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The number of triangles is more when they
have no common vertex

Chuanqi Xiao ∗

Central European University, Budapest, Hungary

Gyula O.H. Katona †

MTA Rényi Institute, Budapest, Hungary

Abstract By the theorem of Mantel [5] it is known that a graph with n vertices and ⌊n2

4
⌋+1

edges must contain a triangle. A theorem of Erdős gives a strengthening: there are not only

one, but at least ⌊n
2
⌋ triangles. We give a further improvement: if there is no vertex contained

by all triangles then there are at least n − 2 of them. There are some natural generalizations

when (a) complete graphs are considered (rather than triangles), (b) the graph has t extra

edges (not only one) or (c) it is supposed that there are no s vertices such that every triangle

contains one of them. We were not able to prove these generalizations, they are posed as

conjectures.

1 Introduction

All graphs considered in this paper are finite and simple. Let G be such a graph, the

vertex set of G is denoted by V (G), the edge set of G by E(G), the number of vertices in G

is v(G) and the number of edges in G is e(G). We denote the degree of a vertex v by d(v),

the neighborhood of v by N(v), the number of edges between vertex sets A and B by e(A, B)

and the number of triangles in G by T (G). A triangle covering set in V (G) is a vertex

set that contains at least one vertex of every triangle in G. The triangle covering number,

denoted by τ△(G), is the size of the smallest triangle covering set. Let S ⊂ V (G) be any

subset of V (G), then G[S] is the subgraph induced by S.

Mantel [5] proved that an n-vertex graph with
⌊

n2

4

⌋

+ t (t ≥ 1) edges must contain a
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triangle. In 1941, Rademacher (unpublished, see [1]) showed that for even n, every graph G

on n vertices and n2

4
+ 1 edges contains at least n

2
triangles and n

2
is the best possible. Later

on, the problem was revived by Erdős, see [1], which is now known as the Erdős-Rademacher

problem, Erdős simplified Rademacher’s proof and proved more generally that for t ≤ 3 and

n > 2t case. Seven years later, he [2] conjectured that a graph with
⌊

n2

4

⌋

+ t edges contains

at least t
⌊

n
2

⌋

triangles if t < n
2
, which was proved by Lovász and Simonovits [4]. Motivated

by earlier results, we give a further improvement for the case t = 1: if there is no vertex

contained by all triangles then there are at least n − 2 of them in G.

Theorem 1 (Mantel [5]). The maximum number of edges in an n-vertex triangle-free graph

is ⌊n2

4
⌋. Furthermore, the only triangle-free graph with ⌊n2

4
⌋ edges is the complete bipartite

graph K⌊ n

2
⌋,⌈ n

2
⌉.

Theorem 2 (Erdős [1]). Let G be a graph with n vertices and
⌊

n2

4

⌋

+ t edges, t ≤ 3, n > 2t,

then every G contains at least t
⌊

n
2

⌋

triangles.

Before presenting our main result, the following definitions, a theorem and a lemma are

needed.

Definition 1. Let Ki,n−i denote a the complete bipartite graph on the vertex classes |X| = i,

|Y | = n − i.

· · ·

· · · Y

i

n − i

Ki,n−i

X

K−
i,n−i

· · ·

· · · Y

z

w

i

n − i

Ki,n−i \ {z, w}

X

KT
i,n−i

Figure 1: Graphs K−
i,n−i and KT

i,n−i

Definition 2. Let K−
i,n−i denote a graph obtained from a complete bipartite graph Ki,n−i plus

an edge in the class X with i vertices, see Figure 1.

Definition 3. Let KT
i,n−i denote a graph obtained from a complete bipartite graph Ki,n−i
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minus an edge plus two adjacent edges in the class X with i vertices, one end point of the

missing edge is the shared vertex of these two adjacent edges and the other one is in the class

Y , see Figure 1.

Lemma 3. Let G be a graph with n vertices and
⌊

n2

4

⌋

+ 1 edges, such that τ△(G) = 1

and T (G) ≤ n − 3. Then G is one of the following graphs: K−
n

2
, n

2

, K−
n−1

2
, n+1

2

, K−
n+1

2
, n−1

2

or

KT
n+1

2
, n−1

2

.

Theorem 4. Let G be a graph with n vertices and
⌊

n2

4

⌋

+ 1 edges, then either τ△(G) = 1 or

T (G) ≥ n − 2.

