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Miklós út 29-33.,

b MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, 1117
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Abstract

Public Goods Games (PGGs) are n-person games with dependence of individual

fitness benefits on the collective investment by the players. We have studied a

simple PGG scenario played out by cooperating (C) and defecting (D) agents,

applying the highly nonlinear threshold benefit function in an individual-based

lattice model. A semi-analytical approximation of the lattice model has been

developed and shown to describe the dynamics fairly well in the vicinity of

the steady state. Besides the expected outcomes (i.e., the negative effect on

cooperator persistence of higher cooperation costs and/or more intensive mixing

of the population) we have found a surprising, counter-intuitive effect of the

strength of selection on the steady state of the model. The effect is different

at low and high cooperation costs, and it shows up only in the lattice model,

suggesting that stochastic effects and higher order spatial correlations due to the

emergent spatial clustering of cooperators (not taken into account in the semi-

analytical approximation) must be responsible for the unexpected results for

which we propose an intuitive explanation, present a tentative demonstration,

and shortly discuss their biological relevance.
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Highlights

• The dynamics of a spatial threshold dilemma game is studied using a

lattice model.

• A semi-analytical approximation of the lattice model is developed.

• The effect of selection strength for cooperation on the dynamics is ex-

plored.

• Strength of selection is shown to act through higher order correlations of

the spatial pattern

1. Introduction1

Cooperation is certainly one of the most important types of interaction that2

have shaped the biosphere as we know it today. In a macroevolutionary con-3

text it may even be considered the single most important one since, without4

exception, all major evolutionary transitions (Maynard Smith and Szathmáry5

(1995)) had proceeded by the integration of cooperating entities into new enti-6

ties representing higher-level units of selection. The evolutionary drive towards7

cooperation must have been the overwhelming fitness advantage that coopera-8

tors may harvest, in spite of the obvious short-term advantage that freeriders of9

cooperation by others could enjoy. One of the textbook examples of cooperation10

that can be (and often is) exploited by cheaters is modeled by the public goods11

game (PGG) (Hardin (1968); Rankin et al. (2007)). PGG is an n-person game12

in which cooperators invest in the production of some common good which is13

then shared evenly among all n individuals in the group. Cheaters do not pay14

the (full) cost of producing the public good but enjoy the same benefit as coop-15

erators, which is provided only by the cooperating members of the group. Thus,16

without mechanisms like preferential cooperation or active punishment acting17

against it, cheaters always outcompete cooperators (Hardin (1968)). While clas-18

sical models assume that the fitness benefit of the public good increases linearly19
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with the number of cooperators, public good benefits are almost always non-20

linear functions of individual contributions (Fig. 1) in nature. In a molecular21

biological context such nonlinearity arises in many cases because the effects of22

biological molecules are often sigmoidal functions of their concentrations, due to23

threshold dosage effects or cooperative binding of ligands and the resulting sat-24

uration of chemical activities at higher enzyme concentrations (Cornish-Bowden25

(2012); Frank (2013); Zhang et al. (2013)). The nonlinear benefit of producing26

some extracellular material (e.g., exoenzymes) by microbes may be directly re-27

lated to the nonlinear kinetics of the molecular mechanisms of their actual effects28

(Archetti and Scheuring (2016)). Nonlinearity is frequently modelled by the so29

called “threshold (or volunteer’s) dilemma game” (Archetti (2009); Archetti30

and Scheuring (2011)), in which a certain minimum number k of players have31

to cooperate to produce the “public good” that provides a fitness benefit b for32

each of the n players (cooperators and defectors alike), while only cooperators33

bear the cost c of cooperation (Fig. 1). Although the threshold dilemma game34

is a limit case of a general sigmoid payoff function (Fig. 1), it has been shown35

previously that the two games yield qualitatively identical results (Archetti and36

Scheuring (2016)) with only quantitative differences between them, so we can37

safely use the threshold game as a model for sigmoid nonlinear games.38

Microbes frequently form biofilms or live in a habitat (e.g., in soil) that se-39

riously constrains individual motion. Consequently, mother and daughter cells40

often stay in close proximity for a long time after division, forming aggregated41

patches of clone-mates. However, the public goods they produce may be dis-42

persed by diffusion or convection, so that they get diluted below the threshold43

level at a certain distance from where they were produced. Therefore, only44

cells close to the producing cells can use the product to their advantage. So-45

cial conflicts in such immobilized populations can be adequately modelled by a46

population of individuals living on a two dimensional grid, where neighboring47

individuals interact with each other in two different ways: they cooperate by48

sharing public goods, and they also compete for the products of cooperation49

which they have limited access to (see, e.g., Cremer et al. (2019), and references50
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Figure 1: The total benefit of cooperation is generally a sigmoidal nonlinear function of the

total contributions of the individuals (solid red line). Threshold games (dashed black line)

assume that the benefit is negligible below a distinct contribution threshold above which it

jumps abruptly to its highest possible value (step function).

