ORIGINAL PAPER

A New Construction for the Planar Turán Number of Cycles

Ervin Győri¹ · Kitti Varga² · Xiutao Zhu³

Received: 14 November 2023 / Revised: 17 July 2024 / Accepted: 23 July 2024 / Published online: 18 November 2024 © The Author(s), under exclusive licence to Springer Nature Japan KK 2024

Abstract

The planar Turán number $\exp(n, C_k)$ is the maximum number of edges in an *n*-vertex planar graph not containing a cycle of length *k*. Let $k \ge 11$ and *c*, *d* be constants. Cranston et al., and independently Lan and Song showed that $\exp(n, C_k) \ge 3n - 6 - cn/k$ holds for large *n*. Moreover, Cranston et al. conjectured that $\exp(n, C_k) \le 3n - 6 - dn/k^{\log_2 3}$ when *n* is large. In this note, we prove that $\exp(n, C_k) \ge 3n - 6 - 3^{\log_2 3}n/k^{\log_2 3}$ holds for every $k \ge 7$. This implies that the conjecture of Cranston et al. is essentially best possible.

Keywords Planar Turán number · Extremal graphs

Mathematics Subject Classification $\,MSC\,05C35\cdot MSC\,05C38$

1 Introduction

In this article, the cycle and complete graph on k vertices are denoted by C_k and K_k , respectively. For $k \in \{4, 5\}$, let Θ_k denote the graph obtained from C_k by adding a chord.

The Turán number ex(n, H) for a graph H is the maximum number of edges in an n-vertex graph containing no copy of H as a subgraph. The first result on this topic was obtained by Turán [12], who proved that the balanced complete r-partite graph is the unique extremal graph for $ex(n, K_{r+1})$. The Erdős–Stone–Simonovits Theorem [4, 5] generalizes this result and asymptotically determines ex(n, H) for all non-bipartite graphs H as follows: $ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right)\binom{n}{2} + o(n^2)$, where $\chi(H)$ denotes the chromatic number of H.

[⊠] Xiutao Zhu Zhuxt@smail.nju.edu.cn

¹ HUN-REN Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary

² Department of Computer Science and Information Theory, Budapest University of Technology and Economics, HUN–REN–ELTE Egerváry Research Group, Budapest, Hungary

³ School of mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China

In 2016, Dowden [3] initiated the study of planar Turán problems, in which we want to determine the maximum number of edges of an *n*-vertex planar graph containing no copy of *H* as a subgraph. This number is denoted by $\exp(n, H)$. Dowden [3] proved that $\exp(n, C_4) \leq (15n - 30)/7$ for all $n \geq 4$, and $\exp(n, C_5) \leq (12n - 33)/5$ for all $n \geq 11$, and showed that these upper bounds are tight for infinitely many *n*. Lan, Shi, and Song [8] showed that $\exp(n, \Theta_4) \leq (12n - 24)/5$ for all $n \geq 4$, and $\exp(n, \Theta_5) \leq (5n - 10)/2$ for all $n \geq 5$, and $\exp(n, C_6) \leq (18n - 36)/7$, and the bounds on $\exp(n, \Theta_4)$ and $\exp(n, \Theta_5)$ are tight for infinitely many *n*. The upper bound on $\exp(n, C_6) \leq (5n - 14)/2$ for all $n \geq 18$, showed that this bound is tight for infinitely many *n*, and they also proposed the following conjecture.

Conjecture 1 (Ghosh et al. [6]) For each $k \ge 7$ and sufficiently large *n*, we have

$$\exp(n, C_k) \le 3n - 6 - \frac{3n + 6}{k}.$$

Recently, Conjecture 1 was disproved by Cranston, Lidický, Liu, and Shantanam [2] and independently by Lan and Song [9] for $k \ge 11$ and sufficiently large *n*.

Theorem 1 (Lan and Song [9]) Let $k \ge 11$ and $n \ge k - 4 + \lfloor (k - 1)/2 \rfloor$. Then there exists a constant c_k such that

$$\operatorname{ex}_{\mathcal{P}}(n, C_k) \geq \left(3 - \frac{3 - \frac{2}{k-1}}{k - 6 + \lfloor (k-1)/2 \rfloor}\right)n + c_k.$$

Furthermore, Cranston et al. proposed a revised conjecture.

Conjecture 2 (Cranston et al. [2]) There exists a constant *d* such that for all $k \ge 3$ and all sufficiently large *n*, we have

$$\exp(n, C_k) \le 3n - 6 - \frac{dn}{k^{\log_2 3}}.$$

Independently of each other, Shi, Walsh, Yu [11] and Győri, Li, Zhou [7] proved that $\exp(n, C_7) \le (18n - 48)/7$, thereby affirming Conjecture 1 for k = 7.

In this note, we give a new construction for the lower bound of $ex_{\mathcal{P}}(n, C_k)$ and obtain the following theorem.

Theorem 2 For all $k \ge 7$ and sufficiently large *n*, we have

$$\exp(n, C_k) \ge 3n - 6 - \frac{6 \cdot 3^{\log_2 3}n}{k^{\log_2 3}}$$

Note that Theorem 2 implies Conjecture 2 is essentially best possible.

2 Our construction

In this section, we show our construction and prove Theorem 2. We first define a sequence of planar graphs T_i and use them in our construction. This sequence was first introduced by Moon and Moser [10].

Let T_1 be a copy of K_4 and xyz be the outer cycle. Assume that T_{i-1} is defined for some $i \ge 2$. Let T_i be the graph obtained from T_{i-1} as follows: in each inner face of T_{i-1} , add a new vertex and join the new vertex to the three vertices incident to this face.

