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Dynamic pickup and delivery problem is a homogeneous fleet of vehicles to serve pickup-and-delivery requests at given locations. The
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vehicles can be loaded up to their capacity, while unloading has to follow the last-in-first-out
(LIFO) rule. The locations have a limited number of docking ports for loading and unloading,
which may force the vehicles to wait. The problem is dynamic since the transportation requests
arrive real-time, over the day. Accordingly, the routes of the vehicles are to be determined dy-
namically. The goal is to satisfy all the requests such that a combination of tardiness penalties and
traveling costs is minimized. We propose a cost function approximation based solution method.
In each decision epoch, we solve the respective optimization problem with a perturbed objective
function to ensure the solutions remain adaptable to accommodate new requests. We penalize
waiting times and idle vehicles. We propose a variable neighborhood search based method for
solving the optimization problems, and we apply two existing local search operators, and we
also introduce a new one. We evaluate our method using a widely adopted benchmark dataset,
and the results demonstrate that our approach significantly surpasses the current state-of-the-art
methods.

1. Introduction

Dynamic vehicle routing problems (DVRPs) constitute a rapidly developing field of transportation research, which is certified
by a series of recent review papers, e.g., Berbeglia et al. (2010), Pillac et al. (2013), Bektas et al. (2014), Psaraftis et al. (2016),
Soeffker et al. (2022), Zhang and Van Woensel (2022). The growing interest is due to the wide range of real-world application areas
such as transportation of goods and people, services, etc. (Rios et al., 2021). A related aspect of growing interest is environment
friendly routing or eco-routing, which aims to optimize the control of a fleet of vehicles to reduce the energy consumption and the
pollution (Dong et al., 2022; Pahwa and Jaller, 2024).

In this paper, we study a DVRP motivated by a real-life problem proposed by Huawei Technologies Co. Ltd. A fleet of homogeneous
vehicles has to serve pickup-and-delivery requests which occur at given locations over the day. Each request is characterized by a
size, a pickup and a delivery location, a release time, and a due date. The vehicles can be loaded up to their capacity, while unloading
has to follow the last-in-first-out (LIFO) rule. The locations have a limited number of docking ports for loading and unloading, which
may force the vehicles to wait. The problem is dynamic since the transportation requests arrive real-time, over the day. Accordingly,
the routes of the vehicles are to be determined dynamically. The goal is to satisfy all the requests such that a combination of tardiness
penalties and traveling costs is minimized.
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An important feature of our problem is that although the pickup and delivery locations are known in advance, the characteristics
of the transportation requests are unknown until their release times. Moreover, the distribution of the requests both in time and
space may vary over the day. Consequently, a single problem instance does not provide exploitable stochastic information. However,
statistical data may be collected over longer time periods that potentially could be used in solution approaches.

Our problem has two important constraints that frequently occur in practice. The first one limits the number of the docking ports
at each location. The number of the docking ports is limited by the size of the buildings (warehouses or factories) and also, it may
not be economical to have sufficient crew to serve (load or unload) any number of vehicles simultaneously. Usually, vehicles do
not arrive evenly at a location over the day, which means that in peak periods, some of the vehicles have to wait until a docking
port becomes free. In several applications the service time of a vehicle may be comparable to the average travel time between two
locations, which may lead to high waiting times in case of superficial planning. Despite its high practical relevance, the literature
on pickup and delivery problems with docking constraints at the locations is rather scarce, we refer to e.g., Cai et al. (2022a, 2023),
Du et al. (2023). Most results are for outbound and inbound transportation problems with a depot, see Section 2.3 for references. The
second side constraint is the LIFO rule. This policy means that the last loaded order must be unloaded first. This rule is necessary,
for example, if the vehicles used for transportation have only a single access door for loading and unloading. Also, if the orders are
hazardous, weighty, or fragile, the load rearrangement on the vehicle may consume much time and increase handling costs. The
related literature is summarized in Section 2.3.

Main contributions. We propose a cost function approximation method for the problem at hand, where we manipulate the cost
function by introducing two penalty terms. One of them is directly related to the waiting caused by the docking constraints. By
explicitly penalizing waiting, we expect to make solutions flexible to accommodate new requests in the future. We model the problem
as a sequential decision process, where in each decision epoch a variable neighborhood search (VNS) based method is used to solve
the respective optimization problem. In the VNS method we use two old and a new neighborhood operator.

As a case study, we evaluate our solution approach on a dynamic pickup and delivery problem. This problem was introduced in
The Dynamic Pickup and Delivery Problem challenge (Hao et al., 2022), hosted by the International Conference on Automated Planning
and Scheduling in 2021" (ICAPS 2021).

To sum up, our contributions are as follows.

» We propose a cost function approximation based method for solving the respective optimization problem in each decision epoch.
One of the penalty terms is directly related to the waiting times caused by the docking constraints.

» We evaluate our solution procedure on the benchmark instances of the ICAPS 2021 DPDP competition. The computational exper-
iments show that our method significantly outperforms the state-of-the art methods on this dataset, especially on the large-size
instances. The average improvement on the full dataset is more than 50% when compared to the best published methods.

» We demonstrate the benefit of using the suggested penalty terms in separate experiments. We also explain the mechanism how
penalizing waiting improves the solution.

According to our best knowledge, our approach for avoiding waiting due to docking constraints at each station is new.

Structure of the paper. In Section 2, we overview the dynamic vehicle routing problems and the related literature. In Section 3, we
give a formal description of the problem studied along with modeling as a sequential decision process. In Section 4, we describe our
solution approach and in Section 5, we present our computational results. Finally, we conclude the paper in Section 6.

2. Literature review

In this section, we briefly overview the related literature. In Section 2.1, we narrow our scope to the problem class studied in this
paper. Modeling with sequential decision process and related solution methods are summarized in Section 2.2. Finally, Section 2.3 is
concerned with the LIFO loading rule, and problems with docking constraints.

2.1. Classification of our vehicle routing problem

The problem studied in this paper is dynamic, since the input of the problem is received and updated concurrently with the
determination of the routes (Psaraftis, 1980). By Pillac et al. (2013), a dynamic problem is stochastic, if some exploitable stochastic
knowledge is available on the dynamically revealed information, and deterministic otherwise. In a single instance of our problem, no
explicit stochastic information is available, so in this sense our problem is deterministic.

In the general pickup and delivery problem a set of routes has to be constructed in order to satisfy transportation request by a fleet
of vehicles (Savelsbergh and Sol, 1995). Each transportation request contains a set of pickup locations alongside load quantities and
a set of delivery locations along with quantities to unload. Each request has to be fulfilled by a vehicle without transshipment and
exceeding its capacity. A special case is the pickup and delivery problem, where each request has a single pickup location and a single
delivery location. We refer to (Berbeglia et al., 2010) for a survey.

