for VSOP is given in Table

4. On the basis of these parameters, simulated orbit was generated for date of 01/01/1996

using a space VLBI related program package developed at the Satellite Geodetic

Observatory in Hungary and made available by I Fejes. After computation of satellite

Cartesian position and velocity component, a set of "approximate" Keplerian orbital

parameters was generated to use it for the numerical evaluation of analytical partials.

The distribution of the three ground stations and the subsatellite track of the VSOP is

shown in Fig. 17. An overall view of the stations and VSOP configuration is represented

in Fig. 18.

Simulated earth rotation parameters (_, 1"1,_:) for epoch MJD50083 (01/01/1996)

were calculated by using the prediction formulas given in [IERS Bulletin-A, 1990]. Their

numerical values oft =--(1"142486, rl = (1"193437 and _ =-0.17271 ms were used.
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Satellite: V S O P
Epoch: Start 960101 00.00

Stop 9601 02 00.00

Fig. 17 Subsatellite track line of VSOP and Location of the
Ground-Based VLBI Stations Used in the Test Computations

Source: 1803+784
ST: 56792d 2 h 24 m
UT: 50083d 19 h 41 m

°o

t

"==

SATELLITE : VSOP

• °,

• ° °° ,°,

Fig. 18 Stations and VSOP Configuration Overall View
from the Radio Source Direction
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Table 2

Station Coordinates Used in Test Computations

Station X (m) Y (m) Z(m)

Crimea 378 5227.20 255 1211.80 443 9806.93

Jodrel 2 382 2842.66 -15 3800.13 508 6287.22

Ovro 130 -240 9626.30 -447 8405.30 383 8606.70

Table 3

Source Positions Used in Test Computations

Source Right Ascension Declination of Arc

H M S o , ,,

0212+735 2 17 30.813210 73 49 32.62230

1641 +399 16 42 58.809930 39 48 36.99380

1803 + 784 18 0 45.683850 78 28 4.01790

Table 4

Initial Orbit Parameter Set for VSOP Satellite

Keplerian Orbital Elements of VSOP Satellite

Epoch of orbital elements

Semi major axis

Eccentricity

Inclination

Argument of perigee

Longitude of ascending node

Mean anomaly

47894.00000 [MJD]

16878.00000 km

0.56300

31.000 deg

0.0000 deg

90.0000 deg

0.0000 deg

Table 5

Observations and Unknown Parameters of the Basic

Configuration for Test Computations

Observations Estimated Parameters

12 x 3 time delays
36

3x3 station coordinates
3x2 source coordinates

lx6 Keplerian elements
lx3 ERP parameters
3x2 clock parameters
3O
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The Greenwich Apparent Sidereal Time (GAST = OD was computed from observed

Universal Time UT1 data in MID for the observation time epochs tk using formula given in

[Obenson, 1970; p.25].

The relevant numbers which show the basic configuration for the test computation are

shown in Table 5. On the basis of this configuration, there are 30 unknown parameters.

Since we have three delay observations at each epoch, we need observations at ten different

epoch for a unique solution. Instead of this minimum requirement, 12 satellite points were

included to form our basic configuration for a space/ground VLBI network. Four satellite

positions belong to one radio source observation period.

The input metric data (station coordinates and semi-major axis) were used in Mm

unit, and the angle type data unit was in radian. The speed of light was used in unit of

Mm/msec.

Using this generated data set, the partials of the time delay and delay rate with respect

to the parameters involved have been calculated. Then the design matrix C for the time

delay observable was found, and the elements of the normal equation system matrix N =

cTc was computed. The dimension of the design matrix C and the normal equation system

matrix N = cTc is 36x30 and 30x30 respectively.

Two cases were considered in the computations concerning the orbit length: 1) short-

arc (1/5 part of a full orbit), and 2) full orbit was used. In the first case, satellite positions

were taken every six minutes, and for the second case the integration time period was 30

minutes.

It is not surprising that the normal equations derived from observation equations

results in a singular system. This is confirmed by an eigenvalue analysis and using LU and

Cholesky decomposition.

The normal matrix N = cTc derived from the simulated data possesses a peculiar

eigenvalue spectrum. The spectrum resembles that of a poorly conditioned system of

equations with corresponding eigenvalues ranging from 10 -7 to 10+5 in the case of "Short-

arc" configuration. In the "full orbit" situation, the eigenvalue spectra is in the range of

10-11 to 10 +4. As a result, the condition number (_.max/'Lmin), representing a measure for

the numerical stability of the system, is of the order of 1012 and 1015 respectively. In an
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ideal situation,theconditionnumbershouldlie in therangefrom 1to 103.This is notour

case; that is, our normal equation system is poorly conditioned in both geometric
configurationof theusedspace/groundVLBI network.

The only causeof the poor condition numbercan be the observationequations

themselvesandresultsin anunstablenormalequationmatrix havingapproximatelyfive

order of magnitudedifferencein the valuesof its diagonalelements. The eigenvalue

spectrumof thenormalequationmatrix canbe improvedby transformationof thedesign
matrix C. It canbedonewith multiplicationof thedesignmatrix by adiagonalmatrix P
resultinga normalmatrix N = Cq'(2havingdiagonalelementsapproximatelythe same

orderof magnitudein values.A multiplicationof thedesignmatrixC by adiagonalmatrix
P gives

F2= C_

and the normal equation system matrix becomes

(230)

(231)

The inverse of this normal matrix N is (with _ = P)

_-1 = (_" cT C _) = _'-1 (cTc)_I _-1 .
(232)

The normal matrix N = _2T_2, found after the transformation of the design matrix C,

shows an eigenvalue spectrum having better properties. The results of this analysis are

presented in Table 6. The computed eigenvalues of the normal matrix N show nine small

eigenvalues indicating a considerable jump between the fourth and fifth eigenvalue, and in

addition a system which is still poorly conditioned. The first four small eigenvalues may

be due to true singularity. The eigenvalue spectra of the "full-orbit" network configuration

is improved. It clearly shows four small eigenvalues which may be considered as zero

with respect to the other 26 eigenvalues. The latter eigenvalues are in the range of 3.52 to

3.67 x 108. The four zero eigenvalues clarify our results for linear dependencies derived

analytically.

