
Multimodal Transportation 4 (2025) 100194

Contents lists available at ScienceDirect

Multimodal Transportation

journal homepage: www.elsevier.com/locate/multra

Full Length Article

A cost function approximation method for dynamic vehicle

routing with docking and LIFO constraints

Markó Horváth, Tamás Kis ∗ , Péter Györgyi

HUN-REN Institute for Computer Science and Control, H-1111 Budapest, Kende u. 13-17, Hungary

a r t i c l e i n f o

Keywords:

Dynamic pickup and delivery problem

Docking constraints

Cost function approximation

Variable neighborhood search

a b s t r a c t

In this paper, we study a dynamic pickup and delivery problem with docking constraints. There

is a homogeneous fleet of vehicles to serve pickup-and-delivery requests at given locations. The

vehicles can be loaded up to their capacity, while unloading has to follow the last-in-first-out

(LIFO) rule. The locations have a limited number of docking ports for loading and unloading,

which may force the vehicles to wait. The problem is dynamic since the transportation requests

arrive real-time, over the day. Accordingly, the routes of the vehicles are to be determined dy-

namically. The goal is to satisfy all the requests such that a combination of tardiness penalties and

traveling costs is minimized. We propose a cost function approximation based solution method.

In each decision epoch, we solve the respective optimization problem with a perturbed objective

function to ensure the solutions remain adaptable to accommodate new requests. We penalize

waiting times and idle vehicles. We propose a variable neighborhood search based method for

solving the optimization problems, and we apply two existing local search operators, and we

also introduce a new one. We evaluate our method using a widely adopted benchmark dataset,

and the results demonstrate that our approach significantly surpasses the current state-of-the-art

methods.

1. Introduction

Dynamic vehicle routing problems (DVRPs) constitute a rapidly developing field of transportation research, which is certified

by a series of recent review papers, e.g., Berbeglia et al. (2010) , Pillac et al. (2013) , Bekta ş et al. (2014) , Psaraftis et al. (2016) ,

Soeffker et al. (2022) , Zhang and Van Woensel (2022) . The growing interest is due to the wide range of real-world application areas

such as transportation of goods and people, services, etc. (Rios et al., 2021). A related aspect of growing interest is environment

friendly routing or eco-routing, which aims to optimize the control of a fleet of vehicles to reduce the energy consumption and the

pollution (Dong et al., 2022; Pahwa and Jaller, 2024).

In this paper, we study a DVRP motivated by a real-life problem proposed by Huawei Technologies Co. Ltd. A fleet of homogeneous

vehicles has to serve pickup-and-delivery requests which occur at given locations over the day. Each request is characterized by a

size, a pickup and a delivery location, a release time, and a due date. The vehicles can be loaded up to their capacity, while unloading

has to follow the last-in-first-out (LIFO) rule. The locations have a limited number of docking ports for loading and unloading, which

may force the vehicles to wait. The problem is dynamic since the transportation requests arrive real-time, over the day. Accordingly,

the routes of the vehicles are to be determined dynamically. The goal is to satisfy all the requests such that a combination of tardiness

penalties and traveling costs is minimized.
∗ Corresponding author.

E-mail addresses: marko.horvath@sztaki.hu (M. Horváth), tamas.kis@sztaki.hu (T. Kis), peter.gyorgyi@sztaki.hu (P. Györgyi) .

https://doi.org/10.1016/j.multra.2025.100194

Received 24 May 2024; Received in revised form 13 August 2024; Accepted 14 August 2024

2772-5863/© 2025 The Author(s). Published by Elsevier Ltd on behalf of Southeast University. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.multra.2025.100194
http://www.ScienceDirect.com/science/journal/27725863
http://www.elsevier.com/locate/multra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.multra.2025.100194&domain=pdf
mailto:marko.horvath@sztaki.hu
mailto:tamas.kis@sztaki.hu
mailto:peter.gyorgyi@sztaki.hu
https://doi.org/10.1016/j.multra.2025.100194
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

An important feature of our problem is that although the pickup and delivery locations are known in advance, the characteristics

of the transportation requests are unknown until their release times. Moreover, the distribution of the requests both in time and

space may vary over the day. Consequently, a single problem instance does not provide exploitable stochastic information. However,

statistical data may be collected over longer time periods that potentially could be used in solution approaches.

Our problem has two important constraints that frequently occur in practice. The first one limits the number of the docking ports

at each location. The number of the docking ports is limited by the size of the buildings (warehouses or factories) and also, it may

not be economical to have sufficient crew to serve (load or unload) any number of vehicles simultaneously. Usually, vehicles do

not arrive evenly at a location over the day, which means that in peak periods, some of the vehicles have to wait until a docking

port becomes free. In several applications the service time of a vehicle may be comparable to the average travel time between two

locations, which may lead to high waiting times in case of superficial planning. Despite its high practical relevance, the literature

on pickup and delivery problems with docking constraints at the locations is rather scarce, we refer to e.g., Cai et al. (2022a, 2023) ,

Du et al. (2023) . Most results are for outbound and inbound transportation problems with a depot, see Section 2.3 for references. The

second side constraint is the LIFO rule. This policy means that the last loaded order must be unloaded first. This rule is necessary,

for example, if the vehicles used for transportation have only a single access door for loading and unloading. Also, if the orders are

hazardous, weighty, or fragile, the load rearrangement on the vehicle may consume much time and increase handling costs. The

related literature is summarized in Section 2.3 .

Main contributions . We propose a cost function approximation method for the problem at hand, where we manipulate the cost

function by introducing two penalty terms. One of them is directly related to the waiting caused by the docking constraints. By

explicitly penalizing waiting, we expect to make solutions flexible to accommodate new requests in the future. We model the problem

as a sequential decision process, where in each decision epoch a variable neighborhood search (VNS) based method is used to solve

the respective optimization problem. In the VNS method we use two old and a new neighborhood operator.

As a case study, we evaluate our solution approach on a dynamic pickup and delivery problem. This problem was introduced in

The Dynamic Pickup and Delivery Problem challenge (Hao et al., 2022), hosted by the International Conference on Automated Planning

and Scheduling in 2021 1 (ICAPS 2021).

To sum up, our contributions are as follows.

• We propose a cost function approximation based method for solving the respective optimization problem in each decision epoch.

One of the penalty terms is directly related to the waiting times caused by the docking constraints.

• We evaluate our solution procedure on the benchmark instances of the ICAPS 2021 DPDP competition. The computational exper-

iments show that our method significantly outperforms the state-of-the art methods on this dataset, especially on the large-size

instances. The average improvement on the full dataset is more than 50% when compared to the best published methods.

• We demonstrate the benefit of using the suggested penalty terms in separate experiments. We also explain the mechanism how

penalizing waiting improves the solution.

According to our best knowledge, our approach for avoiding waiting due to docking constraints at each station is new.

Structure of the paper . In Section 2 , we overview the dynamic vehicle routing problems and the related literature. In Section 3 , we

give a formal description of the problem studied along with modeling as a sequential decision process. In Section 4 , we describe our

solution approach and in Section 5 , we present our computational results. Finally, we conclude the paper in Section 6 .

2. Literature review

In this section, we briefly overview the related literature. In Section 2.1 , we narrow our scope to the problem class studied in this

paper. Modeling with sequential decision process and related solution methods are summarized in Section 2.2 . Finally, Section 2.3 is

concerned with the LIFO loading rule, and problems with docking constraints.

2.1. Classification of our vehicle routing problem

The problem studied in this paper is dynamic , since the input of the problem is received and updated concurrently with the

determination of the routes (Psaraftis, 1980). By Pillac et al. (2013) , a dynamic problem is stochastic , if some exploitable stochastic

knowledge is available on the dynamically revealed information, and deterministic otherwise. In a single instance of our problem, no

explicit stochastic information is available, so in this sense our problem is deterministic.

In the general pickup and delivery problem a set of routes has to be constructed in order to satisfy transportation request by a fleet

of vehicles (Savelsbergh and Sol, 1995). Each transportation request contains a set of pickup locations alongside load quantities and

a set of delivery locations along with quantities to unload. Each request has to be fulfilled by a vehicle without transshipment and

exceeding its capacity. A special case is the pickup and delivery problem , where each request has a single pickup location and a single

delivery location. We refer to (Berbeglia et al., 2010) for a survey.

We conclude that the problem studied in this paper falls in the broad class of DVRPs, and in particular, it is a deterministic dynamic

pickup and delivery problem.
1 https://icaps21.icaps-conference.org/Competitions/ .

2

https://icaps21.icaps-conference.org/Competitions/

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

2.2. Modeling and solving DVRPs

A dynamic vehicle routing problem can be formulated as a sequential decision process (SDP). An SDP goes through a sequence of

states that describe the status of the system at distinct time points. When passing to the next state, the transition is determined by the

dynamic information revealed and the decisions made since the occurrence of the last state. The transition may be deterministic or

stochastic, in the latter case we have a Markov decision process . We refer the reader to (Powell, 2011) for a general introduction to

SDPs.

When modeling a DVRP, decision epochs may occur regularly, or at some special occasions. The states encode all the information

needed to make decisions, and evaluate solution alternatives. For instance, they may contain the position and current tasks of the

vehicles, the set of open service requests, etc. The decisions are concerned with the assignment of new service requests and possibly

routes to the vehicles. The transition to the next state determines the new position of the vehicles, or the progress of loading and

unloading. The dynamic information may influence the transition to the new state, e.g., new service requests manifest.

A number of methods have been proposed for solving DVRPs. The simplest ones are myopic , also termed rolling horizon re-

optimization (RO) methods, that focus only on the current state without any considerations of future uncertainties. Essentially, a

series of static problems are solved with the assumption that the realizations will remain unchanged in the future, e.g., no new

orders will be requested. Gendreau et al. (1999) solve a vehicle routing problem with time windows with this approach, while

Ichoua et al. (2000) consider the same problem, but do not allow to change the destination of the moving vehicles. Lin et al. (2014) pro-

pose a MIP formulation and a heuristic method for processing offline and real-time service requests. An interesting aspect of the prob-

lem is that customers may cancel their requests. However, optimizing without acknowledging the future can be counterproductive

as it often leads to inflexible solutions.

To alleviate the short-sightedness of the myopic strategies, Mitrovi ć-Mini ć et al. (2004) propose waiting strategies for a dynamic

problem with time windows to delay the dispatch of new orders, and to make decision together with the orders that may be requested

in the near future. Van Hemert and La Poutré (2004) consider a dynamic problem of collecting loads, and inserted fictive, anticipated

loads into the routes in order to encourage vehicles to explore fruitful regions (i.e., regions that have a high potential of generating

loads).

Reinforcement learning . for solving DVRPs has gained an increasing attention, we refer to (Hildebrandt et al., 2023) for an overview.

Below we summarize the most common techniques. Policy function approximation (PFA) is a function that assigns an action to any state,

without any further optimization and without using any forecast of the future information. Ulmer and Streng (2019) apply this method

for a problem where parcel pickup stations and autonomous vehicles are combined for same-day delivery. Ghiani et al. (2022) tackle

a pickup and delivery problem using an anticipatory policy by creating priority classes for the requests and their algorithm utilizes a

parametric policy function approximation. Value function approximation (VFA) is used to estimate the value function, which provides

the expected cumulative reward of any given state. Ulmer et al. (2018) model a multi-period VRP by a Markov decision process,

where the set of requests to be accepted in each period is determined by a suitable value function approximation computed offline.

Van Heeswijk et al. (2019) consider a delivery dispatching problem and provided a method that can handle large instances. For

further examples, we refer to the supplementary material of Zhang et al. (2022) .

Beyond reinforcement learning, cost function approximation (CFA) is a further technique for solving DVRPs. The key idea is that

the problem to be solved in each decision epoch is modified, that is, either the cost function or the problem constraints are slightly

perturbed. For instance, Riley et al. (2019, 2020) consider a dial-a-ride problem with the aim of minimizing the total waiting time.

The authors introduce an extra penalty term for unserved request to ensure that all riders are served in reasonable time. The penalty

associated with a request is increased after each epoch in which the request is not served. Ulmer et al. (2020) study a retail distribution

problem, where familiarity with the delivery location can save service time for the driver, and a related quantity is added to the original

objective function. Hildebrandt et al. (2023) outline an enhancement of CFA methods by first modifying the state received before

determining the next action, e.g., by reducing the due dates of some transportation requests, or by reducing vehicle capacities, etc.

