
1. Introduction
The development of sustainable rubber compounds
is becoming increasingly popular due to the environ-
mental concerns arising from the widespread use of
polymers and the need to transition towards a circu-
lar economy. Rubber’s unique properties make it ir-
replaceable in various applications, including tires,
seals, conveyor belts, shoe soles, and medical im-
plants. These products are subject to deterioration of
rubber properties over time due to different effects
and environmental conditions, which are causing
molecular changes and can significantly impair rub-
ber properties and, thus, the service life of rubber

products. Therefore, to protect rubber products from
diverse effects of environmental factors, rubber com-
pounds are composed of various components that
serve to both protect the rubber against specific in-
fluences and reinforce it. If the rubber is sufficiently
protected by having an optimally reinforced struc-
ture with suitable reinforcing fillers, it will also be
protected against degradation processes such as net-
work failures, crack initiation, propagation, and the
subsequent release of rubber particles of various
sizes and their emission [1, 2].
Nowadays, the question of the impact of different
chemical components of rubber on various aspects
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of the environment is being addressed globally, not
only in the context of particle pollution from tire
wear. However, tire wear remains the most critical
issue, leading to the future degradation of worn rub-
ber particles and release of various chemical con-
stituents, including fillers and additives, into the en-
vironment [3–5]. The chemical analysis of ground
tire revealed that in addition to carbon, a significant
amount of silane (up to 8%), sulfur, zinc and iron (up
to 1% each) can be found. When tire and road wear
particles were analyzed, these amounts proved to be
even higher [6]. Various ecotoxicological investiga-
tions have confirmed that some of these released
chemicals or their transformation products can induce
various biological responses in diverse organisms,
e.g. [7–9].  For example, the widely-used antiozonant
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine
(6PPD), which reacts with ozone to produce toxic
6PPD quinone, can cause acute and chronic toxicity
to aquatic wildlife [7, 8, 10, 11]. Therefore, the pres-
ence of rubber chemicals in the environment and
biota, their degradation, and their potential toxicity
are major concerns. The optimal global solution to
this problem is to replace environmentally and or-
ganism-harming chemical components with natural-
based, completely environmentally friendly materi-
als [12, 13]. One such raw material of natural origin
could be lignin. The term ‘lignin’ encompasses a di-
verse class of lignins, summarizing their chemical
characterization and structural elements. The lignin
macromolecule is composed of cross-linked phenyl-
propane structural units, namely p-hydroxyphenyl,
guaiacyl, and syringyl, derived from lignin precur-
sors para-coumaryl, coniferyl, and sinapyl alcohols.
Lignin is a thermoplastic amorphous polymer with
a glass transition temperature (Tg) that ranges from
90 to 170 °C [14]. Its Tg depends on various factors
such as the method of isolation, absorbed water,
molar mass (Mh), and thermal history. The primary
source of lignin is the pulp and paper industry, where
it is extracted from black liquor or from lignocellu-
losic biorefineries. The use of technical lignin in
value-added applications is limited due to several
factors: a non-uniform chemical structure and
unique chemical reactivity of each batch, the pres-
ence of various organic and inorganic impurities and
the differences in chemical and physical character-
istics arise from different origins and the use of dif-
ferent separation and purification processes. How-
ever, these limitations can be addressed through the

