
1. Introduction
The problem of the size dependence of the funda-
mental mechanical properties of materials does not
exist in physics and technical applications. However,
when we move into the nanoscale world. We see that
many important characteristics of the products do
depend on their size. One of the intriguing phenom-
ena of this kind is the size dependence of the elastic
modulus of polymeric nanofibers obtained by elec-
trospinning from polymer solutions [1–3]. This effect
is especially important for the use of nanofibers as a
reinforcing component in critical applications in
modern technology. This behavior is similar to the

analogous effect known for metal and oxide nano -
wires. For these objects, it was assumed that the con-
cept of surface tension is the dominating mechanism
of increasing the modulus [4, 5]. Structure analysis
has shown that nanowires can be really treated as a
composite of a core-shell structure with cover layers,
which penetrate deep into the bulk of a wire depends
on its size [6, 7]. This is also applied to polymer fibers,
which have a different structure of the volume and
outer shell [8–10], which is mainly due to the diffu-
sion process of evaporation of a solvent during their
formation from a polymer solution [11]. Indeed,
evaporation of the solvent leads to the formation of
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a thin glassy [12] or gel-like [13] film skin on the
free surface of the polymer solution, which ensures
the formation of the fiber shell.
The primary explanation for the increase in the elas-
tic modulus of ultrathin fibers seems obvious due to
their very large relative surface area. However, this
approach was rejected [14] due to the fact that a quan-
titative estimation based on real values of surface
tension did not give a reasonable agreement with the
experimental data. Meanwhile, in these calculations,
the surface tension was considered as a single char-
acteristic of a surface, like in different liquids. How-
ever, it is well known that surfaces demonstrate visco -
elastic properties [15], and this is especially impor-
tant for nanoscale objects [16]. Surface elasticity was
considered in continuum mechanics of surface/inter-
face layers [17] and was used in constructing the
core-shell model of nanowires [18] since nano-size
fibers are important not only for organic but also for
inorganic objects. In the latter publication, the nu-
merical results have demonstrated the applicability
of this model (including two fitting factors related to
the surface – the inhomogeneity degree constant and
the surface layer thickness) for the elastic modulus
of ZnO and Si nanowires in bending and tension
loading modes.
The core-shell model has also been used to explain
the increase in the elastic modulus for thin fibers due
to the deformation and orientation of molecular ag-
gregates within the fiber [19]. This approach shifted
the responsibility for the increase in the elastic mod-
ulus to the structure of the central part of the fiber.
The purpose of this work is to formulate a simple phe-
nomenological theory based on the two-cylinder core-
shell model for fitting experimental data obtained for
various polymer nanofibers and explaining the de-
pendence of the total elastic modulus of ultra-fine
fibers on their diameter due to the elastic properties
of the surface layer associated with its curvature.

2. Theory
Let’s start with the simplest model and imagine a
fiber in the form of a cylindrical core of the diameter
d and the elastic (Young) modulus of Ed, and a shell
with an elastic modulus of ED and a thickness δ =
0.5(D – d) (D is the total fiber diameter as shown in
Figure 1). The core and shell are believed to obey
Hooke’s law and ED >> Ed.
The apparent modules of the core-shell fiber E is de-
fined by the Equation (1):

(1)

where ε = const is the deformation and the force, F,
is the sum of the forces acting in at the core and the
shell (Equation (2)):

(2)

Substituting Equation (2) into Equation (1), we ar-
rive at the Equation (3):

(3)

which can be written as Equation (4):

(4)

Then, as a first approximation, we assume that the
shell thickness weakly depends on the fiber diame-
ter, i.e. δ = const, and δ/D << 1. In this case, the E(D)
dependence is expected to be Equation (5):

(5)

The results of comparing the curve calculated by
Equation (5) with experimental data for various
polymer nanofibers are included in Figure 2 (blue
dots line), which presents the general picture of our
approach. (A more detailed analysis of the experi-
mental data is given below.) Despite the fact that for-
mula (5) indicates an increase in the elastic modulus
with decreasing fiber size, the predicted effect is
rather weak and does not allow one to describe the
experimental data (except poly(vinyl alcohol)
(PVA), Figure 2d).
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Figure 1. Two-component core-shell model of the cross-sec-
tion of a fiber.



