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BEHAVIOUR AND TREATMENT OF METALS IN BURNING SYSTEM
DURING BIOMASS COMBUSTION - LITERATURE REVIEW

TRUONG PHI DINH! - HELGA KOVACS? - ZSOLT DOBO?

Abstract: Biomass is a renewable energy resource and known as an excellent alternative
option for the partial replacement of fossil fuels in energy production. Plants, as frequently
used biomass energy sources, contain metals in a different amount. During biomass combus-
tion, the emission of certain elements may lead to environmental pollution and health prob-
lems even if the biomass comes from a non-contaminated land. Hence, keeping the metals in
the combustion system and avoid hazardous emissions is desirable. The same direction can
be recognized by noble metals (NMs) and rare earth elements (REES) as well, however, in
these cases, the economic aspects are also considered. This paper briefly reviews the litera-
ture on metal contaminated biomass, phytoextraction, polluted biomass combustion, and the
behavior of metals in combustion systems. Based on the literature review the fate of NMs
and REEs during polluted biomass incineration has not been deeply investigated yet and re-
quires further examination. Furthermore, capturing metals inside the burning system is also
a huge challenge because a significant amount of metal compounds leaves the burning system
with flue gas in solid and gaseous form. Besides, phytomining is a potential option for the
extraction of NMs and REEs from the soil via plants. And, solid remains (bottom ash, fly
ash) coming from contaminated biomass is a promising metal resource.
Keywords: metal, phytoextraction, disposal option, biomass combustion

INTRODUCTION

Biomass is a renewable energy resource including plant and animal materials. Its
reservations are limitless. Besides that, biomass energy offers various environmental
advantages such as reducing climate change, mitigating acid rain, water pollution,
soil erosion, etc. Therefore, biomass is a potential energy resource to diversify world
fuel supplies and substantially decrease greenhouse gas emissions [1]. According to
reported data, biomass made up 64% of renewable energy’s contribution [2] and it
is anticipated to rise around double to triple in 2050 [3].
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Generally, woody biomass has been known as an extensively used and the most
plentiful resource of biomass. Statistically, more than one-third of the global lands
are contaminated sites [4], called brownfields [5]. The real number even might be
higher than which has been reported so far. According to the received data, mineral
oil and metals are the most contaminants contributing 60% to contaminated lands
[6]. Soil contamination in general and metals pollution in particular have serious
negative effects on the ecosystem, human health, and the environment. Phytoextrac-
tion referring to plants accumulating metals (lead, cadmium, zinc, gold, silver, ce-
rium, lanthanum, etc.) from the soil has been proven as an effective, environmentally
friendly, safe, and low-cost remediation method to tackle the problem [7], [8]. The
production of the phytoextraction process is a large amount of contaminated biomass
that needs proper disposal and management. Thus, polluted biomass has been inves-
tigated with a dual purpose those are mitigating pollution problems through the phy-
toextraction process and producing energy.

1. PHYTOEXTRACTION

Phytoextraction is a soil remediation technology. During this process, plants accu-
mulate metals from contaminated soils, transfer, and store them into the roots and
above-ground parts of the plants with various distributions [9]. There are two types
of plants can be efficiently used for phytoextraction those are hyperaccumulators and
fast-growing species. Hyperaccumulators have been defined as plants that can accu-
mulate huge amounts of metals in the soil without suffering [10]. Fast-growing spe-
cies that have lower metals extracting ability than hyperaccumulators, however, their
total biomass production is outstandingly higher such as poplar or willow [11], [12].
The lower limit for hyperaccumulation and studies corresponding to metals accumu-
lated by plants are summarized in Table 1.