Other approaches use the stochastic information internally, e.g., via sampling realizations. For example, multiple scenario approaches

sample realizations to create a set of scenarios, which are then solved separately, and based on those individual solutions, a consensus

decision is made (Bent and Van Hentenryck, 2004; Dayarian and Savelsbergh, 2020; Hvattum et al., 2006; Srour et al., 2018). For

instance, Srour et al. (2018) study a stochastic and dynamic pickup and delivery problem with time windows, where the location of

future requests is known, but only stochastic information is available about the time windows of future requests. The authors propose

to sample future requests at each decision point and solve a VRP for each scenario, and finally synthesize the next action of the

vehicles based on the set of solutions obtained for the different scenarios. An alternative approach to sampling scenarios is suggested

by Györgyi and Kis (2019) for solving the same problem. The stochastic information is used to set up a minimum-cost network flow

problem in which source-to-sink routes correspond to vehicle routes and the edges are weighted with conditional expected values.

Fonseca-Galindo et al. (2022) use statistical data to assign packages to vehicle routes in a package delivery system, where a stream

of incoming customer orders has to be delivered by a fleet of vehicles.

VNS is a widely used approach to solve a static problem or a dynamic problem at a decision point (Mladenovi ć and Hansen, 1997).

It is a metaheuristic which systematically performs the procedure of neighborhood change, both in descent to local minima and in

escape from the valleys which contain them. We refer to (Hansen et al., 2019) for a general overview. Choosing the best neighborhood

operators is a difficult problem, see e.g., (Chen et al., 2022; Liu et al., 2023; Wandelt et al., 2022) for recent developments.
3

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

2.3. Docking and LIFO constraints

The considered pickup and delivery problem has two important side constraints, namely, the docking constraints, and the LIFO

constraints. They are of great practical importance and have been studied by the research community.

Docking constraints . Several papers deal with vehicle routing problems with service restrictions, however, these restrictions mostly

apply to a single depot. In Dabia et al. (2019) shifts with limited loading capacities are considered. Hempsch and Irnich (2008) consider

a problem with sorting capacity constraints at the depot and use a local search based method to solve it. Gromicho et al. (2012) apply

a method that uses a decomposition scheme where columns are generated by a routine based on dynamic programming to solve a

variant with limited number of loading docks or limited size of loading crew. Van der Zon (2017) considers also a vehicle routing

problem with a limited number of loading docking ports and propose a method that shifts the start times of the routes in a smart

way. To our best knowledge, the only papers that deal with docking constraints at the service locations are those related to the DPDP

problem studied in this paper (Cai et al., 2022a; 2023; Du et al., 2023).

LIFO constraints in pickup and delivery problems . Cordeau et al. (2010) propose a branch-and-cut algorithm for a pickup and delivery

problem with a single vehicle. Benavent et al. (2015) examine a variant of the problem with multiple vehicles and a special time

constraint, and propose a branch-and-cut and a tabu search algorithm as solution methods. Xu and Wei (2023) construct a multi-

objective mathematical model for a pickup and delivery problem with transshipments, and propose a method that generates an

initial solution by Clarke-Wright saving algorithm and uses both neighborhood search and Q-learning to improve the solution. In

(Carrabs et al., 2007), several local search operators (e.g., couple-exchange, block-exchange, relocate-couple, relocate-block, multi-relocate,

2-opt-L, double-bridge) are proposed to problems with LIFO constraints.

3. Problem statement

In the following, we define the problem in detail. We first define the basic data of the problem, then we present the dynamic

problem as a sequential decision process.

Given a finite set of factories  , a finite set of orders  , and a fleet of homogeneous vehicles  . The distance and the travel time

between factories 𝑓𝑖 , 𝑓𝑗 ∈  are denoted with dist (𝑓𝑖 , 𝑓𝑗) and travel (𝑓𝑖 , 𝑓𝑗) , respectively. Each order 𝑜𝑖 ∈  is described by a tuple

(𝑓𝑝
𝑖
, 𝑓𝑑
𝑖
, 𝑡
𝑝

𝑖
, 𝑡𝑑
𝑖
, 𝑞𝑖 , ℎ

𝑝

𝑖
, ℎ𝑑

𝑖
) , where 𝑓

𝑝

𝑖
and 𝑓𝑑

𝑖
represent the pickup factory and the delivery factory , respectively, 𝑡

𝑝

𝑖
is the release time , 𝑡𝑑

𝑖

is the due date , 𝑞𝑖 is the order quantity , and ℎ
𝑝

𝑖
and ℎ𝑑

𝑖
are the times required to load and to unload the order, respectively. Order 𝑜𝑖

becomes known only at the release time 𝑡
𝑝

𝑖
. The total quantity of those orders that can be carried by a vehicle at any given moment

is limited by a constant 𝑄 . Initially, each vehicle is empty and parks at a given factory. Unloading the orders from a vehicle has to

follow the LIFO rule, refer to Fig. 1 for an example.

Each factory has a given number of docking ports for loading and unloading. Vehicles are served on a first-come-first-served basis,

that is, if a vehicle arrives at a factory and all ports are occupied, the service of the vehicle cannot begin immediately, but the vehicle

has to wait until one of the docking ports becomes free, and no vehicle that arrived earlier is waiting for a port. This is illustrated

in Fig. 2 . The time elapsed between the arrival of the vehicle and the start of service is called the waiting time . Serving a vehicle

decomposes to dock approaching, then unloading some carried orders, and finally loading some new orders. The service time of a

vehicle is the sum of the factory-independent dock approaching time , ℎdocking , and the sum of the unloading and loading times of the

corresponding orders. For more details we refer to Appendix A . After serving a vehicle, the port becomes free, and the vehicle may

park at the factory, or depart to the next factory on its route.

The goal is to route the vehicles so that all orders are served, and the weighted sum of the total distance traveled and the total

tardiness of the orders is minimized.

3.1. Modeling as a sequential decision process

We model our problem as an SDP (Powell, 2011; Soeffker et al., 2022). The process goes through a sequence of states 𝑠0 , 𝑠1 , …,

each corresponding to an instance of the problem’s decision model at time points 𝜏0 , 𝜏1 , …, as illustrated in Fig. 3 . Between two

consecutive time points 𝜏𝑘 and 𝜏𝑘 +1 , an algorithm computes some actions based on the state 𝑠𝑘 at 𝜏𝑘 , which comprises the new
Fig. 1. An example for loading and unloading during a vehicle route. Orders are depicted as boxes, factories are depicted as pentagons. Unloading

the orders from a vehicle has to follow the LIFO rule, see the order of orders above the factories, and also the position of the orders on the vehicle.

4

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Fig. 2. An example for serving vehicles at a factory. The two docking ports, P1 and P2, of the factory are occupied by vehicles 1 and 2, respectively,

thus the service of vehicles 3 and 4 is delayed until a docking port becomes free.

Fig. 3. Sequential decision process.

dynamic information revealed between 𝜏𝑘 −1 and 𝜏𝑘 . The actions along with the dynamic information between 𝜏𝑘 and 𝜏𝑘 +1 determine

the transition of the system to the next state 𝑠𝑘 +1 at 𝜏𝑘 +1 .

3.1.1. Decision epochs

The update times 𝜏𝑘 (𝑘 = 0 , 1 , … , 𝐾) divide the operating horizon into epochs of length Δ each, that is, 𝜏0 = 0 and 𝜏𝑘 +1 = 𝜏𝑘 + Δ.

The orders are requested in a given finite planning horizon (e.g., one day), however, the operating horizon may be longer if we are

not able to complete the orders within the planning horizon. The decision process ends if all the orders are delivered.

3.1.2. Dynamic information

The realization 𝜔𝑘 of the dynamic information at update time 𝜏𝑘 comprises the orders requested in the previous epoch, i.e.,

𝜔𝑘 = { 𝑜𝑖 ∈  ∶ 𝜏𝑘 −1 < 𝑡
𝑝

𝑖
≤ 𝜏𝑘 } .

3.1.3. States

A state 𝑠𝑘 at update time 𝜏𝑘 is a tuple (𝜏𝑘 , Φ𝑘 , 𝜔̃𝑘) , where Φ𝑘 = {Φ𝑘,𝑣 ∶ 𝑣 ∈ } is the status of the vehicles, and 𝜔̃𝑘 is the set of

unprocessed orders.

The set 𝜔̃𝑘 comprises the dynamic information 𝜔𝑘 , and those orders which are released not later than 𝜏𝑘 −1 , but not picked up until

𝜏𝑘 .

At any time moment a vehicle is either located at a factory, which is then its current factory or is on the way to its destination

factory . The status of a vehicle 𝑣 is described by a tuple Φ𝑘,𝑣 = (𝜙curr
𝑘,𝑣

, 𝑘,𝑣 , 𝜃𝑘,𝑣) , where

• 𝜙curr
𝑘,𝑣

= (𝑓 curr
𝑘,𝑣

, 𝑡𝑑curr
𝑘,𝑣

) provides the current factory and the earliest departure time if the vehicle is located at the factory 𝑓𝑐𝑢𝑟𝑟
𝑘,𝑣

at time

𝜏𝑘 , while 𝜙curr
𝑘,𝑣

= ∅ if the vehicle is on the way to a factory at time 𝜏𝑘 .

• 𝑘,𝑣 is the list of orders carried by the vehicle, sorted in the order of loading. If 𝜙curr
𝑘,𝑣

≠ ∅, then 𝑘,𝑣 contains all the orders that the

vehicle had to pickup at 𝑓𝑐𝑢𝑟𝑟
𝑘,𝑣

, and does not contain those orders that were delivered to that factory.

• 𝜃𝑘,𝑣 is the route plan of the vehicle consisting of a sequence of tuples each corresponding to a factory:

𝜃𝑘,𝑣 =
(
(𝑓𝑗
𝑘,𝑣
, 𝑡𝑎

𝑗

𝑘,𝑣
, 𝑡𝑑

𝑗

𝑘,𝑣
, 

𝑗

𝑘,𝑣
, 

𝑗

𝑘,𝑣
) ∶ 1 ≤ 𝑗 ≤ 𝓁𝑘,𝑣

)
.

The 𝑗th tuple in this list corresponds to the 𝑗th factory 𝑓
𝑗

𝑘,𝑣
of the route with arrival time 𝑡𝑎

𝑗

𝑘,𝑣
, departure time 𝑡𝑑

𝑗

𝑘,𝑣
, and with the

list of orders 
𝑗

𝑘,𝑣
to be unloded, and 

𝑗

𝑘,𝑣
to be loaded, respectively. The first factory visited in 𝜃𝑘,𝑣 is the destination factory of the

vehicle. Each route plan must be feasible , i.e., it has to fulfill the fundamental routing constraints , the capacity constraints , and the

LIFO constraints , refer to Appendix B for full details.

In the initial state 𝑠 at 𝜏 , vehicles have only current factories, which coincide with their initial factories.
0 0

5

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

3.1.4. Actions

Actions are taken at update points. An action is merely a feasible route plan for each vehicle. That is, at update point 𝜏𝑘 , let

Θ(𝑠𝑘) be the set of all possible tuples of feasible and mutually compatible route plans for the vehicles from which exactly one tuple

𝑥𝑘 = (𝜃𝑥
𝑘,𝑣

∶ 𝑣 ∈ ) must be chosen. Notice that the 𝜃𝑥
𝑘,𝑣

must be feasible route plans, and they must be mutually compatible , i.e., the

same order cannot be served by route plans of distinct vehicles.

A further constraint is that if 𝜃𝑘,𝑣 is non-empty, then the first factory visited in 𝜃𝑘,𝑣 and 𝜃𝑥
𝑘,𝑣

must be the same, i.e., 𝑓 1
𝑘,𝑣

= 𝑓
𝑥, 1
𝑘,𝑣

.

Moreover, 𝑡𝑎1
𝑘,𝑣

= 𝑡𝑎
𝑥, 1
𝑘,𝑣

, and 1
𝑘,𝑣

= 
𝑥, 1
𝑘,𝑣

must hold. However, the set of orders to pickup and thus the departure time from 𝑓 1
𝑘,𝑣

may

be different in 𝜃𝑘,𝑣 and 𝜃𝑥
𝑘,𝑣

.

