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Abstract By the theorem of Mantel [5] it is known that a graph with n vertices and L"TQJ +1
edges must contain a triangle. A theorem of Erdés gives a strengthening: there are not only
one, but at least | 5] triangles. We give a further improvement: if there is no vertex contained
by all triangles then there are at least n — 2 of them. There are some natural generalizations
when (a) complete graphs are considered (rather than triangles), (b) the graph has t extra
edges (not only one) or (¢) it is supposed that there are no s vertices such that every triangle
contains one of them. We were not able to prove these generalizations, they are posed as

conjectures.

1 Introduction

All graphs considered in this paper are finite and simple. Let G be such a graph, the
vertex set of G is denoted by V(G), the edge set of G by E(G), the number of vertices in G
is v(G) and the number of edges in G is e¢(G). We denote the degree of a vertex v by d(v),
the neighborhood of v by N(v), the number of edges between vertex sets A and B by e(A, B)
and the number of triangles in G by T(G). A triangle covering set in V(G) is a vertex
set that contains at least one vertex of every triangle in GG. The triangle covering number,
denoted by 7a(G), is the size of the smallest triangle covering set. Let S C V(G) be any
subset of V(G), then G[S] is the subgraph induced by S.

Mantel [5] proved that an n-vertex graph with VZZJ +t (t > 1) edges must contain a
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triangle. In 1941, Rademacher (unpublished, see [1]) showed that for even n, every graph G
on n vertices and %2 + 1 edges contains at least § triangles and 7 is the best possible. Later
on, the problem was revived by Erdés, see [1], which is now known as the Erdés-Rademacher
problem, Erdés simplified Rademacher’s proof and proved more generally that for ¢ < 3 and
n > 2t case. Seven years later, he [2] conjectured that a graph with {”{J + t edges contains
at least t {%J triangles if ¢ < %, which was proved by Lovasz and Simonovits [4]. Motivated
by earlier results, we give a further improvement for the case t = 1: if there is no vertex
contained by all triangles then there are at least n — 2 of them in G.

Theorem 1 (Mantel [5]). The mazimum number of edges in an n-vertex triangle-free graph
is L"TQJ Furthermore, the only triangle-free graph with L%J edges is the complete bipartite
graph Kz ray.

Theorem 2 (Erdés [I]). Let G be a graph with n vertices and {”{J +1t edges, t < 3, n > 2t,

then every G contains at least t EJ triangles.
Before presenting our main result, the following definitions, a theorem and a lemma are
needed.

Definition 1. Let K, ,,_; denote a the complete bipartite graph on the vertex classes | X| =1,

Figure 1: Graphs K;,,_; and K\

n i,n—i

Definition 2. Let K;,,_; denote a graph obtained from a complete bipartite graph K; ,; plus
an edge in the class X with i vertices, see Figure 1.

Definition 3. Let K}, . denote a graph obtained from a complete bipartite graph K;,_;

,n—1



minus an edge plus two adjacent edges in the class X with 1 vertices, one end point of the
missing edge is the shared vertex of these two adjacent edges and the other one is in the class
Y, see Figurel[ll
Lemma 3. Let G be a graph with n vertices and { J + 1 edges, such that TA(G) = 1
and T(G) < n —3. Then G is one of the following graphs: Ké,%, K%’%, %% or
Kn+1 no1-

=

Theorem 4. Let G be a graph with n vertices and {”{J + 1 edges, then either To(G) =1 or
T(G)>n—2.

2 Proofs of the main results

Proof of Lemma[3. Let vy be such a vertex that G \ vy contains no triangle. We distinguish

two cases.

Case 1. G\ vy contains at least one odd cycle. Let Coryq (k> 2) be the shortest odd
cycle in G\ vy and G’ be the graph obtained from G by removing the vertices of Cyyyy and
vy, 50 v(G') = n — 2k — 2. Since Cyyy1 is the shortest cycle in G \ vy, each vertex in G’ can
be adjacent to at most 2 vertices in the Cy;, otherwise, we can find a shorter odd cycle.

+]

Since G is an (n — 2k — 2)-vertex triangle-free graph, by Theorem [T e(G') <

Obviously, any two vertices of Cyyq are not adjacent, therefore

(3

e(G\wv) <2k+142(n—2k—-2)+

2
:k;Q—nkjLVZJjLn—z

< VZQJ —n+2 (k>2).