Table 1
Studies on metals accumulated by plants
The lower
limit Concentration
Element for Hyperac- Plant species . Ref.
in plant (mg/kg)
cumulators
(mg/kg)
Dicranopteris linearis (fern) 4,438 | [13]
REEs 1,000 | Dicranopteris dichotoma (fern) 2,231 | [14]
Hickory (in leaves) 2,296 | [15]
Lupinus sp. (blue lupin) — induced 126.000 | [16]
Silver 1 | Amanita species (mushroom) 1,253.000 | [17]
Tobacco — induced 54.300 | [18]
Lupinus sp. (blue lupin) — induced 6.300 | [16]
Gold 1 B juncea (indian mustard) — 63.000 | [19]
induced
Z. mays (corn) —induced 20.000 | [19]
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The lower
limit .
Element for Hyperac- Plant species .Concentratlon Ref.
in plant (mg/kg)
cumulators
(mgrkg)
Berkheya coddii (flowering plant) — 0.183 | [20]
Platinum 1 induced .
. . (in leaves) 0.220
Berkheya coddii (flowering plant) (in roots) 0.140 [21]
Berkheya coddii (flowering plant) — 7.677 | [20]
induced )
Palladium ! Berkheya coddii (flowering plant) ('gr:i%\gizg 8151;8 [21]
Cannabis sativa (hemp) 30.336 | [22]
. Berkheya coddii (flowering plant) 7,880 | [23]
Nickel 1,000 Alssum leshiacum (flowering plant) 10,000 | [23]
. Iberis intermedia (herbaceous plant) 4,055 | [24]
Thallium 100 Biscutella laevigata (flowering plant) 13,768 | [24]
Berkheya coddii (flowering plant) 290 | [25]
Cobalt 1,000 | Haumaniastrum robertii (flowering .
plant) (in leaves) 4,304 | [26]
Thlaspi caerulescens (alpine 43710 | [27]
. pennygrass) '
zZinc 10,000 - —
Dichapetalum gelonioides (small 30,000 | [27]
semi-evergreen tree) '
Minuartia verna
Lead 1,000 | (spring sandwort) 20,000 | [27]
Agrostis tenuis (grass) 13,490 | [27]
Thlaspi caerulescens 2130 | [27]
Cadmium 100 (alplr_le per}nygrass_)
Arabidopsis halleri 267 | [28]
(flowering plant)
Angiopteris sp. nov. (fern) 3,535 | [29]
Copper 1,000 Anisopappus davyi (sunflower) 3,504 | [29]
Phytolacca acinosa (in leaves) [30]
Manga- 10.000 (herbaceous plant) 12,180
nese ' Chengiopanax sciadophylloides (in leaves) [31]
(flowering tree) 23,200
g:;?n 300 | Leersia hexandra (grass) (in leaves) 2,978 | [32]
Arsenic 1,000 Pteris vittata (brake fern) 3,280-4,980 | [33]
Pityrogramma calomelanos (fern) (in leaves) 8,350 | [34]

Phytoextraction is not only used for removing metals from contaminated areas but also
offers the possibility for exploiting metals from mill tailings, overburdens, low-grade
ores, or mineralized soil that is not economic by traditional mining methods [35]. In
the economic aspect, NMs are potential candidates for phytomining because of their
high value. However, only a few studies can be found in the case of Silver, Gold [35],
[36]. While, the information about others like Platinum, Palladium, Rhodium,



66 Truong Phi Dinh — Helga Kovdcs — Zsolt Dobé

Osmium, etc is very limited and even zero. Specifically, the phytoextraction of pre-
cious metals in contaminated soils has not been investigated that deserves more atten-
tion because of dual advantages including soil remediation and economic benefit.

2. TREATMENT AND DISPOSAL OF BIOMASS USED FOR PHYTOEXTRACTION

Phytoextraction is a soil remediation process that uses plants to uptake pollutants
from brownfields and transports them into the plants. Polluted lands remediation and
contaminates biomass formation occur simultaneously. It means that the environ-
mental hazard is just transferred from soil to biomass. Hence, the phytoextraction
process encounters a serious problem that is the production of large quantities of
highly contaminated biomass, it needs proper disposal and management. Several
methods of contaminated biomass treatments including composting, compaction, di-
rect disposal, leaching, thermal conversion (pyrolysis, gasification, combustion)
have been investigated so far [37], [38]. The pre-treatment step includes composting,
compaction, and pyrolysis to decrease biomass volume and remove excess water.
This lowers the cost of transportation to the disposal site and enhances the technical
parameters. After this step, considerable quantities of polluted material still exist. On
the other hand, direct disposal, leaching, incineration (gasification, combustion)
known as final disposal methods [39]. The treatment techniques of phytoextraction
biomass disposal are shortly described in Table 2. Among the aforementioned ap-
proaches, combustion has been recognized as the most feasible, economically ac-
ceptable, environmentally effective pathway [38], [39].
Table 2
Treatment techniques of phytoextraction biomass disposal, based on [38], [39]

Process Step Advantages Disadvantages
» Reduce volume and water » Time-consuming (2-3 months)
Compost- content, decreases the costs of | « End-product needs to be
. Pretreatment - .
ing handling and transportation treated as hazardous waste
« In laboratory scale
 VVolume reduction leads to . . . .
: - « Special equipment is required
Compac- cost transportation reduction » End-products (remaining bio-
-Omp Pretreatment |  Shorter time compared to P 9
tion - mass, leachates) should be
composting
treated as hazardous waste
» Recovery of metals
» Expensive and limited dump-
ing sites
« Slow reduction of polluted ma-
Direct dis- . . « Simple and time effective- terial
Final disposal . .
posal ness « Serious environmental prob-
lems
« This method has been forbid-
den
Leaching Final disposal | « Recovery of metals » No technology
 High volume reduction, in- « Solid product fraction needs to
Pyrolysis Pretreatment | creases the energy density of be treated as hazardous waste
biomass and decreases the
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Process Step Advantages Disadvantages
costs of handling and transpor-
tation