77



Table 6

Eigenvalues of the Normal Matrices in Case
"Short-arc" and "Full Orbit"

No°

2

4

6

8

9

"Short-arc"

8.27 x 10- 5

2.37 x 10 -7

4.42 x 10-7

8.14 x 10-7

1.84 x 10.4

1.59 x 10- 3

6.85 x 10- 3

2.91 x 10 -2

9.67 x 10- 2

"Full Orbit"

2.88 x 10=/

3.24 x 10-7

5.33 x 10- 7

7.01 x 10-7

3.52

9.18

6.24 x 10

1.89 x 102

7.47 x 102

10 3.99 6.13 x 103

11 1.98 x 10 1.43 x 104

12 9.60 x 10 3.36 x 104

30 4.58 x 108 3.67 x 108

The eigen vectors belonging to the four zero eigenvalues are the nullspace base

vectors of the design matrix. They can be used to form the column vectors of a G matrix to

derive the pseudo-inverse N + in Eq. (218) for a minimum norm solution. Therefore,

another numerical test is to check the orthogonality of these eigen vectors with respect to

the column vectors of the design matrix, that is, to check the numerical validity of Eqs.

(222a) and (222b). The results obtained for the elements of matrix multiplication expressed

by Eqs. (222a) and (222b) are of the order of 10-6 to 10-4.

As discussed in section 3.5.1 singularity of the normal equations is caused by linear

dependency of the column vectors in the design matrix. In order to confirm our results

given by Eqs. (108) and (109) in another way, the so-called LU-decomposition and

Cholesky decomposition of the normal equation system matrix N = _2Tc have been

performed as an independent procedure. For LU-decomposition a routine in [Press et al.,

1986] has been used. The Cholesky reduction algorithm is given by Stewart (1973; p.

142). The parameters to be solved for are involved in the normal equation system in the

following order:

{X1, Y1, Zl, X2, Y2, Z2, X3, Y3, Z3, a, e, i, m, f2, M, {, rl, _:,

0_1, 81, 0_2, 82, 53, 83, &C0Irl , ACIlrl , AClr2 , Afar2, z_CoIr3 , AC_r3 } (223)
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Both typesof decompositionof normalmatrixshowsmallvaluesfor thediagonalelements

correspondingto theearthrotation parametersandtheright ascensionof thethird radio
sources.In thecaseof LU-decompositionof _z_, thesmallvaluesin questionarein the

rangeof 10-7 to 10-5. Thecorrespondingvalues from Choleskydecompositionareof the

orderof 10-3. Theymaybeconsideredaszerowith respectto theotherdiagonalelements

in bothdecomposedformsof normalmatrix. A zerovaluemeanscompletedependenceon

(a linearcombinationof) otherunknownparameters.

A simplecheckingfor lineardependencieshasalsobeenperformedby calculation

of thenumericalvaluesof theEqs.(108) - (109)andEqs.(149)- (150). The validity of

Eqs.(111) - (113)andEqs.(151)- (153)derivedfor critical configurationstudyhasbeen

checkednumericallyaswell.
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5. SUMMARY AND RECOMMENDATIONS

Investigations presented in this study are summarized as follows:

(1) Qualitative expressions have been developed to demonstrate the relationship

between the space VLBI observables (time delay and delay rate) and the solve for

parameters, and to explore estimability problems inherent in the space VLBI system.

Instead of Cartesian satellite coordinates, Keplerian orbital elements were introduced into

the observation equations and partial derivatives of space VLBI observables with respect to

the parameters of interest were derived. A sensitivity analysis using these partials has been

carded out. The mathematical models for ground-to-ground baseline VLBI observables are

also given for comparison. Simplified models were used for the space-to-space VLBI

observation equations.

(2) Linear dependencies between partial derivatives have been derived analytically.

Their expressions for both space VLBI (ground-to-space baseline time delay and delay rate)

observables are formally similar. Four independent linear dependencies were found

indicating that the number of the rank defect of the corresponding normal equation matrix is

four. It has been shown through analytical derivation that the linear dependencies between

partials of the ground-to-space baseline VLBI observables are formally very similar to ones

of the ground-to-ground VLBI observables. However, in the case of both ground-to-space

baseline VLBI observables the expression of linear dependency between earth rotation

parameter _: and the right ascension of radio source o_t were extended by a new term for

ascending node f_ of the satellite orbit indicating that these three parameters are

nonseparable in a common adjustment.

(3) A geometric interpretation of datum rank defect (analytically derived linear

dependencies) in the space VLBI time delay observation equations has been presented. The

rank defects expressed by linear dependencies are confirmed using different numerical

methods with simulated data set in the frame of test computations. The eigenvalue analysis

and both decomposition (Cholesky and LU of a lower and an upper triangular matrix) of

the normal equation matrix indicate that the number of datum rank defects is four

concerning the mathematical model used for the space VLBI time delay observable.
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the normal equation matrix indicate that the numberof datumrank defects is four

concerningthemathematicalmodelusedfor thespaceVLBI timedelayobservable.

(4) In searchinglineardependencies,analyticalexpressionswerederivedto study
critical configurationin thecaseof bothground-basedandspaceVLBI. Theyareusefulin

observationdesignwork. A checkof theserelationswasperformedby testcomputation.

(5) Datumdefinition problemfor spaceVLBI network is theoreticallydescribed
within theframeworkof rankdefectGauss-MarkovModel. Propernumericaladjustment

procedureis givenwhichcanbeusedfor covarianceanalysisof theparametersof geodetic
interest.

In orderto usesuccessfullyandefficiently thespaceVLBI observationsin geodesy

andgeodynamics,severaladditionalstudiesneedto bemadein orderto investigatein full

detail the potential advantagesandthepossibleproblemsof the spaceVLBI technique.
Therehavebeennosimulationstudiessofar to indicatetheexpectedaccuraciesof thespace

VLBI system in the determination of the parametersof astrometric and geodetic-

geodynamicinterest.Therefore,afeasibility studyshouldbeundertakenin orderto show

whetheror not spaceVLBI canprovidereal improvementsin thepotentialapplicationin

geodesyand geodynamics.Hence,in order to give a feelingof whatone shouldexpect
from sucha system,a detailed sensitivity analysisneedsto be carried out in order to

estimatetheaccuracyachievablein determiningvariousparameters.Moreemphasisshould

begivento thedeterminationof earthrotationparametersfor referenceframestudiesandto

theestimationof orbit parametersto improvethegravity field determination.On thebasis
of thiswork,wewould recommendthat:

a) Themathematicalmodelbeaugmentedto includeadditionaleffectslike variation

of Keplerian orbital elements. Using the extended mathematical model, the rank defect

analysis should be repeated.

b) Simulations in order to determine optimum global station network and orbit

configuration, and accuracy estimates for the various parameters are needed. These would

require extended simulation studies and error analysis using data from a realistic

observational pattern.
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c) Another areawhich needsto be developedin the nearfuture is the software

developmentfor differenttasksinvolvedin spaceVLBI geodeticdataanalysis.

d) Suchinvestigationsshouldprovide sufficient backgroundfor the inclusion of
spaceVLBI observablein geodeticdataprocessingprograms(e.g.,GEODYN).
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APPENDIX A

Keplerian--Cartesian Transformations

First, the transformation between Keplerian orbital elements {a, e, i, co, [-2, M } and

Cartesian orbital (rectangular) coordinates {X, Y, Z, X, _', Z} is considered. This is

followed by the description of partial derivatives of the Cartesian orbital coordinates with

respect to the Keplerian elements and partial derivatives of the Keplerian elements with

respect to the Cartesian elements.