Since e(G) = d(vo) + ¢(G') < (n—1) + (|%] = n+2)

-|
-|

1 J + 1, the only possibility for

2

% | + 1is that d(vg) = n — 1 and e(G \ vg) = {"TQJ —n + 2. In this case, we get

"= | —n+ 2, which contradicts T'(G) < n — 3.

J
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Case 2. G\ v, has no odd cycles, then G \ vy is a bipartite graph and e(G \ vg) <

VT_IJ [”T‘ﬂ There are two subcases.

Case 2.1. ¢(G\ 1) = V—_IJ [”T_ﬂ Then G \ vy is KLanlJ[anq and d(vg) = e(G) —

2
e(G\ vy) = {ngLl. Let d; and dy be the numbers of neighbors of vy in classes X and Y of

KLanlJ[anq, respectively, then d(vg) = dy + dy and T(G) = didy. So we need dy + dy =

{%J + 1 and dids < n — 3 hold true at the same time. When n is even, we can see that the

only solution is when d; = 1 and d; = 7. The symmetric solution, d; = %, dy = 1 is not

possible, since d; < § — 1 in this case. Therefore, we get that G is K ». Assume now that

n n
575
n is odd, there are two possibilities,

(i) di = 1 and dy = 252, in the same way as in the even case, we get T(G) = 251 and

T2

Gis Kupi noa. When dy = 221 and dy = 1, we also get T(G) = 252 and G is Kppy nos-

2 7 2 2 9
-3
2

(1) di = 2 and dy = 252, then T(G) = 2(%52) =n—3 and G is K1,y . Similarly,
2

72

when d; = "T_?’ and dy = 2, we get the same result.

Case 2.2 . ¢(G\ v) = VT_lJ ["T_ﬂ —t. Then d(vg) = {ngLH—t, 1<t< [%W — 2. Let

G\ vy be the bipartite graph with partitions X and Y, where |X'| =4', then we have
’ ’ n—1 n—1
‘n—1—1i)> —t
i(n i)z { 2 J { 2 W

n—l—\/4t—|—1< _,<n—1—|—\/4t—|—1

1 ,1is even,
- 1 2¢‘ ) __1 2v2 M)
n—1-2vV1 < < n—1+4+2vt
2 -~ 2
Suppose vy has d; (> 1) neighbors in X' and dy (> 1) neighbors in Y. Since G \ vy is

, n is odd.

bipartite, if dydy = 0, then G contains no triangle which contradicts the fact that 74 (G) = 1.
In this situation, didy > T(G) > dydy—t = dy(| 3| +1+t—dy)—t = —d2+(| 2|+ 1+t)dy1—t >
—dt+ (5] + Db

When 7 is even, we know that the solutions of n —3 > T'(G) = d,(5 + 1 — d,) is exactly
one of d; = 1 or dy = 1 holds like in Case 2.1. However, when dy = 1, since d; +dy = §+1+t,
we have d; = § + ¢, which contradicts (1) namely ' < %\/M (1<t <4 —2) because

d; <i'. The case d; =1 and dy = 5 +t can be settled in the same way.
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When n is odd, n — 3 > T(G) = dlqu + 1 — d;) implies that one of d; = 1, dy = 1,
di = 2 or dy = 2 holds. By symmetry we can consider the cases d; = 1 and d; = 2. We
check the details of the following 3 subcases.

(i) t=1and d; = 1. We get dy = "—H because d; + dy = "—_1 + 14t Since dy < |Y'| =
n—1—i <= — ol e et V7| = 2 and [X'| = 252, Since e(G \ vy) = 5251 1,
we see that G\ vy is Kos nir. Thus, G is K;%H"T“ and T(G) < didy = 2.

(i) t>2and d; =1. By dy +dy = "T_1+1+t, we have dy = "T_l—l—t > %%, which
contradicts dy < |Y'|=n—1—4' < %*2*/2

(i) t > 1and dy = 2. By dy +dy = "T_1+1+t, we have dy = "T_1+t—1. However,
T(G) > didy —t = 2(%2 + ¢t — 1) — t > n — 2, which contradicts T(G) < n — 3.