The model considered above does not fully take into
account the structure of the shell and, in particular,
its anisotropy: macromolecules in the shell have a
higher orientation than in bulk since in the process
of spinning the fiber and evaporation of the solvent,
a polymer-enriched surface layer with more pro-
nounced viscoelastic properties is formed. In addi-
tion, side groups attached to the polymer backbone
can also be ordered due to the surface effect. There-
fore, the elasticity of the shell must be characterized
by several elastic moduli, and this complicates the
consideration of the core-shell model in the general
case. To simplify further consideration, we replace
the shell with an elastic surface and use the phenom-
enological approach based on the analysis of the
general expression for the surface energy. At the
same time, we continue to assume that the elasticity
of the core is described by Hooke’s law.
Consider again a thin cylinder having an elastic sur-
face. The cross-section of fiber was shown in Figure 1.
The elastic properties of the shell (surface layer) will
be determined based on the surface energy. The ini-
tial length of the cylinder is L, and its deformation
is ε = ∆L/L, where ∆L is the elongation of the cylin-
der. Accordingly, the radius of the cylinder R = D/2
decreases and is equal to R – ∆R, ∆R > 0. The vol-
ume of the cylinder is assumed to be constant. Then
∆R is found from the volume conservation equation
V = πR2L = π(R – ∆R)2L(1 + ε), (Equation (6)):

(6)

Change in the surface area of the cylinder in exten-
sion is Equation (7):

(7)

where A0 = 2�RL is the initial surface area of the
cylinder.
Let us accept that the bulk elastic modulus of the
cylinder is Ed. The change of the elastic energy in
extension therefore is Equation (8):

(8)

Then we write the energy of the shell by analogy
with the energy of the lipid layer as the sum of two
terms [22–24], Equation (9):

(9)

Here the first term depends only on the area of the
surface and is associated with a change in the energy
due to its stretching, and the second term reflects the
curvature of the surface and depends on the principal
curvature values, C1 and C2. For a straight cylinder
of radius R, C1 = 1/R, C2 = 0.
Upon small elongation of the cylinder, the change of
the surface term in Equation (9) is written in the fol-
lowing form (Equation 10):

(10)

where γ is the surface tension and μ is the elastic
modulus of stretching of the surface. Since the radius
of curvature of the shell is much larger than the
width of the shell, the expression for the second term
in Equation (9) can be expanded in a series with re-
spect to the curvature (Equation (11)):

(11)

where C = C1 + C2 is the total curvature of the sur-
face. Here we introduce additional moduli κ, K and
KG, resulting from the change of curvature [20–22].
Obviously, in our case of uniaxial tension, the last
term in Equation (11) is equal to zero (C2 = 0) and
C = C1.
Now consider the change in the energy Fcurve, Equa-
tion (11), due to extension. The total curvature after
deformation is C = 1/(R – ∆R), therefore Equa-
tion (12):

(12)

The total change in the energy ∆Ftot, of the cylinder
due to extension is determined by the sum Equa-
tion (13):

(13)

Finally, we can find the effective modulus of elas-
ticity as Equation (14):
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(14)

Thus, when a straight cylinder is stretched, the ef-
fective modulus does not depend on the curvature
moduli κ and KG. It is interesting to note that surface
tension makes a negative contribution to the elastic
modulus. Comparing the formula of Equation (14)
with Equation (5) we can conclude that when γ = 0
and K = 0 we come to our previous model with μ =
4δ(ED – Ed). Thereby, the additional input into the
elastic modulus of the nanofibers includes two terms
proportional to 1/R and 1/R3, respectively. Besides,
it is reasonable to assume that μ – γ > 0. The final
fitting can be presented as Equation (15):

(15)

where the coefficients K1 and K2, in accordance with
Equation (9), have the following physical sense
(Equations (16) and (17)):

(16)

(17)

i.e. K1 is mainly determined by the stretching mod-
ulus of the surface and K2 – by the curvature elastic
modulus.