A 1. Kepler Transformation of Coordinate and Velocity Type

Transformation of Kepler elements {a, e, i, co, _, M} into inertial

position vector r :

Cartesian

r= = r

7

cos f2 cos u - sin f_ sin u cos i [

sin _ cos u + cos _ sin u cos i J ,sin u sin i
(A.1)

where

r = a (1 - e cos E)

u=co+f

tg f/2 = _/( 1 +e)/(1 - e) tg E/2
M = E - e sin E

sin f = _ sin E/(1 - e cos E)

cos f -- (cos E - e)/(1 - e cos E)

E is the eccentric anomaly.

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
(A.7)
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Transformationof Keplerelements{a, e, i, m, f2, M } into inertialCartesianvelocityvector
/-:

where

= V r

-- V u

Icos f_ cos u - sin f2 sin u cos i[

"1

i;sin f2 cos u + cos f2 sin u cos
sin u sin i

Icos f_ sin u + sin _ cos u cos il

"1

sm f_ sin_u cos-COSusinf2cosi u cos ij
Vr = _/g/p e sin f

Vu = qg/p (1 + e cos f)

p =a (1 -e 2)
is the gravitational constant times the mass of the Earth.

(A.8)

(A.9)

(A.IO)
(A.11)

An equivalent conversion from Keplerian elements to inertial Cartesian position and
velocity vectors (r and i'):

a cos E - a e

a _ sin E

0

q_ n_
(1 -e cos E)

- sin E ]

cos E

0

Rxq = R3 (-_)- Rl(-i) • R3 (--co)

r = RxqR

i" = Rxq_l

where n is the mean motion.

A 2. Conversion from Inertial Cartesian Position and Velocity Vectors to Keplerian
Elements (Inverse Kepler Transformation)

Compute radial distance r and tangential velocity v-

r=lr I = t/X 2 + y2 + Z 2 (A.17)

9O



v=l_l_-Vx2+,f+z _
(A.18)

Compute angular momentum vector h :

h=rx# =

Y-Z- z_"

zx - xz

X'Y - YX

h --¢_I+h7;-_

Compute inclination angle i :

(A.19)

(A.20)

(A.21)

Compute ellipse semi-major axis a :

v.:o.)_lj

GMJ

Compute ellipse eccentricity e :

h 2 = GM a (1 --e 2)

- La--d-_JJ

(A.22)

(A.23)

(A.24)

(A.25)

Compute longitude of ascending node _ :

_ = tan-1 (__y)

Compute true anomaly f :

f = tan-1 ( sin f
_c--o_sf) '

where

(A.26)

(A.27)
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cosf-a(1-e z) 1
er e

sin f =
a (1 - e z) (r- i')

reh

(A.28)

(A.29)

Compute eccentric anomaly E :

(sin E
E = tan -1 k,co--0-_-)

where

cosE= cosf+e
1 + e cos f

sin E -
sin f

1 + e cos f

Use Kepler's equation

M=E-e sinE

to compute the mean anomaly M.

(A.30)

(A.31)

(A.32)

(A.33)

Compute geocentric angle u :

(si.u 
u = tan -1 _,cos u)

where

COS U --
X cos f_ + Y sin f2

sin u =
(Y cos f2 -X sin _) cos i + Z sin i

(A.34)

(A.35)

(A.36)

Compute argument of perigee co :

co=u-f (A.37)
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A 3. PartialDerivativesof InertialCartesianCoordinatesandVelocityComponents
with respectto KeplerianElements(LinearKeplertransformation)

Elementsof the linearKeplertransformationmatrixof position type:

3X

3a
- (1 - e cos E) (cos _q cos u - sin f2 sin u cos i)

3Y
--= (1- e cos E) (sinf_ cosu+cos_ sinu cosi)
3a

3Z
-(1-e cosE) sinu sini

3a

3X = [a(e - cos E)/(1 - e cos E)] (cos f2 cos u - sin f2 sin u cos i) -
3e

-asinf Ii+l-e cosE /-1--f_- (cos f2 sin u + sin f_ cos u cos i)

3-Y-Y= [a(e - cos E)/(1 - e cos E)] (cos f2 cos u + sin f_ sin u cos i) -
De

-a sinf II+l-e c°sEl (sinf2 sinu-c°sf2 c°suc°si)l-e2

3Zb___e_= [a(e- cos E)/(1- e cos E)] sin u sin i + a sin f(l+ 1-el- __-c°s_E 1 cos u sin i
)

3X

3c0
-- = -r (cos f_ sin u + sin f2 cos u cos i)

3Y
-- = -r (sin
3co

sin u - cos f2 cos u cos i)

3Z

3c0
- r cosu sini

3X
m_

3i
r sinfl sinu sini

OY
-- = - r cos f2 sin u sin i
3i

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)
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_Z
m_ r sin u cos i

(A.49)

_X
- -r (sin _ cos u + cos f2 sin u cos i)

(A.50)

_Y

bf_
- r (cos f_ cos u - sin f_ sin u cos i)

(A.51)

OZ 0

(A.52)

OX = [a e sin E/(1 - e cos E)] (cos f2 cos u - sin f2 sin u cos i) -
OM

- [a sin f/sin E] (cos f2 sin u + sin f2 cos u cos i)
(A.53)

_Y
= [a e sin E/(1 - e cos E)] (sin f2 cos u + cos f2 sin u cos i) -

- [a sin f/sin E] (sin f_ sin u - cos f_ cos u cos i)
(A.54)

_Z
-- = [a e sin E/(1 - e cos E)] sin u sin f+ [a sin f/sin E] cos u sin i
0M (A.55)

Elements of the linear Kepler transformation matrix of velocity type:

_a
Vu (cos f_ sin u + sin f2 cos u cos i)_ Vr (cos f2 cos u - sin f2 sin u cos i) + _-2a (A.56)

_ Vu (sin f2 sin u - cos f2 cos u cos i)_" Vr (sin f2 cos u + cos f2 sin u cos i) + _-ba 2a (A.57)

Vu )_a _a sin u sin i + _-a cos u sin i
(A.58)
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°_X 1 (cos-- Vr
_e e (1-e cosE)

cos u - sin f2 cos i sin u) -

-Vu e +cos f (cos f2 sin u + sin _ cos i cos u)
(1 - e2)(1 + e cos f) (A.59)