By the above construction, each T_i is a triangulation, i.e., a planar graph whose each face is a triangle. The outer cycle of T_i is xyz and

$$|V(T_i)| = 4 + 3 + 3^2 + \dots + 3^{i-1} = \frac{3^i + 5}{2}.$$

Furthermore, Chen and Yu [1] showed that T_i has the following properties.

Lemma 1 (Chen–Yu [1]) For any integer $i \ge 2$, we have the following.

- (i) The length of the longest path between x and y in T_i is $3 \cdot 2^{i-1}$.
- (ii) The length of the longest cycle in T_i is $7 \cdot 2^{i-2}$.

After defining the graphs T_i , we show our construction. Let $k \ge 7$ and let *i* be the maximum integer such that $3 \cdot 2^{i-1} < k/2$, i.e., let

$$i = \lceil \log_2 k/3 \rceil - 1. \tag{1}$$

Let $n \ge \frac{3^i+5}{2}$ and $s = \left\lceil \frac{n-2}{(3^i+5)/2-2} \right\rceil$. Let H_1, \ldots, H_{s-1} be s-1 copies of T_i and let

 H_s be a subgraph of T_i such that H_s is a triangulation and has $n - (s - 1)(\frac{3^i + 5}{2} - 2)$ vertices. Such a graph H_s exists because of the process of the construction of T_i . For each $1 \le j \le s$, we may assume that $x_j y_j z_j$ is the outer cycle of H_j , and let the other triangular face containing $x_j y_j$ be $x_j y_j w_j$. Let H_j^- be the subgraph obtained from H_j by deleting the edge $x_j y_j$. Then each face of H_j^- is a triangle except the outer face whose boundary is the cycle $x_j w_j y_j z_j$. Let us identify the vertices x_j of H_j^- for all $1 \le j \le s$ as a new vertex x, and identify the vertices y_j of H_j^- for all $1 \le j \le s$ as a new vertex y, and add the new edge xy to this graph. Let H denote the resulting graph (see Fig. 1).

We call each $H_j^- + xy$ a gadget of H. Note that each gadget is a copy of T_i except the last gadget $H_s^- + xy$, which is a subgraph of T_i . Now we show that H contains no C_k . Let C be a longest cycle in H. Since $\{x, y\}$ is a vertex-cut of H, the cycle C passes through at most two gadgets. If C passes through only one gadget, then by (ii) of Lemma 1 and by (1), we have

$$|V(C)| \le 7 \cdot 2^{i-2} < \frac{7k}{12}.$$

Deringer

Fig. 1 The graph H constructed in Sect. 2

If *C* passes through two gadgets, then clearly $x, y \in V(C)$, thus by (i) of Lemma 1 and by (1), we have

$$|V(C)| \le 2(3 \cdot 2^{i-1}) < k.$$

Hence, H contains no C_k .

Next we calculate the number of edges of H. Clearly, H is an n-vertex planar graph. By adding the edges $z_1w_2, z_2w_3, \ldots, z_{s-1}w_s$ to H, it becomes a triangulation. Hence, we have

$$|E(H)| = 3n - 6 - (s - 1).$$

Then $s = \left\lceil \frac{n-2}{(3^i+5)/2-2} \right\rceil$ and (1) imply

$$\begin{split} E(H)| &\geq 3n - 6 - \frac{2(n-2)}{3^i + 1} = 3n - 6 - \frac{2n - 4}{3^{\lceil \log_2 k/3 \rceil - 1} + 1} \\ &\geq 3n - 6 - \frac{2n}{3^{\log_2 k/3 - 1}} = 3n - 6 - \frac{3^{\log_2 3 + 1} \cdot 2n}{3^{\log_2 k}} \\ &\geq 3n - 6 - \frac{6 \cdot 3^{\log_2 3} \cdot n}{k^{\log_2 3}}. \end{split}$$

Hence, $\exp(n, C_k) \ge 3n - 6 - \frac{6 \cdot 3^{\log_2 3}n}{k^{\log_2 3}}$ and we are done.

Acknowledgements Győri was supported by the National Research, Development and Innovation Office NKFIH, grant K132696 and SNN135643.

🖄 Springer

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Combinatorial Theory Ser. B 86(1), 80–99 (2002)
- Cranston, D.W., Lidický, B., Liu, X., Shantanam, A.: Planar Turán numbers of cycles: A counterexample. Electron. J. Combinatorics 29(3), P3.31 (2022)
- 3. Dowden, C.: Extremal C₄-free/C₅-free planar graphs. J. Graph Theory 83(3), 213–230 (2016)
- Erdős, P., Simonovits, M.: A limit theorem in graph theory. Studia Scientiarum Mathematicarum Hungarica 1, 51–57 (1966)
- Erdős, P., Stone, A.H.: On the structure of linear graphs. Bull. Am. Math. Soc. 52(12), 1087–1091 (1946)
- Ghosh, D., Győri, E., Martin, R.R., Paulos, A., Xiao, C.: Planar Turán number of the 6-cycle. SIAM J. Discrete Math. 36(3), 2028–2050 (2022)
- 7. Győri, E., Li, A., Zhou, R.: The planar Turán number of the seven-cycle. arXiv preprint, arXiv:2307.06909 (2023)
- 8. Lan, Y., Shi, Y., Song, Z.X.: Extremal theta-free planar graphs. Discrete Math. 342(12), 111610 (2019)
- 9. Lan, Y., Song, Z.X.: An improved lower bound for the planar Turán number of cycles. arXiv preprint, arXiv:2209.01312 (2022)
- 10. Moon, J.W., Moser, L.: Simple paths on polyhedra. Pacific Journal of Mathematics 13(2), 629–631 (1963)
- 11. Shi, R., Walsh, Z., Yu, X.: Planar turán number of the 7-cycle. arXiv preprint, arXiv:2307.06909 (2023)
- 12. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48, 436–452 (1941)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.