3. Experimental and discussion
We examined five available sets of experimental
data for the E(D) dependences, which were found in
current publications. The size dependences of the
elastic modulus E(D) were described for: poly(2-acryl -
amido-2-methyl-1-propanesulfonic acid) (PAMPS)
[23], Nylon-66 (PA66) [24], polypirrol (PPy) [25],
poly(vinyl alcohol) (PVA) [26], polyacrylonitrile
(PAN) [27]. The nanofibers were obtained by the
electrospinning technique using different polymer-
solvent systems.
Experimental data on the E(D) dependencies are al-
ways obtained and presented in original publications
with a wide scatter. We have shown the fields of ex-
perimental data and usually have used averaged points
for calculations unless otherwise stated. Fitting equa-
tion constants will be found by the standard RMS
procedure after presenting them in linearized log-log
coordinates. In some cases, we presented fitting lying
in the experimental field but not as the averaged

curves (that will be noted separately). For compari-
son, we also presented the results of calculations for
the simplest two-cylinder model, which included
only elastic stretching moduli.
Figure 2 demonstrates the results of the comparison
of the dependences calculated by Equation (15) with
the experimental data for various polymer nanofibers
(red dash lines), and Table 1 collects the obtained
values of the constants K1 and K2.
The analysis of Figure 2 shows that Equation (5)
does not give satisfactory results, except for one case
of PVA (Figure 2d). In the latter case, the increase in
the modulus of this polymer occurs rather smoothly.
Indeed, the E(D) dependence for this polymer is ap-
proximated by a power law with the power is –0.7,
which is much less than in other cases. This result
can be explained by a very pronounced core-shell
structure of the PVA crystalline fibers with a rigid
anisotropic outer layer, observed in the original pub-
lication [26]. Thus, this structure is the most equiv-
alent to a scheme in Figure 1, and the influence of
surface curvature elasticity does not appear. It leads
to the zero-value of the 1/D3 term in Equation (15).
Then the latter equation also fits these data. The dif-
ference in the lines in this figure is explained by the
fact that when calculating according to Equation (5),
we took into account the free term.
For three polymers - PAMPS (Figure 2a). Nylon 66
(Figure 2b), and PPy (Figure 2c), the developed two-
term model (Equation (15)) provides quite a fairly
good quantitative agreement with experimental data.
The agreement of the theoretical model with exper-
imental data for PAN (Figure 2e) should be treated
as qualitative. The increase in the modulus with a
decrease in the fiber diameter occurs more sharply
than 1/D3. Perhaps this indicates the need to take into
account the higher terms in the expansion (Equa-
tion (10)).
Based on the results obtained, we assume that the
core-shell model and the concept of the outer surface
elasticity is a reasonable assumption about the strong
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Table 1. Values of the parameters used for fitting.

Polymer 4δ(ED – Ed)
[nm·GPa]

K1
[nm·GPa]

K2·10–6

[nm3·GPa]
PAMPS 11 30 0.26
Nylon 185 200 8.5
PPy 110 250 2.0
PVA 800 1100 0
PAN 100 800 20



increase in the elastic modulus of electrospun nano-
size polymer fibers with a decrease in their diameter.
Of course, more experimental evidence would be
welcome.

4. Conclusions
In summary, we showed that the size dependence
of the elastic modulus of electrospun nanoscale
fibers from various polymers in all cases could be

quantitatively described in terms of a core-shell
model with a shell characterized by the stretching
and curvature elasticity. This model turns out to be
applicable to various polymer nanofibers and can be
considered as a universal physical explanation of the
phenomenon under discussion. The role of the shell
(surface layer) was estimated on the base of a phe-
nomenological consideration of the change in the
surface free energy due to elastic deformation. This
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Figure 2. Comparison of the results of fitting by Equations (5) (blue dots) and (15) (red dash lines) with experimental data
for various polymers:  a) PAMPS [23]; b) Nylon 66 [24]; c) PPy [25]; d) PVA [26]; e) PAN [27]. Grey fields are
areas of spreading experimental results. All experimental data were reproduced with permission.



approach leads to a two-term equation describing the
size dependence of the elastic modulus of nanofiber.
The fitting parameters used in theory are reduced to
the surface stretching modulus and the surface cur-
vature elastic modulus.
The shell-core morphology is characteristic of all
fibers spun from polymer solutions by the wet or
dry-wet methods. The main reason for the difference
in the structure of the shell and core is the mutual
diffusion of the coagulant inside and the solvent out-
side the spinning jet/fiber. According to X-ray dif-
fraction data in transmission and reflection modes
[28], the shell is more ordered than the core, and the
final fibers show the dependence of mechanical
properties on diameter, increasing with decreasing
thickness.

