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Abstract. In continuum mechanics dynamical effects are usually connected to waves. Such
studies lead to the wave dynamical theory of constitutive equations. In stability analysis,
the terms of the theory of dynamical systems are valuable tools. Most of the material
instability investigations published deal with small deformations and static or quasi-static
loading conditions. To study dynamical effects and finite deformations as well we need first of
all appropriate constitutive equations. In order to take second gradient dependent materials
widely used for numeric investigations of post-localization into account we shall assume that
a jump exists in the derivative of the acceleration field and this singular surface propagates
with finite velocities (generalized wave). From that assumption conditions are obtained for
example for the second order derivatives of the variables of the constitutive equations. In
material instability problems we prescribe that the loss of stability should be a generic one in
terms of the theory of dynamical systems. There are two main points. Firstly, in the generic
case the multiplicity of the critical eigenvalue should be one or at least finite, moreover the
two basic types of stability loss should not be coexistent. Secondly, we would require a
finite dimensional critical eigenspace. These lead to further conditions for the constitutive
equations.
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1. Introduction

In recent years several new results of the theory of dynamical systems [1, 19] have
already been successfully used in various fields of mechanics [7, 18]. This paper is
to analyze material instability by considering solid continua as dynamical systems
[6, 8]. This kind of investigation is closely related to perturbation analysis [8, 20].
In the theory of dynamical systems the definition of material stability/instability is
based on the Lyapunov stability concept of the theory of dynamical systems (see
[12] for details), for this reason we call it ”dynamic material instability”. The linear
concept of the stability loss of a state of the system means that the real part of
certain eigenvalues of the linear operator describing its behavior changes its sign.
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The eigenvectors connected to them are called in applications the critical eigenmodes
[9].

Unfortunately, for the classical setting [14, 15] it is not possible to obtain specific
critical eigenmodes at the onset of material instability. On the other hand, in the
finite element calculation of material instability problems the classical formulation
of the basic equations of solid continua results in a definite mesh dependence [11,
16, 17]. These are very similar phenomena. In those papers mesh dependence was
eliminated by the inclusion of rate dependence or nonlocality (second gradient effects)
into the constitutive equations. Most of the investigations published deal with small
deformation and static or quasi-static loading conditions. If dynamical effects are to
be taken into account, we need appropriate constitutive equations. Such materials
were studied by postulating the existence of a (second order) acceleration wave with
finite wave speed [2]. This approach is called the wave dynamical theory of constitutive
equations [3, 4, 6]. However, such constitutive theory based on second order waves
cannot treat the cases of non-locality like second gradient materials [11, 20].

The aim of the paper is to study non-local material instability problems in case of
finite deformation. We assume for the solid body that a generalized wave exists in
the derivative of the acceleration field and this singular surface propagates forwards
and backwards with finite velocities. From that assumption conditions are obtained
for the second order derivatives of the variables of the constitutive equations [5].
Additionally we prescribe that the loss of stability should be a generic [1] one in
terms of the theory of dynamical systems [19], which is essential in dealing with
instability problems. There are two main points here. One is quite practical: a
numerical solution of the material instability problems in the non-generic case may
suffer serious technical difficulties (loss of convergence, mesh sensitivity [11] etc.). The
other is of theoretical significance. By modelling physical phenomena we should have
a set of equations which is typical (or generic), that is, differs only a little from the
”exact unknown mathematical model”.

The second section presents the set of the fundamental equations of the solid con-
tinuum assuming large deformations. It consists of the Cauchy equations of motion,
the kinematic equation (for large displacements) and the constitutive equations. Such
physically objective quantities are the Lie derivative of the stress gradient tensor, the
Lie derivative of the (Euler) strain gradient tensor and the second covariant derivative
of the stress and strain tensors.