individual evaluation of various lignin types. Ligno-
sulfonates, a subgroup of lignins produced through
acid-catalyzed sulfite processes, are of particular in-
terest in this study. This process involves delignifi-
catin of wood using a solution of sulfuric acid and
its salts (usually Ca2+, Na+, Mg2+, NH4+) at high tem-
peratures ranging from 140–170 °C. Sulfite deligni-
fication is standardly characterized by a pH value
which is usually in the range of pH 1–5. During sul-
fite pulping, hydrolysis and subsequent sulfonation
of ether bonds occur to form a water-soluble product
with relatively high molecular weight compared to
other types of lignin and with a lower concentration
of phenolic functional groups [15–21].  However,
due to its large particle size and lack of interfacial
adhesion with the rubber matrix, lignin, in general,
has not been found to significantly reinforce rubber
composites [22, 23]. The investigation of composites
featuring diverse lignin types and varying lignin con-
centrations was documented in reference [24]. It was
observed that the high molecular weight of lignin
leads to agglomeration, with the propensity for ag-
glomeration escalating with higher lignin content.
Lignin’s incompatibility with several non-polar
polymers arises from the presence of polar sites,
thereby exhibiting higher compatibility with poly-
mers containing similar polar sites [25]. Therefore,
research has been conducted to optimize the process-
ing method to improve the compatibility of lignin
with rubber and enable it to exhibit good dispersion
[18, 24, 26–30].
In general, to enhance the resistance of rubber to me-
chanical loads, it is reinforced with fillers, primarily
carbon black (CB) [2]. The addition of fillers to rub-
ber generally enhances its properties, including mod-
ulus, tensile strength as well as fatigue crack growth
(FCG) resistance, which, however, are mainly asso-
ciated with ‘CB reinforcement’. Furthermore, the
most significant effect on rubber abrasion in terms
of material composition can be attributed to CB in
general [31–33]. CB and lignin exhibit different sur-
face activities, but both agglomerate in rubber com-
pounds due to various factors. CB filler-filler inter-
actions are primarily van der Waals interactions.
Lignin’s molecular complexity enables diverse non-
covalent interactions, including H-bonding, π–π,
π–cation, electrostatic, hydrophobic, and van der
Waals interactions. These interactions facilitate
seamless hybridization of lignin with inorganic par-
ticles, dictating interphase development in resulting

M. Džuganová et al. – Express Polymer Letters Vol.18, No.12 (2024) 1277–1290

1278



hybrid fillers [15, 23, 34]. Optimizing functional
group exposure and configuration is crucial for
supramolecular complexation, achievable through
lignin type selection, modification, or synthesis ap-
proach. Hybridization of lignin with CB offers ben-
efits, utilizing π–π interactions to produce hybrid
filler for rubber compounds (RUB) [15]. This over-
comes concerns about lignin's large particle size im-
pacting mechanical properties, as lignin coats CB
particles, suppressing CB networking and improving
dispersion. Although hybrid fillers are common, en-
hancing interfacial interaction remains an area for
improvement [25, 35].
As mentioned above, the degradation of rubber leads
to its fracture, an undesirable process that signifi-
cantly reduces its service life and promotes the emis-
sion of rubber components into the environment.
Mechanical or chemical degradation typically begins
with the occurrence of micro-cracks in the rubber
matrix. But how does this mechanism work and how
is it possible to achieve increased material resistance
to the emission of rubber particles and individual
chemical components?
Fatigue refers to the gradual deterioration of the ma-
terial properties during service life, which in rubber
technology indicates the failure resulting from crack
initiation and growth [2]. When rubber is exposed to
real conditions, surface embrittlement and the for-
mation of surface micro-cracks occur, with the sur-
face of such a crack immediately attacked again by
the chemical reactant, thus accelerating the formation
and propagation of new cracks. This results in in-
creasing distortion of the rubber matrix both on the
surface and deep into the material volume, allowing
chemical components to diffuse through the cracks
and generating the first rubber particles of very small
dimensions. Generally, fatigue failure involves three
phases. The first phase is crack nucleation associated
with endurance limit or also called intrinsic strength
(T0), where if the energy input is lower than this
value, no cracks can be created. If energy input is
above this value, it causes nucleation and propaga-
tion of cracks [36, 37]. The so-called Thomas plot
shows these effects in Figure 1. With increased me-
chanical loading, the fatigue crack growth of all pre-
viously initiated cracks proceeds over a broad range
of tearing energies between the T0, and the critical
tearing energy or ultimate strength (TC) (Figure 1).
In this region, the dependence of the fatigue crack
growth rate on the tearing energy is linear [38–41].