_'iz 1 (sin f_-- Vr
be e (1-e cosE)

cos u + cos f2 sin u cos i) -

- Vu e + cos f (sin Xq
(1 - e2)(1 + e cos f)

sin u -cos f2 cos u cos i)
(A.60)

aZ 1
- -Vr sinu sini

ae e (1-e cosE)

+ Vu e + cos f cos u sin i
(1 - e2)(1 + e cos f) (A.61)

_X
-- Vr (cos f2 sin u + sin f_ cos u cos i) - v_ (cos f2 cos u - sin f2 sin u cos i)

a?
-- V r (sin f2 sin u - cos _ cos u cos i) - Vu (sin f2 cos u + cos f2 sin u cos i)

-- = Vr COSU sin i- Vu sin u sin i
be0

(A.62)

(A.63)

(A.64)

ax
- Vr sin f2 sin u sini + Vu sin f2 cos u sini

aY
-- Vr COS U sin u sin i - Vu cos _ cos u sin i

az
-- = V r sin u cos i + Vu cos u cos i

(A.65)

(A.66)

(A.67)
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-- V r (sin f2 cos u + cos f_ sin u cos i) + Vu (sin f2 sin u - cos _ cos u cos i)
_f2

- Vr (cos f_ cos u - sin f_ sin u cos i) - Vu (cos f_ sin u + sin f_ cos u cos i)

-0

(A.68)

(A.69)

(A.70)

0K Vr cos f- Vu sin f

OM sinE (1-e cosE)

O'Y Vr cos f- Vu sin f

OM sinE (1-e cosE)

_Z Vr cos f-Vu sin f

3M sinE (1-e cosE)

(cos f_ cos u - sin f_ sin u cos i)

(sin f_ cos u + cos f_ sin u cos i)

sin u sin i

(A.71)

(A.72)

(A.73)

A4. Partial Derivatives of Keplerian Elements with respect to Inertial Cartesian
Coordinates and Velocity Components (Inverse Linear Kepler Transformation)

Notation:

s = X, Y, Z, X, Y, Z respectively (A.74)

Partial derivative of the radial component:

0r_x Y Z 0,0,0 respectively
bs r 'r' r' (A.75)

Partial

Partial

derivative of the velocity component:

bv = 0, 0, 0, R _" Z respectively
bs v'v'v

derivative of the angular momentum h :

Ohx
Oh-1 hx--
3s h Os

+ hy Ohy + hz Ohz

(A.76)

(A.77)
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where

Ohx
Os

- O, Z,-_/', O, -Z, Y

3hy _ .2, O, X, Z, O, -X
3s

3hz _ _,, _X, O, -Y, X, 0
3s

respectively,

respectively,

respectively.

(A.78)

(A.79)

(A.80)

Partial derivative of (r. r) :

r- i'= XX +YY +ZZ

3 (r- f) - X, _', Z, X, Y, Z
Os

respectively

(A.81)

(A.82)

Partial derivative of the inclination i :

Oi

Os

( 3hx . Ohy ¢h h _ Ohz

1 [.hxhz--_-s + h¥1az--_--s -'_+ _) O--7-Jh 2 (h_+ h}) 1/2
(A.83)

Partial derivative of the semi-major axis a :

3sOa-a 2\(2or+ 2v 3v)--- GM/r 2 as 3s

Oa

Os

2a 2 Dr
s=X,Y,Z

r2 as'

2a 2 Ov
 -vb-Ts, s =x, "/",Z

(A.84)

(A.85)

Partial derivative of the eccentricity e:

De 1 -e 2 3a 1 -e 2 Oh

0s 2ae 3s he 0s
(A.86)
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Partialderivativeof theascendingnode

f 3hy Ohx ')_"2 _ 1 |hx - hy

as h_ + h_" _. -_s -_s ) (A.87)

Partial derivative of the true anomaly f"

Of

Os 1-e2[c f f]Oa- re --_(,'. i'_-sin gs

_ 2a[co-_f (r • _) - sin f ] _e
r[ h /0s

a(l-e2)[c f ]Oh_e-_ _o__(_.e)

a (1 -e 2) [cos f] O(r- t)
+ reh _s

+ sin f Dr
re Os (A.88)

Partial derivative of the eccentric anomaly E :

0s l+ecosf _ss -sinfl-e z
(A.89)

Partial derivative of the mean anomaly M"

OM _ r2 Of

Os azqT-A_Os r + 11 sin E Dea2f]---L-_ 0s
(A.90)
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Partialderivativeof u :

bu _ 1 {[_ y sin f2 cosi cosu - X cosf2 cosi cosu
3s r

+ X sin f2 sinu - Y cos_ sinu] bf_
bs

3i

+ [X sin f2 sin i cos u - Y cos f_ sin i cos u + Z cos i cos uI 3-s

+ [- sin f_ cos i cos u - cos _ sin u] 3X
3s

+ [cos f_ cos i cos u - sin f2 sin u] bY
3s

+ [sin i cos u] 3Z

Partial derivative of the argument of perigee co :

(A.91)

boo 3u Of

3s 3s 3s (A.92)

AS. Let the matrix Kc representing the linear Kepler transformation matrix whose

elements are the partial derivative of the Cartesian orbital elements with respect to the

Keplerian elements:

3X 3X

3a De

bY bY

3a De

bZ 3Z

ha De

K_=
DR bX

3a be

b"i"b"i"

3a be

3a be

3x 3x 3X 3X

bi 3o bfl bM
(A.93)
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Let the partial derivatives of the Keplerian orbital elementswith respectto the
Cartesianelementsbe theelementsof theinverselinearKeplertransformationmatrixKcin

thefollowing form:

K c

m

3a 3a 3a 3a 3a 3a

bX bY 3Z 3X b'i' bZ

3e 3e 3e 3e be 3e

bY

3X 3Y 3Z 3R bY _Z

3co 3co 3o3 3to 3o_ 3o_

3f2 bf_ 3f_ 3f2 3f_ 3f2

3X bY bZ bX b'i' bZ

3M 3M 3M 3M 3M 3M

OX OY OZ 3X 0_" _)Z (A.94)

Then

KcK c = KCKc = I. (A.95)

where Kc and K c are the Jacobians of transformation from Keplerian orbital elements into

Cartesian coordinates respectively from Cartesian coordinates into Keplerian orbital

elements.