We conclude that the problem studied in this paper falls in the broad class of DVRPs, and in particular, it is a deterministic dynamic
pickup and delivery problem.

! https://icaps21.icaps-conference.org/Competitions/.
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2.2. Modeling and solving DVRPs

A dynamic vehicle routing problem can be formulated as a sequential decision process (SDP). An SDP goes through a sequence of
states that describe the status of the system at distinct time points. When passing to the next state, the transition is determined by the
dynamic information revealed and the decisions made since the occurrence of the last state. The transition may be deterministic or
stochastic, in the latter case we have a Markov decision process. We refer the reader to (Powell, 2011) for a general introduction to
SDPs.

When modeling a DVRP, decision epochs may occur regularly, or at some special occasions. The states encode all the information
needed to make decisions, and evaluate solution alternatives. For instance, they may contain the position and current tasks of the
vehicles, the set of open service requests, etc. The decisions are concerned with the assignment of new service requests and possibly
routes to the vehicles. The transition to the next state determines the new position of the vehicles, or the progress of loading and
unloading. The dynamic information may influence the transition to the new state, e.g., new service requests manifest.

A number of methods have been proposed for solving DVRPs. The simplest ones are myopic, also termed rolling horizon re-
optimization (RO) methods, that focus only on the current state without any considerations of future uncertainties. Essentially, a
series of static problems are solved with the assumption that the realizations will remain unchanged in the future, e.g., no new
orders will be requested. Gendreau et al. (1999) solve a vehicle routing problem with time windows with this approach, while
Ichoua et al. (2000) consider the same problem, but do not allow to change the destination of the moving vehicles. Lin et al. (2014) pro-
pose a MIP formulation and a heuristic method for processing offline and real-time service requests. An interesting aspect of the prob-
lem is that customers may cancel their requests. However, optimizing without acknowledging the future can be counterproductive
as it often leads to inflexible solutions.

To alleviate the short-sightedness of the myopic strategies, Mitrovi¢-Mini¢ et al. (2004) propose waiting strategies for a dynamic
problem with time windows to delay the dispatch of new orders, and to make decision together with the orders that may be requested
in the near future. Van Hemert and La Poutré (2004) consider a dynamic problem of collecting loads, and inserted fictive, anticipated
loads into the routes in order to encourage vehicles to explore fruitful regions (i.e., regions that have a high potential of generating
loads).

Reinforcement learning. for solving DVRPs has gained an increasing attention, we refer to (Hildebrandt et al., 2023) for an overview.
Below we summarize the most common techniques. Policy function approximation (PFA) is a function that assigns an action to any state,
without any further optimization and without using any forecast of the future information. Ulmer and Streng (2019) apply this method
for a problem where parcel pickup stations and autonomous vehicles are combined for same-day delivery. Ghiani et al. (2022) tackle
a pickup and delivery problem using an anticipatory policy by creating priority classes for the requests and their algorithm utilizes a
parametric policy function approximation. Value function approximation (VFA) is used to estimate the value function, which provides
the expected cumulative reward of any given state. Ulmer et al. (2018) model a multi-period VRP by a Markov decision process,
where the set of requests to be accepted in each period is determined by a suitable value function approximation computed offline.
Van Heeswijk et al. (2019) consider a delivery dispatching problem and provided a method that can handle large instances. For
further examples, we refer to the supplementary material of Zhang et al. (2022).

Beyond reinforcement learning, cost function approximation (CFA) is a further technique for solving DVRPs. The key idea is that
the problem to be solved in each decision epoch is modified, that is, either the cost function or the problem constraints are slightly
perturbed. For instance, Riley et al. (2019, 2020) consider a dial-a-ride problem with the aim of minimizing the total waiting time.
The authors introduce an extra penalty term for unserved request to ensure that all riders are served in reasonable time. The penalty
associated with a request is increased after each epoch in which the request is not served. Ulmer et al. (2020) study a retail distribution
problem, where familiarity with the delivery location can save service time for the driver, and a related quantity is added to the original
objective function. Hildebrandt et al. (2023) outline an enhancement of CFA methods by first modifying the state received before
determining the next action, e.g., by reducing the due dates of some transportation requests, or by reducing vehicle capacities, etc.

Other approaches use the stochastic information internally, e.g., via sampling realizations. For example, multiple scenario approaches
sample realizations to create a set of scenarios, which are then solved separately, and based on those individual solutions, a consensus
decision is made (Bent and Van Hentenryck, 2004; Dayarian and Savelsbergh, 2020; Hvattum et al., 2006; Srour et al., 2018). For
instance, Srour et al. (2018) study a stochastic and dynamic pickup and delivery problem with time windows, where the location of
future requests is known, but only stochastic information is available about the time windows of future requests. The authors propose
to sample future requests at each decision point and solve a VRP for each scenario, and finally synthesize the next action of the
vehicles based on the set of solutions obtained for the different scenarios. An alternative approach to sampling scenarios is suggested
by Gyorgyi and Kis (2019) for solving the same problem. The stochastic information is used to set up a minimum-cost network flow
problem in which source-to-sink routes correspond to vehicle routes and the edges are weighted with conditional expected values.
Fonseca-Galindo et al. (2022) use statistical data to assign packages to vehicle routes in a package delivery system, where a stream
of incoming customer orders has to be delivered by a fleet of vehicles.

VNS is a widely used approach to solve a static problem or a dynamic problem at a decision point (Mladenovi¢ and Hansen, 1997).
It is a metaheuristic which systematically performs the procedure of neighborhood change, both in descent to local minima and in
escape from the valleys which contain them. We refer to (Hansen et al., 2019) for a general overview. Choosing the best neighborhood
operators is a difficult problem, see e.g., (Chen et al., 2022; Liu et al., 2023; Wandelt et al., 2022) for recent developments.
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2.3. Docking and LIFO constraints

The considered pickup and delivery problem has two important side constraints, namely, the docking constraints, and the LIFO
constraints. They are of great practical importance and have been studied by the research community.

Docking constraints. Several papers deal with vehicle routing problems with service restrictions, however, these restrictions mostly
apply to a single depot. In Dabia et al. (2019) shifts with limited loading capacities are considered. Hempsch and Irnich (2008) consider
a problem with sorting capacity constraints at the depot and use a local search based method to solve it. Gromicho et al. (2012) apply
a method that uses a decomposition scheme where columns are generated by a routine based on dynamic programming to solve a
variant with limited number of loading docks or limited size of loading crew. Van der Zon (2017) considers also a vehicle routing
problem with a limited number of loading docking ports and propose a method that shifts the start times of the routes in a smart
way. To our best knowledge, the only papers that deal with docking constraints at the service locations are those related to the DPDP
problem studied in this paper (Cai et al., 2022a; 2023; Du et al., 2023).