3.1.5. Reward function

The reward function assigns a value to a (state, action) pair (𝑠𝑘 , 𝑥𝑘) . Let 𝐟1 denote the total distance traveled by the vehicles, that is,

𝐟1 (𝑠𝑘 , 𝑥𝑘) =
∑
𝑣 ∈

dist
(
𝑓 curr
𝑘,𝑣

, 𝑓
𝑥, 1
𝑘,𝑣

)
+
∑
𝑣 ∈

𝓁𝑥
𝑘,𝑣 ∑
𝑗=2

dist
(
𝑓
𝑥,𝑗−1
𝑘,𝑣

, 𝑓
𝑥,𝑗

𝑘,𝑣

)
,

where dist (𝑓 curr
𝑘,𝑣

, 𝑓
𝑥, 1
𝑘,𝑣

) = 0 if 𝜙curr
𝑘,𝑣

= ∅ or 𝓁𝑥
𝑘,𝑣

= 0 , and let 𝐟2 be the total tardiness anticipated:

𝐟2 (𝑠𝑘 , 𝑥𝑘) =
∑
𝑣 ∈

𝓁𝑥
𝑘,𝑣 ∑
𝑗=1

∑
𝑜𝑖 ∈

𝑥,𝑗

𝑘,𝑣

max
(
0 , 𝑡𝑎𝑥,𝑗

𝑘,𝑣
− 𝑡𝑑

𝑖

)
.

Then, the reward function is

𝑅0 (𝑠𝑘 , 𝑥𝑘) = 𝜆1 𝐟1 (𝑠𝑘 , 𝑥𝑘) + 𝜆2 𝐟2 (𝑠𝑘 , 𝑥𝑘) , (1)

where 𝜆1 , 𝜆2 > 0 are appropriate multipliers. We will modify this function in our CFA method in Section 4.1 .

3.1.6. Transition

After the selection of action 𝑥𝑘 , the decision process transitions to the next state 𝑠𝑘 +1 at update point 𝜏𝑘 +1 . The positions of the

vehicles, and the lists of carrying orders are updated. Briefly stated, if a vehicle 𝑣 arrives at its destination factory before 𝜏𝑘 +1 , that

factory becomes its current factory, and the next factory to visit, if any, becomes the new destination factory. As a result, 𝜃𝑥
𝑘,𝑣

is

transformed to the route plan 𝜃𝑘 +1 ,𝑣 in the new state 𝑠𝑘 +1 . 𝑘 +1 ,𝑣 is obtained from 𝑘,𝑣 by removing the orders delivered at the current

factory of vehicle 𝑣 in state 𝑠𝑘 , and adding to it the pickup orders, if any. If vehicle 𝑣 departed from its current factory between 𝜏𝑘
and 𝜏𝑘 +1 , then no current factory will be associated with the vehicle, and the factory to which the vehicle is heading will be the

destination factory. Then Φ𝑘 +1 ,𝑣 = (𝑘 +1 ,𝑣 , 𝜙curr
𝑘 +1 ,𝑣 , 𝜃𝑘 +1 ,𝑣) for each 𝑣 ∈  . For details, we refer to Appendix C .

3.1.7. Objective function

The SDP eventually creates a feasible route 𝜃𝑣 for each vehicle 𝑣 , and the routes are mutually compatible and serve all the requests.

Moreover, we assume that for each 𝑣 ∈  , 𝑓 1
𝑣

coincides with the initial factory of vehicle 𝑣 in the initial state 𝑠0 . A formal definition

of the feasibility of a solution is given in Appendix D . Then 𝑥 = (𝜃𝑣 ∶ 𝑣 ∈ ) is a solution of the problem. The solution is evaluated

by the cost function

𝑐𝑜𝑠𝑡 (𝑥) = 𝜆1 𝐟1 (𝑠0 , 𝑥) + 𝜆2 𝐟2 (𝑠0 , 𝑥) . (2)

3.2. Example

In Fig. 4 , we depict the route of a single vehicle 𝑣 at different states. The gray nodes and edges represent the route of the vehicle

before the respective update time points. The black thick edges outline the route to the destination factory, which cannot be changed,

while the route indicated by dashed edges can be modified. To ease the calculations, we assume that the travel time between any

two factories is 11 min, the dock approaching time is 2 min, and the loading/unloading time for an order is 1 min. The length of the

epochs is Δ = 10 min.

Before 𝜏4 = 40 , three orders have arrived: order 𝑜1 from 𝑓1 to 𝑓2 , order 𝑜2 from 𝑓1 to 𝑓3 , and order 𝑜3 from 𝑓4 to 𝑓5 . The vehicle

departed from its initial factory 𝑓0 at time 10 and traveled to factory 𝑓1 . The vehicle arrived at factory 𝑓1 at time 21, picked up orders

𝑜2 and 𝑜1 and departed at time 25. The vehicle arrived at factory 𝑓2 at time 36, delivered order 𝑜1 and left the factory at time 39 to

travel to factory 𝑓3 .

State 𝑠𝑘 (𝜏𝑘 = 40) . The left pane of Fig. 4 shows the state 𝑠𝑘 at update point 𝜏𝑘 = 40 . The vehicle is currently on the way to factory

𝑓3 , where it will arrive at time 50. According to the tentative route plan, the vehicle after that will travel to factory 𝑓4 to pickup

and deliver order 𝑜3 to factory 𝑓5 . Thus, the status of the vehicle is given by 𝜙curr
𝑘,𝑣

= ∅, 𝑘,𝑣 = (𝑜2) , and 𝜃𝑘,𝑣 = (
(
𝑓3 , 50 , 53 , (𝑜2) , ∅) ,

(𝑓4 , 64 , 67 , ∅, (𝑜3)) , (𝑓5 , 78 , 81 , (𝑜3) , ∅)
)
. Order 𝑜4 from factory 𝑓6 to 𝑓5 is also revealed in the previous epoch (see the white circle node),

thus 𝜔𝑘 = { 𝑜4 } . Since order 𝑜1 is already delivered, and order 𝑜2 is already picked up, 𝜔̃𝑘 = { 𝑜3 , 𝑜4 } .
Action 𝑥𝑘 . The decision maker decided to insert factory 𝑓6 into the the tentative route plan of the vehicle, that is, 𝑥𝑘 = (𝜃𝑥

𝑘,𝑣
) , where

𝜃𝑥
𝑘,𝑣

=
(
(𝑓3 , 50 , 53 , (𝑜2) , ∅) , (𝑓6 , 64 , 67 , ∅, (𝑜4)) , (𝑓4 , 78 , 81 , ∅, (𝑜3)) , (𝑓5 , 92 , 96 , (𝑜3 , 𝑜4) , ∅)

)
. In the center pane, we depict the updated route

plan of the vehicle.
6

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Fig. 4. An example for a route plan of a vehicle at different states and actions. Left pane shows the route at an intermediate state of the decision

process. Center pane shows the updated route according to an action. Right pane shows the route at the next state of the decision process.

State 𝑠𝑘 +1 (𝜏𝑘 +1 = 50) . The right pane of Fig. 4 shows the state 𝑠𝑘 +1 at update point 𝜏𝑘 +1 = 50 . Since the vehicle just arrived at

factory 𝑓3 , it became its current factory. According to action 𝑥𝑘 , after this visit the vehicle will depart toward its new destination

factory 𝑓6 to pickup order 𝑜4 . Thus, the status is given by 𝑘 +1 ,𝑣 = ∅, 𝜙curr
𝑘 +1 ,𝑣 = (𝑓3 , 53) , and 𝜃𝑘 +1 ,𝑣 =

(
(𝑓6 , 64 , 67 , ∅, (𝑜4)) , (𝑓4 , 78 , 81 , ∅, (𝑜3)) ,

(𝑓5 , 92 , 96 , (𝑜3 , 𝑜4) , ∅)
)
. No new orders are requested in the previous epoch, thus 𝜔𝑘 +1 = ∅, however, the pickup of orders 𝑜3 and 𝑜4 can

be still changed, thus 𝜔̃𝑘 +1 = { 𝑜3 , 𝑜4 } .

4. CFA approach for solving the routing problem in each epoch

In this section, we propose a cost function approximation based approach to solve the routing problem in each epoch. First, we

add penalty terms to (1) in Section 4.1 , then present our VNS procedure in Section 4.2 after describing a new representation of the

vehicle routes.

4.1. Cost function approximation

In this section we modify the reward function (1) by adding two penalty terms to it. On the one hand, we will penalize waiting

for service at the factories, and on the other hand, the idle vehicles.

Penalizing waiting for service . If the number of vehicles is much larger than the docking capacity of the factories, the vehicles may

have to spend a considerable time with queuing. However, waiting times may create large delays in delivery, therefore, it is better

to avoid them. Let 𝜂
𝑥,𝑗

𝑘,𝑣
be the waiting time (i.e., the time between the arrival and the start of service) at the 𝑗th factory visited in the

route plan 𝜃𝑥
𝑘,𝑣

of vehicle 𝑣 . Then the total waiting time is

𝐟3 (𝑠𝑘 , 𝑥𝑘) =
∑
𝑣 ∈

𝓁𝑥
𝑘,𝑣 ∑
𝑗=1

𝜂
𝑥,𝑗

𝑘,𝑣
.

Idle vehicles . We noticed that in some cases the assignment of the first orders significantly affects the subsequent delivery times.

That is, intuitively good solutions (orders with a common pickup factory were assigned to the same vehicle) in the first epochs caused

often irreversible tardiness for future orders. In those cases, it proved better to spread the initial orders between several vehicles, in

order to keep as many vehicles moving as possible. We call a vehicle idle , if it has no destination factory, and it will be available in

the next epoch. Then, the total number of idle vehicles is

𝐟4 (𝑠𝑘 , 𝑥𝑘) = |{ 𝑣 ∈  ∶ 𝜃𝑥
𝑘,𝑣

= ∅ and 𝑡𝑑curr
𝑘,𝑣

< 𝜏𝑘 +1 } |.
Perturbed reward function We will use the following reward function

𝑅 (𝑠𝑘 , 𝑥𝑘) = 𝜆1 𝐟1 (𝑠𝑘 , 𝑥𝑘) + 𝜆2 𝐟2 (𝑠𝑘 , 𝑥𝑘) + 𝜆3 𝐟3 (𝑠𝑘 , 𝑥𝑘) + 𝜆4 𝐟4 (𝑠𝑘 , 𝑥𝑘) , (3)

where 𝜆1 , 𝜆2 , 𝜆3 , 𝜆4 ≥ 0 are appropriate multipliers. The effect of penalty terms on the efficiency of our method will be investigated

in Section 5.3 .

4.2. New representation of routes and the VNS based procedure

Before delving into the details of our solution procedure, first we introduce the internal representation of vehicle routes.

Recall that a vehicle’s route plan outlines a sequence of factories to visit, along with sets of orders to pickup and deliver at each

location, as well as timing information. In this section we use a different, but equivalent representation. A route is a sequence of

nodes, where each inner node refers to a pickup or a delivery of an order. That is, a pickup node represents the pickup of an order,

and a delivery node corresponds to the delivery of some order. The first node of a route is associated with the orders carried by the

vehicle, i.e., those orders already picked up but not yet delivered, and the last node marks the end of the route. We refer to Fig. 5 for
7

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Fig. 5. Example for a route. The first and the last node is indicated with black and white rectangles, respectively. Each internal node represents

a pickup or delivery, depicted with black or white circles, respectively. Above each pickup/delivery node the order, and below it the factory is

indicated.

an illustration. It depicts the route of the vehicle corresponding to the center pane of Fig. 4 . As we can see, the vehicle is on the way

to factory 𝑓3 to deliver the carried order 𝑜2 . After that, the vehicle picks up order 𝑜3 at factory 𝑓6 and order 𝑜4 at factory 𝑓4 , and then

delivers them in LIFO order to factory 𝑓5 .

A key gadget of our method is the insertion of an order into a route. Given a feasible route and some order 𝑜𝑖 not in the route,

the insertion of 𝑜𝑖 into the route means that first the pickup node 𝑜+
𝑖

is inserted between two nodes of the route and then the delivery

node 𝑜−
𝑖

is inserted between two nodes of the updated route. An insertion is feasible if 𝑜+
𝑖

precedes 𝑜−
𝑖

in the resulting route and the

LIFO as well as the capacity constraints are satisfied, and the destination factory does not change (cf. Appendix B).

The cost of a solution is calculated by (3) throughout this section. It can computed by the procedure outlined in Appendix E .

After these preliminaries, our method consists of two main steps:

1) Construction of an initial set of routes for the vehicles (Section 4.2.1).

2) Improvement by variable neighborhood search (Section 4.2.2).

4.2.1. Construction of the initial set of routes

Since the solution obtained in the previous epoch could be a good starting point for the current epoch, first we reconstruct and

update it. This involves removing delivery nodes associated with orders already fulfilled and pickups of orders that have already been

collected.