Fatigue crack growth behavior in this area is mainly
influenced by the rubber composition, where in
order to increase the resistance to crack propagation,
the curve should have the lowest possible slope in
low absolute values as it reaches high TC values. En-
suring these properties and increasing resistance to
fatigue crack growth will again reduce the emission
of chemical components as well as particles into the
environment. Additionally, it is necessary to consider
the crosslink density of rubber, which is formed dur-
ing the curing process. Based on previously pub-
lished studies, it is generally known that the stiffness
of rubber increases monotonically with increasing
crosslinking density, which results in the fact that al-
though the strength of the material increases, it be-
comes more brittle and prone to crack initiation and
its rapid propagation still at lower deformations [43,
44]. Robertson et al. [42] described the influence of
reinforcing fillers, such as carbon black, on the me-
chanics of fatigue crack growth. The physical ad-
sorption and chemical bonding of parts of the poly-
mer chain to the surface of carbon black particles
will affect the mechanics of intrinsic strength T0.
However, since even the smallest carbon black
grades are significantly larger than a polymer net-
work chain between crosslinks, cracks are either
forced to bypass these particles or fracture them.
In this work, we explore the impact of lignin, specif-
ically in the form of calcium lignosulfonate (CaL),
on the initiation and propagation of cracks under me-
chanical loading. While the influence of particulate
fillers on the fracture mechanics of rubber has been
studied extensively, to the best of the authors’ knowl-
edge, the effect of lignin on fracture mechanics has
yet to be thoroughly examined. Given the numerous
articles on lignin’s use in the rubber industry, this
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Figure 1. Schematic representation of crack growth rate in
rubber [42].



 aspect warrants in-depth investigation. Our goal is
to demonstrate that lignin is a promising additive
that can enhance rubber’s resistance to fracture,
thereby reducing the emission of chemical compo-
nents and rubber particles into the environment.

2. Experiment and materials
Nitrile rubber (NBR) (SKN 3345, Sibur Internation-
al, Moscow, Russia) with a content of acrylonitrile
ranging from 31 to 35% was used as a rubber matrix
for the first set of prepared compounds and styrene-
butadiene rubber (SBR) (Kralex 1502, Synthos
Kralupy, Kralupy nad Vltavou, Czech Republic) with
a content of styrene of 23.5% was used as a rubber
matrix for the second set of prepared compounds.
Carbon black (CB) (CONTINEX N330, Continental
Carbon Company, Belgium) was used as a reinforc-
ing filler on its own or combined with calcium lig-
nosulfonate (CaL) (Borrement CA120, Borregaard
Deutschland GmbH, Germany) as a sustainable com-
ponent of rubber compounds. The pH of CaL is 4.5
(10% solution) with an average molecular weight of
24000 g·mol–1, 1.57 mmol·g–1 of phenolic hydroxyl
groups, and approximately 5% content of calcium
[45]. Glycerol (Gly) (≥99%, Sigma-Aldrich, St.
Louis, MO, USA) was used to plasticize CaL. The
specific selection and content of plasticizer was
based on previous research, as well as the content of
CB and CaL. For the cross-linking of the rubber com-
pounds, a sulfur vulcanization system containing
zinc oxide (Slovzink a.s., Košeca, Slovakia), stearic
acid (Setuza, Ústí nad Labem, Czech Republic),
N-cyclohexyl-2-benzothiazole sulfenamide (CBS)
(Duslo a.s., Šaľa, Slovakia) and sulfur (Siarkopol
Tarnobrzeg, Poland) was used. The complete formu-
lations of each investigated compound filled with
CB, CaL or hybrid CB/CaL with NBR or SBR as a
rubber matrix are listed in Table 1. The quantity of