» Useful end-product

« Undesired products such as

* High volume reduction, tar, ash, etc., are formed

toxic metals enriched in solid

Gasifica- . . - « Technical and environmental
tion Final disposal | residual roblems during the utilization

 Lowering harmful climate P g

. L of syngas produced from con-
change via CO2 mitigation ? .
taminated biomass

: H_|gh volume r_eductl_on, . « Undesirable emissions of CO,
Combus- . . toxic metals enriched in solid .
tion Final disposal residual NOx, fly ash and solid, gaseous

« Produce energy metal compounds

3. BIOMASS COMBUSTION

Combustion is a thermal conversion process and recognized as the best way for con-
taminated biomass final disposal. Combustion degradates material in the presence of
excess oxygen/air at high temperatures over 900 °C [40]. The benefits of combustion
technology are more than 90% volume reduction and toxic metals enriched in solid
residual. Additionally, combustion is not only a disposal method for polluted bio-
mass but also a promising energy producing solution. Nonetheless, the combustion
of polluted biomass results in diverse environmental issues such as undesirable emis-
sions of CO, NOx, fly ash, and solid, gaseous metal compounds. Where solid and
gaseous metal compounds are the main concern of polluted biomass combustion,
further investigations of these compounds during the combustion of biomass fuels
(polluted and unpolluted) would be imperative, because many studies have proven
than metals emission could arise even if the biomass feedstock comes from a non-
contaminated land [41], [42].

Metals enter the combustion chamber subsequently exit in one of the three fol-
lowing forms: solid residues in the combustor (bottom ash); solid particles in the flue
gas (fly ash); and the exhausted gas (flue gas). The fate of metals during combustion
in ashes reported by different studies is presented in Table 3, which shows that most
of the metals were detected in bottom ash and cyclone ash. Nonetheless, in another
work, Vassilev et al [43] concluded that more than 90% of Cd, Hg, Sb, Se, and V are
volatilized during biomass combustion, and higher than 50% volatilization in case
of As, Cr, Pb, or Zn.

Table 3

Distribution of metals in some boiler ashes mg/kg, based on [44]
Metal Bottom ash Cyclone ash Filter ash ZLUS(:

[45] [46] [47] [45] [47] [45] [46] [471 | [47]

As 9.2 <3.0 3.0 25.6 1.9 5.1 16.0 0.7 0.2
Ba 534.9 | 330.0 - | 6714 — | 206.4 | 2000.0 - —
Cd 1.1 <0.3 1.2 2.3 8.6 1.9 3.0 6.6 1.9
Co 6.7 2.5 9.7 11.5 3.7 6.4 8.0 0.6 0.2
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Metal Bottom ash Cyclone ash Filter ash SLUS?[
[45] [46] [47] [45] [47] [45] [46] [47] | [47]

Cr 24.6 15.0 187.0 128.1 50.7 10.1 24.0 15.2 4.6
Cu 12.8 | <10.0 147.1 31.6 51.6 18.9 60.0 29.9 8.8
Fe 5230.9 — 11756.8 | 8136.0 | 4442.2 | 1988.3 - 384.1 | 116.9
Mn 4864.0 — 12293.0 | 7144.0 | 5700.0 | 5020.0 - 779.0 | 228.0
Ni 28.5 19.0 27.1 68.3 14.6 24.5 67.0 3.5 1.1
Pb 29.0 <3.0 434 36.1 22.5 23.4 49.0 275 8.2
Ti 160.0 - - 179.0 - 982.0 - - -

V - 95.0 32.2 - 10.3 - 140.0 2.0 0.6
Zn 99.2 160.0 4859 | 252.0 | 946.7 61.7 480.0 | 511.1 | 150.8
Hg 0.005 | <0.030 0.003 | 0.007 | 0.030 | 0.014 | <0.300 | 0.283 | 0.084

Several studies have been carried out corresponding to the metals flow calculations
[48] and the distribution of metals during woody biomass combustion [43], [49]-
[51]. Besides, the fate of metals during combustion of different feedstocks like waste
[52], [53], sludge [54], [55], poultry litter [56], [57], contaminated oil [58], co-com-
bustion [59], [60] also have been investigated.

The volatilization of metals is one of the major factors influencing the distribution
of metals in biomass combustion [43]. It is dependent on the boiling point, the lower
boiling point leads to the higher volatilization of metal.