LIFO constraints in pickup and delivery problems. Cordeau et al. (2010) propose a branch-and-cut algorithm for a pickup and delivery
problem with a single vehicle. Benavent et al. (2015) examine a variant of the problem with multiple vehicles and a special time
constraint, and propose a branch-and-cut and a tabu search algorithm as solution methods. Xu and Wei (2023) construct a multi-
objective mathematical model for a pickup and delivery problem with transshipments, and propose a method that generates an
initial solution by Clarke-Wright saving algorithm and uses both neighborhood search and Q-learning to improve the solution. In
(Carrabs et al., 2007), several local search operators (e.g., couple-exchange, block-exchange, relocate-couple, relocate-block, multi-relocate,
2-opt-L, double-bridge) are proposed to problems with LIFO constraints.

3. Problem statement

In the following, we define the problem in detail. We first define the basic data of the problem, then we present the dynamic
problem as a sequential decision process.

Given a finite set of factories F, a finite set of orders O, and a fleet of homogeneous vehicles V. The distance and the travel time
between factories f;, f; € F are denoted with dist(f;, f;) and travel(f;, f;), respectively. Each order o; € O is described by a tuple
(P80 1%, g hY), where fP and f¢ represent the pickup factory and the delivery factory, respectively, 7 is the release time, 17
is the due date, g; is the order quantity, and hf and h,.d are the times required to load and to unload the order, respectively. Order o;
becomes known only at the release time /. The total quantity of those orders that can be carried by a vehicle at any given moment
is limited by a constant Q. Initially, each vehicle is empty and parks at a given factory. Unloading the orders from a vehicle has to
follow the LIFO rule, refer to Fig. 1 for an example.

Each factory has a given number of docking ports for loading and unloading. Vehicles are served on a first-come-first-served basis,
that is, if a vehicle arrives at a factory and all ports are occupied, the service of the vehicle cannot begin immediately, but the vehicle
has to wait until one of the docking ports becomes free, and no vehicle that arrived earlier is waiting for a port. This is illustrated
in Fig. 2. The time elapsed between the arrival of the vehicle and the start of service is called the waiting time. Serving a vehicle
decomposes to dock approaching, then unloading some carried orders, and finally loading some new orders. The service time of a
vehicle is the sum of the factory-independent dock approaching time, h%°°"2 and the sum of the unloading and loading times of the
corresponding orders. For more details we refer to Appendix A. After serving a vehicle, the port becomes free, and the vehicle may
park at the factory, or depart to the next factory on its route.

The goal is to route the vehicles so that all orders are served, and the weighted sum of the total distance traveled and the total
tardiness of the orders is minimized.

3.1. Modeling as a sequential decision process
We model our problem as an SDP (Powell, 2011; Soeffker et al., 2022). The process goes through a sequence of states s, sy, ...,

each corresponding to an instance of the problem’s decision model at time points 7y, z, ..., as illustrated in Fig. 3. Between two
consecutive time points 7, and r,;, an algorithm computes some actions based on the state s, at r;, which comprises the new

AN A S
(Y —

o 0 0%e oe o Te g% gle o

Fig. 1. An example for loading and unloading during a vehicle route. Orders are depicted as boxes, factories are depicted as pentagons. Unloading
the orders from a vehicle has to follow the LIFO rule, see the order of orders above the factories, and also the position of the orders on the vehicle.
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Fig. 2. An example for serving vehicles at a factory. The two docking ports, P1 and P2, of the factory are occupied by vehicles 1 and 2, respectively,
thus the service of vehicles 3 and 4 is delayed until a docking port becomes free.
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Fig. 3. Sequential decision process.

dynamic information revealed between 7,_; and 7. The actions along with the dynamic information between r, and 7, ., determine
the transition of the system to the next state s, at 7;;.

3.1.1. Decision epochs

The update times 7, (k =0,1, ..., K) divide the operating horizon into epochs of length A each, that is, 7, =0 and 7, | = 7, + A.
The orders are requested in a given finite planning horizon (e.g., one day), however, the operating horizon may be longer if we are
not able to complete the orders within the planning horizon. The decision process ends if all the orders are delivered.

3.1.2. Dynamic information
The realization w; of the dynamic information at update time z, comprises the orders requested in the previous epoch, i.e.,
w,={0, €0 1_, <tf§z'k}.

3.1.3. States

A state s, at update time 7, is a tuple (7, ®;,@;), where ®, = {®; , : v € V} is the status of the vehicles, and @, is the set of
unprocessed orders.

The set @, comprises the dynamic information w,, and those orders which are released not later than z,_;, but not picked up until
Ty

At any time moment a vehicle is either located at a factory, which is then its current factory or is on the way to its destination
factory. The status of a vehicle v is described by a tuple @ , = (¢7"}", Cy . 0. ,), where

s =T provides the current factory and the earliest departure time if the vehicle is located at the factory Sy at time
Tp» ‘while q.’)‘“r)r = @ if the vehicle is on the way to a factory at time 7.

* Cy, isthe list of orders carried by the vehicle, sorted in the order of loading. If $" # 9, then C , contains all the orders that the
vehicle had to pickup at /", and does not contain those orders that were dehvered to that factory.

* 0, is the route plan of the veh1cle consisting of a sequence of tuples each corresponding to a factory:

— J J J j J oy . :
Oro = ((fk,v’tala,u’tdk,v’Di,u’pk,u) t1<j< f,w).

The jth tuple in this list corresponds to the jth factory f/ o of the route with arrival time ta’ , departure time tdj ,» and with the

kv’
list of orders D’ , to be unloded, and P’ _ to be loaded, respectively. The first factory visited in 6, , is the destmatwn factory of the
vehicle. Each route plan must be feastble, i.e., it has to fulfill the fundamental routing constraints, the capacity constraints, and the
LIFO constraints, refer to Appendix B for full details.

In the initial state s, at 7, vehicles have only current factories, which coincide with their initial factories.
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3.1.4. Actions

Actions are taken at update points. An action is merely a feasible route plan for each vehicle. That is, at update point 7, let
O(s;) be the set of all possible tuples of feasible and mutually compatible route plans for the vehicles from which exactly one tuple
x; = (67, : v € V) must be chosen. Notice that the 0y , must be feasible route plans, and they must be mutually compatible, i.e., the
same order cannot be served by route plans of distinct vehicles.