therein). It is the competition phase of interaction that imposes selection on the51

population of the players. The population dynamics of growing tumor cells can52

be described by very similar dynamics. Cooperating cells produce growth fac-53

tors which benefit all nearby cells, including non-producing cheaters (Archetti54

and Pienta (2019)).55

In addition to the actual form of social conflict and the spatial structure of56

microbial or tumor cell populations, the intensity of the competitive pressure57

can also play a crucial role in determining the dynamics of the selection process.58

Earlier works pointed out that for the prisoner’s dilemma game there is an op-59

timal strength of selection at which the equilibrium level of cooperation is high-60

est in different structured populations including homogeneous random networks61

and scale-free networks (Szolnoki et al. (2009); Pinheiro et al. (2012)). The62

prisoner’s dilemma game is probably by far the best studied two-person social63

conflict, but microbial interactions (as well as many other biologically realis-64

tic scenarios of interaction) involving public goods production and exploitation65

are certainly better modeled as multiplayer nonlinear games (see Archetti and66
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Scheuring (2012) and references therein). Surprisingly, the role of the strength of67

selection, its connection to spatial aggregation and pattern formation by players68

adopting different strategies has not been studied yet in nonlinear public goods69

games. The steady states of certain multiplayer and/or multi-strategy games70

have been shown to depend on selection strength for well-mixed populations71

in a study by Wu et al. (2013), sometimes leading to rearrangements in the72

equilibrium frequency ranking of strategies.73

In this work we investigate the threshold public goods (or volunteer’s) dilemma74

game (Diekmann (1985); Rapoport and Eshed-Levy (1989)) played by individu-75

als of limited motility, competing and cooperating in a two-dimensional habitat.76

We focus our attention on the effect of the strength of selection on the success of77

cooperators, varying the cost of cooperation and the speed of motion of individ-78

uals, aiming to reveal self-organization processes shaping the local and global79

dynamics in a mixed population of cooperators and cheaters.80

2. Models81

2.1. The agent-based spatial model82

Space, cooperation: We consider a population of individuals on a rect-83

angular lattice of size L × L. Every site of the lattice is occupied by a single84

individual following either the cooperative strategy C or the defective strategy85

D; all individuals are identical in all other dynamically relevant respects. We as-86

sume that every individual interacts with its eight nearest neighbors by playing87

a nine-person threshold public goods game with them. Cooperators produce a88

public good at a cost c which provides a benefit b (b > c > 0) for all individuals89

within the interacting local group if the number of cooperators in that group90

is larger than or equal to k (1 ≤ k ≤ 9). Without loss of generality, b can be91

rescaled to unity (b = 1.0) and thus 0 < c < 1. This simplification will be used92

throughout the rest of the paper. If the number of cooperators is smaller than93

k, then none of the group members benefits, but all the cooperators in the group94

pay the cost of cooperation even then (Table 1).95
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#C < k #C ≥ k

Cooperator’s payoff −c 1− c

Defector’s payoff 0 1

Table 1: The possible payoffs of cooperators and defectors as a function of the number of

cooperators (#C) within the local interacting group. (0 < c < 1). If the number of

cooperators is less than k, then the payoff for cooperators is −c and for defectors it is 0. If

there are at least k cooperators in the group, then cooperators receive a payoff of 1 − c while

defectors get a payoff of 1.

Table 1. shows that the defector’s payoff is always higher than that of the co-96

operator in any particular pairwise C-D interaction within the same local group97

of players, thus D is the only evolutionarily stable strategy in a well-mixed98

(homogeneous) population (Hofbauer and Sigmund (1998)). Due to the spatial99

constraints arising from a) daughter agents remaining immediate neighbors af-100

ter an elementary game step, b) limited motility of agents within the lattice and101

c) local interactions among the players in the spatial model, cooperators prefer-102

entially interact with cooperators due to “habitat viscosity”, which either keeps103

them stably coexistent with defectors or can even drive the defector strategy104

extinct (van Baalen and Rand (1998);Mitteldorf and Wilson (2000); Vásárhelyi105

and Scheuring (2013)).106

Time, competition: We use a random pairwise update for the competi-107

tive interaction between individuals. A pair of neighboring individuals (either108

orthogonal or diagonal neighbors) featuring strategies i and j are selected at109

random from the lattice, and the payoffs of these individuals are computed110

according to the number of cooperative strategies in their own 9-site neighbor-111

hoods. The individual playing strategy i is then replaced by by a copy of the112

one playing strategy j with probability113

pij =
1

2
+
σ

2

πj − πi
∆π

, (1)

where 0 < σ < 1 measures the strength of the selection; ∆π = 1 + c is the114

maximum of the possible payoff differences in the game and πi and πj are the115
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actual payoffs of strategy i and j. Similarly, the agent playing strategy j replaces116

its opponent with probability 1 − pij . We repeat this update step L2 times in117

each time unit (“generation”) with randomly chosen neighbors. This update118

rule leads to the classical replicator dynamics in large, well-mixed populations119