In conclusion, when n is even, G is K» nn When n is odd, G is either K %%1 or

K;Jrl n—1 OI Kn+1 n—1- ]

2 7 2 2 0 2

Using Lemma [3, we are able to give the proof of Theorem [l

Proof of Theorem[§. We prove our result by induction on n. The induction step will go from
n — 2 to n, so we check the bases when n = 3 and n = 4, obviously, our statement is true

for these two cases. Suppose Theorem M holds for K = n —2 (n > 5), we separate the rest of

]

3

the proof into 2 cases.

Case 1. Every edge in G is contained in at least one triangle. Then T'(G) >

n—2.

Case 2. There exists at least one edge uv which is not contained in any triangle. Then
uw and v cannot have common neighbor in G\ {u, v}, which implies that e({u, v}, G\{u,v}) <
n — 2. Therefore, e(G \ {u,v}) > V‘;J —(n—2) = V" 2" J + 1. In this point, we split the

rest of the proof into 3 subcases.

Case 2.1 ¢(G\ {u,v}) > { J + 3. By Theorem 2, we get T'(G \ {u,v}) >3 {TQJ,
which implies that T'(G) > 3 { J >n—2.

Case 2.2. ¢(G \ {u,v}) = {

J + 2. When n is even, by Theorem [ we get



T(G\ {u,v}) > n— 2, since T(G) > T(G \ {u,v}), we are done. When n is odd, we
have e({u,v},G \ {u,v}) = n — 3, then there exists w € V(G \ {u,v}) such that edges
vw,uw ¢ E(G). If e(G[N(u) \ v]) + e(G[N(v) \ u]) > 1, then the number of triangles
which contains u or v is at least 1. By Theorem 2l T(G \ {u,v}) > n — 3 holds, thus,
T(G) > n—2. Otherwise, G\ {u, v, w} is bipartite and all triangles in G\ {u, v} are adjacent
to w. since e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, no triangle contains u or v. Therefore,
TA(G) = 7A(G \ {u,v}) = 1 and all triangles in G are adjacent to w.

Case 2.3. e(G\ {u,v}) = V" 2 J + 1, then e({u,v},G \ {u,v}) = n —2. When
e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, G\ {u,v} is bipartite, it has at most V" 2) J edges,
contradicting the assumption of the case.

Suppose e(G[N(u) \ v]) + e(G[N(v) \ u]) = 1. Since |N(u) \v U N(v)\u| =n—2,
we have e([N(u) \ v], [V (v) \ u]) < {( J Thus, e(G \ {u,v}) = { 2° J + 1 implies that
G \ {u,v} is obtained from KLanzJPLsz} plus an edge, say {j,k}, in one class. Therefore,
all triangles in G contain {j, k} and hence 74 (G) = 1 follows.

Now we assume that e(G[N(u) \ v]) + e(G[N(v) \ u]) > 2, then the number of the
triangles containing w or v is at least 2. It is easy to check that if v(G) = 5 then G \ {u,v}
is a triangle and either 7A(G) = 1 or T(G) = 4. Therefore, we may assume n > 6. Since

e(G\ {u,v}) = { J + 1, by the induction hypothesis, either 7o(G \ {u,v}) = 1 or
T(G\{u,v}) >n—4. When T'(G\{u,v}) > n—4, we have T'(G) > T(G\{u,v})+2 > n—2.
Otherwise, 7o (G \{u,v}) = 1 and T(G\{u,v}) < n—>5 hold. By Lemma[3] we see that when
n is even, G \ {u,v} is Ky yay, when n is odd, G\ {u,v} is either K, 5 ... or K, 1 .3

2 7 2 2 7 2

or K, . 5. Let us check what will happen in these cases.
2 0 2

We first give the following technical lemma:
Lemma 5. Let f(a,b) = ab+ (A — a)(B — b), where A and B are integers, 1 < a < A,
1 <b< B, then f(a,b) > min{A, B}.

Proof of Lemma[d. Obviously, when AB = maz{A, B}, f(a,b) > 1 = min{A, B}. Other-

wise, we have A, B > 2. Without loss of generality, fix b, then f(a,b) is a linear function



Koot nos \ {2z, w}

K-
1X1,[Y] 7 2

Figure 2:

of variable a. Since % =b— (B —b), thus, f(a,b) is decreasing when b < g and f(a,b) is

increasing when b > %. Therefore,

J(AD)=Ab, b< B

ron 2 {0 T o, o

It is easy to check that Ab > A, when b < £, and b+(A—1)(B—b) = B(A—1)+b(2—A) > B
when b > g. Hence, we get f(a,b) > min{A, B}. Obviously, if min{A, B} = A, the equality
holds only when a = A and b = 1, if min{A, B} = B, the equality holds only when a = 1
and b = B. O