A further constraint is that if 6, , is non-empty, then the first factory visited in 6, , and Gz,u must be the same, i.e., f kl,v =f 1:3

Moreover, tak =ta k l,, and D1 D;(‘ll} must hold. However, the set of orders to pickup and thus the departure time from f ,: , may
be different in 6, , and 05 o

3.1.5. Reward function
The reward function assigns a value to a (state, action) pair (s;, x;). Let f; denote the total distance traveled by the vehicles, that is,

fl(skvxk)—ZdlSt(f,:L:;r, )+ szlst(fx,l 7).

VeV j=!

where dist( f curr : ’J) =0if g =Porey =0, and let f, be the total tardiness anticipated:

o
£(5g, X)) = 2 i Z max (O,Iaz:i —tf).

eV j=1 DIEU;’/,
Then, the reward function is
Ro(sp, xi) = Aif (s, xp) + Ay (s, x), )

where A, 4, > 0 are appropriate multipliers. We will modify this function in our CFA method in Section 4.1.

3.1.6. Transition

After the selection of action x,, the decision process transitions to the next state s, at update point 7, ;. The positions of the
vehicles, and the lists of carrying orders are updated. Briefly stated, if a vehicle v arrives at its destination factory before 7, , that
factory becomes its current factory, and the next factory to visit, if any, becomes the new destination factory. As a result, 6 is
transformed to the route plan 6, , in the new state s;,. C;,, , is obtained from C; , by removing the orders delivered at the current
factory of vehicle v in state s,, and adding to it the pickup orders, if any. If vehicle v departed from its current factory between 7,
and 7, ,, then no current factory will be associated with the vehicle, and the factory to which the vehicle is heading will be the
destination factory. Then @, ,; , = (C 1, Pt Orrw) for each v € V. For details, we refer to Appendix C.

3.1.7. Objective function

The SDP eventually creates a feasible route 8, for each vehicle v, and the routes are mutually compatible and serve all the requests.
Moreover, we assume that for eachv e V, f L] coincides with the initial factory of vehicle v in the initial state s;,. A formal definition
of the feasibility of a solution is given in Appendix D. Then x = (6, : v € V) is a solution of the problem. The solution is evaluated
by the cost function

cost(x) = A;£1(sq, x) + A,£5 (59, x). 2)

3.2. Example

In Fig. 4, we depict the route of a single vehicle v at different states. The gray nodes and edges represent the route of the vehicle
before the respective update time points. The black thick edges outline the route to the destination factory, which cannot be changed,
while the route indicated by dashed edges can be modified. To ease the calculations, we assume that the travel time between any
two factories is 11 min, the dock approaching time is 2 min, and the loading/unloading time for an order is 1 min. The length of the
epochs is A = 10 min.

Before 7, = 40, three orders have arrived: order o, from f| to f,, order o, from f; to f3, and order o; from f, to f5. The vehicle
departed from its initial factory f, at time 10 and traveled to factory f,. The vehicle arrived at factory f, at time 21, picked up orders
0, and o; and departed at time 25. The vehicle arrived at factory f, at time 36, delivered order o, and left the factory at time 39 to
travel to factory f;3.

State s, (7, = 40). The left pane of Fig. 4 shows the state s, at update point r, = 40. The vehicle is currently on the way to factory
f3, where it will arrive at time 50. According to the tentative route plan, the vehicle after that will travel to factory f, to pickup
and deliver order o5 to factory fs. Thus, the status of the vehicle is given by q.’;f;‘;‘ =0, Cp,=(0y), and 6, , = (( f3,50,53,(0,).9),
(f4,64,67,8,(03)), (f5,78,81,(03), ﬂ)). Order o, from factory f; to fs is also revealed in the previous epoch (see the white circle node),
thus o, = {0,}. Since order o, is already delivered, and order o, is already picked up, @, = {03, 04}.

Action x,.. The decision maker decided to insert factory f, into the the tentative route plan of the vehicle, that is, x, = (HZL,), where

= ((f3,50,53,(02),9), (fo,64,67,8,(04)), (f4,78,81,8,(03)), (f5.92,96,(03,04),9)). In the center pane, we depict the updated route
plan of the vehicle.
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Fig. 4. An example for a route plan of a vehicle at different states and actions. Left pane shows the route at an intermediate state of the decision
process. Center pane shows the updated route according to an action. Right pane shows the route at the next state of the decision process.

Sk+1 (Tk+1 = 50)

State s, (7,41 = 50). The right pane of Fig. 4 shows the state s,,; at update point 7, ; = 50. Since the vehicle just arrived at
factory f3, it became its current factory. According to action x,, after this visit the vehicle will depart toward its new destination
factory f4 to pickup order o,. Thus, the status is given by O, , = 0, Z‘f{v =(f3.53),and 6, , = ((fﬁ, 64,67,0,(04)), (f4,78,81,8, (03)),
(f5,92,96, (03, 04),8)). No new orders are requested in the previous epoch, thus w,,; = #, however, the pickup of orders o, and o, can

be still changed, thus @, ; = {03,04}.
4. CFA approach for solving the routing problem in each epoch

In this section, we propose a cost function approximation based approach to solve the routing problem in each epoch. First, we
add penalty terms to (1) in Section 4.1, then present our VNS procedure in Section 4.2 after describing a new representation of the
vehicle routes.

4.1. Cost function approximation

In this section we modify the reward function (1) by adding two penalty terms to it. On the one hand, we will penalize waiting
for service at the factories, and on the other hand, the idle vehicles.

Penalizing waiting for service. If the number of vehicles is much larger than the docking capacity of the factories, the vehicles may
have to spend a considerable time with queuing. However, waiting times may create large delays in delivery, therefore, it is better
to avoid them. Let "zf; be the waiting time (i.e., the time between the arrival and the start of service) at the jth factory visited in the
route plan 6; = of vehicle v. Then the total waiting time is

¢

“ ko
sk x0 = 3, Dy
veV j=1
Idle vehicles. We noticed that in some cases the assignment of the first orders significantly affects the subsequent delivery times.
That is, intuitively good solutions (orders with a common pickup factory were assigned to the same vehicle) in the first epochs caused
often irreversible tardiness for future orders. In those cases, it proved better to spread the initial orders between several vehicles, in
order to keep as many vehicles moving as possible. We call a vehicle idle, if it has no destination factory, and it will be available in
the next epoch. Then, the total number of idle vehicles is

f,(50,x)={veV: 0;0 =@ and tdz"’b',r < Tppr -
Perturbed reward function We will use the following reward function

R(sp, xp) = A8 (s, x) + Ao (s, xp) + Asf3 sy, xp) + Aaf4(ss xp), 3)
where 4,, 4,, 43, 44 > 0 are appropriate multipliers. The effect of penalty terms on the efficiency of our method will be investigated
in Section 5.3.