Then, new orders are inserted into the updated solution one-by-one. First, the orders are divided into the sets of urgent and

non-urgent orders, respectively. The classification is based on the estimated delay of an order 𝑜𝑖 ∈ 𝜔̃𝑘 :

𝑒𝑑𝑘,𝑖 =
(
𝑡𝑑
𝑖
− 𝜏𝑘

)
−
(
ℎdocking + ℎ

𝑝

𝑖
+ travel (𝑓𝑝

𝑖
, 𝑓𝑑
𝑖
)
)
.

The first term represents the remaining time to deliver order 𝑜𝑖 without delay, while the second term expresses the minimum time

needed to deliver order 𝑜𝑖 . Let 𝑘 = { 𝑜𝑖 ∈ 𝜔̃𝑘 ∶ 𝑒𝑑𝑘,𝑖 ≤ 𝑈} be the set of urgent orders, and  𝑘 = 𝜔̃ ⧵ the set of non-urgent ones,

where 𝑈 is a parameter of the algorithm.

First, the order in 𝑘 are inserted into the routes of the vehicles, then those in  𝑘 . When processing the orders in either category,

orders are grouped by pickup factories, and if two or more orders have the same pickup factory, then priority is given to those order

with a larger estimated delay. For each order 𝑜𝑖 ∈ 𝑘 ∪ 𝑘 the best feasible insertion is sought. That is, 𝑜𝑖 is inserted in all feasible

ways into the route of each vehicle in turn, and the insertion incurring the least cost increase is chosen.

4.2.2. Variable neighborhood search

In the following, we propose a method based on VNS to improve the initial set of routes. We commence by defining the neighbor-

hood operators to be used within our VNS procedure.

The neighborhood operators rely on the notion of blocks and bridges that we define next. A block is a subsequence of consecutive

nodes in a vehicle route such that the first and the last node refer to the pickup and the delivery of the same order, respectively. Refer

to Fig. 6 for an illustration. Since orders 𝑜1 and 𝑜2 are already loaded on the vehicle, no pickup nodes, and thus no blocks correspond

to these orders.

A bridge of a route is a subsequence of consecutive pickup nodes (𝓁1 , … , 𝓁𝑘) , all belonging the the same factory, and a subsequence

of consecutive delivery nodes (𝑟𝑘 , … , 𝑟1) , all delivered to the same factory, where 𝓁𝑗 and 𝑟𝑗 are the pickup and the delivery node of the

same order, respectively, for 𝑗 = 1 , … , 𝑘 . An example is depicted in Fig. 7 . A bridge
(
(𝓁1 , … , 𝓁𝑘) , (𝑟𝑘 , … , 𝑟1)

)
is maximal , if there is no

bridge containing it properly. That is, neither
(
(pred (𝓁1) , 𝓁1 , … , 𝓁𝑘) , (𝑟𝑘 , … , 𝑟1 , succ (𝑟1)

)
nor

(
(𝓁1 , … , 𝓁𝑘 , succ (𝓁𝑘) , (pred (𝑟𝑘) , 𝑟𝑘 , … , 𝑟1)

)
constitutes a bridge, where pred (𝑛) and succ (𝑛) denote the immediate predecessor and the immediate successor of node 𝑛 in the route,

respectively.
Fig. 6. A route with blocks indicated by dashed lines.

8

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Fig. 7. Example for a (maximal) bridge. Left and right sequences of the bridge are framed by rectangles.

Fig. 8. Example for schedule operations. Crossed/dotted arrows refer to old/new links.

(

(i

A neighborhood operator perturbs a solution slightly and provides a modified solution. The following neighborhood operators will

be applied to the solutions:

(i) The relocate-block operator selects a vehicle route and a block in the route, and relocates it to another position in the same or in

another route (cf. Fig. 8 a).

ii) The block-exchange operator selects two disjoint blocks from the same or from distinct vehicle routes, and exchanges them as

depicted in Fig. 8 b.

ii) The relocate-bridge operator selects a maximal bridge from a vehicle route and moves it into another position of the same route

or to a different route as shown in Fig. 8 c.

When applying an operator, the new position for a block or bridge is always chosen in such a manner that the resulting solution

satisfies the LIFO constraint. However, if any other constraint is violated, the solution is dropped and the operator fails.
9

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Our VNS procedure, depicted in Algorithm 1, receives an initial feasible solution and tries to improve it repeatedly by applying

the neighborhood operators. Throughout the algorithm, 𝑆 denotes the current solution. The termination condition can be a time

limit, or the number of iterations of the procedure. Solutions are compared based on their cost computed by the reward function (3) .

The neighborhood operators are applied exhaustively, i.e., they are applied in all possible ways to find the best neighboring solution.

For instance, in case of the relocate-bridge operator, when seeking the best neighbor of 𝑆, in each route all maximal bridges are

identified, and they are reinserted in the same or in a different route in all possible ways, and then the insertion producing the least

cost feasible solution is chosen. If an operator cannot be applied, or fails to produce any feasible neighbor, then we assume that 𝑆′

has a larger cost than 𝑆 and proceed accordingly. Since only improvement of the current solution is allowed, cycling cannot occur,

and the procedure terminates in a local minimum.

5. Computational experiments

In this section, we present the results our computational experiments. In Section 5.1 , we describe our case study. In Section 5.2 , we

introduce the benchmark dataset. In Section 5.3 , we tune the objective multipliers to get an efficient solution approach. We compare

our best approach to other methods in Section 5.4 . We present our sensitivity analysis in Section 5.5 . Finally, we provide some key

insights in Section 5.6 .

Setup . All our experiments were performed on a workstation with an Intel Core i9-7960X 2.80 GHz CPU with 16 cores, under

Debian 9 operating system using a single thread. Due to the 4 h time-window for the orders (see Section 5.2), we used parameter

𝑈 = 3600 when urgent and non-urgent orders are determined for initial solution. Since each epoch is 10 min long, we applied a time

limit of 9 min in our variable neighborhood search.

5.1. Case study: the dynamic pickup and delivery problem challenge

We consider The Dynamic Pickup and Delivery Problem challenge as a case study (Hao et al., 2022). This challenge was organized as

a competition of the International Conference on Automated Planning and Scheduling (ICAPS) in 2021 with 152 participating teams.

The best three teams (i.e., the teams whose algorithms achieved the smallest scores on a hidden dataset) presented their solution

approaches in the conference and the challenge generated a series of papers in the scientific literature in the recent years.

The gold medal team, Zhu et al. (2021) proposed an RO method for the problem, where a variable neighborhood search was

used to optimize the states with the currently known orders. In each epoch, the authors reconstructed the solution from the pre-

vious period, and dispatched new orders with a cheapest insertion heuristics. Four local search operators (couple-exchange, block-

exchange, relocate-block, and multi-relocate) were used in a variable neighborhood search together with a disturbance operator to

perturb solutions. Since then, the team published their results in (Cai et al., 2022a). The silver medal team, Ye and Liang (2021) de-

veloped an RO method for the problem, where a rule-based procedure was applied to dispatch orders. The bronze-medal team,

Horváth et al. (2021) proposed a CFA method for the problem, where a local search-based approach was used to solve the problem

with a perturbed objective function. In each epoch, the authors inserted non-dispatched orders into the solution with a cheapest in-

sertion heuristic. Three local search operators (block-exchange, relocate-block, and a custom made) were used to improve solutions.

An extra cost term was introduced to penalize if a factory is visited by too many vehicles, thereby reducing the chance of waiting for

free docking ports.

Cai et al. (2022b) propose an RO method for the DPDP, where a reference point-based multi-objective evolutionary algorithm is

used to solve the states. Four local search operators are used in a variable neighborhood search to improve solutions as in (Cai et al.,

2022a). The authors compare their solution approach to the algorithms of the podium teams. For the comparison, the authors use the

benchmark dataset with the exception of the largest instances. Recently, Cai et al. (2023) provide a review of the dynamic pickup and

delivery problem literature covering the last two decades. As a case study, the authors provide the comparison of Cai et al. (2022b) on

the full benchmark dataset.

Du et al. (2023) propose an RO method for the DPDP with a hierarchical optimization approach. The authors are the first to model

the problem as an SDP. They apply several order dispatching strategies to assign orders to vehicles. A buffering pool is also used to

postpone the assignment of some non-urgent requests. A local search operator is introduced to improve the solution. The authors

compare their solution approach to a greedy baseline strategy, and to the silver-winning algorithm of Ye and Liang (2021) (which was

falsely claimed to be the best algorithm of the competition). For the comparison, the authors use only a selection of the benchmark

dataset, but also generated new problem instances.

5.2. Instances

We use the publicly available dataset of the ICAPS 2021 DPDP competition (Hao et al., 2022). This dataset consists of 64 instances

based on 30 days of historical data of Huawei. These instances contain 50-4000 orders of a single day to be satisfied with 5-100

vehicles, see Table 1 . In the following, we briefly describe the public instances, while for detailed description we refer to (Hao et al.,

2022).

In case of all instances, there are 4 h to complete an order on time, that is, for each order 𝑜𝑖 ∈  we have 𝑡𝑑
𝑖
− 𝑡

𝑝

𝑖
= 14 400 s. Each

order is given as a set of order items , where each item is either a box , a small pallet , or a standard pallet , with quantity of 0.25, 0.5,

and 1 unit, respectively, while the uniform capacity limit of the vehicles is 15 units. Loading or unloading a box, a small pallet,

and a standard pallet takes 15, 30, and 60 s, respectively. The underlying network is the same for all instances and consists of 153
10

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Table 1

Basic properties of the benchmark dataset.

Group Instances Orders Vehicles

1 1–8 50 5

2 9–16 100 5

3 17–24 300 20

4 25–32 500 20

5 33–40 1000 50

6 41–48 2000 50

7 49–56 3000 100

8 57–64 4000 100

factories, where each factory has 6 docking ports. Docking to a port takes half an hour (i.e., ℎdocking = 1800 s). Finally, 𝜆1 = 1∕ 𝑛 and

𝜆2 = 10 000∕3600 ≈ 2 . 78 in the objective function (2) , that is, a cost of 10000 monetary units must be paid for every hour of delay.

Note that the total size of the items of an order may exceed the uniform capacity of the vehicles. In this and only this case, the

order items can be transported separately. The completion time of such an order is the latest completion time of its order items. For

such big orders, we arranged items in a non-increasing size order, then we applied a first fit procedure to divide items into separate

orders. By this, we got the same problem as proposed earlier, with the tiny difference that the tardiness has to be calculated differently

for split orders.

Evaluation by simulation . The organizers of the ICAPS 2021 DPDP competition also provided a simulator, implemented in Python

programming language, to support the dynamic evaluation of the vehicle routing algorithms. The simulator essentially follows the

sequential decision procedure described in Section 3.1 . It mimics the movement, loading and unloading of the vehicles with suffi-

cient accuracy for decision making. The operating horizon is divided into 10-minutes long epochs. At the beginning of each epoch,

the simulator recomputes the state of each vehicle and transportation request. Then, it invokes the vehicle routing algorithm. The

algorithm receives the status information, and updates the routes of the vehicles. After termination, it has to return a set of vehicle

routes to the simulator, which uses them in the next epoch for computing the vehicles’ states. The final output of the simulator is the

score of the dispatching algorithm on the given instance. For details, we refer to (Hao et al., 2022).

Real-time decision support . The simulator can be replaced by a decision support system for dispatching a fleet of vehicles in the

real-world. The status information of the vehicles and that of the transportation requests can be easily maintained using modern IT

technology. The periodic invocation of vehicle routing algorithms is a routine exercise, and combined with proper visualization, it

can be a very effective decision support tool.

5.3. Evaluation of the cost function approximation method

In the following, we evaluate our method with different 𝜆3 and 𝜆4 parameters with the aim of finding the best settings.

5.3.1. Significance of penalizing the waiting times

In these experiments, we suppressed the fourth term in the objective function (3) . That is, we ran our method with objective

function coefficients 𝜆1 = 1∕ 𝑛 , 𝜆2 = 2 . 78 , 𝜆4 = 0 , and 𝜆3 chosen from {0 . 0 , 0 . 25 × 𝜆2 , 0 . 5 × 𝜆2 , 0 . 75 × 𝜆2 } . The average scores for each

group, and for all instances are indicated in Table 2 , while detailed results can be found in the supplementary data.

Clearly, penalizing waiting times has no impact on the first two groups, since the number of docking ports is greater than the

number of vehicles, and thus no waiting occurs. On instances with 20 and 50 vehicles (Groups 3–6), the differences are negligible.