In order to be safe from the unavoidable typing errors in the relations given in this

Appendix, the program listing of these relations is given in Appendix B for a comparison

and practical use. The program was tested for numerical data. The output values of a test

run are also given in Appendix B.
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Fortran Program

APPENDIX B

DOKEPLER for Keplerian-Cartesian Transformations

The program is written in Fortran 77 and consists, beside the main program unit, of

two subroutines. The main program unit reads the input data, organizes the work of the

subroutines and creates two new data files. The subroutines are as follows:

1) Subroutine LIKEPTRA calculates the Cartesian position and velocity components

of the satellite and their partial derivatives with respect to the Keplerian orbital elements,

provided the Keplerian orbital elements (a, e, i, co, f2, M, and f,E) and the Earth's

gravitational constant, GM are known. The output values are the Cartesian satellite

coordinates X,Y,Z and velocity components X,Y,Z as well as the elements of the 6 x 6

Jacobian Kc of transformation from Keplerian orbital elements into Cartesian coordinates.

2) Subroutine INKEPTRA calculates the Keplerian orbital elements (a, e, i, c0, f2,

M, and f,E) together with the elements of the 6 x 6 Jacobian K c of transformation from

Cartesian coordinates into Keplerian orbital elements. The input data, which should be

defined before calling the subroutine, are the rectangular components of position and

velocity of the satellite and the Earth's gravitational constant.

The program calculates the elements of both multiplication matrices of the Jacobians,

Kc and K c in order to check Eq. (A.95) in Appendix A.

After the listing of the program and the subroutines, this Appendix contains numerical

examples for Keplefian-Cartesian Transformations and for checking the multiplication

products of the Jacobians. Instantaneous VSOP satellite position and velocity components

respectively Keplerian orbital elements at epoch MJD 50083.000 (or GAST =

105854.567125788) have been used.
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6

1

7

**************************************************************

***** PROGRAM DOKEPLER *****

TO COMPUTE THE KEPLERIAN-CARTESIAN TRANSFORMATIONS AND THE

ELEMENTS OF THE CORRESPONDING LINEAR KEPLER TRANSFORMATION

MATRICES (KC,KCI) USING SUBROUTINES LIKEPTRA AND INKEPTRA
FINAL PROGRAM TESTED FOR DATA

**************************************************************

IMPLICIT REAL*8(A-H,O-Z)

DOUBLE PRECISION KC(6,6),KCI(6,6)

DIMENSION UN(6,6),UNI(6,6)

OPEN(UNIT=I,FILE='A:¢DATACKEPLERCA.DAT ')

OPEN(UNIT=2,FILE='A:¢DATACKEPLERCA.OUT ')

OPEN(UNIT=3,FILE='A:¢DATA¢KEPLERUN.OUT ')

READ(I,*)A0,E0,XI0

KEAD(I,*)OM0,OME0,XM0

READ(I,*)F0,EA0

READ(I,*)X0,Y0,Z0

READ(I,*)XD0,YD0,ZD0

CALL LIKEPTRA(A0,E0,XI0,OM0,OME0,XM0,F0,EA0,XS,YS,ZS,XSD,

*YSD, ZSD,KC)

WRITE(2,6)XS,YS,ZS

WRITE(2,6)XSD,YSD,ZSD

FORMAT(3(IX,F23.11))

DO 1 I=1,6

WRITE(2,7) (KC(I,J),J=I,3)

WRITE(2,7) (KC(I,J),J=4,6)
CONTINUE

FORMAT(3(IX,F23.13))

CALL INKEPTRA(XO,YO,ZO,XDO,YDO,ZDO,AS,ES,XIS,

*OMS,OMES,XMS,FS,EAS,KCI)

WRITE(2,*)AS,ES,XIS

WRITE(2,*)OMS,OMES,XMS

WRITE(2,*)FS,EAS

DO 2 I=i,6

WRITE(2,8) (KCI(I,J),J=I,3)

WRITE(2,8) (KCI(I,J),J=4,6)
2 CONTINUE

8 FORMAT(3(IX,F23.17))

CALL MATMULT(KC,KCI,UN,6,6,6)

DO 3 I=1,6

WRITE(3,4) (UN(I,J),J=I,3)
WRITE(3,4) (UN(I,J),J=4,6)

3 CONTINUE

4 FORMAT(3(IX,F23.20))

CALL MATMULT(KCI,KC,UNI,6,6,6)

DO 5 I=I,6

WRITE(3,4) (UNI(I,J),J=I,3)

WRITE(3,4) (UNI(I,J),J=4,6)
5 CONTINUE

CLOSE(l)

CLOSE(2)

CLOSE(3)
STOP

END

CSINCLUDE A:¢SVLBI¢LIKEPTRA

CSINCLUDE A:¢SVLBI¢INKEPTRA

CSINCLUDE A:¢SVLBI¢MATMULT



* *************************************************************** ,
* ***** SUBROUTINELIKEPTRA ***** *
* TG CONVERTTHE KEPLERIAN ELEMENTS INTO SATELLITE'S CARTESIAN *
* POSITION AND VELOCITY VECTORSAND TO COMPUTETHE ELEMENTSOF *
* THE LINEAR KEPLER TRANSFORMATIONMATRIX (KC) *

SUBROUTINELIKEPTRA(A,E,XI,OM,OME,XM,F,EA,X,Y,Z,XD,YD,ZD,KC)
IMPLICIT REAL*8(A-H,O-Z)
DOUBLEPRECISION KC(6,6)
GM=398600.436D9

C TO COMPUTETHE COEFFICIENTS
U=OM+F
COM=DCOS(OME)
SOM=DSIN(OME)
SU=DSIN(U)
CU=DCOS(U)
SI=DSIN(XI)
CI=DCOS(XI)
SF=DSIN(F)
CF=DCOS(F)
SE=DSIN(EA)
CE=DCOS(EA)
P=A*(I.0-E*E)
R=A*(I.0-E*CE)
VR=E*SF*DSQRT(GM/P)
VU=(I.0+E*CF)*DSQRT(GM/P)

C TO COMPUTE SATELLITE COORDINATES

X=R*(COM*CU-SOM*SU*CI)

Y=R*(SOM*CU+COM*SU*CI)
Z=R*SU*SI

C TO COMPUTE SATELLITE VELOCITY COMPONENTS

XD=VR*(COM*CU-SOM*SU*CI)-VU*(COM*SU+SOM*CU*CI)

YD=VR*(SOM*CU+COM*SU*CI)-VU*(SOM*SU-COM*CU*CI)
ZD=VR*SU*SI+VU*CU*SI

C TO COMPUTE THE COEFFICIENTS OF THE PARTIALS

AI=(A*(E-CE))/(I.0-E*CE)

A2=I.0+(I.0-E*CE)/(I.0-E*E)

A3=(A*E*SE)/(I.0-E*CE)

A4=-I.0/(E*(I.0-E*CE))

A5=(E+CF)/((I.0-E*E)*(I.0+E*CF))

A6=(VR*CF-VU*SF)/(SE*(I.O-E*CE))
C TO COMPUTE THE PARTIALS of X

KC(I,I)=(I.0-E*CE)*(COM*CU-SOM*SU*CI)