In the next section we perform a material instability investigation for finite dis-
placements with an appropriate constitutive equation in a uniaxial case. In this
section the wave speed equation is a scalar third order algebraic one and should have
real nonzero solutions [2]. By using the dynamical systems theory we should have
a generic behavior (as it is defined in the theory of dynamical systems [8]) at the
loss of stability because of the aforementioned general modelling concept of physical
phenomena. There are two different ways for the loss of stability of a dynamical
system [18]. These are the so-called static and dynamic bifurcations and should be
completely different phenomena.
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2. The set of basic equations for finite deformations

First of all we need the equations of motion

tkp;p + qk = ρv̇k, tkp = tpk . (2.1)

Here, and in all further equations and expressions Roman indices run from 1 to 3.

For finite deformation
vij = Lv (aij) , (2.2)

where
Lvaij ≡ ȧij + aipv

p
;j + apjv

p
;i .

The notations are: qk denotes body force, ρ is mass density, XK
,p is the deformation

gradient, gpq, GKL are metric tensors in the current and the initial configurations, vi

and vi;j are velocity and velocity gradient, vij is the deformation rate tensor. Cauchy
stress tensor is denoted by tpk and

aik =
1

2

(
gik −XK

,i X
L
,kGKL

)
denotes Euler strain tensor, respectively. A semicolon means covariant derivative and
an overdot indicates material time derivative:

v̇i =
∂vi

∂τ
+ vkvi;k

where τ denotes time. Note that the brackets used to distinguish Lie derivative can
have upper and lower indices as in (2.2), we use them to show clearly for which variable
it is applied. (For example Lv

(
tkp`

)
is the Lie derivative of the covariant derivative of

the stress tensor tkp and not the covariant derivative of the Lie derivative.) Assume
that the constitutive equation has the form

fα

(
Lv

(
tkp;`

)
, Lv (aij;`) , t

kp
;`m, aij;`m

)
= 0, (2.3)

where α = 1, 2, . . . , 6. We use physically objective quantities such as

– the Lie derivative of the stress gradient tensor

Lv

(
tkp;`

)
=
(
tkp;`

)·
− tqp;`v

k
;q − t

kq
;`v

p
;q + tkp;qv

q
;`

– the Lie derivative of the (Euler) strain gradient tensor

Lv (aij;k) = (aij;k)
·
+ aqj;kv

q
;i + aiq;kv

q
;j + aij;qv

q
;k

– the second covariant derivative of the stress tensor tkp;`m,
– the second covariant derivative of the strain aij;`m .

The set of equations (2.1), (2.2) and (2.3) has as many scalar variables as the
number of equations in the set thus it can be considered to be the set of fundamental
equations. We remark that the continuity equation for ρ can also be taken into
account, but it is not necessary for the following calculations.
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In the next section we perform several simplifications. One is the assumption that
a uniaxial case is considered. Then, instead of the tensorial variables tpk, aij , vi,
the scalar variables a, t, v can be used. They denote the first component (the x
component) of the corresponding tensorial variables and depend obviously on x only.
Additionally, we restrict the form of the constitutive equation to a quasi-linear one.

3. Material instability in the uniaxial case

Now we perform a material instability investigation of state S0 of the solid body by
considering finite displacements in the uniaxial case with an appropriate constitutive
equation of type (2.3)

Lv (t,x) +K1Lv (a,x) +K2t,xx +K3a,xx = 0 (3.1)

where partial derivatives of a function g are denoted by g,x = ∂g
∂x , or g,τ = ∂g

∂τ and
coefficients K1,K2,K3 are considered to be piecewise constants. Let us substitute the
uniaxial forms of the Lie derivatives into (3.1). After some rearrangements

ṫ,x = t,xv,x −K1 (ȧ,x + 3a,xv,x)−K2t,xx −K3a,xx (3.2)

where the uniaxial material time derivatives are v̇ = v,τ + vv,x and ȧ = a,τ + va,x.