However, in case of 100 vehicles (Groups 7-8), penalizing idle times significantly reduced the average score. On the largest group,

the average improvement is 60–62%.

Now we analyze in more detail the impact of penalizing waiting times on problem instance_61 which has 4000 orders and

100 vehicles. The instance is depicted in Fig. 9 using the spring layout. The nodes represent factories, and the edges pickup and
Table 2

Evaluation of penalizing waiting times.

Multiplier for waiting times (𝜆3)

Group 0 × 𝜆2 0 . 25 × 𝜆2 0 . 5 × 𝜆2 0 . 75 × 𝜆2

1 1 307.5 1 307.5 1 307.5 1 307.5

2 31 707.6 31 707.6 31 707.6 31 707.6

3 690.0 690.0 690.0 690.0

4 6 750.9 6 750.5 6 750.5 6 750.5

5 11 597.1 11 225.6 11 225.6 11 225.6

6 49 011.9 53 183.2 54 091.5 49 841.4

7 1 076 526.1 590 379.6 738 200.9 769 756.1

8 11 605 754.6 4 696 315.2 4 618 058.6 4 412 835.5

average: 1 597 918.2 673 944.9 682 754.0 660 514.3

11

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Fig. 9. Instance_61 depicted in spring layout, where the edge weights are determined by the number of orders between the pairs of factories

represented by the nodes.

Fig. 10. Total waiting times at selected factories of instance_61 .

delivery requests between pairs of nodes. The edge lengths are inversely proportional to the number of pickup and delivery requests

between their endpoints. This means that the more is the number of pickup and delivery requests between a pair of nodes, the shorter

is the edge connecting them. As we can see, there is a dozen of factories with a lot of requests among them, and there are a number

of ”satellite ” factories around connected to the center with much less transportation requests. We can also observe a triangle on the

right not connected to any other factories.

We run the rolling horizon approach (RO), and the cost-function approximation approach (CFA) on this instance, where RO uses

the original reward function (1) , and CFA uses the perturbed reward function (3) with 𝜆3 = 0 . 75 × 𝜆2 when solving the vehicle routing

problem at each epoch. The largest waiting times occur at the factories colored gray in Fig. 9 . The total waiting times at these factories

are depicted in the bar chart in Fig. 10 . As we can see, the CFA drastically decreases the waiting times.

A further way to compare the solutions of the RO and the CFA method is who the total number of waiting time and the committed

time of the vehicles change over time. The committed time of a vehicle at an update time point is the length of the time interval that

the next decision will no longer affect. For example, if vehicle 𝑣 is at a location at update time 𝜏𝑘 , then the vehicle is committed until

its earliest departure time 𝑡𝑑curr
𝑘,𝑣

, i.e., the committed time is 𝑡𝑑curr
𝑘,𝑣

− 𝜏𝑘 . If the vehicle is on the way, then it is committed until the end

of its service at the destination factory, that is, its committed time is 𝑡𝑑1
𝑘,𝑣

− 𝜏𝑘 . In Fig., we depict for each update point the number

of those vehicles that are currently waiting at a location for a free docking port, and the average committed time of the vehicles,

respectively. Both indicators are suitable for measuring the flexibility of routes.

In Fig. 11 a, we can see that without explicitly penalizing the waiting times, there is a long, namely a 45-epoch (7.5 h) period,

when the number of waiting vehicles is between 34 and 48. That is, on one third of the planning horizon, 30 to 50% of the vehicles

are waiting. When the waiting times are penalized in the reward function, the number of waiting vehicles decreases significantly,

namely, never exceeds 10.

The inflexibility of routes in the myopic approach is even more noticeable in the other figure. According to Fig. 11 b, in some cases

the average committed time of the vehicles is more than one and a half hours. There are vehicles which have to wait more than 6 h

for a free docking port. Consequently, if those vehicles came to that factory to pickup some orders, then those orders will be delivered

at least 2 h after their due date, inherently. Explicitly penalizing waiting times also significantly decreases the average committed

time, which never exceeds 46 min.
12

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Fig. 11. Number of waiting vehicles and average committed time obtained by the RO and by CFA method, respectively.

Table 3

Evaluation of penalizing idle vehicles.

Multiplier for idle vehicles (𝜆4)

Group 0 5 10

1 1 307.5 979.5 1 076.0

2 31 707.6 28 532.8 20 265.7

3 690.0 887.5 887.5

4 6 750.9 6 658.2 6 658.2

5 11 597.1 2 969.8 2 969.8

6 49 011.9 21 919.9 21 919.9

7 1 076 526.1 4 856 878.2 4 909 406.0

8 11 605 754.6 15 046 689.2 15 046 689.2

average: 1 597 918.2 2 495 689.4 2 501 234.0

5.3.2. Penalizing the idle vehicles

We ran our method with objective function 1∕ 𝑛 × 𝐟1 + 𝜆2 × 𝐟2 + 𝜆4 × 𝐟4 for all instances. The multiplier 𝜆4 for the number of idle

vehicles was chosen from {0 , 5 , 10} . The average scores for each group, and for all instances are indicated in Table 3 , while detailed

results can be found in the supplementary data.

In contrast to the previous experiments, penalizing idle times has a bad impact on the largest instances (Groups 7-8) but can

improve other ones. The average improvement on instances with 5 vehicles (Groups 1-2) is 10-36%, and on instances with 50

vehicles (Groups 5-6) is 55-74%.

5.3.3. Parameter tuning

As we can see, the introduced two penalty terms behave differently on the groups. We tested our algorithm for each pair (𝜆3 , 𝜆4)
of parameters from the set {0 , 0 . 25 × 𝜆2 , 0 . 5 × 𝜆2 , 0 . 75 × 𝜆2 } × {0 , 5 , 10} . Summarized results are indicated in Table 4 , while detailed

results can be found in the supplementary data. We obtained the best results (in the sense of total average score) with parameters

𝜆3 = 0 . 5 × 𝜆2 and 𝜆4 = 10 .
Note that since the number of vehicles is part of the input, we could use different parameter settings for the different groups.

However, we do not take advantage of this opportunity in the following, but use the same parameters for all groups.
Table 4

Averages scores for different (𝜆3 , 𝜆4) parameter pairs.

𝜆3 ∖ 𝜆4 0 5 10

0 × 𝜆2 1 597 918.2 2 495 689.4 2 501 234.0

0 . 25 × 𝜆2 673 944.9 688 973.7 693 949.2

0 . 5 × 𝜆2 682 754.0 644 685.2 643 520.0

0 . 75 × 𝜆2 660 514.3 656 553.3 659 295.8

13

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Table 5

Comparison of the solution approaches on the benchmark dataset. Best average scores are in bold.

Group CFA-VNS Gold Silver Bronze VNSME MOEA/D-ES

1 1 076.0 2 896.4 13 676.2 1 763.8 1 036.8 1 024.2

2 20 265.7 41 535.3 599 932.8 62 180.2 36 765.0 14 182.4

3 888.4 5 860.4 2 310.7 8 969.7 691.9 686.0

4 7 456.1 6 544.5 105 049.4 26 938.3 7 909.1 5 489.9

5 3 159.2 10 459.1 17 284.3 94 794.8 10 541.2 9 673.9

6 16 178.2 41 494.3 153 419.1 651 945.0 42 375.0 25 362.5

7 632 913.0 798 240.7 904 586.3 1 941 385.3 988 012.5 787 050.0

8 4 466 223.7 11 359 466.4 18 678 529.1 15 122 816.2 10 337 500.0 10 260 000.0

average 643 520.0 1 533 312.1 2 559 348.5 2 238 849.2 1 428 104.0 1 387 933.6

Gold, Silver, Bronze: Public algorithms of the ICAPS 2021 DPDP Competition VNSME: (Cai et al., 2022a)

MOEA/D-ES: (Cai et al., 2022b; 2023)

Fig. 12. Average scores on smaller instances are scaled to the solution approach MOEA/D-ES of Cai et al. (2022b, 2023) .

5.4. Comparison of existing methods

In the following, we compare our method to the existing solution approaches. In Table 5 , we indicate the average group scores

of our best method (CFA-VNS), the algorithms of the podium teams of the DPDP competition (Gold, Silver , and Bronze), the variable

neighborhood search of Cai et al. (2022a) (VNSME), and the multi-objective evolutionary method of Cai et al. (2022b, 2023) (MOEA/D-

ES). For better understanding, we depict the scaled average scores of the best performing methods in Figs. 12 and 13 . The first four

algorithms (CFA-VNS, Gold, Silver, and Bronze) were tested in the same environment, since the algorithms of the podium teams are

publicly available. Note that the available algorithm of Ye and Liang (2021) failed on seven instances of Group 2 due to a technical

constraint of the simulator, thus the results for those instances are obtained by turning off that constraint. Note that methods Gold

and VNSME are the same, but the values corresponding to VNSME are obtained from the results in (Cai et al., 2022a). Method

VNSME was executed on a workstation with an Intel Core i5-9500 3.00 GHz CPU with 4 cores, under Ubuntu 18.04 LTS operating

system. According to CPU benchmarks 2 , the single thread rating is 2499 for our processor, and 2571 for the other one. The running

environment of method MOEA/D-ES is unknown, the corresponding values are obtained from the results in (Cai et al., 2023).

Methods CFA-VNS and MOEA/D-ES outperform the other solution approaches on this benchmark dataset. On the smaller instances

(Groups 1-4), MOEA/D-ES turned out to be the best performing approach as it obtained 5-30% better average scores on the small

instances than CFA-VNS. See Fig. 12 , where we depict the average scores scaled to MOEA/D-ES. In contrast, on the larger instances

(Groups 5-8), our approach was the best as it achieved 20-67% better average scores on the larger instances. See Fig. 13 , where the

average scores are scaled to CFA-VNS. The average improvement of CFA-VNS on the full dataset over the second-best method is 54%.

Du et al. (2023) provide quantitative results for a selection of 9 instances from the ICAPS 2021 DPDP competition. Moreover,

they compare their results to that of Ye and Liang (2021) , the silver-winning team of the competition. In Table 6 we indicate the

scores for these selected instances of our best method (CFA-VNS), and the hierarchical method of Du et al. (2023) (Hierarchical). For

the sake of completeness, we also indicate the scores for the variable neighborhood search of Cai et al. (2022a) (VNSME), and the

multi-objective evolutionary method of Cai et al. (2022b, 2023) (MOEA/D-ES). Note that the results in the latter papers are provided
2 https://www.cpubenchmark.net .

14

https://www.cpubenchmark.net

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Fig. 13. Average scores on larger instances are scaled to our solution approach CFA-VNS.

Table 6

Comparison of the solution approaches on Du et al. ’s selection.

Instance CFA-VNS VNSME a MOEA/D-ES a Hierarchical

38 3 793.1 15 000.0 14 200.0 28 121.0

39 5 962.1 14 900.0 17 400.0 24 013.0

40 7 049.6 10 200.0 13 100.0 23 338.0

41 7 939.8 29 300.0 28 300.0 126 292.0

44 34 649.0 77 800.0 36 200.0 185 288.0

45 10 244.7 36 300.0 22 800.0 185 909.0

49 788 852.0 1 580 000.0 630 000.0 1 082 139.0

54 621 130.3 2 070 000.0 1 630 000.0 1 619 514.0

55 530 422.7 323 000.0 1 000 000.0 678 125.0

a VNSME: (Cai et al., 2022a) MOEA/D-ES: (Cai et al., 2022b; 2023)

Hierarchical: (Du et al., 2023) values were provided in 2-decimal ex-

ponential format (i.e., 𝐸 + 𝑛)

in a 2-decimal exponential format (e.g., 1.42E+4), thus the values indicated in Table 6 for these methods are approximated values.

We can see that CFA-VNS produced better scores on 8 out of 9 instances than VNSME and MOEA/D-ES, respectively. The difference

compared to Hierarchical is even greater, as CFA-VNS gave 22-94% better results.

Also note that Du et al. (2023) generated 8 new instances with 50 orders and 5 vehicles, and 8 new instances with 2000 orders and

50 vehicles. The authors also make comparisons on this new dataset, however, they do not provide any numerical results. Only bar

charts are given, from which it is difficult to read even approximate values. Since we could not get access to more detailed numerical

results so far, we cannot provide comparison with our solution approach on this dataset.