2 Proofs of the main results

Proof of Lemma 3. Let v0 be such a vertex that G \ v0 contains no triangle. We distinguish

two cases.

Case 1. G \ v0 contains at least one odd cycle. Let C2k+1 (k ≥ 2) be the shortest odd

cycle in G \ v0 and G
′

be the graph obtained from G by removing the vertices of C2k+1 and

v0, so v(G
′

) = n − 2k − 2. Since C2k+1 is the shortest cycle in G \ v0, each vertex in G
′

can

be adjacent to at most 2 vertices in the C2k+1, otherwise, we can find a shorter odd cycle.

Since G
′

is an (n − 2k − 2)-vertex triangle-free graph, by Theorem 1, e(G
′

) ≤








(

n−2k−2
2

)2






.

Obviously, any two vertices of C2k+1 are not adjacent, therefore

e(G \ v0) ≤ 2k + 1 + 2(n − 2k − 2) +









(

n − 2k − 2

2

)2








= k2 − nk +

⌊

n2

4

⌋

+ n − 2

≤
⌊

n2

4

⌋

− n + 2 (k ≥ 2).

Since e(G) = d(v0) + e(G
′

) ≤ (n − 1) + (
⌊

n2

4

⌋

− n + 2) =
⌊

n2

4

⌋

+ 1, the only possibility for

e(G) =
⌊

n2

4

⌋

+ 1 is that d(v0) = n − 1 and e(G \ v0) =
⌊

n2

4

⌋

− n + 2. In this case, we get

T (G) =
⌊

n2

4

⌋

− n + 2, which contradicts T (G) ≤ n − 3.
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Case 2. G \ vo has no odd cycles, then G \ v0 is a bipartite graph and e(G \ v0) ≤
⌊

n−1
2

⌋ ⌈

n−1
2

⌉

. There are two subcases.

Case 2.1. e(G \ v0) =
⌊

n−1
2

⌋ ⌈

n−1
2

⌉

. Then G \ v0 is K⌊n−1

2 ⌋,⌈n−1

2 ⌉ and d(v0) = e(G) −
e(G \ v0) =

⌊

n
2

⌋

+1. Let d1 and d2 be the numbers of neighbors of v0 in classes X and Y of

K⌊n−1

2 ⌋,⌈n−1

2 ⌉, respectively, then d(v0) = d1 + d2 and T (G) = d1d2. So we need d1 + d2 =
⌊

n
2

⌋

+ 1 and d1d2 ≤ n − 3 hold true at the same time. When n is even, we can see that the

only solution is when d1 = 1 and d2 = n
2
. The symmetric solution, d1 = n

2
, d2 = 1 is not

possible, since d1 ≤ n
2

− 1 in this case. Therefore, we get that G is K−
n

2
, n

2

. Assume now that

n is odd, there are two possibilities,

(i) d1 = 1 and d2 = n−1
2

, in the same way as in the even case, we get T (G) = n−1
2

and

G is K−
n+1

2
, n−1

2

. When d1 = n−1
2

and d2 = 1, we also get T (G) = n−1
2

and G is K−
n+1

2
, n−1

2

.

(ii) d1 = 2 and d2 = n−3
2

, then T (G) = 2(n−3
2

) = n − 3 and G is KT
n+1

2
, n−1

2

. Similarly,

when d1 = n−3
2

and d2 = 2, we get the same result.

Case 2.2 . e(G \ v0) =
⌊

n−1
2

⌋ ⌈

n−1
2

⌉

− t. Then d(v0) =
⌊

n
2

⌋

+1+t, 1 ≤ t ≤
⌈

n
2

⌉

− 2. Let

G \ v0 be the bipartite graph with partitions X
′

and Y
′

, where |X ′| = i
′

, then we have

i
′

(n − 1 − i
′

) ≥
⌊

n − 1

2

⌋ ⌈

n − 1

2

⌉

− t

⇒



















n − 1 −
√

4t + 1

2
≤ i

′ ≤ n − 1 +
√

4t + 1

2
, n is even,

n − 1 − 2
√

t

2
≤ i

′ ≤ n − 1 + 2
√

t

2
, n is odd.

(1)

Suppose v0 has d1 (≥ 1) neighbors in X
′

and d2 (≥ 1) neighbors in Y
′

. Since G \ v0 is

bipartite, if d1d2 = 0, then G contains no triangle which contradicts the fact that τ△(G) = 1.