4.2. New representation of routes and the VNS based procedure

Before delving into the details of our solution procedure, first we introduce the internal representation of vehicle routes.

Recall that a vehicle’s route plan outlines a sequence of factories to visit, along with sets of orders to pickup and deliver at each
location, as well as timing information. In this section we use a different, but equivalent representation. A route is a sequence of
nodes, where each inner node refers to a pickup or a delivery of an order. That is, a pickup node represents the pickup of an order,
and a delivery node corresponds to the delivery of some order. The first node of a route is associated with the orders carried by the
vehicle, i.e., those orders already picked up but not yet delivered, and the last node marks the end of the route. We refer to Fig. 5 for
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(03) 05 of of oy og
I3 o fa fs /5
Fig. 5. Example for a route. The first and the last node is indicated with black and white rectangles, respectively. Each internal node represents

a pickup or delivery, depicted with black or white circles, respectively. Above each pickup/delivery node the order, and below it the factory is
indicated.

an illustration. It depicts the route of the vehicle corresponding to the center pane of Fig. 4. As we can see, the vehicle is on the way
to factory f3 to deliver the carried order o,. After that, the vehicle picks up order o5 at factory f and order o, at factory f,, and then
delivers them in LIFO order to factory fs.

A key gadget of our method is the insertion of an order into a route. Given a feasible route and some order o; not in the route,
the insertion of o; into the route means that first the pickup node o} is inserted between two nodes of the route and then the delivery
node o; is inserted between two nodes of the updated route. An insertion is feasible if o} precedes o; in the resulting route and the
LIFO as well as the capacity constraints are satisfied, and the destination factory does not change (cf. Appendix B).

The cost of a solution is calculated by (3) throughout this section. It can computed by the procedure outlined in Appendix E.

After these preliminaries, our method consists of two main steps:

1) Construction of an initial set of routes for the vehicles (Section 4.2.1).
2) Improvement by variable neighborhood search (Section 4.2.2).

4.2.1. Construction of the initial set of routes

Since the solution obtained in the previous epoch could be a good starting point for the current epoch, first we reconstruct and
update it. This involves removing delivery nodes associated with orders already fulfilled and pickups of orders that have already been
collected.

Then, new orders are inserted into the updated solution one-by-one. First, the orders are divided into the sets of urgent and
non-urgent orders, respectively. The classification is based on the estimated delay of an order o; € @;:

edy; = (17 =) — (K 4+ 1P + travel(f7, £1)).

The first term represents the remaining time to deliver order o; without delay, while the second term expresses the minimum time
needed to deliver order o;. Let U} = {0; € @ : ed;; < U} be the set of urgent orders, and V', =@\ U the set of non-urgent ones,
where U is a parameter of the algorithm.

First, the order in U}, are inserted into the routes of the vehicles, then those in Fk. When processing the orders in either category,
orders are grouped by pickup factories, and if two or more orders have the same pickup factory, then priority is given to those order
with a larger estimated delay. For each order o; € U} U7/, the best feasible insertion is sought. That is, o, is inserted in all feasible
ways into the route of each vehicle in turn, and the insertion incurring the least cost increase is chosen.

4.2.2. Variable neighborhood search

In the following, we propose a method based on VNS to improve the initial set of routes. We commence by defining the neighbor-
hood operators to be used within our VNS procedure.

The neighborhood operators rely on the notion of blocks and bridges that we define next. A block is a subsequence of consecutive
nodes in a vehicle route such that the first and the last node refer to the pickup and the delivery of the same order, respectively. Refer
to Fig. 6 for an illustration. Since orders o, and o, are already loaded on the vehicle, no pickup nodes, and thus no blocks correspond
to these orders.

A bridge of a route is a subsequence of consecutive pickup nodes (¢, ..., ¢;), all belonging the the same factory, and a subsequence
of consecutive delivery nodes (ry, ..., r,), all delivered to the same factory, where £; and r; are the pickup and the delivery node of the
same order, respectively, for j = 1,..., k. An example is depicted in Fig. 7. A bridge ((fl, U705 T (P )) is maximal, if there is no

bridge containing it properly. That is, neither ((pred(¢,),?1, ..., 2,), (r. ..., ry,succ(r))) nor ((Zy, ..., ¢, suce(£)), (pred(ry), res ..., ry))
constitutes a bridge, where pred(n) and succ(n) denote the immediate predecessor and the immediate successor of node » in the route,
respectively.

+ 4+ - + + + - + — - — -
(07 ,05) 0y 03 04 05 05 04 03 0y

Fig. 6. A route with blocks indicated by dashed lines.
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Fig. 7. Example for a (maximal) bridge. Left and right sequences of the bridge are framed by rectangles.
o O
@ O -

(a) Block relocation between routes.

(b) Block exchange between routes.

e rQ— -

(c) Bridge relocation between routes. The two parts of the bridge will be adjacent after relocation.

Fig. 8. Example for schedule operations. Crossed/dotted arrows refer to old/new links.

A neighborhood operator perturbs a solution slightly and provides a modified solution. The following neighborhood operators will
be applied to the solutions:

(i) The relocate-block operator selects a vehicle route and a block in the route, and relocates it to another position in the same or in
another route (cf. Fig. 8a).
(i) The block-exchange operator selects two disjoint blocks from the same or from distinct vehicle routes, and exchanges them as
depicted in Fig. 8b.
(iii) The relocate-bridge operator selects a maximal bridge from a vehicle route and moves it into another position of the same route
or to a different route as shown in Fig. 8c.

When applying an operator, the new position for a block or bridge is always chosen in such a manner that the resulting solution
satisfies the LIFO constraint. However, if any other constraint is violated, the solution is dropped and the operator fails.

Algorithm 1 VNS procedure

: while termination condition is not met do
Find the best neighbor S’ of S using the relocate-bridge operator.
if S’ has a lower cost than S then
S := 5" and proceed with Step 1.

1
2
3
4
5: Find the best neighbor S’ of S using the block-exchange operator.
6
yé
8
9

if S’ has a lower cost than S then
S := 5" and proceed with Step 1.
Find the best neighbor S’ of S using the relocate-block operator.
: if S’ has a lower cost than S then
10: S := 5" and proceed with Step 1.