Case 2.3.1. G\ {u,v}is K[%J—l,[ﬂ—l’ which implies that when n is even, G \ {u,v}
is Ku_yn_y and when n is odd, G \ {u,v} is K%% Let X and Y be the two classes of
K[%J—L[%}—l and {j, k} be the extra edge in X, where | X| = {%J — 1, see Figure 2. Since
e(G[N(u)\v])+e(G[Nw)\u]) > 2, | N(u)\vUN(v)\u |=n—2and N(u)\vNN(v)\u =0,
we see that either N(u) \ v or N(v) \ u contains at least one vertex in both classes X and
Y. Without loss of generality, say at least N(u) \ v has this property.

Let |[N(u)\v NX| =aand [N(u)\vNY|=b, where 1 <a < {gJ —land1<b < [%W —1.
Then the number of triangles which are adjacent to u, containing one vertex in X and one in
Y is ab while the number of triangles which are adjacent to v, containing one vertex in X and
oneinY is (A—a)(B—b). Hence, we get T'(G) > ab+ ( {%J —1—a> ( [%1 —1—b> + [g] —1.

By Lemma Bl we see T'(G) > {gJ -1+ [%W —1l=n-2.

7



Case 2.3.2. nis odd and G \ {u,v} is K 1 ns Let X and Y be the two classes of
K, .5 and {j,k} be the extra edge in X, Where |X | = . Similarly as in the previous
cas;, ejther N(u) \ v or N(v) \ u contains at least one vertex in both classes X and Y.
Without loss of generality, say at least N(u) \ v has this property.

Let |[N(u)\v NX| =aand |[N(u)\v NY|=0b, where 1 <a < %7 and 1 < s
T(G) > ab+ <——a><"7_3—b> + 222, By Lemma 5, we get T(G) > 222 4+ 223 > — 3,
the equality holds only if @ = 1 and b = 223, Let s € X and {u,s} € E(G), a = 1 and
b = 222 implies that either s € {j, k} then 7o(G) = 1, or s ¢ {j, k} then there exists one
more triangle {v, j, k}, thus T(G) >n—-3+1=n — 2.

Case 2.3.3. nis odd and G \ {u, v} ISKn s Since %=1 > 3, we get n > 7. Let X
and Y be the classes of K%’%, {j,z} and {z, k:} be the two extra edges in X and {z, w}
be the missing edge in Kangana, see Figure

Let [N(u)\v NX|=aand |N(u)\v NY|=0. Since | N(u) \vUN(v)\u |=n—2 and
Nu)\vN N(@w)\u=0, when a = 0, we have X C N(v) \ u. If N(v) \ v = X, clearly, all
triangles in GG contain z and hence 74 (G) = 1. Otherwise, |(N(v)\u)NY| > 1. It is easy to
check that T(Kn 1 nzg) = n—>5, therefore, in this case we get T(G) > n—5+24+22-1 > n—1
(n > 7). When b =0, then Y C N(v) \w. If N(v) \u=Y then N(u)\ v = X, we see that
all triangles in G contain z and hence 7o (G) = 1. Otherwise, |(N(v) \ w) N X| > 1. When
[(N(v)\u)NX|=1,if (N(v)\ u)NX = {z}, obviously, all triangles in G contain z, hence
7A(G) = 1. If not, then clearly T(G) >n—5+1+23 >n—2 (n > 7). It is easy to check
that T'(G) reaches the lower bound when |(N(v) \ u) NX|=1forn>9 and when n =7,
T(G) > 5 holds in all cases. Therefore, we get either TA(G) =lorT(G)>n—2.

Now suppose that, 1 <a < 221 and 1 <b < 252, Then T(G) > ab+ (%2 — a) (%2 —
b) +n — 5, by Lemma [l we get T'(G) > "T_?’—l—n—5 >n—2(n>9). Since T(G) > 5 when
n =7, we see that T'(G) > n — 2 holds in this case.

This completes the proof. O



3 Open problems

Let Vi, V5, ..., V, be pairwise disjoint sets where [%W > |\Vi| > Vel > ... > |V > {gJ
and Y |V;| = n hold. Define the graph 7,.(n) with vertex set UV; where {u,v} is an edge if
u € V;, v e V(i # j), but there is no edge within a V;. The number of edges of the graph
T,(n) is denoted by ¢,.(n). The following fundamental theorem of Turdn is a generalization
of Mantel’s theorem.