5.5. Sensitivity analysis

We performed some tests to assess the sensitivity of our method to the run-time limit as well as to the perturbation of the data. As

we mentioned, due to the length of the decision epochs (10 min), we apply a 9-minute run-time limit in our variable neighborhood

search. Therefore, it may occur that during distinct runs the method terminates with different solutions in a decision epoch, which

may influence the subsequent epochs and thus on the final solution. In consequence, our method is not deterministic in the sense that

distinct runs may result distinct scores. Thus, we first investigated how deterministic our method is in Section 5.5.1 .

In a different set of experiments, we perturbed the instances, and run our method on the modified inputs, the results are summarized

in Section 5.5.2 .

For these experiments, we chose 2-2 instances from the two largest groups, namely instances 49, 50, 61, and 62.

5.5.1. Impact of run-time limit

To check how deterministic our method is, we repeated the simulation 5 times for each instance. In all cases, we got the same

result in each of the 5 runs for the same instance. Therefore, we can state that the method is deterministic on the chosen instances,

and we expect the same behavior in most cases.
15

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Table 7

Sensitivity analysis: perturbed instances.

Instance 49 Instance 50 Instance 61 Instance 62

𝑝 = 0 1 038 609.4 828 236.4 3 499 727.4 3 717 233.1

𝑝 = 0 . 1 843 924.4 848 902.0 3 287 735.0 3 350 250.2

975 795.1 895 422.6 3 353 655.2 3 361 829.9

926 224.4 1 032 660.9 4 174 461.7 3 723 564.2

828 752.2 1 013 947.7 3 678 377.0 3 217 902.2

926 095.3 785 364.6 3 105 979.1 3 530 272.6

avg 900 158.3 915 259.6 3 520 041.6 3 436 763.8

std.dev 55 379.0 95 070.5 375 881.4 174 355.1

𝑝 = 0 . 25 1 037 437.1 745 218.8 3 188 694.0 3 579 119.2

979 367.0 828 345.0 3 333 017.3 3 138 076.2

909 484.3 892 606.9 3 818 538.0 3 625 110.4

997 086.7 1 040 584.6 3 267 811.5 3 759 841.7

891 435.3 783 811.6 3 514 348.2 3 668 758.5

avg 962 962.1 858 113.4 3 424 481.8 3 554 181.2

std.dev 54 692.0 103 573.8 224 438.6 216 434.9

𝑝 = 0 . 5 1 116 028.0 831 807.5 3 245 883.4 3 942 387.9

1 006 283.4 994 466.5 3 451 303.7 3 843 628.3

898 703.0 734 223.0 2 935 480.3 3 780 042.1

932 487.2 837 958.4 3 684 915.5 3 387 376.5

942 723.0 852 650.6 3 395 947.6 3 502 457.5

avg 979 244.9 850 221.2 3 342 706.1 3 691 178.5

std.dev 76 743.5 83 375.8 247 767.2 210 786.7

Fig. 14. Sensitivity analysis: perturbed instances. Average scores and minimum/maximum values.

We also examined how the run-time limit affects the quality of the final solutions. For each instance, we performed tests where

we set reduced run-time limit for the variables neighborhood search. We made tests with run-time limits of 3 and 6 min as well.

Surprisingly, we found that for each instance, we got again the same result in every run.

5.5.2. Perturbed instances

For each instance in the chosen dataset, we created 5 perturbed instances, where the release dates of the orders are shifted up

to 20 min. That is, each order 𝑜𝑖 is selected to be shifted with a given probability 𝑝 , and the new release date of the order is chosen

uniformly at random from the following set

{
max { 𝑡𝑝

𝑖
− 1200 , 0} , … ,min { 𝑡𝑝

𝑖
+ 1200 , 86 399}

}
,

where 0 and 86 399 refer to the beginning and the end of the day in seconds, respectively. The due dates are adjusted accordingly.

We performed experiments with 𝑝 = 0 . 1 , 𝑝 = 0 . 25 and 𝑝 = 0 . 5 .
The results are provided in Table 7 , where the final scores are indicated for the experiments, along with the average value (avg)

and the standard deviation (std.dev) for each instance. The first row with 𝑝 = 0 refers to the original, non-perturbed instances. We
16

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

also depict the result in Fig. 14 , where the bar plots refer to the average values, and the error intervals refer to the minimum and

maximum values.

The standard deviation compared to the average value is 5 . 1% − 10 . 7% for 𝑝 = 0 . 1 , 5 . 7% − 12 . 1% for 𝑝 = 0 . 25 , and 5 . 7% − 9 . 8% for

𝑝 = 0 . 5 . We think that these values are low, compared to how many orders can be shifted. For example, in case of 𝑝 = 0 . 5 , each order

is shifted with a probability of 0.5, nevertheless, the standard deviation is lower than 10% for each instance.

5.6. Key insights

Our computational results indicate that solving a dynamic vehicle routing problem necessitates a thorough analysis of both the

problem data and the resulting solutions. This process led us to introduce penalty terms into the objective function. We believe that

formulating the appropriate objective function is at least as important as the specific details of the optimization algorithm used to

solve these problems.

In the problem studied we introduced penalty terms for minimizing the waiting times of the vehicles at the facilities, and also

for minimizing the number of idle vehicles. While the former one is only effective if the docking capacity of some of the locations

is a bottleneck, the latter penalty is more effective if the number of vehicle is moderate (at most 50 in our benchmark instances),

while it is rather counterproductive when the number of vehicles is large (100 in our dataset). However, using the two penalty terms

simultaneously yielded better results than applying each one individually.

6. Conclusions

In this paper we investigated a dynamic pickup and delivery problem with docking constraints and the LIFO rule. We proposed a

cost function approximation (CFA) method for the problem, where we perturbed the objective function to make solutions flexible for

future changes. The main contribution of our method are the two penalty terms added to the cost function that penalize waiting for

service at the locations and also if the vehicles are idle. We proposed a variable neighborhood search with three LIFO-specific local

search operators to solve problems at the states with the perturbed objective function. As a case study, we evaluated our solution

procedure on the instances of the ICAPS 2021 DPDP competition. The computational experiments show that our method significantly

outperforms the other solution approaches on this dataset. The average improvement over the state-of-the-art on the full dataset is

more than 50%. Our method is especially good on the largest (and hardest) instances.

While no exploitable probabilistic information may be available in a single problem instance, statistical data about the distribution

of orders in time and space might be exploited even better than our current method does. This is an excellent subject for future research.

In an online setting with docking constraints, it seems difficult to handle hard time windows for the requests, which is a limitation

of our method.

Our method is easy to extend with other constraints, such as FIFO constraints instead of LIFO constraints, different vehicle capac-

ities, or travel times depending on the time of day. Such constraints frequently occur in practice, providing a wide application area

for the method proposed.

An emerging trend is the combined operation of trucks and drones, we refer to Wang and Sheu (2019) and Wandelt et al. (2023) .

In this topic several static and dynamic problems appear, e.g., the vertiport location problem for urban air mobility (UAM) systems

(Jin et al., 2024). The approach proposed in this paper may be further extended in this direction.

Declaration of competing interest

The authors declare that they had no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

CRediT authorship contribution statement

Markó Horváth: Writing – original draft, Software, Methodology, Formal analysis, Conceptualization. Tamás Kis: Writing – orig-

inal draft, Supervision, Methodology, Formal analysis, Conceptualization. Péter Györgyi: Validation, Methodology, Formal analysis,

Conceptualization.

Acknowledgments

This research has been supported by the TKP2021-NKTA-01 NRDIO grant on ”Research on cooperative production and logistics

systems to support a competitive and sustainable economy ”. Markó Horváth acknowledges the support of the János Bolyai Research

Scholarship.

Appendix A. Serving vehicles at factories

In this section we describe the method of serving the vehicles at a factory in detail. Recall that each factory has a given number

of docking ports for loading and unloading, and the vehicles are served in non-decreasing arrival time order, where ties are resolved

randomly.
17

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Given a factory with 𝑐 ports for loading and unloading the vehicles, and suppose the current time is 𝑡 . Let  = (𝑣1 , 𝑣2 , … , 𝑣𝑘) be

the reservation list consisting of those vehicles which are currently at the factory. Let 𝑡𝑑𝑖 be the earliest departure time of vehicle 𝑣𝑖 . 

is ordered in non-decreasing departure time order, that is, 𝑡𝑑𝑖 ≤ 𝑡𝑑𝑖 +1 for 1 ≤ 𝑖 ≤ 𝑘 − 1 . Suppose vehicle 𝑣𝑘 +1 arrives at the factory at

time 𝑡 . Finally, let 𝑠𝑡𝑘 +1 denote the service time of vehicle 𝑣𝑘 +1 , which is the sum of the dock approaching time, the unloading time

and the loading time.

If 𝑘 < 𝑐, the vehicle 𝑣𝑘 +1 immediately starts to approach a free port. The waiting time is zero, and the earliest departure time is

𝑡𝑑𝑘 +1 = 𝑡 + 𝑠𝑡𝑘 +1 . Otherwise, if 𝑘 ≥ 𝑐, then all ports are occupied, and the vehicle must wait until vehicles 𝑣1 , 𝑣2 , … , 𝑣𝑘 − 𝑐+1 finish, that

is, until time 𝑡𝑑𝑘 − 𝑐+1 . Thus, the waiting time is 𝑡𝑑𝑘 − 𝑐+1 − 𝑡 , and the earliest departure time is 𝑡𝑑𝑘 +1 = 𝑡𝑑𝑘 − 𝑐+1 + 𝑠𝑡𝑘 +1 . In both cases, the

vehicle is inserted into the appropriate position of the reservation list. When a vehicle finishes, it is removed from the list.

Example . In Fig. A.15 we depict a situation where four vehicles arrive at a factory with two docking ports. Vehicle 𝑣1 arrives

at the factory at time 𝑡1 and occupies a free docking port (𝑡𝑑1 = 𝑡6 ,  = (𝑣1)). Vehicle 𝑣2 arrives at time 𝑡2 and occupies the other

free port (𝑡𝑑2 = 𝑡5 ,  = (𝑣2 , 𝑣1)). Vehicle 𝑣3 arrives at time 𝑡3 , however, since both ports are in use (that is, currently vehicle 𝑣1 is

under unloading at the first port, and vehicle 𝑣2 approaches the other one), it has to wait until a port is freed at time 𝑡5 (𝑡𝑑3 = 𝑡7 ,

 = (𝑣2 , 𝑣1 , 𝑣3)). Vehicle 𝑣4 arrives at time 𝑡4 , however, both ports are in use, moreover, vehicle 𝑣3 is already allocated to the port

becoming free at time 𝑡5 , thus, it has to wait until time 𝑡6 , when loading is finished at the first port (𝑡𝑑4 = 𝑡8 ,  = (𝑣2 , 𝑣1 , 𝑣3 , 𝑣4)).

Fig. A.15. Example for vehicles arriving at a factory with two docking ports. White rectangles represent dock approaching, gray rectangles represent

unloading and loading orders, black rectangles represent waiting for ports to become free.

Appendix B. Feasibility of route plans in states

In this section we characterize feasible route plans in some state 𝑠𝑘 .

Orders . For a vehicle 𝑣 , let 𝑘,𝑣 be the set of those orders that are carried by the vehicle or picked up in its route plan 𝜃𝑘,𝑣 . That

is, 𝑘,𝑣 = 𝑘,𝑣 ∪
⋃𝓁𝑘,𝑣
𝑗=1 

𝑗

𝑘,𝑣
. These, and only these orders must be delivered by the vehicle in the route plan, that is,

𝓁𝑘,𝑣 ⋃
𝑗=1


𝑗

𝑘,𝑣
= 𝑘,𝑣 .

Moreover, the sets 
𝑗

𝑘,𝑣
, 

𝑗′

𝑘,𝑣
must be disjoint for 𝑗 ≠ 𝑗′, and 𝑘,𝑣 must be disjoint from

⋃𝓁𝑘,𝑣
𝑗=1 

𝑗

𝑘,𝑣
. Further on, 𝑘,𝑣 ∪

⋃𝓁𝑘,𝑣
𝑗=1 

𝑗

𝑘,𝑣
must be

disjoint from 𝑘,𝑤 ∪
⋃𝓁𝑘,𝑤
𝑗=1 

𝑗

𝑘,𝑤
for distinct vehicles 𝑣 ≠ 𝑤 . Clearly, orders must be picked up before their delivery, that is, if 𝑜𝑖 ∈ 

𝑗1
𝑘,𝑣

for some 𝑗1 , then 𝑜𝑖 ∈ 
𝑗2
𝑘,𝑣

for some 𝑗1 < 𝑗2 . Finally,
⋃𝓁𝑘,𝑣
𝑗=1 

𝑗

𝑘,𝑣
must be a subset of 𝜔̃𝑘 for each 𝑣 ∈  .