11: else
12: Proceed with Step 13.
13: Output S.
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Our VNS procedure, depicted in Algorithm 1, receives an initial feasible solution and tries to improve it repeatedly by applying
the neighborhood operators. Throughout the algorithm, S denotes the current solution. The termination condition can be a time
limit, or the number of iterations of the procedure. Solutions are compared based on their cost computed by the reward function (3).
The neighborhood operators are applied exhaustively, i.e., they are applied in all possible ways to find the best neighboring solution.
For instance, in case of the relocate-bridge operator, when seeking the best neighbor of .S, in each route all maximal bridges are
identified, and they are reinserted in the same or in a different route in all possible ways, and then the insertion producing the least
cost feasible solution is chosen. If an operator cannot be applied, or fails to produce any feasible neighbor, then we assume that .S’
has a larger cost than .S and proceed accordingly. Since only improvement of the current solution is allowed, cycling cannot occur,
and the procedure terminates in a local minimum.

5. Computational experiments

In this section, we present the results our computational experiments. In Section 5.1, we describe our case study. In Section 5.2, we
introduce the benchmark dataset. In Section 5.3, we tune the objective multipliers to get an efficient solution approach. We compare
our best approach to other methods in Section 5.4. We present our sensitivity analysis in Section 5.5. Finally, we provide some key
insights in Section 5.6.

Setup. All our experiments were performed on a workstation with an Intel Core i9-7960X 2.80 GHz CPU with 16 cores, under
Debian 9 operating system using a single thread. Due to the 4 h time-window for the orders (see Section 5.2), we used parameter
U = 3600 when urgent and non-urgent orders are determined for initial solution. Since each epoch is 10 min long, we applied a time
limit of 9 min in our variable neighborhood search.

5.1. Case study: the dynamic pickup and delivery problem challenge

We consider The Dynamic Pickup and Delivery Problem challenge as a case study (Hao et al., 2022). This challenge was organized as
a competition of the International Conference on Automated Planning and Scheduling (ICAPS) in 2021 with 152 participating teams.
The best three teams (i.e., the teams whose algorithms achieved the smallest scores on a hidden dataset) presented their solution
approaches in the conference and the challenge generated a series of papers in the scientific literature in the recent years.

The gold medal team, Zhu et al. (2021) proposed an RO method for the problem, where a variable neighborhood search was
used to optimize the states with the currently known orders. In each epoch, the authors reconstructed the solution from the pre-
vious period, and dispatched new orders with a cheapest insertion heuristics. Four local search operators (couple-exchange, block-
exchange, relocate-block, and multi-relocate) were used in a variable neighborhood search together with a disturbance operator to
perturb solutions. Since then, the team published their results in (Cai et al., 2022a). The silver medal team, Ye and Liang (2021) de-
veloped an RO method for the problem, where a rule-based procedure was applied to dispatch orders. The bronze-medal team,
Horvéth et al. (2021) proposed a CFA method for the problem, where a local search-based approach was used to solve the problem
with a perturbed objective function. In each epoch, the authors inserted non-dispatched orders into the solution with a cheapest in-
sertion heuristic. Three local search operators (block-exchange, relocate-block, and a custom made) were used to improve solutions.
An extra cost term was introduced to penalize if a factory is visited by too many vehicles, thereby reducing the chance of waiting for
free docking ports.

Cai et al. (2022b) propose an RO method for the DPDP, where a reference point-based multi-objective evolutionary algorithm is
used to solve the states. Four local search operators are used in a variable neighborhood search to improve solutions as in (Cai et al.,
2022a). The authors compare their solution approach to the algorithms of the podium teams. For the comparison, the authors use the
benchmark dataset with the exception of the largest instances. Recently, Cai et al. (2023) provide a review of the dynamic pickup and
delivery problem literature covering the last two decades. As a case study, the authors provide the comparison of Cai et al. (2022b) on
the full benchmark dataset.

Du et al. (2023) propose an RO method for the DPDP with a hierarchical optimization approach. The authors are the first to model
the problem as an SDP. They apply several order dispatching strategies to assign orders to vehicles. A buffering pool is also used to
postpone the assignment of some non-urgent requests. A local search operator is introduced to improve the solution. The authors
compare their solution approach to a greedy baseline strategy, and to the silver-winning algorithm of Ye and Liang (2021) (which was
falsely claimed to be the best algorithm of the competition). For the comparison, the authors use only a selection of the benchmark
dataset, but also generated new problem instances.

5.2. Instances

We use the publicly available dataset of the ICAPS 2021 DPDP competition (Hao et al., 2022). This dataset consists of 64 instances
based on 30 days of historical data of Huawei. These instances contain 50-4000 orders of a single day to be satisfied with 5-100
vehicles, see Table 1. In the following, we briefly describe the public instances, while for detailed description we refer to (Hao et al.,
2022).

In case of all instances, there are 4 h to complete an order on time, that is, for each order o; € © we have tf — ’11" = 14400 s. Each
order is given as a set of order items, where each item is either a box, a small pallet, or a standard pallet, with quantity of 0.25, 0.5,
and 1 unit, respectively, while the uniform capacity limit of the vehicles is 15 units. Loading or unloading a box, a small pallet,
and a standard pallet takes 15, 30, and 60 s, respectively. The underlying network is the same for all instances and consists of 153

10
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Table 1
Basic properties of the benchmark dataset.

Group Instances Orders Vehicles
1 1-8 50 5

2 9-16 100 5

3 17-24 300 20

4 25-32 500 20

5 33-40 1000 50

6 41-48 2000 50

7 49-56 3000 100

8 57-64 4000 100

factories, where each factory has 6 docking ports. Docking to a port takes half an hour (i.e., A9°i"¢ = 1800 s). Finally, A, = 1/n and
A, =10000/3600 =~ 2.78 in the objective function (2), that is, a cost of 10000 monetary units must be paid for every hour of delay.

Note that the total size of the items of an order may exceed the uniform capacity of the vehicles. In this and only this case, the
order items can be transported separately. The completion time of such an order is the latest completion time of its order items. For
such big orders, we arranged items in a non-increasing size order, then we applied a first fit procedure to divide items into separate
orders. By this, we got the same problem as proposed earlier, with the tiny difference that the tardiness has to be calculated differently
for split orders.

Evaluation by simulation. The organizers of the ICAPS 2021 DPDP competition also provided a simulator, implemented in Python
programming language, to support the dynamic evaluation of the vehicle routing algorithms. The simulator essentially follows the
sequential decision procedure described in Section 3.1. It mimics the movement, loading and unloading of the vehicles with suffi-
cient accuracy for decision making. The operating horizon is divided into 10-minutes long epochs. At the beginning of each epoch,
the simulator recomputes the state of each vehicle and transportation request. Then, it invokes the vehicle routing algorithm. The
algorithm receives the status information, and updates the routes of the vehicles. After termination, it has to return a set of vehicle
routes to the simulator, which uses them in the next epoch for computing the vehicles’ states. The final output of the simulator is the
score of the dispatching algorithm on the given instance. For details, we refer to (Hao et al., 2022).