additives remained constant throughout the experi-
ment, with CB at 25 phr, CaL at 30 phr, and Gly at
15 phr. The quantity of additives in rubber formula-
tions was meticulously determined based on prior
experimental works related to the production of rub-
ber compounds with incorporated CB, CaL, and
glycerol in laboratory conditions and are published
in [26, 46–48].
Rubber compounds were prepared using a semi-in-
dustrial kneading machine Buzuluk (Buzuluk Inc.,
Komárov, Czech Republic) in two mixing steps at
90°C and 55 rpm. Rubber was first put into a cham-
ber and plasticated for 1 min, then zinc oxide and
stearic acid were added, and after 1 min, CB or CaL
were introduced. The mixing process continued for
next 3 min. The rubber compounds were taken out
from the chamber and additionally homogenized
using the two-roll mill. In the second step, sulfur and
accelerator were applied, and the mixing process
continued for 3 min at 90 °C and 55 rpm. Finally, the
rubber compounds were sheeted and cooled down
using the two-roll mill (rubber compounds RUB/CB,
RUB/CaL). The rubber compounds with applied
both CB and CaL were fabricated in the same way,
but CB was introduced first, and after 1 min, CaL
was applied (rubber compounds RUB/CB/CaL). The
mixing process in the first step continued for 2 min.
Glycerol was pre-mixed with CaL and added to the
kneader chamber, following the same procedure as
before. The second step of the mixing process for all
rubber compounds was the same, meaning that after
adding sulfur and accelerator, subsequent mixing
was performed for 3 min at 90 °C and 55 rpm.
The curing characteristics were investigated using
an oscillatory rheometer (MDR 2000, Alpha Tech-
nologies, Akron, OH, USA) according to the STN
62 1416 at a temperature of 170°C. A standard sheet
of the dimensions 150×150 mm and 2 mm thick were
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Table 1. Rubber compounds composition.

Ingredients
Amount
[phr]

RUB RUB/CB RUB/CaL RUB/CaL/Gly RUB/CB/CaL RUB/CB/CaL/Gly
Rubber 100 100 100 100 100 100
ZnO 3 3 3 3 3 3
Stearic acid 2 2 2 2 2 2
CBS 1.5 1.5 1.5 1.5 1.5 1.5
Sulfur 3 3 3 3 3 3
Carbon black – 25 – – 25 25
Calcium lignosulfonate – – 30 30 30 30
Glycerol – – – 15 – 15



cured for the determination of tensile properties, and
then sheets of the dimensions 100×10×1.5 mm were
prepared for the determination of intrinsic strength,
T0, and ultimate strength, TC. The curing process was
carried out using a hydraulic press at a temperature
of 170 °C and pressure of 15 MPa according to their
optimum curing times. The crosslink density, ν was
determined by measuring the equilibrium swelling
of the vulcanizates in xylene after 30 h at laboratory
temperature. The cross-link density was calculated
using the Flory-Rehner equation modified by Krause
[49], based on the equilibrium swelling state. For the
calculations, the Flory-Huggins interaction parame-
ters were used, which for NBR in xylene is 0.5316,
while for SBR in xylene, it is 0.3908. Physical-me-
chanical properties were measured using a Zwick
Roell/Z 2.5 appliance (Zwick GmbH & Co.KG, Ulm,
Germany) in accordance with the technical norm
ISO STN 37 (62 1436). The tensile test was per-
formed at an extension rate of 500 mm/min with an
initial distance between clamps of 50 mm. The hard-
ness was measured using a durometer (Zwick GmbH
& Co.KG, Ulm, Germany) in accordance with the
technical norm ISO STN 7619 and expressed in
Shore A. The results of all mechanical properties are
an average of five parallel measurements. The sur-
face morphology and microstructure of composites
were observed using a scanning electron microscope
JEOL JSM-7500F (Jeol Ltd., Tokyo, Japan).  The
samples were initially frozen in liquid nitrogen, frac-
tured, and then coated with a layer of gold on the
fracture surface. The electron source used was a cold
cathode ultra-high vacuum (UHV) field emission
gun. The acceleration voltage ranged from 0.1 to
30 kV, resulting in a resolution of 1.0 nm at 15 kV
and 1.4 nm at 1 kV. Scanning electron microscopy
(SEM) images were captured by CCD-Camera EDS
(INCA X-ACT, Oxford Instruments, Abingdon,
UK). Finally, the fatigue crack growth behavior has

been determined using a simple approximation of the
intrinsic strength, T0, and ultimate tear strength, TC
values. To determine both intrinsic strengths, T0 and
ultimate strength, TC values of the rubber com-
pounds studied, an Intrinsic Strength Analyser (ISA,
Coesfeld GmbH & Co. KG, Germany) was used.
The application of the power law approximation be-
tween these two probabilities is based on the fact that
the intrinsic strength, T0, occurs approximately at a
crack growth rate of 10–8 mm/cycle, and the ultimate
strength, TC, occurs at a crack growth rate of
10–2 mm/cycle. This strategy was first introduced in
the following study [50]. Details of this test method-
ology and test equipment can be found in previous
publications, e.g., [42, 51–54].