(Traulsen et al. (2005); Hilbe (2011)), the behavior of our agent based model is120

therefore directly comparable to that.121

Individual movements, diffusion algorithm: To mimic constrained in-122

dividual motility of the agents on the habitat lattice, we have deployed a simple123

scalable diffusion algorithm. Mixing is scaled by the diffusion parameter Diff124

(0 < Diff < ∞) which is the expected number of site swaps following each125

interaction step during an update. The swapped pairs of neighboring sites are126

also chosen at random, independently of the interacting pair.127

2.2. The semi-analytical approximation of the agent-based model128

The update event changes the frequency of strategies if one of the strategies129

in the interacting pair is C and the other is a D - all other interactions are130

inconsequential from a dynamical point of view. To approximate the global131

dynamics of the system we estimate the average probabilities of D→C and C→D132

substitutions as functions of the actual local frequencies and the parameters of133

the model. In dynamical equilibrium these two updates are equally frequent,134

which means that the average payoff of neighbouring C and D strategies are135

identical.136

Because of the model’s geometry, neighbouring C and D strategies have com-137

mon and also separate neighbours with which they interact. Depending on the138

relative positions (orthogonal or diagonal) of the two focal players, they have139

either 4 common and 3-3 separate or 2 common and 5-5 separate neighbors,140

besides the two focal sites which are always interacting neighbors by definition141

(Fig. 2). (We note here that a more homogeneous hexagonal lattice could have142

been chosen for the arena, in which case the orthogonal-diagonal distinction143

disappears, but that would have reduced the maximum neighbourhood size to144

7, instead of 9, seriously constraining the range of a dynamically important145
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model parameters.) We have calculated all the output variables for the diag-146

onal and the orthogonal neighbourhoods separately, and averaged the results147

with a weight factor equal to the relative occurrence for each. The average pay-

Figure 2: Separate and common neighbors of two, potentially interacting individuals (labelled

A and B) with overlapping neighborhoods. left: focal individuals are in orthogonal position,

right: focal individuals are in diagonal position.

148

off of strategy C is determined by the average frequency of C in the common149

neighborhood (xcom) and in its own separate neighborhood section (x(C|C)).150

Similarly, the average payoff of D is determined by xcom and by x(C|D), where151

this latter term is the average frequency of C-s in the separate neighborhood152

section of D. Knowing these frequencies and assuming that cooperators are se-153

lected independently around the C and D strategies with the above frequencies154

we can estimate the average payoff of neighbouring C and D as155

πC =
1

2

3∑
j=0

4∑
i=0

(
3

j

)(
4

i

)
xicom(1− xcom)4−ixj(C|C)(1− x(C|C))

3−jΘ(i+ j + 1− k) +

1

2

5∑
j=0

2∑
i=0

(
5

j

)(
2

i

)
xicom(1− xcom)2−ixj(C|C)(1− x(C|C))

5−jΘ(i+ j + 1− k)− c

πD =
1

2

3∑
j=0

4∑
i=0

(
3

j

)(
4

i

)
xicom(1− xcom)4−ixj(C|D)(1− x(C|D))

3−jΘ(i+ j + 1− k) + (2)

1

2

5∑
j=0

2∑
i=0

(
5

j

)(
2

i

)
xicom(1− xcom)2−ixj(C|D)(1− x(C|D))

5−jΘ(i+ j + 1− k),
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where c is the cost of cooperation as before, Θ(i + j + 1 − k) is the Heaviside156

function (Θ(i+ j + 1− k) = 1 if i+ j ≥ k− 1, otherwise (Θ(i+ j + 1− k) = 0).157

Well-mixed case: By using binomial distributions in the above equations we158

take only the pairwise correlations between strategies into account, higher order159

correlations are neglected. This essentially means assuming perfect mixing of160

the two strategies on the lattice. As expected by intuition, if the population161

is well-mixed the average local frequencies of cooperators in the vicinity of C162

and D strategies are equal, that is, xcom = x(C|D) = x(C|C). Consequently163

πC + c = πD, i.e, the payoff of C is always smaller than the payoff of D in eq164