Real-time decision support. The simulator can be replaced by a decision support system for dispatching a fleet of vehicles in the
real-world. The status information of the vehicles and that of the transportation requests can be easily maintained using modern IT
technology. The periodic invocation of vehicle routing algorithms is a routine exercise, and combined with proper visualization, it
can be a very effective decision support tool.

5.3. Evaluation of the cost function approximation method
In the following, we evaluate our method with different A; and 4, parameters with the aim of finding the best settings.

5.3.1. Significance of penalizing the waiting times

In these experiments, we suppressed the fourth term in the objective function (3). That is, we ran our method with objective
function coefficients 4, = 1/n, 4, =2.78, A4, =0, and A; chosen from {0.0,0.25 X 4,,0.5 X 4,,0.75 X 4,}. The average scores for each
group, and for all instances are indicated in Table 2, while detailed results can be found in the supplementary data.

Clearly, penalizing waiting times has no impact on the first two groups, since the number of docking ports is greater than the
number of vehicles, and thus no waiting occurs. On instances with 20 and 50 vehicles (Groups 3-6), the differences are negligible.
However, in case of 100 vehicles (Groups 7-8), penalizing idle times significantly reduced the average score. On the largest group,
the average improvement is 60-62%.

Now we analyze in more detail the impact of penalizing waiting times on problem instance_61 which has 4000 orders and
100 vehicles. The instance is depicted in Fig. 9 using the spring layout. The nodes represent factories, and the edges pickup and

Table 2
Evaluation of penalizing waiting times.

Multiplier for waiting times (4;)

Group 0% 4, 025% 4, 0.5 4, 0.75% 4,

1 1307.5 1307.5 1307.5 1307.5

2 31707.6 31 707.6 31707.6 31 707.6

3 690.0 690.0 690.0 690.0

4 6 750.9 6750.5 6 750.5 6 750.5

5 11597.1 11 225.6 11 225.6 11 225.6

6 49 011.9 53183.2 54 091.5 49 841.4

7 1076526.1 590 379.6 738 200.9 769 756.1

8 11605754.6 46963152 4618058.6 44128355

average: 1597 918.2 673 944.9 682 754.0 660 514.3
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Fig. 9. Instance_61 depicted in spring layout, where the edge weights are determined by the number of orders between the pairs of factories
represented by the nodes.
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Fig. 10. Total waiting times at selected factories of instance_61.

delivery requests between pairs of nodes. The edge lengths are inversely proportional to the number of pickup and delivery requests
between their endpoints. This means that the more is the number of pickup and delivery requests between a pair of nodes, the shorter
is the edge connecting them. As we can see, there is a dozen of factories with a lot of requests among them, and there are a number
of ”satellite” factories around connected to the center with much less transportation requests. We can also observe a triangle on the
right not connected to any other factories.

We run the rolling horizon approach (RO), and the cost-function approximation approach (CFA) on this instance, where RO uses
the original reward function (1), and CFA uses the perturbed reward function (3) with A; = 0.75 x 4, when solving the vehicle routing
problem at each epoch. The largest waiting times occur at the factories colored gray in Fig. 9. The total waiting times at these factories
are depicted in the bar chart in Fig. 10. As we can see, the CFA drastically decreases the waiting times.

A further way to compare the solutions of the RO and the CFA method is who the total number of waiting time and the committed
time of the vehicles change over time. The committed time of a vehicle at an update time point is the length of the time interval that
the next decision will no longer affect. For example, if vehicle v is at a location at update time z;, then the vehicle is committed until
its earliest departure time td;f‘v”, i.e., the committed time is tdf:lfr — 7. If the vehicle is on the way, then it is committed until the end

of its service at the destination factory, that is, its committed time is td,l,v — 7. In Fig., we depict for each update point the number
of those vehicles that are currently waiting at a location for a free docking port, and the average committed time of the vehicles,
respectively. Both indicators are suitable for measuring the flexibility of routes.

In Fig. 11a, we can see that without explicitly penalizing the waiting times, there is a long, namely a 45-epoch (7.5 h) period,
when the number of waiting vehicles is between 34 and 48. That is, on one third of the planning horizon, 30 to 50% of the vehicles
are waiting. When the waiting times are penalized in the reward function, the number of waiting vehicles decreases significantly,
namely, never exceeds 10.

The inflexibility of routes in the myopic approach is even more noticeable in the other figure. According to Fig. 11b, in some cases
the average committed time of the vehicles is more than one and a half hours. There are vehicles which have to wait more than 6 h
for a free docking port. Consequently, if those vehicles came to that factory to pickup some orders, then those orders will be delivered
at least 2 h after their due date, inherently. Explicitly penalizing waiting times also significantly decreases the average committed
time, which never exceeds 46 min.
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Fig. 11. Number of waiting vehicles and average committed time obtained by the RO and by CFA method, respectively.

5.3.2. Penalizing the idle vehicles

Table 3

Evaluation of penalizing idle vehicles.

Multiplier for idle vehicles (4,)

Group 0 5 10

1 1307.5 979.5 1 076.0

2 31707.6 28 532.8 20 265.7

3 690.0 887.5 887.5

4 6 750.9 6 658.2 6 658.2

5 11597.1 2969.8 2969.8

6 49 011.9 21919.9 21 919.9

7 1076 526.1 4 856 878.2 4909 406.0
8 11605754.6 15046 689.2 15 046 689.2
average: 1597 918.2 2 495 689.4 2501 234.0

We ran our method with objective function 1/n xf; + 4, x f, + 4, x f; for all instances. The multiplier A, for the number of idle
vehicles was chosen from {0, 5, 10}. The average scores for each group, and for all instances are indicated in Table 3, while detailed
results can be found in the supplementary data.

In contrast to the previous experiments, penalizing idle times has a bad impact on the largest instances (Groups 7-8) but can
improve other ones. The average improvement on instances with 5 vehicles (Groups 1-2) is 10-36%, and on instances with 50

vehicles (Groups 5-6) is 55-74%.

5.3.3. Parameter tuning

As we can see, the introduced two penalty terms behave differently on the groups. We tested our algorithm for each pair (45, 4,)
of parameters from the set {0,0.25 X 4,,0.5 X 4,,0.75 X 4,} X {0,5,10}. Summarized results are indicated in Table 4, while detailed
results can be found in the supplementary data. We obtained the best results (in the sense of total average score) with parameters

J3=05x A, and 4, = 10.

Note that since the number of vehicles is part of the input, we could use different parameter settings for the different groups.
However, we do not take advantage of this opportunity in the following, but use the same parameters for all groups.