3. Results and discussion
Fatigue crack growth (FCG) is a crucial factor in
determining the durability of rubber products.
Quantifying crack growth properties in elastomers
is of immense industrial interest as it provides in-
valuable insights to develop the most durable prod-
ucts possible.
Figure 2 and Figure 3 represent the double logarith-
mic plot of tearing energy and T vs. crack growth
rate (da/dn) of compounds based on NBR and SBR,
respectively. The intrinsic strength of unfilled cross -
linked rubber relies on chain stiffness, the molecular
weight MC of the main chain bond, dissociation en-
ergy, and crosslink density. Typically, higher cross
link density entails greater energy needed for all
bonds to stretch and reach the bond dissociation en-
ergy [42]. Conversely, the length of individual cross -
links also holds significance. All bonds in the net-
work chain must stretch to the bond dissociation
energy before one bond can break. Hence, a higher
MC implies a higher total energy required. Lower
cross-link density also signifies fewer chains inter-
secting the crack path. Polymer type is also crucial;
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Figure 2. FCG rate, da/dn, as a function of tearing energy,
T, for composites based on nitrile rubber (NBR).

Figure 3. FCG rate, da/dn, as a function of tearing energy,
T, for composites based on styrene-butadiene rub-
ber (SBR).



chain diameter correlates with molecular weight per
backbone bond M0 (molecular weight between two
cross-links). Therefore, polymer chains with lower
M0 are thinner, requiring more chains to break per
area of the crack [42]. When comparing the intrinsic
strength of unfilled NBR and unfilled SBR
(Figure 4a), one can see that T0 of SBR is higher.
This observation can be attributed to the higher chain
stiffness, stemming from its large styrene side groups
and possibly a lower cross-link density (as seen in
Figure 5). This is consistent with findings from prior
studies [42, 55]. The actual energy needed to grow a
crack in rubber can be significantly larger than the
energy for crack initiation (intrinsic strength) due to
the viscoelastic dissipation.
The ISA can quantify the positions of the two ends
of the FCG curve – the intrinsic and ultimate strength,
where the slope of each curve represents the ability
of a crack to propagate. Here a power law depend-
ency is observed, which mathematically can be rep-
resented as Equation (1):

(1)

where the exponent m defines the slope of the ability
of a crack to propagate and b is the material constant

d
d
n
a
bT
m=
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Figure 4. a) Intrinsic strength and b) ultimate strength of composites with NBR and SBR as a rubber matrix.

Figure 5. Apparent cross-link density of studied composites.

Table 2. The list of evaluated parameters of material constant b and m, which define the stable crack growth rate given by
Equation (1), for composites based on nitrile rubber (NBR).

Table 3. The list of evaluated parameters of material constant b and m, which define the stable crack growth rate given by
Equation (1), for composites based on styrene-butadiene rubber (SBR).

RUB RUB/CB RUB/CaL RUB/CaL/Gly RUB/CB/CaL RUB/CB/CaL/Gly
b 6·10–15 4·10–13 7·10–14 2·10–12 4·10–12 6·10–12

m 3.55 2.48 2.93 2.17 2.02 1.89

RUB RUB/CB RUB/CaL RUB/CaL/Gly RUB/CB/CaL RUB/CB/CaL/Gly
b 2·10–14 1·10–13 2·10–13 3·10–13 8·10–13 2·10–12