(2), and strategy C is always excluded from the population. This, in effect, is165

the mean-field case.166

Spatially aggregated case: The simplifying assumption of perfect spatial mix-167

ing clearly underestimates the real aggregation of identical strategies with lim-168

ited agent motility. If diffusion is not very intense, then both C and D individ-169

uals tend to aggregate into patches, i.e., C-s can be found more frequently near170

other C-s than D-s: x(C|C) > x(C|D). Individuals find themselves in patches171

dominated by their own clonemates, which is beneficial for cooperators but172

detrimental for defectors.173

Since there is no method available to build the corresponding xcom, x(C|C)174

and x(C|D) functions from first principles, we have computed them as empirical175

functions fitted to the actual agent based simulations introduced above, and176

substituted these computed functions into (2). We have focused on the dynami-177

cally relevant parts of the lattice, so the local relative frequency x of cooperators178

was calculated within the union of the neighbourhoods of CD pairs of competi-179

tors. CC and DD pairs are irrelevant from a dynamical point of view. Figure 3B180

illustrates the fitted xcom, x(C|C) and x(C|D) functions against x in the dynami-181

cally relevant parts of the lattice. Note here that pairwise approximations have182

been used effectively in the past on regular graphs for two- (Ohtsuki and Nowak183

(2006))- and multi-player (Li et al. (2016);Renton and Page (2021)) games with184

weak selection. Due to the higher-order correlations of the links themselves185

within the lattices, these approximations are generally less accurate (e.g. Szabó186
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and Hauert (2002)).187

Using the fitted empirical polynomial functions we have calculated the fitness188

differences of C and D against x, determined the fixed points of the dynamics189

numerically, and compared this result with the dynamical behavior of the cor-190

responding agent based simulation.191

3. Results and discussion192

We have tested the semi-analytical model using numerical simulations. The193

local equilibrium frequency of cooperators within the unified neighborhoods of194

CD-pairs, x, was recorded, along with xcom (the average frequency of C in195

the common parts of the unions of C-D neighbourhoods), x(C|C) and x(C|D)196

(the average frequency of C in the respective separate parts), which were used197

to compute the three empirical functions of equilibrium cooperator frequency198

(Fig. 3B) to be applied in eq (2). Following this method for different parameter199

sets the semi-analytical model gives a fair but not perfect approximation of the200

simulated dynamics (Fig. 3A,C,D, Fig S1). Since the focal variables of the201

model are the local frequencies of the cooperators within C-D pairs’ joint neigh-202

bourhoods and local pairwise correlations, the dynamical effects of higher order203

correlations (in aggregates of three, four or even more focal cooperators result-204

ing in different C cluster geometries) are not considered. As a consequence, the205

effects of the aggregation of identical strategies and the spatial segregation of206

different strategies are underestimated in the semi-analytical model. In other207

words, the source of deviations between the calculated and the simulated re-208

sults is that even the empirical distribution of cooperators in the separate and209

the common domains of the joint neighborhoods of C-D pairs fails to capture210

the actual distortion of cooperative help in favor of one or the other strategy211

due to spatial aggregation. These simplifications are responsible for the con-212

sistent inaccuracy of the semi-analytical model (Fig. S1). Previous analysis213

of threshold games in infinitely large populations with individuals playing the214

game in randomly formed local groups (random neighborhoods) and assuming215
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Figure 3: A,C,D: The payoff differences (red curves) and the cost (blue lines) of cooperators

as functions of the average relative local cooperator frequency x in the joint neighbourhoods

of C-D pairs. Unstable fixed points of the semi-analytical model are denoted by empty circles

and stable fixed points by green circles. Black dots represent states along two simulated

trajectories, one initiated at x=0.01, the other at x=0.99. B: the empirical xcom, x(C|C) and

x(C|D) data and the corresponding fitted fifth-order polynomial functions (green, blue and

red lines) used to produce figure A. Parameters: A,B: Diff = 0, σ = 1. C: Diff = 0, σ = 0.1.

D: Diff = 0.2, σ = 1. (k = 4, c = 0.15, N=90.000) everywhere.

deterministic dynamics had shown that cooperators coexist with defectors if the216

cost of cooperation is below, and the initial frequency of cooperators is above,217

a critical level (Archetti and Scheuring (2011); Archetti and Scheuring (2012)).218

The situation is qualitatively the same in our model as revealed by Figure 3:219

11



at sufficiently low cooperation costs the fitness differences define a stable and220

an unstable fixed point (where the cost line intersects with the benefit differ-221

ence function). The presence of an unstable fixed point prevents the invasion of222

rare cooperators in deterministic, non-spatial cases, that is, the coexistence of223

cooperators and defectors is possible only if the initial frequency of cooperators224

is above the unstable fixed point. It was also shown, however, that the spatial225

correlation of invading cooperators makes the unstable fixed point practically226

disappear in finite, spatially structured populations with a stochastic update227

rule (Vásárhelyi and Scheuring (2013)). Furthermore, unlike in the determin-228

istic well-mixed model, cooperators can completely exclude cheaters at higher229

threshold values (Vásárhelyi and Scheuring (2013)). This latter effect has also230

been shown by Czárán and Hoekstra (2009). Similarly, cooperators go extinct231

at lower k thresholds, they coexist with defectors at intermediate threshold val-232

ues, and achieve fixation at higher k values in the present spatial model, but,233

interestingly, the behavior of the system depends on the strength of selection,234