In this situation, d1d2 ≥ T (G) ≥ d1d2−t = d1(
⌊

n
2

⌋

+1+t−d1)−t = −d2
1+(

⌊

n
2

⌋

+1+t)d1−t ≥
−d2

1 + (
⌊

n
2

⌋

+ 1)d1.

When n is even, we know that the solutions of n − 3 ≥ T (G) = d1(
n
2

+ 1 − d1) is exactly

one of d1 = 1 or d2 = 1 holds like in Case 2.1. However, when d2 = 1, since d1 +d2 = n
2

+1+t,

we have d1 = n
2

+ t, which contradicts (1) namely i′ ≤ n−1+
√

4t+1
2

(1 ≤ t ≤ n
2

− 2) because

d1 ≤ i
′

. The case d1 = 1 and d2 = n
2

+ t can be settled in the same way.
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When n is odd, n − 3 ≥ T (G) = d1(
⌊

n
2

⌋

+ 1 − d1) implies that one of d1 = 1, d2 = 1,

d1 = 2 or d2 = 2 holds. By symmetry we can consider the cases d1 = 1 and d1 = 2. We

check the details of the following 3 subcases.

(i) t = 1 and d1 = 1. We get d2 = n+1
2

because d1 + d2 = n−1
2

+ 1 + t. Since d2 ≤ |Y ′ | =

n − 1 − i′ ≤ n−1+2
√

t
2

= n+1
2

, we get |Y ′| = n+1
2

and |X ′| = n−3
2

. Since e(G \ v0) = n−1
2

n−1
2

− 1,

we see that G \ v0 is Kn−3

2
, n+1

2

. Thus, G is K−
n−1

2
, n+1

2

and T (G) ≤ d1d2 = n+1
2

.

(ii) t ≥ 2 and d1 = 1. By d1 + d2 = n−1
2

+ 1 + t, we have d2 = n−1
2

+ t > n−1+2
√

t
2

, which

contradicts d2 ≤ |Y ′| = n − 1 − i′ ≤ n−1+2
√

t
2

.

(iii) t ≥ 1 and d1 = 2. By d1 + d2 = n−1
2

+ 1 + t, we have d2 = n−1
2

+ t − 1. However,

T (G) ≥ d1d2 − t = 2(n−1
2

+ t − 1) − t ≥ n − 2, which contradicts T (G) ≤ n − 3.

In conclusion, when n is even, G is K−
n

2
, n

2

. When n is odd, G is either K−
n−1

2
, n+1

2

or

K−
n+1

2
, n−1

2

or KT
n+1

2
, n−1

2

.

Using Lemma 3, we are able to give the proof of Theorem 4.

Proof of Theorem 4. We prove our result by induction on n. The induction step will go from

n − 2 to n, so we check the bases when n = 3 and n = 4, obviously, our statement is true

for these two cases. Suppose Theorem 4 holds for k = n − 2 (n ≥ 5), we separate the rest of

the proof into 2 cases.

Case 1. Every edge in G is contained in at least one triangle. Then T (G) ≥








⌊

n
2

4

⌋

+1

3









≥

n − 2.

Case 2. There exists at least one edge uv which is not contained in any triangle. Then

u and v cannot have common neighbor in G\{u, v}, which implies that e({u, v}, G\{u, v}) ≤
n − 2. Therefore, e(G \ {u, v}) ≥

⌊

n2

4

⌋

− (n − 2) =
⌊

(n−2)2

4

⌋

+ 1. In this point, we split the

rest of the proof into 3 subcases.

Case 2.1 e(G \ {u, v}) ≥
⌊

(n−2)2

4

⌋

+ 3. By Theorem 2, we get T (G \ {u, v}) ≥ 3
⌊

n−2
2

⌋

,

which implies that T (G) ≥ 3
⌊

n−2
2

⌋

≥ n − 2.

Case 2.2. e(G \ {u, v}) =
⌊

(n−2)2

4

⌋

+ 2. When n is even, by Theorem 2, we get

5



T (G \ {u, v}) ≥ n − 2, since T (G) ≥ T (G \ {u, v}), we are done. When n is odd, we

have e({u, v}, G \ {u, v}) = n − 3, then there exists w ∈ V (G \ {u, v}) such that edges

vw, uw /∈ E(G). If e(G[N(u) \ v]) + e(G[N(v) \ u]) ≥ 1, then the number of triangles

which contains u or v is at least 1. By Theorem 2, T (G \ {u, v}) ≥ n − 3 holds, thus,

T (G) ≥ n−2. Otherwise, G\{u, v, w} is bipartite and all triangles in G\{u, v} are adjacent

to w. since e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, no triangle contains u or v. Therefore,

τ△(G) = τ△(G \ {u, v}) = 1 and all triangles in G are adjacent to w.