m 3.39 2.80 2.64 2.52 2.35 2.07



[56]. The constants calculated for studied com-
pounds based on NBR and SBR are listed in Table 2
and Table 3 respectively. As previously described, in
order to increase the resistance to crack growth, the
curve should have the lowest slope possible and,
therefore, the lowest exponent m. As seen in Figure 6,
the values of exponent m clearly point out the lowest
resistance to crack growth for unfilled rubber com-
pounds, thus showing the ability of lignosulfonate to
increase resistance to FCG.
The incorporation of reinforcing fillers such as CB
is known to reduce FCG rates. The addition of filler
introduces additional mechanisms by which strain
energy can be dissipated [1]. In general, strong in-
terfacial adhesion is formed between rubber chain
segments and CB. The rubber chains in the proxim-
ity to the filler are so strongly physically adsorbed
or chemisorbed on the surface of CB particles that
they behave as a polymer in glassy state and con-
tribute to the increase in apparent cross-linking den-
sity, so in addition to providing greater energy dissi-
pation, dispersed particles serve to deflect or arrest
growing cracks [1, 57]. When reinforcing fillers such
as CB are added, TC increases in both NBR and
SBR-based compounds (Figure 4b), as could be ex-
pected. However, the increase in T0 cannot be solely
explained by considering filler-rubber interactions
and associated mobility effects.
CaL has a high molecular weight and does not be-
have as a typical particle-like filler. From morphol-
ogy analysis in Figure 7 and Figure 8 it can be seen
that thermomechanical plasticization of CaL occurs,
followed by the formation of smooth but rigid CaL
domains. The incorporation of CaL to NBR caused

increased from T0 and TC even higher than for
NBR/CB blends, which could not only be attributed
to the size and toughness of the respective fillers –
where CaL created much larger domains as observed
in morphology analysis (Figures 7b and 7c) – but
also with the fact that CaL is a polymer with highly
branched 3D structure, with a high content of phe-
nolic hydroxyl groups. For a crack to propagate in
NBR/CaL, physical interactions formed between
phenolic hydroxyl groups and polar nitrile groups in
NBR [58] need to be disrupted. In NBR/CB, the in-
teractions between CB and NBR are mainly a com-
bination of physical adsorption and filler network
formation, which in this particular case seems to be
more easily disrupted than those in NBR/CaL. This
hypothesis can be supported by the fact that TC of
SBR/CaL is much lower than TC of SBR/CB. In this
case, the interactions between SBR and CaL are not
as strong as between NBR and CaL because SBR is
non-polar rubber, so the interface is much more eas-
ily disrupted. This can be further supported by the
comparison of morphology in Figures 7c and 8c. In
Figure 7c, it is shown that CaL creates smooth parts
with a clear NBR-CaL interface, but in Figure 8c,
the inhomogeneous structure with surface voids and
cavities confirms that mutual compatibility and ad-
hesion between CaL and SBR are weak.
Morphological characteristics also support the results
of mechanical characteristics (Table 4), where the in-
corporation of CaL into NBR led to improved prop-
erties when compared to pure NBR, with an increase
of 1 MPa in tensile strength. When considering the
stress-strain curves (Figure 9), the initial slope or ini-
tial high modulus at a low strain can be attributed to
a hydrogen-bonded network [58] formed between hy-
droxyl groups of lignin and nitrile groups in NBR.
On the other hand, the mechanical properties of
CaL/SBR blend deteriorated by 0.5 MPa (Table 5)
when compared to pure SBR. When comparing the
stress-strain curves of NBR and NBR/CaL with the
curves of SBR and SBR/CaL, one can see that while
the increment in initial slope in NBR-based samples
after adding CaL is significant, there is no difference
between the initial part of stress-strain curves of SBR
and SBR/CaL. This supports the consideration for the
formation of physical interactions between NBR and
CaL, as in the SBR matrix, there are no possible sites
for hydrogen bonding.
Comparison of T0 values for compounds based on
NBR and SBR (Figure 4a) reveals a consistent trend,
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Figure 6. FCG exponent m given by Equation (1) of com-
posites with NBR and SBR as rubber matrix.



although larger deviations were observed in SBR-
based compounds. This could be attributed to infe-
rior morphological characteristics of SBR-based
compounds, as previously discussed, underlining the
sensitivity of ISA measurement.