KC(I,2)=AI*(COM*CU-SOM*SU*CI)-A*SF*A2*(COM*SU+SOM*CU*CI)
KC(I,3)=R*SOM*SU*SI

KC(I,4)=-R*(COM*SU+SOM*CU*CI)

KC(I,5)=-R*(SOM*CU+COM*SU*CI)

KC(I,6)=A3*(COM*CU-SOM*SU*CI)-(A*SF/SE)*(COM*SU+SOM*CU*CI)
C TO COMPUTE THE PARTIALS of Y

KC(2,1)=(I.0-E*CE)*(SOM*CU+COM*SU*CI)

KC(2,2)=AI*(SOM*CU+COM*SU*CI)-A*SF*A2*(SOM*SU-COM*CU*CI)
KC(2,3)=-R*COM*SU*SI

KC(2,4)=-R*(SOM*SU-COM*CU*CI)

KC(2,5)=R*(COM*CU-SOM*SU*CI)

KC(2,6)=A3*(SOM*CU+COM*SU*CI)-(A*SF/SE)*(SOM*SU-COM*CU*CI)
C TO COMPUTE THE PARTIALS of Z

KC(3,1)=(I.0-E*CE)*SU*SI
KC(3,2)=AI*SU*SI+A*SF*A2*CU*SI

KC(3,3)=R*SU*CI

KC(3,4)=R*CU*SI



KC(3,5)=0.0
KC(3,6)=A3*SU*SI+(A*SF/SE)*CU*SI

C TO COMPUTETHE PARTIALS of XD
KC(4,1)=(-VR*(COM*CU-SOM*SU*CI)+VU*(COM*SU+SOM*CU*CI))/(2.0*A)
KC(4,2)=VR*A4*(COM*CU-SOM*CI*SU)-VU*AL*(COM*SU+SOM*CI*CU)
KC(4,3)=VR*SOM*SU*SI+VU*SOM*CU*SI
KC(4,4)=-VR*(COM*SU+SOM*CU*CI)-VU*(COM*CU-SOM*SU*CI)
KC(4,5)=-VR*(SOM*CU+COM*SU*CI)+VU*(SOM*SU-COM*CU*CI)
KC(4,6)=A6*(COM*CU-SOM*SU*CI)

C TO COMPUTETHE PARTIALS of YD
KC(5,1)=(-VR*(SOM*CU+COM*SU*CI)+VU*(SOM*SU-COM*CU*CI))/(2.0*A)
KC(5,2)=VR*A4*(SOM*CU+COM*CI*SU)-VU*AL*(SOM*SU-COM*CI*CU)
KC(5,3)=-VR*COM*SU*SI-VU*COM*CU*SI
KC(5,4)=-VR*(SOM*SU-COM*CU*CI)-VU*(SOM*CU+COM*SU*CI)
KC(5,5)=VR*(COM*CU-SOM*SU*CI)-VU*(COM*SU+SOM*CU*CI)
KC(5,6)=A6*(SOM*CU+COM*SU*CI)

C TO COMPUTETHE PARTIALS of ZD
KC(6,1)=(-VR*SU*SI-VU*CU*SI)/(2.0*A)
KC(6,2)=VR*A4*SU*SI+VU*AL*CU*SI
KC(6,3)=VR*SU*CI+VU*CU*CI
KC(6,4)=VR*CU*SI-VU*SU*SI
KC(6,5)=0.0
KC(6,6)=A6*SU*SI
RETURN
END

. **************************************************************** *
• ***** SUBROUTINE INKEPTRA ***** *
• TO CONVERTTHE SATELLITE'S CARTESIAN POSITION AND VELOCITY *
• VECTORSINTO KEPLERIAN ORBITAL ELEMENTSAND TO COMPUTETHE *
• ELEMENTSOF THE INVERZ LINEAR KEPLER TRANSFORMATIONMATRIX *
. **************************************************************** .

SUBROUTINEINKEPTRA(X,Y,Z,XD,YD,ZD,A,E,XI,OM,OME,XM,F,EA,KCI)
IMPLICIT REAL*8(A-H,O-Z)
DOUBLEPRECISION KCI(6,6)
GM=398600.436D9
R=DSQRT(X**2+Y**2+Z**2)
V=DSQRT(XD**2+YD**2+ZD**2)
RRD=X*XD+Y*YD+Z*ZD

C MOMENTUMVECTOR
HX=Y*ZD-Z*YD
Hy=Z*XD-X*ZD
HZ=X*YD-Y*XD
H=DSQRT(HX**2+HY**2+HZ**2)

C INCLINATION (i)
XI=DACOS(HZ/H)

C SEMI-MAJOR AXIS (a)
A=(R*GM)/(2.D0*GM-R*V*V)

C ECCENTRICITY (e)
E=DSQRT(I.D0-(H*H)/(A*GM))

C LONGITUDE OF ASCENDINGNODE (OMEGA)
OME=DATAN2(HX,-HY)

C TRUE ANOMALY(f)
COSFz(A*(I.0-E*E)/(E*R))-(I.D0/E)
SINF=A*(I.D0-E*E)*RRD/(R*E*H)
F=DATAN2(SINF,COSF)

C ECCENTRIC ANOMALY(E)
COSEA=(COSF+E)/(I.DO+E*COSF)

SINEA=(DSQRT(I.D0-E*E))*SINF/(I .D0+E*COSF )



EA=DATAN2(SINEA,COSEA)
C MEAN ANOMALY(M)

XM=EA-E*SINEA
C GEOCENTRICANGLE (U)

COSU=(X*DCOS(OME)+Y*DSIN(OME))/R

SINU=((Y*DCOS(OME)-X*DSIN(OME))*DCOS(XI)+Z*DSIN(XI))/R

U=DATAN2(SINU,COSU)

C ARGUEMENT OF PERIGEE (omega)
OM=U-F

C PARTIALS OF A (semi-major axis)

KCI(I,I)=2.0*(A**2)*X/(R**3)

KCI(I,2)=2.0*(A**2)*Y/(R**3)

KCI(I,3)=2.0*(A**2)*Z/(R**3)

KCI(I,4)=2.0*(A**2)*XD/GM

KCI(I,5)=2.0*(A**2)*YD/GM

KCI(I,6)=2.0*(A**2)*ZD/GM

C PARTIALS OF E (eccentricity)
KCI(2,1)=(I.0-E*E)*KCI(I,I)/(2.0*A*E)-

*(E*H*H)

KCI(2,2)=(I.0-E*E)*KCI

*(E*H*H)

KCI(2,3)=(I.O-E*E)*KCI

*(E*H*H)

KCI(2,4)=(I.0-E*E)*KCI

*(E*H*H)