σ (Fig. 4), the effect of prime interest in this study which we return to in a235

minute.236

The fixation of cooperators seems to contradict the payoff functions, since237

defectors should always be capable of invading a homogeneous population of238

cooperators for any 1 ≤ k < n. A single invading D individual always receives239

payoff b = 1.0, while its cooperating C neighbors can get only payoff 1−c at most240

(see Table 1), so that rare defectors are always expected to spread into uniform C241

populations. This argument neglects pattern formation at low mixing in spatial242

games, as well as the stochastic nature of the dynamics. We suspect that it is243

the effect of these two factors that is responsible for the fixation of cooperators244

at higher thresholds, which will be explained in more detail later. Note that245

we assume no external input of agents (C or D) through invading or mutant246

individuals in this model - a factor that would certainly obliterate the pure C247

fixed point even in the spatial model. The extinction of cooperators at lower248

k-s (regardless of the initial frequency of cooperators) is again a consequence249

of spatial structures and stochastic dynamics, since this outcome does not exist250
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in deterministic models without spatial aggregation (Archetti and Scheuring251

(2012)).252

A surprising characteristic of the model is that the level of updating stochas-253

ticity (controlled by the selection coefficient, σ) modifies the steady state fre-254

quency of cooperators in a complex way. At very low motility (i.e., at zero dif-255

fusion) weak selection is detrimental for cooperators at low threshold (k = 2),256

but it is beneficial at k > 2. In slightly mixing populations (at Diff = 0.20)257

weak selection has an inconsistent effect on the steady state level of cooperators258

at intermediate thresholds but depresses it at both low and high k values (Fig.259

4).260

The intuitive explanation of this somewhat surprising result is the following:261

At low thresholds (k = 1, 2, (3)): The k = 1 case is degenerate, in fact it262

prescribes no cooperation, and there is no chance for self-cooperators to win263

the game against defectors: D is always at advantage in a C-D game by not264

paying the cost of cooperation. At k = 2, the situation is radically different:265

a 2-cooperator cluster has a chance of being maintained, because it always has266

more unsupported than supported defectors in its neighborhood (an orthogonal267

C doublet supports 4 out of its 10 neighbors, whereas a diagonal one supports268

2 out of 12), which keeps a stable fraction of cooperators present in the steady269

state at low costs (Fig 4A,B) while they are more often displaced by the defectors270

at higher costs (Fig 4 C,D). Yet, the average frequency of cooperators remains271

low at k = 2 even at low costs due to the still substantial rate of exploitation272

of the cooperating doublets by surrounding D individuals (Fig 4A). Therefore,273

if the fitness differences between C and D players are small (i.e., c and/or σ are274

small), weak selection or stochastic drift may reduce C-doublets to C-singlets275

too often, and C-singlets are always surrounded by fitter defectors, so they are276

doomed to extinction (Fig 4A). Player motility (Diff = 0.2, Fig 4B) obviously277

acts in favor of D, pushing x to zero even at stronger selection (σ = 0.50, weaker278

drift).279

At high thresholds (k = 6, 7): Low diffusion (Diff = 0.0) leads to the aggre-280

gation of both cooperators and defectors, but with the threshold high, D clusters281
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Figure 4: Steady state frequencies of cooperators as functions of the cooperation threshold

k at different strengths of selection (σ) and player motilities (Diff ). A,C,D: Diff = 0, B:

Diff = 0.2. A,B: c = 0.15, C: c = 0.20, D: c = 0.225 The initial frequency of cooperators was

x(0) = 0.5 except at k = 7, where it was x(0) = 0.8, in order to help the system start up. Data

points represent the averages of the last 1.000-generations of simulations that have converged

to their steady states. Symbols that would otherwise overlap are slightly offset horizontally.

cannot grow larger than a critical size, since D-s having more D neighbours than282

n−k−1 will always receive a zero payoff. Therefore, if k is close to n, D clusters283

remain small. The update is stochastic, so if selection is weak (c and σ are both284

small, e.g., in Fig 4A) then there is a reasonable probability that these rela-285

tively small clusters disappear by chance within a short time. However, if c is286

high, then selection is strong enough even at smaller σ to maintain and increase287

the D patches and shrink the size of the C clusters below the threshold size k,288

wiping out all cooperators from the population (Fig 4C,D). We note here that289

14



since the system is finite and mutations are not allowed (all offspring inherit290

the strategy of their single parent) the dynamics should end up in one of the291

sinking states. However, if the polymorph state is a stable fixed point of the292

system, the fixation time increases exponentially with system size in well-mixed293

populations (Antal and Scheuring (2006)), which would be awfully long at our294

system size (N = 90.000). The fast fixation into the monomorph C state is295

a clear consequence of the emergent spatial correlations. This interpretation296

is supported by the fact that higher motility leads to the exact opposite out-297

come at high thresholds (compare Fig 4A and Fig 4B), where defectors exclude298

cooperators completely. This is due to the diffusive invasion of scattered D in-299