Acknowledgements
We acknowledge funding from Ministry of Science and
Higher Education of the RF (Agreement # 175-15-2020-794.
The authors are grateful for permission to use experimental
data from Ref. [23, 24] to APS, from Ref. [25] to AIP, from
Ref. [26] to Elsevier., and from [27] to ACS.

References
[1] Reneker D. H., Yarin A. L.: Electrospinning jets and

polymer nanofibers. Polymer, 49, 2387–2425 (2008).
https://doi.org/10.1016/j.polymer.2008.02.002

[2] Xue J., Wu T., Dai Y., Xia Y.: Electrospinning and elec-
trospun nanofibers: Methods, materials, and applica-
tions. Chemical Reviews, 119, 5298–5415 (2019).
https://doi.org/10.1021/acs.chemrev.8b00593

[3] Arinstein A., Burman M., Gendelman O., Zussman E.:
Effect of supramolecular structure on polymer nanofi-
bre elasticity. Nature Nanotechnology, 2, 59–62 (2007).
https://doi.org/10.1038/nnano.2006.172

[4] Cuenot S., Frétigny C., Demoustier-Champagne S.,
Nysten B.: Surface tension effect on the mechanical
properties of nanomaterials measured by atomic force
microscopy. Physical Review B, 69, 165410 (2004).
https://doi.org/10.1103/PhysRevB.69.165410

[5] Chen C. Q., Shi Y. S. Zhang J., Zhu Y., Yan J.: Size de-
pendence of Young’s modulus in ZnO nanowires. Phys-
ical Review Letters, 96, 075505 (2006).
https://doi.org/10.1103/PhysRevLett.96.075505

[6] He J., Lilley C. M.: Surface effect on the elastic behav-
ior of static bending nanowires. Nano Letters, 8, 1798–
1802 (2008).
https://doi.org/10.1021/nl0733233

[7] Megelski S., Stephens J. S., Chase D. B., Rabolt J. F.:
Micro- and nanostructured surface morphology on elec-
trospun polymer fibers. Macromolecules, 35, 8456–
8466 (2002).
https://doi.org/10.1021/ma020444a

[8] Wang X., Xu Y., Jiang Y., Jiang J., Turng L-S., Li Q.:
Core/shell structure of electrospun polycarbonate
nanofibers. Polymer Testing, 70, 498–502 (2018).
https://doi.org/10.1016/j.polymertesting.2018.08.009

[9] Arinstein A., Zussman E.: Electrospun polymer nano -
fibers: Mechanical and thermodynamic perspectives.
Journal of Polymer Science Part B: Polymer Physics
49, 691–707 (2011).
https://doi.org/10.1002/polb.22247

[10] Stockdale T. A., Cole D. P., Staniszewski J. M.,
Roenbeck M. R., Papkov D., Lustig S. R., Dzenis Y. A.,
Strawhecker K. E.: Hierarchical mechanisms of lateral
interactions in high-performance fibers. ACS Applied
Materials and Interfaces, 12, 22256–22267 (2020).
https://doi.org/10.1021/acsami.9b23459

[11] Dayal P., Liu J., Kumar S., Kyu T.: Experimental and
theoretical investigations of porous structure formation
in electrospun fibers. Macromolecules, 40, 7689–7694
(2007).
https://doi.org/10.1021/ma071418l

[12] de Gennes P. G.: Solvent evaporation of spin cast films:
‘Crust’ effects. The European Physical Journal E, 7, 31–
34 (2002).
https://doi.org/10.1140/epje/i200101169

[13] Okuzono T., Ozawa K., Doi M.: Simple model of skin
formation caused by solvent evaporation in polymer so-
lutions. Physical Review Letters, 97, 136103 (2006).
https://doi.org/10.1103/PhysRevLett.97.136103

[14] Burman M., Arinstein A., Zussman E.: Do surface ef-
fects explain the unique elasticity of polymer nano -
fibers? Europhysics Letters, 96, 16006 (2011).
https://doi.org/10.1209/0295-5075/96/16006

[15] Miller R., Liggieri L.: Interfacial rheology. CRC Press,
Boca Raton (2019).