KCI(2,5)=(I.0-E*E)*KCI

*(E*H*H)

KCI(2,6)=(I.0-E*E)*KCI

*(E*H*H)

C PARTIALS OF I (inclination)

C

C

(I,2)/(2.0*A*E)-

(I,3)/(2.0*A*E)-

(I,4)/(2.0*A*E)-

(I,5)/(2.0*A*E)-

(1,6)/(2.0*A'E)-

(I.O-E*E)*(HZ*YD-HY*ZD)/

(I.0-E*E)*(HX*ZD-HZ*XD)/

(I.0-E*E)*(HY*XD-HX*YD)/

(I.0-E*E)*(HY*Z-HZ*Y)/

(I.0-E*E)*(HZ*X-HX*Z)/

(I.0-E*E)*(HX*Y-HY*X)/

KCI(3,1)=(-HY*HZ*ZD-(HX*HX+HY*HY)*YD)/(H*H*DSQRT(HX*HX+HY*HY))

KCI(3,2)=(HX*HZ*ZD+(HX*HX+HY*HY)*XD)/(H*H*DSQRT(HX*HX+HY*HY))

KCI(3,3)=(-HX*HZ*YD+HY*HZ*XD)/(H*H*DSQRT(HX*HX+HY*HY))

KCI(3,4)=(HY*HZ*Z+(HX*HX+HY*HY)*Y)/(H*H*DSQRT(HX*HX+HY*HY))

KCI(3,5)=(-HX*HZ*Z-(HX*HX+HY*HY)*X)/(H*H*DSQKT(HX*HX+HY*HY))

KCI(3,6)=(-HY*HZ*X+HX*HZ*Y)/(H*H*DSQRT(HX*HX+HY*HY))

PARTIALS of OMEGA (ascending node)

KCI(5,1)=(-HX*ZD)/(HX*HX+HY*HY)

KCI(5,2)=(-HY*ZD)/(HX*HX+HY*HY)

KCI(5,3)=(HX*XD+HY*YD)/(HX*HX+HY*HY)

KCI(5,4)=(HX*Z)/(HX*HX+HY*HY)

KCI(5,5)=(HY*Z)/(HX*HX+HY*HY)

KCI(5,6)=(-HX*X-HY*Y)/(HX*HX+HY*HY)

PARTIALS of M (mean anomaly)
FI=(I.0-E*E)*(COSF*RRD/H-SINF)*KCI(I,I)/(R*E)-2.*A*(COSF*RRD/H -

*SINF)*KCI(2,1)/R-(A*(I.0-E*E)/(R*E*H))*(COSF*RRD/H)*(HZ*YD-HY*ZD

*)/H+(A*(I.0-E*E)/(R*E*H))*COSF*XD+(SINF*X/(R*R*E))

F2=(I.O-E*E)*(COSF*RRD/H-SINF)*KCI(I,2)/(R*E)-2.*A*(COSF*RRD/H -

*SINF)*KCI(2,2)/R-(A*(I.O-E*E)/(R*E*H))*(COSF*RRD/H)*(HX*ZD-HZ*XD

*)/H+(A*(I.0-E*E)/(R*E*H))*COSF*YD+(SINF*Y/(R*R*E))

F3=(I.O-E*E)*(COSF*RRD/H-SINF)*KCI(I,3)/(R*E)-2.*A*(COSF*RRD/H-

*SINF)*KCI(2,3)/R-(A*(I.O-E*E)/(R*E*H))*(COSF*KRD/H)*(HY*XD-HX*YD
*)/H+(A*(I.0-E*E)/(R*E*H))*COSF*ZD+(SINF*Z/(R*R*E))

F4=(I.O-E*E)*(COSF*RRD/H-SINF)*KCI(I,4)/(R*E)-2.*A*(COSF*RRD/H -

*SINF)*KCI(2,4)/R-(A*(I.O-E*E)/(R*E*H))*(COSF*RRD/H)*(HY*Z-HZ*Y)

*/H+(A*(I.O-E*E)/(R*E*H))*COSF*X

F5=(I.0-E*E)*(COSF*RRD/H-SINF)*KCI(I,5)/(R*E)-2.*A*(COSF*RRD/H -

*SINF)*KCI(2,5)/R-(A*(I.0-E*E)/(R*E*H))*(COSF*RRD/H)*(HZ*X-HX*Z)

*/H+(A*(I.0-E*E)/(R*E*H))*COSF*Y

F6=(I.0-E*E)*(COSF*RRD/H-SINF)*KCI(I,6)/(R*E)-2.*A*(COSF*RRD/H -



C

*SINF)*KCI(2,6)/R-(A*(I.0-E*E)/(R*E*H))*(COSF*RRD/H)*(HX*Y-HY*X)
*/H+(A*(I.0-E*E)/(K*E*H))*COSF*Z

EI=((DSQRT(I.0-E*E))/(I.0+E*COSF))*(FI-SINF*KCI(2,1)/(I.O-E*E))
E2=((DSQRT(I.O-E*E))/(I.O+E*COSF))*(F2-SINF*KCI(2,2)/(I.O-E*E))
E3=((DSQKT(I.0-E*E))/(I.0+E*COSF))*(F3-SINF*KCI(2,3)/(I.0-E*E))
E4=((DSQRT(I.0-E*E))/(I.0+E*COSF))*(F4-SINF*KCI(2,4)/(I.0-E*E))
E5=((DSQRT(I.0-E*E))/(I.0+E*COSF))*(F5-SINF*KCI(2,5)/(I.0-E*E))
E6=((DSQKT(I.0-E*E))/(I.0+E*COSF))*(F6-SINF*KCI(2,6)/(I.0-E*E))
KCI(6,1)=(I.0-E*COSEA)*EI-SINEA*KCI(2,1)
KCI(6,2)=(I.0-E*COSEA)*E2-SINEA*KCI(2,2)
KCI(6,3)=(I.0-E*COSEA)*E3-SINEA*KCI(2,3)
KCI(6,4)=(I.0-E*COSEA)*E4-SINEA*KCI(2,4)
KCI(6,5)=(I.0-E*COSEA)*E5-SINEA*KCI(2,5)
KCI(6,6)=(I.0-E*COSEA)*E6-SINEA*KCI(2,6)

PARTIALS of omega
UI=(I.0/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU-X*DCOS(OME)*DCOS(XI) *

*COSU+X*DSIN(OME)*SINU-Y*DCOS(OME)*SINU)*KCI(5,1)+(X*DSIN(OME)*
*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,1
*)+(-DSIN(OME)*DCOS(XI)*COSU-DCOS(OME)*SINU))

U2=(I.O/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU-X*DCOS(OME)*DCOS(XI) *