dividuals into the cooperating groups of C, thereby either exploiting them, or300

preventing the formation of C patches of supercritical (greater than k) size, in301

both cases securing the fitness advantage of the invading defector. (Recall that302

a solitary D is always at advantage against its C neighbors.) Diffusion is clearly303

preventing higher order correlations from building up, depriving cooperators of304

the advantage thereof.305

At intermediate thresholds (k = 3, 4, 5): These are robust cases of C-D co-306

existence (except at Diff = 0.0, k = 5, σ = 0.05 - see later), with substantial307

differences in the stationary x values across the range of selection strengths. At308

the moderate, fixed cooperation cost (c = 0.15) assumed in the corresponding309

simulations (Fig 4A) it is always weak selection that is advantageous for coop-310

erators, if higher order correlations are allowed to exist (i.e, at Diff = 0.0). The311

same trend is even stronger at lower costs, but it is reversed for more expensive312

cooperation (at c = 0.20 and above): the stronger the selection the higher the313

frequency of cooperators at the steady state (Fig 5). That is, cooperators benefit314

from weak selection pressure if cooperation is cheap, but it is more advantageous315

for them to have strong selection if cooperation is costly. We analyze this result316

in more detail below.317

While the strength of selection only rescales the time units in deterministic318

models of well mixed populations (Traulsen et al. (2005); Antal et al. (2009);319

Hilbe (2011)), it can have a significant effect on the model’s behavior if the320
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dynamics is stochastic (Wu et al. (2015)) or in structured populations in two321

person prisoner’s dilemma game (Vukov et al. (2006); Szolnoki et al. (2009);Pin-322

heiro et al. (2012)). The results of the model presented in Figure 4 clearly show323

that the strength of selection has an effect on the dynamics of the spatial thresh-324

old game at different threshold values. Therefore, below we focus our attention325

on how the strength of selection and the cost of cooperation interact in deter-326

mining the dynamics of the spatial threshold game. We have found that at

Figure 5: The effect of selection strength and cost of cooperation on the equilibrium cooper-

ation level. A-C: The equilibrium frequency of cooperators at different strengths of selection

follows a power law function (ασβ). Trends are measured at different diffusion rates (A:

Diff = 0, B: Diff = 0.1, C: Diff = 0.2). The parameters of the power law functions follow

monotonous trends in function of the cost (D, E). Steepness increases exponentially in the

high cost range (F) (k = 4, N = 90.000).

327

cooperation costs below a critical level increasing selection decreases the equi-328

librium frequency of cooperators, while this trend turns around above a critical329
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level of the cost (Fig. 5 A-C). Moreover, Figure 5 A-C demonstrate that the330

power law function ασβ is a good fit to the stationary state versus strength of331

selection (σ) data points at any given level of cost c. The constant of the power332

law function (α) and the steepness of it (β) depend on c following clear trends333

(Fig. 5 D-F). In accordance with intuition, increasing the cost of cooperation334

decreases the equilibrium frequency of C players (Fig. 5 A-C), and modifies335

the slope of the dependence of x on σ in a monotonic but non-linear way (Fig.336

5 D-F). At the low-cost range the decreasing trend of equilibrium cooperator337

frequency with increasing σ weakens as the cost of cooperation increases (Fig.338

5 E), whereas above a critical cost level the slope increases in an exponential339

fashion (Fig. 5 F). Comparing the results at different diffusion rates it is clear340

that increasing diffusion reduces both the equilibrium frequency of cooperators341

and - slightly - its σ dependence (Fig. 5 E,F), which supports the idea that it342

is spatial correlation that is responsible for the observed phenomenon. Results343

are demonstrated for the k = 4 case here, but we observed qualitatively similar344

relations for lower and higher thresholds (k = 3, 5) (see supplementary Fig S2).345

Notice that for higher diffusion rates (about Diff > 0.30, at c > 0.15, k = 4, and346

practically any positive strength of selection) cooperators are always excluded347

by defectors (as the system approaches the mean-field case).348

To reveal the reason for the equilibrium frequency of cooperators being de-349

pendent on σ and this trend being a function of c we have visualized the spatial350

patterns of the strategies in dynamical equilibrium at different combinations of351

σ and c values (Fig. 6.). Increasing the strength of selection seems to have a352

consistent effect on the dispersion of the strategies: higher σ decreases the aver-353

age patch size for both, but at low cost of cooperation( c = 0.10) this dispersion354

helps the defector (D) whereas at higher cost (c = 0.22) it is beneficial for the355

cooperator (C). The obvious effect of higher cooperation cost decreasing cooper-356

ator frequency needs no explanation, but two more, less trivial questions arise:357