LIFO constraint . Let 𝑘,𝑣 be the concatenation of lists 𝑘,𝑣 , 
1
𝑘,𝑣

, 1
𝑘,𝑣

, …, 
𝓁𝑘,𝑣
𝑘,𝑣

, 
𝓁𝑘,𝑣
𝑘,𝑣

. Let pos (𝑜+
𝑖
) and pos (𝑜−

𝑖
) denote the position of

the first and the second (i.e., last) occurrence of order 𝑜𝑖 ∈ 𝑘,𝑣 in 𝑘,𝑣 , respectively. Then, route plan 𝜃𝑘,𝑣 satisfies the LIFO constraint,

if

pos (𝑜+
𝑖
) < pos (𝑜+

𝑗
) ⇒ pos (𝑜−

𝑖
) ≤ pos (𝑜+

𝑗
) ∨ pos (𝑜−

𝑗
) ≤ pos (𝑜−

𝑖
)

holds for all 𝑜𝑖 , 𝑜𝑗 ∈ 𝑘,𝑣 .

Capacity constraint . The route plan 𝜃𝑘,𝑣 satisfy the capacity constraint, if the total quantity of the loaded orders never exceeds the

vehicle’s capacity. That is,

∑
𝑜𝑖 ∈𝑘,𝑣

𝑞𝑖 +
𝓁 ∑
𝑗=1

⎛ ⎜ ⎜ ⎜ ⎝
∑

𝑜𝑖 ∈
𝑗

𝑘,𝑣

𝑞𝑖 −
∑

𝑜𝑖 ∈
𝑗

𝑘,𝑣

𝑞𝑖

⎞ ⎟ ⎟ ⎟ ⎠
≤ 𝑄

holds for all 𝓁 = 1 , … , 𝓁𝑘,𝑣 .
Fundamental routing constraints . The travel time between factories are fixed:

𝑡𝑎𝑗 − 𝑡𝑑𝑗−1 = travel (𝑓𝑗−1 , 𝑓𝑗) for all 𝑗 = 1 , … , 𝓁𝑣 .
𝑣 𝑣 𝑣 𝑣

18

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Let 𝜂
𝑗
𝑣 be the waiting time of the vehicle at the 𝑗th visited factory.

𝑡𝑎𝑗
𝑣
+ 𝜂𝑗

𝑣
+ ℎdocking +

∑
𝑜𝑘 ∈

𝑗
𝑣

ℎ𝑑
𝑘
+

∑
𝑜𝑘 ∈

𝑗
𝑣

ℎ
𝑝

𝑘
≤ 𝑡𝑑𝑗

𝑣

Appendix C. Transition

In the following, we formally describe the transition from state 𝑠𝑘 to state 𝑠𝑘 +1 according to action 𝑥𝑘 , postponed from Section 3.1.6 .

The various cases are summarized in Table C.8 , and explained in the following. Recall that 𝜃𝑖
𝑘,𝑣

refers to the 𝑖 th visit of vehicle 𝑣 in

its route plan belongs to state 𝑠𝑘 , and 𝜃𝑥,𝑖
𝑘,𝑣

refers to the 𝑖 th visit of the route plan belongs to action 𝑥𝑘 .

Table C.8

Transition from state 𝑠𝑘 into state 𝑠𝑘 +1 according to action 𝑥𝑘 .

state 𝑠𝑘 action 𝑥𝑘 state 𝑠𝑘 +1

Case 𝜙curr
𝑘,𝑣

𝜃1
𝑘,𝑣

𝜃
𝑥, 1
𝑘,𝑣

𝜃
𝑥, 2
𝑘,𝑣

𝜏𝑘 +1 𝜙curr
𝑘 +1 ,𝑣 𝜃1

𝑘 +1 ,𝑣

1 yes ⋆ ⋆ ⋆ 𝜏𝑘 +1 < 𝑡𝑑
curr
𝑘,𝑣

𝜙curr
𝑘,𝑣

𝜃1
𝑘,𝑣

2a yes ⋆ no no 𝑡𝑑curr
𝑘,𝑣

≤ 𝜏𝑘 +1 (𝑓 curr
𝑘,𝑣

, 𝜏𝑘 +1) no

2b yes ⋆ yes ⋆ 𝑡𝑑curr
𝑘,𝑣

≤ 𝜏𝑘 +1 no 𝜃
𝑥, 1
𝑘,𝑣

3 no yes yes ⋆ 𝜏𝑘 +1 < 𝑡𝑎
1
𝑘,𝑣

no 𝜃1
𝑘,𝑣

4 no yes yes ⋆ 𝑡𝑎1
𝑘,𝑣

≤ 𝜏𝑘 +1 (𝑓 1
𝑘,𝑣
, 𝑡𝑑1

𝑘,𝑣
) 𝜃

𝑥, 2
𝑘,𝑣

[⋆] could be ‘yes’ or ‘no’ (i.e., ‘given’ or ‘not given’). Recall that if 𝜃1
𝑘,𝑣

is

given, so is 𝜃𝑥, 1
𝑘,𝑣

with 𝑓 1
𝑘,𝑣

= 𝑓𝑥, 1
𝑘,𝑣

and 𝑡𝑎1
𝑘,𝑣

= 𝑡𝑎𝑥, 1
𝑘,𝑣

.

Case 1. The vehicle is not finished at its current factory . If the vehicle had a current factory and the associated earliest departure time

is later then the current update point, then the current factory remains the same as in the previous state, and the destination is the

one specified in the previous action, if any.

Case 2. The vehicle is finished at its current factory . Assume that the vehicle had a current factory and the associated earliest departure

time has passed. If the vehicle was not assigned a destination factory in the previous action (Case 2a), then the vehicle remains parked

at this factory, but will be immediately available. Otherwise (Case 2b), the vehicle is already on the way to its destination specified

in the last action.

Case 3. The vehicle is not reached its destination factory . If a vehicle was on the way to its destination factory, and did not reach it

in the last epoch, then the destination remains the same (however, the list of orders to pickup may be changed in the action).

Case 4. The vehicle has reached its destination factory . Assume that the vehicle was on the way to its destination factory, and reached

that in the last epoch. Then, that former destination becomes the current factory, and earliest departure time is also calculated. If the

vehicle was not assigned further factories to visit in the previous action, then the vehicle is not assigned a destination factory in the

current state. Otherwise, the first factory to visit becomes the next destination factory.

Carrying orders . In all cases 0
𝑘 +1 ,𝑣 = 0

𝑘,𝑣
, except in Case 4, when 0

𝑘 +1 ,𝑣 = (0
𝑘,𝑣

⧵1
𝑘,𝑣

) ∪ 1
𝑘,𝑣

, since the vehicle has reached its

destination, although loading and unloading may be in progress at time point 𝜏𝑘 +1 .

Appendix D. Feasibility of solutions

In the following, we formally define the feasibility of the route plans in a solution.

Orders . First of all, all orders must be dispatched in a solution. Let 𝑣 be the set of those orders which belong to (i.e., picked up

and delivered by) vehicle 𝑣 . Then, each order belongs to exactly one vehicle: ⋃
𝑣 ∈

𝑣 =  ,

with 𝑣 ∩ 𝑤 = ∅ for all 𝑣 ≠ 𝑤 . Also, each order is picked up and delivered only once:

𝑣 =
𝓁𝑣 ⋃
𝑗=1

𝑗
𝑣
=

𝓁𝑣 ⋃
𝑗=1

𝑗
𝑣
,

with 𝑖
𝑣
∩

𝑗
𝑣 = ∅ and  𝑖

𝑣
∩ 

𝑗
𝑣 = ∅ for all 𝑖 ≠ 𝑗.

Each order must be picked up before its delivery, that is, if 𝑜𝑖 ∈ 
𝑗1
𝑣 for some 𝑗1 , then 𝑜𝑖 ∈ 

𝑗2
𝑣 for some 𝑗1 < 𝑗2 .

LIFO constraint . Let 𝑣 be the concatenation of lists 1
𝑣
, 1

𝑣
, …, 

𝓁𝑣
𝑣 , 

𝓁𝑣
𝑣 . Let pos (𝑜+

𝑖
) and pos (𝑜−

𝑖
) denote the position of the first

and the second (i.e., last) occurrence of order 𝑜𝑖 ∈ 𝑣 in 𝑣 , respectively. Then, route plan 𝜃𝑣 satisfies the LIFO constraint, if

pos (𝑜+
𝑖
) < pos (𝑜+

𝑗
) ⇒ pos (𝑜−

𝑖
) ≤ pos (𝑜+

𝑗
) ∨ pos (𝑜−

𝑗
) ≤ pos (𝑜−

𝑖
)

holds for all 𝑜𝑖 , 𝑜𝑗 ∈ 𝑣 .
19

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Capacity constraint . The route plan 𝜃𝑣 satisfy the capacity constraint, if the total quantity of the orders carried by the vehicle never

exceeds its capacity. That is,

𝓁 ∑
𝑗=1

⎛ ⎜ ⎜ ⎝
∑
𝑜𝑖 ∈

𝑗
𝑣

𝑞𝑖 −
∑
𝑜𝑖 ∈

𝑗
𝑣

𝑞𝑖

⎞ ⎟ ⎟ ⎠ ≤ 𝑄

holds for all 𝓁 = 1 , … , 𝓁𝑣 .
Fundamental routing constraints . The travel time between factories are fixed:

𝑡𝑎𝑗
𝑣
− 𝑡𝑑𝑗−1

𝑣
= travel (𝑓𝑗−1

𝑣
, 𝑓𝑗
𝑣
) for all 𝑗 = 1 , … , 𝓁𝑣 .

Let 𝜂
𝑗
𝑣 be the waiting time of the vehicle at the 𝑗th visited factory.

𝑡𝑎𝑗
𝑣
+ 𝜂𝑗

𝑣
+ ℎdocking +

∑
𝑜𝑘 ∈

𝑗
𝑣

ℎ𝑑
𝑘
+

∑
𝑜𝑘 ∈

𝑗
𝑣

ℎ
𝑝

𝑘
≤ 𝑡𝑑𝑗

𝑣

Appendix E. Evaluation procedure

The purpose of the evaluation procedure is to compute the value of the cost functions (2) and (3) . To this end, the timing

information for the routes defined in Section 4.2 has to be computed. We apply a basic event-based simulation procedure. The

procedure maintains a priority queue (event queue) in order to process arrival and departure events. In addition, each factory is

associated with a reservation list containing vehicles that are currently at the factory, see Appendix A .

Step 1 (Initialization) . First, consider the vehicles with current factory. If the earliest departure time of a vehicle is in the future

(i.e., the vehicle is not finished yet at this factory), we insert the vehicle into the sorted reservation list of the factory. We also create a

departure event associated with the corresponding departure time. Then, for each vehicle without current factory, we create an arrival

event associated with the corresponding arrival time.

Step 2 (Processing events) . If the event queue is empty, we are done, and thus stop by returning the calculated objective function

value. Otherwise, we take out from the queue an event with the earliest associated time. Denote the corresponding factory with 𝑓𝑒 ,

and the associated time with 𝑡𝑒 . If this event is a departure event, we remove the corresponding vehicle from the reservation list of

the corresponding factory. Also, if the vehicle has a next factory to visit, say 𝑓𝑛 , we create and store an arrival event associated with

the arrival time 𝑡𝑒 + travel (𝑓𝑒 , 𝑓𝑛) . Otherwise, if the event taken out is an arrival event, then we calculate and store its contribution

to the cost function value, as defined in Section 3.1.7 . We also calculate the earliest departure time of the vehicle (see Appendix A),

and create a departure event associated with this time. We repeat this step.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.multra.2025.100194

References

Bekta ş, T., Repoussis, P.P., Tarantilis, C.D., 2014. Chapter 11: dynamic vehicle routing problems. In: Vehicle Routing: Problems, Methods, and Applications. SIAM,

pp. 299–347 .

Benavent, E., Landete, M., Mota, E., Tirado, G., 2015. The multiple vehicle pickup and delivery problem with LIFO constraints. Eur. J. Oper. Res. 243 (3), 752–762 .

Bent, R.W., Van Hentenryck, P., 2004. Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper. Res. 52 (6), 977–987 .

Berbeglia, G., Cordeau, J.-F., Laporte, G., 2010. Dynamic pickup and delivery problems. Eur. J. Oper. Res. 202 (1), 8–15 .