The enhancement of mechanical properties can be
achieved by utilizing CB/CaL hybrid filler discussed
earlier. As seen in Table 4 and Table 5, the tensile
strength of 16.30 and 12.73 MPa for NBR and SBR,
respectively, was achieved by utilizing CB/CaL
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Figure 7. SEM microscopy of fracture surfaces (magnification 250×) of vulcanizates based on nitrile rubber (NBR), a) RUB,
b) RUB/CB, c) RUB/CaL, d) RUB/CaL/Gly, e) RUB/CB/CaL, f) RUB/CB/CaL/Gly.



 hybrid filler. The effectiveness of this CB/CaL hy-
brid based on mechanical properties is comparable
to nitrile rubber filled with 50 phr of carbon black,
which was observed in previous studies [59]. On the
other hand, applying 50 phr of calcium lignosul-
fonate into NBR was not as successful, where tensile

strength reached only about 4 MPa [24]. As expect-
ed, a combination of CB and CaL also resulted in
improved distribution and dispersion of both com-
ponents in the rubber  matrix and, thus, the formation
of a homogeneous structure (Figures 7e and 8e). A
similar synergic effect could be expected for T0 and
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Figure 8. SEM microscopy of fracture surfaces (magnification 250×) of vulcanizates based on styrene-butadiene rubber
(SBR), a) RUB, b) RUB/CB, c) RUB/CaL, d) RUB/CaL/Gly, e) RUB/CB/CaL, f) RUB/CB/CaL/Gly.



TC, but here, it has to be taken into account that gen-
erally, the greater the amount of filler in the com-
pound, the reduced. Based on previous research [60]
even 80 phr of CB/lignin hybrid (with 3/1 ratio) pro-
vides good mechanical properties– thus, ongoing re-
search should be focused on the overall amount of
filler and its effect on FCG. Another point in the
crack growth rate is that as cracks propagate, the rub-
ber undergoes significant energy dissipation and vis-
coelastic deformation. Lignin-filled rubber compos-
ites, in general, should have different crack growth
behavior due to less effective stress transfer and en-
ergy dissipation mechanisms compared to carbon

black. These mechanisms should slow down the
crack growth progression by absorbing some of the
applied energy, but as seen in a previous study [61],
the stress transfer from the rubber matrix to CaL may
not be sufficient. This can surely be improved by the
incorporation of plasticizers. The main purpose for
the application of glycerol was to plasticize ligno-
sulfonate, make it softer, and enable its better distri-
bution within the rubber matrix. This proved to be
correct, and improved RUB/CaL/Gly interface can
be seen in morphology analysis in Figures 7d and as
well as in RUB/CB/CaL/Gly in Figures 7f and 8f.
However, small molecules of glycerol also enter in-
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Table 4. Mechanical properties of vulcanizates based on nitrile rubber (NBR).

Table 5. Mechanical properties of vulcanizates based on styrene-butadiene rubber (SBR).
Tensile strength

[MPa]
Elongation at break

[%]
Modulus 100

[MPa]
Hardness
[ShoreA]

SBR 02.14±0.10 228±90 1.20±0.02 41.8±0.4
SBR/CB 09.17±0.58 284±12 2.30±0.05 54.2±0.2
SBR/CaL 01.45±0.06 259±11 0.95±0.03 33.0±0.5
SBR/CaL/Gly 06.81±0.81 823±45 0.76±0.02 38.8±0.6
SBR/CB/CaL 12.73±0.58 642±17 2.42±0.18 52.2±0.4
SBR/CB/CaL/Gly 13.17±0.93 746±34 1.45±0.02 49.0±0.5

Tensile strength
[MPa]

Elongation at break
[%]

Modulus 100
[MPa]

Hardness
[ShoreA]

NBR 02.95±0.18 252±17 1.37±0.04 42.0±0.7
NBR/CB 12.94±0.55 315±11 2.58±0.11 55.6±0.2
NBR/CaL 04.03±0.16 485±12 1.51±0.01 46.0±0.8
NBR/CaL/Gly 05.41±0.17 597±13 1.01±0.01 38.8±0.6
NBR/CB/CaL 16.30±0.65 594±11 2.28±0.07 50.8±0.7
NBR/CB/CaL/Gly 14.51±0.40 695±60 1.44±0.04 46.4±0.5

Figure 9. Stress-strain curves of vulcanizates based on nitrile
rubber (NBR), with enlarged initial part of the
stress-strain curves of NBR and NBR/CaL vulcan-
izates.