*COSU+X*DSIN(OME)*SINU-Y*DCOS(OME)*SINU)*KCI(5,2)+(X*DSIN(OME)*

*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,2

*)+(DCOS(OME)*DCOS(XI)*COSU-DSIN(OME)*SINU))

U3=(I.0/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU-X*DCOS(OME)*DCOS(XI) *

*COSU+X*DSIN(OME)*SINU-Y*DCOS(OME)*SINU)*KCI(5,3)+(X*DSIN(OME)*

*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,3

*)+DSIN(XI)*COSU)
U4=(I.O/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU-X*DCOS(OME)*DCOS(XI)*

*COSU+X*DSIN(OME)*SINU-Y*DCOS(OME)*SINU)*KCI(5,4)+(X*DSIN(OME)*

*DSIN(Xl)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,4

*))
U5=(I.0/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU-X*DCOS(OME)*DCOS(XI) *

*COSU+X*DSIN(OME)*SINU-Y*DCOS(OME)*SINU)*KCI(5,5)+(X*DSIN(OME)*

*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,5

*))
U6=(I.O/R)*((-Y*DSIN(OME)*DCOS(XI)*COSU-X*DCOS(OME)*DCOS(XI) *

*COSU+X*DSIN(OME)*SINU-Y*DCOS(OME)*SINU)*KCI{5,6)+(X*DSIN(OME)*

*DSIN(XI)*COSU-Y*DCOS(OME)*DSIN(XI)*COSU+Z*DCOS(XI)*COSU)*KCI(3,6

*))
KCI(4,1)=UI-FI
KCI(4,2)=U2-F2

KCI(4,3)=U3-F3

KCI(4,4)=U4-F4

KCI(4,5)=US-F5

KCI{4,6)=U6-F6
RETURN

END



***INPUT DATA:A0,E0,XI0,OM0,OME0,XM0,F0,EA0,X0,Y0,Z0,XD0,YD0,ZD0****

* 17570925.77037010 0.568848843824957 0.541052068118242*
*-0.881968672701392 3.124086383674180 0.747478091842417*
* 1.929121467522410 1.294798081992500 *
*-7615946.972994897 -10889534.81787064 6622196.773840833*
* 2396.747150406745 -4319.688274669979 2569.923171671754*
********************************************************************

*************

ELEMENTS OF THE SATELLITE STATE VECTOR (XS,YS,ZS,XSD,YSD,ZSD) *****

-7615946.97299500000 -10889534.81787060000 6622196.77384083000

2396.74715040671 -4319.68827467000 2569.92317167176

******** ELEMENTS OF THE

-0.4334402792730

12744314.0219510000000

-0.6197473576625

-6587846.0049455100000

0.3768837715431

3823722.2809170100000

-0.0000682020737

5026.1010036825600

0.0001229214764

2031.2430250534000

-0.0000731299877

-1273.1729165956700

LINEAR KEPLER TRANSFORMATION MATRIX KC ********
28607803.1683634000000 115924.0427484690000

i0889534.8178706000000

-20941688.6224014000000

-7615946.9729950000000

12280202.6842647000000

0.0000000000000
4895.4299974719600
4319.6882746700000
3878.7401494792500
2396.7471504067100

-2381.7166470278200

8841893

6621182

-15935859

11021186

9480761

44

.9377193300000

.0491344800000

.3843162000000

.2187911000000

.5013344300000

.9874707423364

3421.8010333312000

2569.5293802118000

4892.6051644543400

4277.0704058304800

0.0000000000000 -2975.3148024795100

****** KEPLERIAN ORBITAL

1.757092577037010D+007

-0.881968672701392

1.929121467522410

ELEMENTS (AS,ES,XIS,OMS,OMES,XMS,FS,EAS) ******
0.568848843824957 0.541052068118242

3.124086383674180 0.747478091842417

1.294798081992500

************ INVERSE LINEAR KEPLER TRANSFORMATION MATRIX KCI ***********

-2.05446431593198000

-6691.66085312722000000

-0.00000003442479720

-0.00011261293567051

0.00000001849478572

0.00005554541988079

-0.00000000487797231

-0.00052188742069056

-0.00000007248409427

0.00018677754281016

0.00000010672721602

-1.43685580235904000

3712.81862519266000000

0.00000003821214436

-0.00009454042695639

0.00000000032380779

0.00000097249246146

-0.00000008348546989

0.00049142428946580

-0.00000000126905576

0.00000327011214863

0.00000004091773235

1.24937081266399000

3981.08687246287000000

0.00000002027940900

0.00006864871363555

0.00000003078520965

0.00009245726995033

0.00000014456563439

-0.00005433900188108

-0.00000012065227854

0.00031089767137094

-0.00000006454873928

-0.00033274106616196-0.00022446651641490 0.00055778897052638



FULFILMENT OF KC*KCI=I
***********************************************************************

1.00000000000000000000 0.00000000000000591861 -0.00000000000000149414
-0.00000000000725564053 -0.00000000000042099657 0.00000000000037148062

***************************************
-0.00000000000001013875 1.00000000000000000000 0.00000000000000232355

0.00000000000916000609 -0.00000000001096189806 -0.00000000000075761619
***************************************

0.00000000000000400881 0.00000000000000253020 1.00000000000000000000
-0.00000000000583844084 -0.00000000000010880186 -0.00000000001283706474

0.00000000000000000072 -
1.00000000000000000000

-0.00000000000000000062
-0.00000000000000469340

0.00000000000000000041

0.00000000000000000120 0.00000000000000000070
0.00000000000000301040 0.00000000000000069714

0.00000000000000000096 0.00000000000000000043
1.00000000000000000000 -0.00000000000000116671

0.00000000000000000052 0.00000000000000000138
0.00000000000000055576 -0.00000000000000099508 1.00000000000000000000

1.00000000000000000000
0.00000062681783674634

0.00000000000000000000
0.00000000000000450163

FULFILMENT OF KCI*KC=I
************************************************

0.00000137576353154145 0.00000000985528458841

0.00000055624150263611 0.00000072245620685862

1.00000000000001000000 0.00000000000000018922

0.00000000000000328440 -0.00000000000000115492

0.00000000000000000000 -0.00000000000000293900

-0.00000000000000185891 -0.00000000000000358525 -

0.00000000000000000000 0.00000000000007482006 -

1.00000000000004000000 0.00000000000003101946

0.00000000000000000000 0.00000000000000450378

0.00000000000000009552 1.00000000000000000000

0.00000000000000000000 -0.00000000000008301422 -

-0.00000000000003955419 -0.00000000000003490144

1.00000000000000000000

0.00000000000000122450

0.00000000000000375618

0.00000000000004706265

0.00000000000000818540

0.00000000000000027067

0.00000000000000178362

0.99999999999996000000