1) why does stronger selection fragment large patches into many smaller ones,358

and 2) why does this fragmentation always help the rarer strategy as selection359

becomes stronger (i.e., D at c = 0.10 and C at c = 0.22)?360
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The fragmentation effect of increasing σ is easy to explain for rare D agents361

attacking larger C patches which is a common event at small or moderate costs362

(c / 0.15 (see. Fig. 5 E and Fig 6, upper row)): according to (1) the actual363

fitness advantage of a solitary defector is proportional to cσ if it is surrounded by364

at least k C agents, so the higher the σ the more probable that the solo defector365

sticks and spreads locally, resulting in many small D patches. These patches366

cannot grow large, because larger D patches are easily eroded by successful367

cooperators from outside, as a C backed by at least (k − 1) other C agents368

enjoys a fitness advantage (1− c)σ over D with less than k C neighbours, i.e., in369

and around larger D clumps. That is, small D patches are born and eliminated370

stochastically at a fast pace at higher σ values, resulting in a dynamical spatial371

equilibrium of many small D islands in the ocean of C agents.372

The mechanism for the reverse pattern at c = 0.22 (and at high cooperation373

costs in general, see Fig. 5 E) is less obvious. At high cooperation costs the374

cooperator has a chance to persist only if the cooperation threshold is high (typi-375

cally k > 3 see Fig 4 C,D). This means that relatively large C clusters have to be376

maintained in spite of the ongoing external attacks from defectors, because only377

relatively large k allows for cluster geometries with sufficient self-support inside378

C patches and no support for neighboring defectors. More compact patches379

with convex surfaces are better at resisting invasion by D agents, since then380

the invading D-s are less likely to be supported by C agents from within the C381

cluster under attack (Szabó and Fáth (2007);Pinheiro et al. (2012)). Obviously,382

D agents with a sufficient number of C in their separate neighborhood domains383

could also easily invade even compact C clusters, but at high cooperation costs384

this situation is relatively rare, because C patches are rather scattered anyway.385

Increasing selection pressure (larger σ) has two counteracting effects on C386

clusters: 1) It tends to keep them compact and close to k in size, because387

outlying C agents not supported by the critical number of cooperators will388

probably have a fitness disadvantage of −cσ against surrounding D-s and they389

may get eliminated - only the compact “core” of the C cluster is safe, and it is390

safer at high σ precisely because of the isometric (i.e., of roughly equal extension391
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in all spatial directions) cluster shape it provides Fig 7.392

Figure 6: Spatial patterns of steady state C-D communities at different cooperation cost c and

strength of selection σ values, at fixed cooperation threshold k = 4 and diffusion Diff = 0.00.

The less frequent strategy benefits from stronger selection. Gray: cooperator (C), Black:

defector (D)

This effect can be considered as the “surface tension” of the C clusters of size393

k or larger (Zhang et al. (2000)), which scales with the strength of selection.394

2) Yet, increasing σ also tends to disintegrate larger C clusters by defectors395

intruding mostly through the flat or concave surfaces of the clusters and thus396

cutting them in smaller pieces, making use of the cooperative support from the397

many surrounding cooperators and their fitness advantage cσ thereof. Strong398

selection tends to keep C clusters relatively isometric until they grow large399

enough for the fractions that they eventually get cut into to still remain above400

the cooperation threshold and start growing again. At weaker selection pressures401

C clusters remain more “wobbly” (of less surface tension), growing appendages402

which can be cut off by D agents attacking at concave sections of the surface,403

separating them from the core of the cluster. Most of these separated C cluster404

fragments remain under the cooperation threshold and thus vanish easily. That405

is, expensive cooperation is helped by strong selection through the division of406
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isometric C clusters to “daughter” clusters of relatively even and viable sizes,407

whereas weak selection allows defectors to eliminate the smaller fragments after408

uneven cluster divisions (see Supplementary Material, videos SV1-SV3).409

4. Conclusion, further directions410

We have introduced a semi-analytical model for describing the dynamics of411

a spatial threshold dilemma game. This model provides relatively accurate es-412

timates for the equilibrium frequency of the C strategy when compared to the413

outcomes of the corresponding individual-based spatial simulations. However,414

since the semi-analytical approximation relies only on the average pairwise cor-415

relations of the strategies, and the dynamics of the simulations is, to a large416

extent, determined by higher order spatial correlations and by the geometry417

of the interacting patches, it is not surprising that the approximation cannot418

accurately describe the dynamics in all detail. That said, the numerical model419

still gives a fair approximation for the stable fixed point of the lattice model if420

k is not too small (k = 2) or high (k > 6) (Fig 3, Fig S1).421

Not surprisingly, diffusion suppresses cooperators and benefits defectors in422

the simulation model (see Fig. 4,5). This is not a new observation for two-person423

cooperative games (Számadó et al. (2008); Smaldino and Schank (2012)), but424

the diffusion effect has not been studied for multiplayer game interactions before.425

