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Abstract
The planar Turán number exP (n,Ck) is the maximum number of edges in an n-vertex
planar graph not containing a cycle of length k. Let k ≥ 11 and c, d be constants.
Cranston et al., and independently Lan and Song showed that exP (n,Ck) ≥ 3n −
6 − cn/k holds for large n. Moreover, Cranston et al. conjectured that exP (n,Ck) ≤
3n−6−dn/klog2 3 when n is large. In this note, we prove that exP (n,Ck) ≥ 3n−6−
6 · 3log2 3n/klog2 3 holds for every k ≥ 7. This implies that the conjecture of Cranston
et al. is essentially best possible.
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1 Introduction

In this article, the cycle and complete graph on k vertices are denoted by Ck and Kk ,
respectively. For k ∈ {4, 5}, let Θk denote the graph obtained from Ck by adding a
chord.

The Turán number ex(n, H) for a graph H is the maximum number of edges in an
n-vertex graph containing no copy of H as a subgraph. The first result on this topic was
obtained by Turán [12], who proved that the balanced complete r -partite graph is the
unique extremal graph for ex(n, Kr+1). The Erdős–Stone–Simonovits Theorem [4,
5] generalizes this result and asymptotically determines ex(n, H) for all non-bipartite
graphs H as follows: ex(n, H) = (

1− 1
χ(H)−1

)(n
2

) + o(n2), where χ(H) denotes the
chromatic number of H .
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In 2016, Dowden [3] initiated the study of planar Turán problems, in whichwewant
to determine the maximum number of edges of an n-vertex planar graph containing no
copy of H as a subgraph. This number is denoted by exP (n, H). Dowden [3] proved
that exP (n,C4) ≤ (15n − 30)/7 for all n ≥ 4, and exP (n,C5) ≤ (12n − 33)/5
for all n ≥ 11, and showed that these upper bounds are tight for infinitely many n.
Lan, Shi, and Song [8] showed that exP (n,Θ4) ≤ (12n − 24)/5 for all n ≥ 4, and
exP (n,Θ5) ≤ (5n − 10)/2 for all n ≥ 5, and exP (n,C6) ≤ (18n − 36)/7, and
the bounds on exP (n,Θ4) and exP (n,Θ5) are tight for infinitely many n. The upper
bound on exP (n,C6) was improved by Ghosh, Győri, Martin, Paulos, and Xiao [6].
They proved exP (n,C6) ≤ (5n − 14)/2 for all n ≥ 18, showed that this bound is
tight for infinitely many n, and they also proposed the following conjecture.

Conjecture 1 (Ghosh et al. [6]) For each k ≥ 7 and sufficiently large n, we have

exP (n,Ck) ≤ 3n − 6 − 3n + 6

k
.

Recently, Conjecture 1 was disproved by Cranston, Lidický, Liu, and Shantanam
[2] and independently by Lan and Song [9] for k ≥ 11 and sufficiently large n.

Theorem 1 (Lan and Song [9]) Let k ≥ 11 and n ≥ k − 4 + �(k − 1)/2�. Then there
exists a constant ck such that

exP (n,Ck) ≥
(

3 − 3 − 2
k−1

k − 6 + �(k − 1)/2�

)

n + ck .

Furthermore, Cranston et al. proposed a revised conjecture.

Conjecture 2 (Cranston et al. [2]) There exists a constant d such that for all k ≥ 3 and
all sufficiently large n, we have

exP (n,Ck) ≤ 3n − 6 − dn

klog2 3
.

Independently of each other, Shi, Walsh, Yu [11] and Győri, Li, Zhou [7] proved
that exP (n,C7) ≤ (18n − 48)/7, thereby affirming Conjecture 1 for k = 7.

In this note, we give a new construction for the lower bound of exP (n,Ck) and
obtain the following theorem.

Theorem 2 For all k ≥ 7 and sufficiently large n, we have

exP (n,Ck) ≥ 3n − 6 − 6 · 3log2 3n
klog2 3

.