The combustion temperature has been proven as the main parameter influencing
the fate of metals during biomass combustion. Jimenez et al [61] combusted olive
residue (orujillo) and analyzed the concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga,
As, and Pb in sub-micrometer aerosols at different furnace temperatures (1,100,
1,300, and 1,450 °C) in an entrained flow reactor. The results revealed that almost
metals (except Co, Ga, and Mn) were enriched in fine particles by increasing com-
bustor temperature. Hu et al [62] investigated the impact of the combustion tempera-
ture, moisture content, chlorine on metals (Zn, Pb, Cu, Mn, and Cd) transferring into
flue gas of sewage sludge combustion. According to the results, the higher burning
temperature caused the higher selected metals content in the flue gas. It was also
found that a higher moisture content decreased the transfer Cd, Zn, and Pb into the
flue gas, but it had a slight effect on Cu and Mn. Furthermore, added chlorine during
sewage sludge combustion promoted to release Cs, Zn, and Pb into the flue gas, but
it had little influence on Cu and Mn. Likewise, Belevi and Langmeier [63] studied
the evaporation behavior of Zn, Sn, Cu, Sh, Cd, and Pb during municipal solid waste
combustion in a furnace temperature range of 500-900 °C. It was indicated that
higher burning temperature caused an increase in transfers of target metals into the
gaseous phase, except Sh. The authors also revealed, the residence time increase
(from 10 to 120 min) resulted in higher evaporation of Zn, Cu, Cd, Pb, and it showed
a slight effect in the case of Sh. Likewise, several studies investigated the influence
of combustor temperature on the behavior of metals during the combustion of dif-
ferent kinds of feedstocks such as contaminated woody biomass [64], sewage sludge
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[65], waste [66], [67], poultry litter, co-combustion [68]. These results showed the
same connection between the burning temperature and distribution of metals.

Besides that, the effect of flue gas temperature on the behavior of metals during
biomass combustion has been rarely investigated. Polluted biomass (Populus tremula)
was combusted to analyze the impact of flue gas temperature [69]. According to the
results, more metals (Ag, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Si, Sn, Ti, V, and Zr)
could be condensed on fly ash particles and captured inside the combustion system
by decreasing flue gas temperature from 250 to 150 °C. The study also revealed that
more than 50% of the total metals input (except Ni) could not be detected in bottom
ash and fly ash as seen in Figure 1. This means that, during contaminated biomass
combustion, these metals likely were volatized and exited the combustion system in
gaseous form.

m Bottom ash Fly ash  m Deposited ash Not determined

100%

80%

60%

40% B ] B
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00 == I = B
Ag Cd Cu Mg Mn Ni Pb Si Sn

Figure 1
Metal flow in contaminated biomass combustion, based on [69]

Residence time and moisture content are recognized as the secondary influencing
factors on the fate of metals during combustion. It has been reported that longer re-
action time leads to more volatilization of metals while, an increase of moisture con-
tent in feedstocks may decrease the emissions of metals [62], [70].

The distribution of metals during combustion also influenced by the presence of
chlorine. It was found that the increase of chlorine content in the combustion cham-
ber results in a higher concentration of metals in flue gas [62], [70]. That can be
explained by decreasing volatility temperature [71].

It has been indicated that the lack of oxygen accelerates metals volatilization due
to the less formation of metal oxides that have higher volatility temperature than
metal elements [72], [73].

The partitioning of metals in biomass combustion also depends on the type of
furnace. Lu et al. [74] stated that in terms of the influence of the combustor type, the
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horizontal tube furnace resulted in a higher metals volatilization compared to the
entrained tube furnace.

Generally, the distribution of metals during biomass combustion depends on var-
ious factors such as feedstock properties, reactors, operating conditions (combustion
temperature, flue gas temperature, pressure, oxygen, residence time), the boiling
point of metals, presence of chlorine, etc. It can be said that the fate of NMs and
REESs during contaminated biomass combustion has not been investigated yet. More-
over, the capture of metals inside the combustion system is a huge challenge because
more than 50 percent of metals emit in the gaseous phase according to recent re-
search. These tasks need further investigation so far. Additionally, during combus-
tion process metals are enriched in bottom ash, especially in fly ash. Thus, the con-
centration of metals in the ash might be high enough for extraction and the solid
remains coming from contaminated biomass is a promising metal resource.

CONCLUSIONS

Based on the literature review it can be stated that various studies are corresponding
to the behavior of heavy metals during contaminated combustion. However, the in-
vestigation of NMs and REES in the burning system is extremely limited and requires
further examination.

Furthermore, developing a technique to capture (and possibly recover) metals is
also the potential gap of knowledge. Since, according to several recent studies, a
significant amount of metal compounds is leaving the burning system with flue gas
in solid and gaseous form without ensuring their capture and treatment. It can be said
that capturing metals inside the burning system is challenging and it has not been
fully solved yet as well.

Additionally, phytomining is a potential option for the extraction of NMs and
REEs from the soil via plants. And, solid remains coming from contaminated bio-
mass is a promising metal resource.
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