We have demonstrated the underlying mechanism: the cost of cooperation is426

balanced by the fitness advantage arising from more frequent aggregation of427

cooperators around cooperators than around defectors. Diffusion disrupts the428

aggregated clusters of cooperative individuals and thus benefits defectors.429

In the well-mixed model of stochastic replication dynamics of 2 × 2 games,430

changing the intensity of selection only rescales time for the dynamics, leaving431

the fixed points unaffected (Traulsen et al. (2005); Antal et al. (2009); Hilbe432

(2011)). Earlier papers have studied the effect of the strength of selection on433

the equilibrium frequency of cooperators for the stochastic Prisoner’s Dilemma434

game in structured populations ( Vukov et al. (2006); Szolnoki et al. (2009);435
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Figure 7: Schematic illustration of the ”surface tension” effect of the cooperation thresh-

old k on cooperator clusters of different shapes, assuming strong selection. More concave

sections of the surface of a C cluster are easier to attack for D individuals, resulting in a

higher chance of the cluster becoming more isometric. Green cells: supported C; Yellow cells:

unsupported C; Orange cells: supported D; Red cells: unsupported D. The payoff order is:

Yellow<Red<Green<Orange (cf. Table 1).

Pinheiro et al. (2012)) and for the PGG extended with a cooperating punisher436

strategy (Wu et al. (2013)). All studies found that there is an intermediate437
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selection level at which the frequency of cooperators or cooperating punishers438

is the highest, independently of the parameters and the population structure439

of the model. We have not experienced this type of optimal selection level in440

our spatial N-person nonlinear game; instead, we have found that weak selection441

helps cooperators at low costs of cooperation, while it helps defectors if c is above442

a critical level. It is clear that the change in steady states along the strength-443

of-selection axis in the simulations is the consequence of spatial structure. We444

have provided an intuitive explanation for the dependence of the σ effect on445

c, i.e., that strong selection is beneficial for expensive cooperation, but weak446

selection helps maintaining cheap cooperation.447

The biological relevance of these results lies in the fact that threshold PGGs448

played out in relatively static spatial structures are frequent in microbial com-449

munities, especially, but not exclusively, in biofilms (Allison et al. (2010)). Pos-450

sible examples include the microbiome of soils (Yadav et al. (2020)), that of451

human or, in general, mammalian guts (Macfarlane (2008)) - all these microbial452

habitats are spatially constrained, thus offering more chance for cooperating453

strains to withstand attempts of exploitation and exclusion by cheating geno-454

types. Similarly, the cooperation dilemma of certain types of tumor cells can455

be considered as a spatial threshold PGG in which the cooperator cells produce456

extracellular growth factors while defectors exploit the product of cooperators457

(Archetti et al. (2015); Archetti and Pienta (2019);Renton and Page (2021)). In458

this study we have shown that - besides the all-important cost/benefit ratio of459

cooperation - the relative difference in the fitness of cooperators and defectors,460

i.e., the strength of the selection pressure between them is also a significant fac-461

tor in setting the steady state frequency of cooperators in spatially constrained462

populations. The effect of the strength of selection is usually quantitative, and463

it acts through the higher order correlations of the spatial pattern of C-D inter-464

actions, shifting the steady state frequency of cooperators in coexistent cases,465

but occasionally it may also change the outcome of selection in the qualitative466

sense, helping one or the other strategy to achieve fixation. A straightforward467

interpretation of the strength of selection is the relative effects of noise (i.e.,468
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environmental or demographic stochasticity) compared to deterministic trends469

on the dynamics under study. In this picture, strong habitat or demographic470

stochasticity (i.e., weak selection) helps cheap cooperation, whereas stable habi-471

tats or deterministic demographic trends (strong selection) favour more expen-472

sive cooperation. The former case, which is typical of microbiomes colonising473

ephemeral habitats, is consistent with intuition. The latter case is the more474

surprising one which may, for example, apply to cancer cells in a stable tissue475

environment. A possible, admittedly somewhat remote but potentially impor-476

tant inference could be that even cancer cells using expensively produced growth477

factors can be viable.478

A possible direction for future research along the lines initiated here would479

be to attempt finding a direct and quantified connection between the emergent480

topology of the spatial strategy pattern and the corresponding key parameters481

of the model (σ, c, k) (Li et al. (2016); Stenseke (2021)). Interesting implica-482

tions may be expected from investigating the effect of selection strength in sim-483

ilar threshold games on graphs of different topologies (Lieberman et al. (2005);484

Szabó and Fáth (2007)). Since n-person cooperative games are often used to485

model situations involving the diffusive spread of public goods cooperatively486

produced by biological agents, it would be certainly worthwhile to consider the487

reaction-diffusion limit case of the model (Durrett and Levin (1994); Wakano488

et al. (2009)).489
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Szolnoki, A., Vukov, J., Szabó, G., 2009. Selection of noise level in strategy593

adoption for spatial social dilemmas. Phys. Rev. E 80, 056112. doi:10.1103/594

PhysRevE.80.056112.595
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