Figure 10. Stress-strain curves of vulcanizates based on
styrene-butadiene rubber (SBR), with enlarged
initial part of the stress-strain curves of SBR and
SBR/CaL vulcanizates.



termolecular space between elastomer chains and
disrupt intra- and intermolecular forces between rub-
ber chain segments and their physical entangle-
ments. This leads to the  reduction of internal friction
and an increase in rubber chains' elasticity and mo-
bility. While the presence of glycerol causes a de-
crease in cross-link density (Figure 5), the mechan-
ical properties (Table 4 and Table 5) of RUB/CaL/Gly
are much improved. This statement also applies
when different amounts of CaL are incorporated,
and the amount of 30–35 wt% of glycerol (related
to CaL content) is used [48]. When focusing on
crack growth, the addition of plasticizer or process-
ing oil to rubber compounds requires caution, as
these additives can reduce T0. Minimizing plasticiz-
er content while ensuring proper filler dispersion
and processing is therefore desirable. As depicted
in Figure 4, this balance has been achieved. When
glycerol was applied to RUB/ CB/CaL/Gly, the me-
chanical properties slightly deteriorated, but TC
drastically increased, which is indicative of the for-
mation of a filler network with the ability of great
energy dissipation. The exponent m (Figure 6) for
RUB/CB/CaL/Gly is also the lowest among the test-
ed compounds. It can be concluded that this com-
pound has enhanced resistance against crack initia-
tion but also a more stable crack growth propagation
process.
These compounds are thus engineered to sustain high
mechanical loads while significantly reducing the
emission of chemical or rubber components into the
environment. Achieving the optimal balance of me-
chanical properties and reduced wear in rubber com-
posites depends on the specific application, requiring
precise formulation and integration of individual
components to meet desired performance criteria.

4. Conclusions
Calcium lignosulfonate is a suitable and sustainable
component for rubber compounds, provided that
good dispersion and interfacial adhesion are
achieved. For this reason, nitrile rubber was chosen
as the primary rubber matrix, where hydrogen bond-
ing can be expected, ensuring a satisfactory inter-
face. By incorporating CaL into carbon black-rein-
forced rubber compounds based on nitrile rubber
and styrene-butadiene rubber, we achieved good dis-
persion of both components as well as satisfactory
morphology, resulting in tensile strengths of 16.30

and 12.73 MPa, respectively. While this synergistic
effect was expected in FCG, the stress transfer and
energy dissipation mechanisms proved to be even
better with the addition of glycerol as a plasticizer.
Although the CB/CaL hybrid did not significantly
influence the intrinsic strength of the rubber sam-
ples, the ultimate strength of these compounds in-
creased drastically – over five-fold compared to
RUB/CB – indicating great potential for real-life ap-
plications.
Our research suggests that utilizing CaL can signifi-
cantly extend the life of rubber products, directly re-
ducing rubber particle emissions into the environ-
ment. These findings also indicate that the material is
likely to exhibit similar advantageous properties dur-
ing abrasion and real-world usage. All assumptions
will be experimentally verified through extensive rub-
ber wear analysis, ensuring the results’ reliability for
practical applications.
Future work should focus on optimizing the combi-
nation of these components to tailor rubber compos-
ites for specific industrial applications, thereby
achieving the desired balance of mechanical strength
and environmental sustainability through wear re-
duction. These findings pave the way for the devel-
opment of next-generation rubber materials that are
not only high-performing but also eco-friendly.
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