Case 2.3. e(G \ {u, v}) =
⌊

(n−2)2

4

⌋

+ 1, then e({u, v}, G \ {u, v}) = n − 2. When

e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, G \ {u, v} is bipartite, it has at most
⌊

(n−2)2

4

⌋

edges,

contradicting the assumption of the case.

Suppose e(G[N(u) \ v]) + e(G[N(v) \ u]) = 1. Since |N(u) \ v ∪ N(v) \ u| = n − 2,

we have e([N(u) \ v], [N(v) \ u]) ≤
⌊

(n−2)2

4

⌋

. Thus, e(G \ {u, v}) =
⌊

(n−2)2

4

⌋

+ 1 implies that

G \ {u, v} is obtained from K⌊ n−2

2 ⌋,⌈n−2

2 ⌉ plus an edge, say {j, k}, in one class. Therefore,

all triangles in G contain {j, k} and hence τ△(G) = 1 follows.

Now we assume that e(G[N(u) \ v]) + e(G[N(v) \ u]) ≥ 2, then the number of the

triangles containing u or v is at least 2. It is easy to check that if v(G) = 5 then G \ {u, v}
is a triangle and either τ△(G) = 1 or T (G) = 4. Therefore, we may assume n ≥ 6. Since

e(G \ {u, v}) =
⌊

(n−2)2

4

⌋

+ 1, by the induction hypothesis, either τ△(G \ {u, v}) = 1 or

T (G\{u, v}) ≥ n−4. When T (G\{u, v}) ≥ n−4, we have T (G) ≥ T (G\{u, v})+2 ≥ n−2.

Otherwise, τ△(G\{u, v}) = 1 and T (G\{u, v}) ≤ n−5 hold. By Lemma 3, we see that when

n is even, G \ {u, v} is K−
n

2
−1, n

2
−1, when n is odd, G \ {u, v} is either K−

n−3

2
, n−1

2

or K−
n−1

2
, n−3

2

or KT
n−1

2
, n−3

2

. Let us check what will happen in these cases.

We first give the following technical lemma:

Lemma 5. Let f(a, b) = ab + (A − a)(B − b), where A and B are integers, 1 ≤ a ≤ A,

1 ≤ b ≤ B, then f(a, b) ≥ min{A, B}.

Proof of Lemma 5. Obviously, when AB = max{A, B}, f(a, b) ≥ 1 = min{A, B}. Other-

wise, we have A, B ≥ 2. Without loss of generality, fix b, then f(a, b) is a linear function

6



· · ·

· · · Y

j k

l

u

v

X

K−
|X|,|Y |

· · ·

· · · Y

j z k

w

u

v

Kn−1

2
, n−3

2

\ {z, w}

X

KT
n−1

2
, n−3

2

Figure 2:

of variable a. Since ∂f

∂a
= b − (B − b), thus, f(a, b) is decreasing when b < B

2
and f(a, b) is

increasing when b > B
2

. Therefore,

f(a, b) ≥






f(A, b) = Ab, b ≤ B
2
,

f(1, b) = b + (A − 1)(B − b), b > B
2
.

It is easy to check that Ab ≥ A, when b ≤ B
2

, and b+(A−1)(B−b) = B(A−1)+b(2−A) ≥ B

when b > B
2
. Hence, we get f(a, b) ≥ min{A, B}. Obviously, if min{A, B} = A, the equality

holds only when a = A and b = 1, if min{A, B} = B, the equality holds only when a = 1

and b = B.

Case 2.3.1. G \ {u, v} is K−
⌊n

2 ⌋−1,⌈n

2 ⌉−1
, which implies that when n is even, G \ {u, v}

is K−
n

2
−1, n

2
−1 and when n is odd, G \ {u, v} is K−

n−3

2
, n−1

2

. Let X and Y be the two classes of

K−
⌊n

2 ⌋−1,⌈n

2 ⌉−1
and {j, k} be the extra edge in X, where |X| =

⌊

n
2

⌋

− 1, see Figure 2. Since

e(G[N(u)\v])+e(G[N(v)\u]) ≥ 2, | N(u)\v∪N(v)\u |= n−2 and N(u)\v∩N(v)\u = ∅,

we see that either N(u) \ v or N(v) \ u contains at least one vertex in both classes X and

Y . Without loss of generality, say at least N(u) \ v has this property.