Theorem 6 (Turan [6]). If a graph on n vertices has more than ty_1(n) edges then it
contains a copy of the complete graph K as a subgraph.

The most natural construction is to add one edge to Ty_1(n) in the set V. This graph is
denoted by 7, ;(n). It contains not only one copy of K}, but |Va|-|V5]---|Vi_1] of them. [3]
proved that this is the least number. Observe that the intersection of all of these copies of
K, is a pair of vertices (in V7). If this is excluded, the number of copies probably increases.
This is expressed by the following conjecture. Take Ty_;(n), add an edge {z,y} in Vj, an
edge {u,v} in V5 and delete the edge {u,x}. This graph is denoted by T} ;. It contains
almost the double of the number of copies of K}, in T)_,(n).

Conjecture 1. If a graph on n vertices has ty_1(n) + 1 edges and the copies of Ky have
an empty intersection then the number of copies of Ky is at least as many as in T} :
(Val = 1)[Val - Vil - Wi |+ (Vi = DIVal - VAl -+ [Via] = (V] + [Vl = 2)[Va - [Val - - [Vi |

Of course this would be a generalization of our Theorem 4. Now we try to generalize it
in a different direction. What is the minimum number of triangles in an n-vertex graph G
containing VZQJ +t edges if TA(G) > s is also supposed. The problem is interesting only when
0 <t < s. Otherwise, if t > s then 7o (G) = t is allowed. By Lovéasz-Simonovits’ theorem [4],
we know that the number of triangles is at least ¢ {gJ with equality for the following graph.
Take K(%WHJ where the two parts are Vi (|V1]| = [g]) and Va(|Va] = {gJ), respectively. Add
t edges to V. Here all triangles contain one of the new added edges, therefore 7Ao(G) < t

and the extra condition on 74 (G) is not a real restriction.

Hence we may suppose 0 < t < s. Choose 2(s— 1) distinct vertices in V; (of K(%W 2] E



X1, Ty Ts—1,Y1, Y2, - - -, Ys—1 and two distinct vertices in Vs @ ug, us. Add the edges {z1, 41},

{z2,v2}, - A{Tsm1, Ys—1}, {ur, ua} to KHWHJ and delete the edges {zy,u1}, ..., {75, ur}.

2

n] | = 4
2 [°L2

other hand it contains s vertex disjoint triangles if [g} >2(s—1)+ 1 and EJ > s+ 1.

Let K ‘Ftw 2] denote this graph. It is easy to see that it contains {”w + t edges. On the

Therefore, 7 (K ‘Ft} 2 J) = s holds if n is large enough. We believe that this is the best
L2

n

2
possible construction.

Conjecture 2. Suppose that the graph G has n vertices and VTQJ + t edges, it satisfies

TA(G) > s and n > n(t,s) is large. Then G contains at least as many triangles as KF;WL%J

2
has, namely (s — 1) {%J + [%W —2(s—1t).
In the case t = 1,s = 2 our Theorem 4 is obtained. There is an obvious common

generalization of our two conjectures.

Acknowledgments

We thank Jimeng Xiao for his suggestions to improve Lemma [3]

References

[1] P. Erdés, Some Theorems on graphs, Riveon Lematematika (in Hebrew with English

summary) 9 (1955), 13-17.
[2] P. Erdés, On a Theorem of Rademacher-Turén, Illinois J. Math. 6 (1962), 122-127.

[3] P. Erd6s, On the number of complete subgraphs contained in certain graphs, Publ.
Math. Inst. Hungar. Acad. Sci. 7 (1962), 459-464.

[4] L. Lovasz and M. Simonovits, On the number of complete subgraphs of a graph II,
Studies in Pure Mathematics: To the Memory of Paul Turén, Birkhaduser, Basel, (1983),
459-495.

[5] W. Mantel: Problem 28, soln. by H. Gouventak, W. Mantel, J. Teixeira de Mattes, F.
Schuh and W.A. Wythoff. Wiskundige Opgaven 10 (1907), 60-61.

10



[6] P. Turdn. On an external problem in graph theory. Mat. Fiz. Lapok (in Hungarian). 48
(1941), 436-452.

11



	1 Introduction
	2 Proofs of the main results
	3 Open problems