The wave dynamical theory of constitutive equations [4] leads to the following third
degree polynomial equation

ρc3 − ρK2c
2 −K1(2a− 1)c+K3(2a− 1) = 0, (3.3)

which should have real nonzero wave-speed solutions c [2]. Assume that S0 is described
by values a0, t0, v0 of the field variables. Then these values should satisfy the nonlinear
system of fundamental equations formed by (3.2) and the uniaxial forms of (2.1) and
(2.2):

v̇ =
1

ρ
t,x, ȧ = v,x − 2av,x . (3.4)

Lyapunov stability investigates the response of a mechanical system to arbitrary small
perturbations, thus the perturbed quantities a0 + ∆a, t0 + ∆t, v0 + ∆v should be
substituted into (3.2) and (3.4). Note that the use of small perturbations is not a
restriction in the sense of stability because of its local nature [12, 18, 19]. Having
done the necessary calculations and by linearizing the set of equations (3.2) and (3.4)
at S0 a system of differential equations is obtained for the perturbations

v,ττ = C1v + C2a,x + C3a+ C4v,x+

+C5v,xx + C6a,xx + C7v,xτ , (3.5)
a,τ = D1v +D2a,x +D3a+D4v,x
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where ∆ is omitted for the sake of simplicity and the following notations are used:

C1 = −2v0,xτ − 2v0,xxv0 , C2 =
2K1

ρ
v0,x ,

C3 =
2K1

ρ
v0,xx , C4 =

2K1

ρ
a0,x −K2 ,

C5 = v20 −
K1

ρ
+

2K1

ρ
a0 , C6 = −K3

ρ
, C7 = 2v0 ,

D1 = −a0,x , D2 = −v0 , D3 = −2v0,x , D4 = −2a0 + 1 .

Let us introduce new variables y1 = a, y2 = v, y3 = v,τ a vector y = [y1, y2, y3] and
an operator

H :=

 H1 H2 0
0 0 1
H3 H4 H5

 ,
where the elements

H1 = D2
∂

∂x
+D3, H2 = D4

∂

∂x
+D1, H3 = C6

∂2

∂x2
+ C2

∂

∂x
+ C3,

H4 = C5
∂2

∂x2
+ C4

∂

∂x
+ C1, H5 = C7

∂

∂x

are differential operators. Then a dynamical system

∂

∂τ
y = Hy. (3.6)

can be attached to (3.5) [8]. The characteristic equation of (3.6) reads

λy = Hy. (3.7)

and the linear Lyapunov stability condition of state S0 is: Reλ ≤ 0 for all eigenvalues
of (3.7). Stability boundary is at Reλ = 0. The loss of stability can be classified as a
static bifurcation (or divergence) type instability (Reλ = 0, Imλ = 0) or a dynamic
one (Reλ = 0, Imλ 6= 0) [12]. To find the eigenvalues of equation (3.7) requires the
solution of a boundary value problem, which may cause serious difficulties and needs
numerical computations.

To continue using analytic methods we should perform simplifications: the use of
small periodic perturbations. While stability is considered here as a local property of
a state the small perturbation technique is quite obvious, but not its periodicity. It
is really a restriction, but used widely in the engineering literature of the linear case
[20]. (A detailed study on that restriction is presented in [8].) While perturbations
are small, aτ = vx and then equations (3.5) can be transformed into the velocity field,

v,τττ = C1v,τ + C2v,xx + C3v,x + C4v,xτ + C5v,xxτ + C6v,xxx + C7v,xττ ,

vxτ = D1v,τ +D2v,xx +D3v,x +D4v,xτ . (3.8)

By assuming periodic perturbations

v = exp (iωx) (3.9)
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in a similar way as it was done in the general case with (3.7) the characteristic equation
results in a set of algebraic equations

λ3 = C1λ− C2ω
2 − C5ω

2λ2 ,

0 = C3 + C4λ− C6ω
2 + C7λ

2 , (3.10)

0 = D1λ−D2ω
2 ,

λ = D3 +D4λ ,

and the static bifurcation condition is the existence of a λ = 0 solution of (3.10).
Then we obtain the following relations

D3 = 0, ⇐⇒ ∂v0
∂x

= 0, (3.11)

D2 = 0, ⇐⇒ v0 = 0, (3.12)