Let |N(u)\v ∩X| = a and |N(u)\v ∩Y | = b, where 1 ≤ a ≤
⌊

n
2

⌋

−1 and 1 ≤ b ≤
⌈

n
2

⌉

−1.

Then the number of triangles which are adjacent to u, containing one vertex in X and one in

Y is ab while the number of triangles which are adjacent to v, containing one vertex in X and

one in Y is (A−a)(B −b). Hence, we get T (G) ≥ ab+

(

⌊

n
2

⌋

−1−a

)(

⌈

n
2

⌉

−1−b

)

+
⌈

n
2

⌉

−1.

By Lemma 5, we see T (G) ≥
⌊

n
2

⌋

− 1 +
⌈

n
2

⌉

− 1 = n − 2.

7



Case 2.3.2. n is odd and G \ {u, v} is K−
n−1

2
, n−3

2

. Let X and Y be the two classes of

K−
n−1

2
, n−3

2

and {j, k} be the extra edge in X, where |X| = n−1
2

. Similarly as in the previous

case, either N(u) \ v or N(v) \ u contains at least one vertex in both classes X and Y .

Without loss of generality, say at least N(u) \ v has this property.

Let |N(u)\v ∩X| = a and |N(u)\v ∩Y | = b, where 1 ≤ a ≤ n−1
2

and 1 ≤ b ≤ n−3
2

, then

T (G) ≥ ab +

(

n−1
2

− a

)(

n−3
2

− b

)

+ n−3
2

. By Lemma 5, we get T (G) ≥ n−3
2

+ n−3
2

≥ n − 3,

the equality holds only if a = 1 and b = n−3
2

. Let s ∈ X and {u, s} ∈ E(G), a = 1 and

b = n−3
2

implies that either s ∈ {j, k} then τ△(G) = 1, or s /∈ {j, k} then there exists one

more triangle {v, j, k}, thus T (G) ≥ n − 3 + 1 = n − 2.

Case 2.3.3. n is odd and G \ {u, v} is KT
n−1

2
, n−3

2

. Since n−1
2

≥ 3, we get n ≥ 7. Let X

and Y be the classes of KT
n−1

2
, n−3

2

, {j, z} and {z, k} be the two extra edges in X and {z, w}
be the missing edge in Kn−1

2
, n−3

2

, see Figure 2.

Let |N(u) \ v ∩ X| = a and |N(u) \ v ∩ Y | = b. Since | N(u) \ v ∪ N(v) \ u |= n − 2 and

N(u) \ v ∩ N(v) \ u = ∅, when a = 0, we have X ⊆ N(v) \ u. If N(v) \ u = X, clearly, all

triangles in G contain z and hence τ△(G) = 1. Otherwise, |(N(v) \ u) ∩ Y | ≥ 1. It is easy to

check that T (KT
n−1

2
, n−3

2

) = n−5, therefore, in this case we get T (G) ≥ n−5+2+ n−1
2

−1 ≥ n−1

(n ≥ 7). When b = 0, then Y ⊆ N(v) \ u. If N(v) \ u = Y then N(u) \ v = X, we see that

all triangles in G contain z and hence τ△(G) = 1. Otherwise, |(N(v) \ u) ∩ X| ≥ 1. When

|(N(v) \ u) ∩ X| = 1, if (N(v) \ u) ∩ X = {z}, obviously, all triangles in G contain z, hence

τ△(G) = 1. If not, then clearly T (G) ≥ n − 5 + 1 + n−3
2

≥ n − 2 (n ≥ 7). It is easy to check

that T (G) reaches the lower bound when |(N(v) \ u) ∩ X| = 1 for n ≥ 9 and when n = 7,

T (G) ≥ 5 holds in all cases. Therefore, we get either τ△(G) = 1 or T (G) ≥ n − 2.

Now suppose that, 1 ≤ a ≤ n−1
2

and 1 ≤ b ≤ n−3
2

. Then T (G) ≥ ab + (n−1
2

− a)(n−3
2

−
b) + n − 5, by Lemma 5, we get T (G) ≥ n−3

2
+ n − 5 ≥ n − 2 (n ≥ 9). Since T (G) ≥ 5 when

n = 7, we see that T (G) ≥ n − 2 holds in this case.