[16] Hamilton J. C., Wolfer W. G.: Theories of surface elas-
ticity for nanoscale objects. Surface Science, 603,
1284–1291 (2009).
https://doi.org/10.1016/j.susc.2009.03.017

[17] Ojaghnezhad F. H. Shodja M.: Surface elasticity revis-
ited in the context of second strain gradient theory. Me-
chanics of Materials, 93, 220–237 (2016).
https://doi.org/10.1016/j.mechmat.2015.11.003

[18] Yao H., Yun G., Bai N., Li. J.: Surface elasticity effect
on the size-dependent elastic property of nanowires.
Journal of Applied Physics, 111, 083506 (2012).
https://doi.org/10.1063/1.3703671

[19] Arinstein A.: Confinement mechanism of electrospun
polymer nanofiber reinforcement. Journal of Polymer
Science Part B: Polymer Physics, 51, 756–763 (2013).
https://doi.org/10.1002/polb.23246

[20] Helfrich W.: Elastic properties of lipid bilayers: Theory
and possible experiments. Zeitschrift Für Naturfor-
schung C, 28, 693–703 (1973).
https://doi.org/10.1515/znc-1973-11-1209

[21] Khokhlov A. R., Semenov A. N., Subbotin A. V.: Shape
transformations of protein-like copolymer globules.
The European Physical Journal E, 17, 283–306 (2005).
https://doi.org/10.1140/epje/i2005-10011-1

A. V. Subbotin et al. – Express Polymer Letters Vol.17, No.2 (2023) 211–217

216



[22] Subbotin A. V., Semenov A. N.: Spatial self-organiza-
tion of comb macromolecules. Polymer Science Series
A, 49, 1328–1357 (2007).
https://doi.org/10.1134/S0965545X07120085

[23] Shin M. K., Kim S. I., Kim S. J.: Size-dependent elastic
modulus of single electroactive polymer nanofibers.
Applied Physics Letters, 89, 231929 (2006).
https://doi.org/10.1063/1.2402941

[24] Burman M., Arinstein A., Zussman E.: Free flight of an
oscillated string pendulum as a tool for the mechanical
characterization of an individual polymer nanofiber.
Applied Physics Letters, 93, 193118 (2008).
https://doi.org/10.1063/1.3000016

[25] Cuenot S., Demoustier-Champagne S., Nysten B.: Elas-
tic modulus of polypyrrole nanotubes. Physical Review
Letters, 85, 1690 (2000).
https://doi.org/10.1103/PhysRevLett.85.1690

[26] Stachewcz U., Bailey R. J., Wang W., Barber A. H.:
Size dependent mechanical properties of electrospun
polymer fibers from a composite structure. Polymer, 53,
5132–5137 (2012).
https://doi.org/10.1016/j.polymer.2012.08.064

[27] Papkov D., Zou Y., Andalib M. A., Goponenko A.,
Cheng S. Z. D., Dzenis Y. A.: Simultaneously strong
and tough ultrafine continuous nanofibers. ACS Nano,
7, 3327–3331 (2013).
https://doi.org/10.1021/nn400028p

[28] Makarov I. S., Golova L. K., Vinogradov M. I., Levin
I. S., Gromovykh T. I., Arkharova N. A., Kulichikhin
V. G.: Cellulose fibers from solutions of bacterial cel-
lulose in N-methylmorpholine N-oxide. Fibre Chem-
istry, 51, 175–181 (2019).
https://doi.org/10.1007/s10692-019-10069-6

A. V. Subbotin et al. – Express Polymer Letters Vol.17, No.2 (2023) 211–217

217