Note that Theorem 2 implies Conjecture 2 is essentially best possible.
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2 Our construction

In this section, we show our construction and prove Theorem 2. We first define a
sequence of planar graphs Ti and use them in our construction. This sequence was
first introduced by Moon and Moser [10].

Let T1 be a copy of K4 and xyz be the outer cycle. Assume that Ti−1 is defined for
some i ≥ 2. Let Ti be the graph obtained from Ti−1 as follows: in each inner face of
Ti−1, add a new vertex and join the new vertex to the three vertices incident to this
face.

By the above construction, each Ti is a triangulation, i.e., a planar graph whose
each face is a triangle. The outer cycle of Ti is xyz and

|V (Ti )| = 4 + 3 + 32 + · · · + 3i−1 = 3i + 5

2
.

Furthermore, Chen and Yu [1] showed that Ti has the following properties.

Lemma 1 (Chen–Yu [1]) For any integer i ≥ 2, we have the following.

(i) The length of the longest path between x and y in Ti is 3 · 2i−1.
(ii) The length of the longest cycle in Ti is 7 · 2i−2.

After defining the graphs Ti , we show our construction. Let k ≥ 7 and let i be the
maximum integer such that 3 · 2i−1 < k/2, i.e., let

i = �log2 k/3� − 1. (1)

Let n ≥ 3i+5
2 and s = ⌈ n−2

(3i+5)/2−2

⌉
. Let H1, . . . , Hs−1 be s − 1 copies of Ti and let

Hs be a subgraph of Ti such that Hs is a triangulation and has n − (s − 1)
( 3i+5

2 − 2
)

vertices. Such a graph Hs exists because of the process of the construction of Ti . For
each 1 ≤ j ≤ s, we may assume that x j y j z j is the outer cycle of Hj , and let the other
triangular face containing x j y j be x j y jw j . Let H

−
j be the subgraph obtained from

Hj by deleting the edge x j y j . Then each face of H
−
j is a triangle except the outer face

whose boundary is the cycle x jw j y j z j . Let us identify the vertices x j of H
−
j for all

1 ≤ j ≤ s as a new vertex x , and identify the vertices y j of H
−
j for all 1 ≤ j ≤ s

as a new vertex y, and add the new edge xy to this graph. Let H denote the resulting
graph (see Fig. 1).

We call each H−
j + xy a gadget of H . Note that each gadget is a copy of Ti except

the last gadget H−
s + xy, which is a subgraph of Ti . Now we show that H contains

no Ck . Let C be a longest cycle in H . Since {x, y} is a vertex-cut of H , the cycle C
passes through at most two gadgets. If C passes through only one gadget, then by (ii)
of Lemma 1 and by (1), we have

|V (C)| ≤ 7 · 2i−2 <
7k

12
.
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Fig. 1 The graph H constructed in Sect. 2

If C passes through two gadgets, then clearly x, y ∈ V (C), thus by (i) of Lemma 1
and by (1), we have

|V (C)| ≤ 2(3 · 2i−1) < k.

Hence, H contains no Ck .
Next we calculate the number of edges of H . Clearly, H is an n-vertex planar graph.

By adding the edges z1w2, z2w3, . . . , zs−1ws to H , it becomes a triangulation. Hence,
we have

|E(H)| = 3n − 6 − (s − 1).

Then s = ⌈ n−2
(3i+5)/2−2

⌉
and (1) imply

|E(H)| ≥ 3n − 6 − 2(n − 2)

3i + 1
= 3n − 6 − 2n − 4

3
⌈
log2 k/3

⌉
−1 + 1

≥ 3n − 6 − 2n

3log2 k/3−1 = 3n − 6 − 3log2 3+1 · 2n
3log2 k

≥ 3n − 6 − 6 · 3log2 3 · n
klog2 3

.

Hence, exP (n,Ck) ≥ 3n − 6 − 6·3log2 3n
klog2 3 and we are done.
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