This completes the proof.

8



3 Open problems

Let V1, V2, . . . , Vr be pairwise disjoint sets where
⌈

n
2

⌉

≥ |V1| ≥ |V2| ≥ . . . ≥ |Vr| ≥
⌊

n
2

⌋

and
∑ |Vi| = n hold. Define the graph Tr(n) with vertex set ∪Vi where {u, v} is an edge if

u ∈ Vi, v ∈ Vj(i 6= j), but there is no edge within a Vi. The number of edges of the graph

Tr(n) is denoted by tr(n). The following fundamental theorem of Turán is a generalization

of Mantel’s theorem.

Theorem 6 (Turán [6]). If a graph on n vertices has more than tk−1(n) edges then it

contains a copy of the complete graph Kk as a subgraph.

The most natural construction is to add one edge to Tk−1(n) in the set V1. This graph is

denoted by T −
k−1(n). It contains not only one copy of Kk but |V2| · |V3| · · · |Vk−1| of them. [3]

proved that this is the least number. Observe that the intersection of all of these copies of

Kk is a pair of vertices (in V1). If this is excluded, the number of copies probably increases.

This is expressed by the following conjecture. Take Tk−1(n), add an edge {x, y} in V1, an

edge {u, v} in V2 and delete the edge {u, x}. This graph is denoted by T⊏

k−1. It contains

almost the double of the number of copies of Kk in T −
k−1(n).

Conjecture 1. If a graph on n vertices has tk−1(n) + 1 edges and the copies of Kk have

an empty intersection then the number of copies of Kk is at least as many as in T⊏

k−1:

(|V2|−1)|V3| · |V4| · · · |Vk−1|+(|V1|−1)|V3| · |V4| · · · |Vk−1| = (|V1|+ |V2|−2)|V3| · |V4| · · · |Vk−1|.

Of course this would be a generalization of our Theorem 4. Now we try to generalize it

in a different direction. What is the minimum number of triangles in an n-vertex graph G

containing
⌊

n2

4

⌋

+t edges if τ△(G) ≥ s is also supposed. The problem is interesting only when

0 < t < s. Otherwise, if t ≥ s then τ△(G) = t is allowed. By Lovász-Simonovits’ theorem [4],

we know that the number of triangles is at least t
⌊

n
2

⌋

with equality for the following graph.

Take K⌈n

2 ⌉,⌊n

2 ⌋ where the two parts are V1(|V1| =
⌈

n
2

⌉

) and V2(|V2| =
⌊

n
2

⌋

), respectively. Add

t edges to V1. Here all triangles contain one of the new added edges, therefore τ△(G) ≤ t

and the extra condition on τ△(G) is not a real restriction.

Hence we may suppose 0 < t < s. Choose 2(s − 1) distinct vertices in V1 (of K⌈n

2 ⌉,⌊n

2 ⌋):
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x1, x2, . . . , xs−1, y1, y2, . . . , ys−1 and two distinct vertices in V2 : u1, u2. Add the edges {x1, y1},

{x2, y2}, . . . , {xs−1, ys−1}, {u1, u2} to K⌈n

2 ⌉,⌊n

2 ⌋ and delete the edges {x1, u1}, . . . , {xs−t, u1}.

Let Ks,t

⌈n

2 ⌉,⌊n

2 ⌋ denote this graph. It is easy to see that it contains
⌊

n2

4

⌋

+ t edges. On the

other hand it contains s vertex disjoint triangles if
⌈

n
2

⌉

≥ 2(s − 1) + 1 and
⌊

n
2

⌋

≥ s + 1.

Therefore, τ△(Ks,t

⌈n

2 ⌉,⌊n

2 ⌋) = s holds if n is large enough. We believe that this is the best

possible construction.

Conjecture 2. Suppose that the graph G has n vertices and
⌊

n2

4

⌋

+ t edges, it satisfies

τ△(G) ≥ s and n ≥ n(t, s) is large. Then G contains at least as many triangles as Ks,t

⌈n

2 ⌉,⌊n

2 ⌋
has, namely (s − 1)

⌊

n
2

⌋

+
⌈

n
2

⌉

− 2(s − t).

In the case t = 1, s = 2 our Theorem 4 is obtained. There is an obvious common

generalization of our two conjectures.
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