Cai, J., Zhu, Q., Lin, Q., 2022. Variable neighborhood search for a new practical dynamic pickup and delivery problem. Swarm Evol. Comput. 75, 101182 .

Cai, J., Zhu, Q., Lin, Q., Li, J., Chen, J., Ming, Z., 2022. An efficient multi-objective evolutionary algorithm for a practical dynamic pickup and delivery problem. In:

International Conference on Intelligent Computing. Springer, pp. 27–40 .

Cai, J., Zhu, Q., Lin, Q., Ma, L., Li, J., Ming, Z., 2023. A survey of dynamic pickup and delivery problems. Neurocomputing, 126631 .

Carrabs, F., Cordeau, J.-F., Laporte, G., 2007. Variable neighborhood search for the pickup and delivery traveling salesman problem with LIFO loading. INFORMS J.

Comput. 19 (4), 618–632 .

Chen, L., Wandelt, S., Dai, W., Sun, X., 2022. Scalable vertiport hub location selection for air taxi operations in a metropolitan region. INFORMS J. Comput. 34 (2),

834–856 .

Cordeau, J.-F., Iori, M., Laporte, G., Salazar González, J.J., 2010. A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with LIFO

loading. Networks 55 (1), 46–59 .

Dabia, S., Ropke, S., Van Woensel, T., 2019. Cover inequalities for a vehicle routing problem with time windows and shifts. Transp. Sci. 53 (5), 1354–1371 .

Dayarian, I., Savelsbergh, M., 2020. Crowdshipping and same-day delivery: employing in-store customers to deliver online orders. Prod. Oper. Manag. 29 (9),

2153–2174 .

Dong, H., Zhuang, W., Ding, H., Zhou, Q., Wang, Y., Xu, L., Yin, G., 2022. Event-driven energy-efficient driving control in urban traffic for connected electric vehicles.

IEEE Trans. Transp.Electrif. 9 (1), 99–113 .

Du, J., Zhang, Z., Wang, X., Lau, H.C., 2023. A hierarchical optimization approach for dynamic pickup and delivery problem with LIFO constraints. Transp. Res. Part

E Logist.Transp. Rev. 175, 103131 .

Fonseca-Galindo, J.C., de Castro Surita, G., Neto, J.M., de Castro, C.L., Lemos, A.P., 2022. A multi-agent system for solving the dynamic capacitated vehicle routing

problem with stochastic customers using trajectory data mining. Expert Syst. Appl. 195, 116602 .

Gendreau, M., Guertin, F., Potvin, J.-Y., Taillard, E., 1999. Parallel tabu search for real-time vehicle routing and dispatching. Transp. Sci. 33 (4), 381–390 .

Ghiani, G., Manni, A., Manni, E., 2022. A scalable anticipatory policy for the dynamic pickup and delivery problem. Comput.Oper. Res. 147, 105943 .

Gromicho, J., Van Hoorn, J.J., Schutten, J.M., et al., 2012. Vehicle Routing with Restricted Loading Capacities. Technical Report. Technische Universiteit Eindhoven .

Györgyi, P., Kis, T., 2019. A probabilistic approach to pickup and delivery problems with time window uncertainty. Eur. J. Oper. Res. 274 (3), 909–923 .

Hansen, P., Mladenovi ć, N., Brimberg, J., Pérez, J.A.M., 2019. Variable Neighborhood Search. Springer .
20

https://doi.org/10.1016/j.multra.2025.100194
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0001
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0002
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0003
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0004
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0005
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0006
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0007
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0008
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0009
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0010
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0011
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0012
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0013
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0014
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0015
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0016
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0017
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0018
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0019
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0020

M. Horváth, T. Kis and P. Györgyi Multimodal Transportation 4 (2025) 100194

Hao, J., Lu, J., Li, X., Tong, X., Xiang, X., Yuan, M., Zhuo, H. H., 2022. Introduction to the dynamic pickup and delivery problem benchmark – ICAPS 2021 competition.

2202.01256.

Hempsch, C., Irnich, S., 2008. Vehicle routing problems with inter-tour resource constraints. In: The Vehicle Routing problem: Latest Advances and New Challenges.

Springer, pp. 421–444 .

Hildebrandt, F.D., Thomas, B.W., Ulmer, M.W., 2023. Opportunities for reinforcement learning in stochastic dynamic vehicle routing. Comput.Oper. Res. 150, 106071 .

Horváth, M., Kis, T., Györgyi, P., 2021. Solution approach of the Quickest Route Team for solving the ”ICAPS 2021: The Dynamic Pickup and Delivery Problem ”

challenge by Huawei. https://competition.huaweicloud.com/information/1000041411/Winning .

Hvattum, L.M., Løkketangen, A., Laporte, G., 2006. Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transp. Sci.

40 (4), 421–438 .

Ichoua, S., Gendreau, M., Potvin, J.-Y., 2000. Diversion issues in real-time vehicle dispatching. Transp. Sci. 34 (4), 426–438 .

Jin, Z., Ng, K.K.H., Zhang, C., 2024. Robust optimisation for vertiport location problem considering travel mode choice behaviour in urban air mobility systems. J.

Air Transp. Res. Soc. 2, 100006 .

Lin, C., Choy, K.L., Ho, G.T.S., Lam, H.Y., Pang, G.K.H., Chin, K.-S., 2014. A decision support system for optimizing dynamic courier routing operations. Expert Syst.

Appl. 41 (15), 6917–6933 .

Liu, Y., Roberto, B., Zhou, J., Yu, Y., Zhang, Y., Sun, W., 2023. Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent

green vehicle routing problem with time windows. Eur. J. Oper. Res. 310 (1), 133–155 .

Mitrovi ć-Mini ć, S., Krishnamurti, R., Laporte, G., 2004. Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transp.

Res. Part B Methodol. 38 (8), 669–685 .

Mladenovi ć, N., Hansen, P., 1997. Variable neighborhood search. Comput.Oper. Res. 24 (11), 1097–1100 .

Pahwa, A., Jaller, M., 2024. Evaluating private and system-wide impacts of freight eco-routing. Transp. Res. Part D Transp.Environ. 130, 104170 .

Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L., 2013. A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225 (1), 1–11 .

Powell, W.B., 2011. Approximate Dynamic Programming: Solving the Curses of Dimensionality, 2nd ed. John Wiley & Sons .

Psaraftis, H.N., 1980. A dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transp. Sci. 14 (2), 130–154 .

Psaraftis, H.N., Wen, M., Kontovas, C.A., 2016. Dynamic vehicle routing problems: three decades and counting. Networks 67 (1), 3–31 .

Riley, C., Legrain, A., Van Hentenryck, P., 2019. Column generation for real-time ride-sharing operations. In: Integration of Constraint Programming, Artificial

Intelligence, and Operations Research: 16th International Conference, CPAIOR 2019, Thessaloniki, Greece, June 4–7, 2019, Proceedings 16. Springer, pp. 472–487 .

Riley, C., Van Hentenryck, P., Yuan, E., 2020. Real-time dispatching of large-scale ride-sharing systems: integrating optimization, machine learning, and model

predictive control. arXiv preprint arXiv:2003.10942.

Rios, B.H.O., Xavier, E.C., Miyazawa, F.K., Amorim, P., Curcio, E., Santos, M.J.a., 2021. Recent dynamic vehicle routing problems: a survey. Comput. Ind. Eng. 160,

107604 .

Savelsbergh, M.W.P., Sol, M., 1995. The general pickup and delivery problem. Transp. Sci. 29 (1), 17–29 .

Soeffker, N., Ulmer, M.W., Mattfeld, D.C., 2022. Stochastic dynamic vehicle routing in the light of prescriptive analytics: a review. Eur. J. Oper. Res. 298 (3), 801–820 .

Srour, F.J., Agatz, N., Oppen, J., 2018. Strategies for handling temporal uncertainty in pickup and delivery problems with time windows. Transp. Sci. 52 (1), 3–19 .

Ulmer, M., Nowak, M., Mattfeld, D., Kaminski, B., 2020. Binary driver-customer familiarity in service routing. Eur. J. Oper. Res. 286 (2), 477–493 .

Ulmer, M.W., Soeffker, N., Mattfeld, D.C., 2018. Value function approximation for dynamic multi-period vehicle routing. Eur. J. Oper. Res. 269 (3), 883–899 .

Ulmer, M.W., Streng, S., 2019. Same-day delivery with pickup stations and autonomous vehicles. Comput. Oper. Res. 108, 1–19 .

Van der Zon, N.M., 2017. Vehicle Routing with Departure Smoothing. Erasmus University Rotterdam Master’s thesis .

Van Heeswijk, W.J.A., Mes, M.R.K., Schutten, J.M.J., 2019. The delivery dispatching problem with time windows for urban consolidation centers. Transp. Sci. 53 (1),

203–221 .

Van Hemert, J.I., La Poutré, J.A., 2004. Dynamic routing problems with fruitful regions: models and evolutionary computation. In: International Conference on Parallel

Problem Solving from Nature. Springer, pp. 692–701 .

Wandelt, S., Dai, W., Zhang, J., Sun, X., 2022. Toward a reference experimental benchmark for solving hub location problems. Transp. Sci. 56 (2), 543–564 .

Wandelt, S., Wang, S., Zheng, C., Sun, X., 2023. Aerial: a meta review and discussion of challenges toward unmanned aerial vehicle operations in logistics, mobility,

and monitoring. IEEE Trans. Intell. Transp. Syst. .

Wang, Z., Sheu, J.-B., 2019. Vehicle routing problem with drones. Transp. Res. Part B Methodol. 122, 350–364 .

Xu, X., Wei, Z., 2023. Dynamic pickup and delivery problem with transshipments and LIFO constraints. Comput. Ind. Eng. 175, 108835 .

Ye, J., Liang, E., 2021. ICAPS2021: DPDP Challenge. https://competition.huaweicloud.com/information/1000041411/Winning .

Zhang, H., Ge, H., Yang, J., Tong, Y., 2022. Review of vehicle routing problems: models, classification and solving algorithms. Arch. Comput. Methods Eng. 29 (1),

195–221 .

Zhang, J., Van Woensel, T., 2022. Dynamic vehicle routing with random requests: a literature review. Int. J. Prod. Econ., 108751 .

Zhu, Q., Cai, J., Lin, Q., 2021. A variable neighborhood search method for Dynamic Pickup and Delivery Problem. https://competition.huaweicloud.

com/information/1000041411/Winning .
21

http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0021
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0022
https://competition.huaweicloud.com/information/1000041411/Winning
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0023
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0024
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0025
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0026
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0027
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0028
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0029
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0030
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0031
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0032
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0033
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0034
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0035
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0036
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0037
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0038
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0039
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0040
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0041
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0042
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0043
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0044
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0045
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0046
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0047
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0048
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0049
https://competition.huaweicloud.com/information/1000041411/Winning
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0050
http://refhub.elsevier.com/S2772-5863(25)00008-5/sbref0051
https://competition.huaweicloud.com/information/1000041411/Winning

	A cost function approximation method for dynamic vehicle routing with docking and LIFO constraints
	1 Introduction
	2 Literature review
	2.1 Classification of our vehicle routing problem
	2.2 Modeling and solving DVRPs
	2.3 Docking and LIFO constraints

	3 Problem statement
	3.1 Modeling as a sequential decision process
	3.1.1 Decision epochs
	3.1.2 Dynamic information
	3.1.3 States
	3.1.4 Actions
	3.1.5 Reward function
	3.1.6 Transition
	3.1.7 Objective function

	3.2 Example

	4 CFA approach for solving the routing problem in each epoch
	4.1 Cost function approximation
	4.2 New representation of routes and the VNS based procedure
	4.2.1 Construction of the initial set of routes
	4.2.2 Variable neighborhood search

	5 Computational experiments
	5.1 Case study: the dynamic pickup and delivery problem challenge
	5.2 Instances
	5.3 Evaluation of the cost function approximation method
	5.3.1 Significance of penalizing the waiting times
	5.3.2 Penalizing the idle vehicles
	5.3.3 Parameter tuning

	5.4 Comparison of existing methods
	5.5 Sensitivity analysis
	5.5.1 Impact of run-time limit
	5.5.2 Perturbed instances

	5.6 Key insights

	6 Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Serving vehicles at factories
	Appendix B Feasibility of route plans in states
	Appendix C Transition
	Appendix D Feasibility of solutions
	Appendix E Evaluation procedure
	Supplementary material
	References