C2 = 0, ⇐⇒ K2
∂v0
∂x

= 0, (3.13)

and finally equations

C3 = 0, ⇐⇒ K1
∂2v0
∂x2

= 0, (3.14)

and
C6 = 0, ⇐⇒ K3 = 0, (3.15)

or

C3 − C6ω
2 = 0, ⇐⇒ 2K1

∂2v0
∂x2

+K3ω
2 = 0, (3.16)

should be satisfied. Obviously (3.11) implies (3.13), thus there is a static bifurcation
if

A: (3.11), (3.12), (3.14) and (3.15), or
B: (3.11), (3.12), and (3.16) are valid.

Case A does not meet the conditions originated by wave dynamics: there is a zero
wave speed solution c of (3.3). If K3 = 0 from (3.15) is substituted into (3.3)

(
ρc2 − ρK2c−K1(2a− 1)

)
c = 0

is obtained thus c = 0 is a solution. In the classical material instability concept [14,
15] it means localization. On the other hand, if (3.15) holds, the constitutive equation
(3.1) has no second strain gradient dependent term, which corresponds to the fact
that there is a stationary singular surface (a localization zone of zero width). Thus
we have exactly the classical result of Rice [15]. However, in case B from equation
(3.16)

ω2 = −2K1

K3

∂2v0
∂x2

,
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if 2K1

K3

∂2v0
∂x2 < 0. This means that there is a critical eigenfunction to the zero eigenvalue,

that is, we have a critical periodic perturbation (3.9)

vcr = exp

ix√−2K1

K3

∂2v0
∂x2


at which state S0 undergoes a static bifurcation.

Let us now study the dynamic bifurcation case. Then we need λ2 < 0 solution of
equation (3.10). The conditions are (3.11), (3.12) and

C5 = 0 ⇐⇒ v20 −
K1

ρ
+

2K1

ρ
a0 = 0 , (3.17)

C4 = 0 ⇐⇒ 2K1

ρ
a0,x −K2 = 0 , (3.18)

D1 = 0 ⇐⇒ a0,x = 0 , (3.19)

D4 = 1 ⇐⇒ a0 = 0 . (3.20)

Then from (3.17), (3.12) and (3.20)

K1 = 0, (3.21)

and from (3.18) and (3.19)
K2 = 0. (3.22)

Moreover, the second equation of (3.10) and (3.18) with (3.12) imply (3.15)

K3 = 0.

Finally from the first equation of (3.10) substituting (3.12), (3.11) and (3.17) we have

λ2 = −2
∂2v0
∂x∂τ

(3.23)

thus there is a dynamical bifurcation if conditions (3.11), (3.12), (3.15), (3.19), (3.20),
(3.21), (3.22) are satisfied and

∂2v0
∂x∂τ

> 0. (3.24)

Unfortunately this is not a generic dynamical bifurcation. We can easily see that
(3.21) implies (3.14), consequently a dynamical bifurcation is coexistent with a static
bifurcation of case A. Moreover, if (3.15), (3.21) and (3.22) are valid, equation (3.3)
has a zero solution c = 0, that is, if at least one of conditions (3.19), (3.20), (3.22)
or (3.24) fails (because then no coexistent dynamical bifurcation is present), we may
speak about a stationary discontinuity as a static bifurcation type instability phe-
nomenon. We remark that this result forms a bridge between the dynamical systems
approach [8] and the wave dynamical theory because it can be obtained from both of
them [10].
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4. Conclusions

By using a second order constitutive equation of form (3.1) for finite deformations
both types A and B of the static bifurcation instability are generic in the sense of
dynamical systems theory because there is no coexistent dynamical bifurcation. More-
over, a nice (and useful [7]) property of the small deformation case of second strain
gradient dependent materials was preserved: the dimension of the critical eigenspace
at static bifurcation remains finite (case B). When this term (case A) is neglected,
we cannot find a unique critical eigenfunction but a ”stationary discontinuity”: the
jump (discontinuity surface in the higher derivatives of the field variables) stops at
the conditions of instability.
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