Table 4

Averages scores for different (45, A,) parameter pairs.
I\ Ay 0 5 10
0x 4, 1597 918.2  2495689.4 2501 234.0
025x% 4, 673 944.9 688 973.7 693 949.2
0.5% 4, 682 754.0 644 685.2 643 520.0
0.75 X 4, 660 514.3 656 553.3 659 295.8
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Table 5
Comparison of the solution approaches on the benchmark dataset. Best average scores are in bold.
Group CFA-VNS Gold Silver Bronze VNSME MOEA/D-ES
1 1076.0 2 896.4 13 676.2 1763.8 1036.8 1024.2
2 20 265.7 41 535.3 599 932.8 62 180.2 36 765.0 14 182.4
3 888.4 5 860.4 2310.7 8969.7 691.9 686.0
4 7 456.1 6 544.5 105 049.4 26 938.3 7 909.1 5489.9
5 3159.2 10 459.1 17 284.3 94 794.8 10 541.2 9673.9
6 16 178.2 41 494.3 153 419.1 651 945.0 42 375.0 25 362.5
7 632 913.0 798 240.7 904 586.3 1941 385.3 988 012.5 787 050.0
8 44662237 11359466.4 18678529.1 15122816.2 10337 500.0 10 260 000.0

average 643 520.0 1533 312.1 2559 348.5 2238 849.2 1428 104.0 1387 933.6

Gold, Silver, Bronze: Public algorithms of the ICAPS 2021 DPDP Competition VNSME: (Cai et al., 2022a)
MOEA/D-ES: (Cai et al., 2022b; 2023)

Scaled scores

Group 1 Group 2 Group 3 Group 4

I8CFA-VNS  [iGold IIVNSME  IEMOEA/D-ES |

Fig. 12. Average scores on smaller instances are scaled to the solution approach MOEA/D-ES of Cai et al. (2022b, 2023).

5.4. Comparison of existing methods

In the following, we compare our method to the existing solution approaches. In Table 5, we indicate the average group scores
of our best method (CFA-VNS), the algorithms of the podium teams of the DPDP competition (Gold, Silver, and Brongze), the variable
neighborhood search of Cai et al. (2022a) (VNSME), and the multi-objective evolutionary method of Cai et al. (2022b, 2023) (MOEA/D-
ES). For better understanding, we depict the scaled average scores of the best performing methods in Figs. 12 and 13. The first four
algorithms (CFA-VNS, Gold, Silver, and Bronze) were tested in the same environment, since the algorithms of the podium teams are
publicly available. Note that the available algorithm of Ye and Liang (2021) failed on seven instances of Group 2 due to a technical
constraint of the simulator, thus the results for those instances are obtained by turning off that constraint. Note that methods Gold
and VNSME are the same, but the values corresponding to VNSME are obtained from the results in (Cai et al., 2022a). Method
VNSME was executed on a workstation with an Intel Core i5-9500 3.00 GHz CPU with 4 cores, under Ubuntu 18.04 LTS operating
system. According to CPU benchmarks?, the single thread rating is 2499 for our processor, and 2571 for the other one. The running
environment of method MOEA/D-ES is unknown, the corresponding values are obtained from the results in (Cai et al., 2023).

Methods CFA-VNS and MOEA/D-ES outperform the other solution approaches on this benchmark dataset. On the smaller instances
(Groups 1-4), MOEA/D-ES turned out to be the best performing approach as it obtained 5-30% better average scores on the small
instances than CFA-VNS. See Fig. 12, where we depict the average scores scaled to MOEA/D-ES. In contrast, on the larger instances
(Groups 5-8), our approach was the best as it achieved 20-67% better average scores on the larger instances. See Fig. 13, where the
average scores are scaled to CFA-VNS. The average improvement of CFA-VNS on the full dataset over the second-best method is 54%.

Du et al. (2023) provide quantitative results for a selection of 9 instances from the ICAPS 2021 DPDP competition. Moreover,
they compare their results to that of Ye and Liang (2021), the silver-winning team of the competition. In Table 6 we indicate the
scores for these selected instances of our best method (CFA-VNS), and the hierarchical method of Du et al. (2023) (Hierarchical). For
the sake of completeness, we also indicate the scores for the variable neighborhood search of Cai et al. (2022a) (VNSME), and the
multi-objective evolutionary method of Cai et al. (2022b, 2023) (MOEA/D-ES). Note that the results in the latter papers are provided

2 https://www.cpubenchmark.net.
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Scaled scores

Group 5 Group 6 Group 7 Group 8
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Fig. 13. Average scores on larger instances are scaled to our solution approach CFA-VNS.

Table 6

Comparison of the solution approaches on Du et al.’s selection.
Instance CFA-VNS VNSME? MOEA/D-ES* Hierarchical
38 3793.1 15 000.0 14 200.0 28121.0
39 5962.1 14 900.0 17 400.0 24 013.0
40 7 049.6 10 200.0 13 100.0 23 338.0
41 7 939.8 29 300.0 28 300.0 126 292.0
44 34 649.0 77 800.0 36 200.0 185 288.0
45 10 244.7 36 300.0 22 800.0 185 909.0
49 788 852.0 1580 000.0 630 000.0 1082139.0
54 621 130.3 2070 000.0 1 630 000.0 1619 514.0
55 530 422.7 323 000.0 1 000 000.0 678 125.0

2 VNSME: (Cai et al., 2022a) MOEA/D-ES: (Cai et al., 2022b; 2023)
Hierarchical: (Du et al., 2023) values were provided in 2-decimal ex-
ponential format (i.e., E + n)

in a 2-decimal exponential format (e.g., 1.42E+4), thus the values indicated in Table 6 for these methods are approximated values.
We can see that CFA-VNS produced better scores on 8 out of 9 instances than VNSME and MOEA/D-ES, respectively. The difference
compared to Hierarchical is even greater, as CFA-VNS gave 22-94% better results.

Also note that Du et al. (2023) generated 8 new instances with 50 orders and 5 vehicles, and 8 new instances with 2000 orders and
50 vehicles. The authors also make comparisons on this new dataset, however, they do not provide any numerical results. Only bar
charts are given, from which it is difficult to read even approximate values. Since we could not get access to more detailed numerical
results so far, we cannot provide comparison with our solution approach on this dataset.

5.5. Sensitivity analysis

We performed some tests to assess the sensitivity of our method to the run-time limit as well as to the perturbation of the data. As
we mentioned, due to the length of the decision epochs (10 min), we apply a 9-minute run-time limit in our variable neighborhood
search. Therefore, it may occur that during distinct runs the method terminates with different solutions in a decision epoch, which
may influence the subsequent epochs and thus on the final solution. In consequence, our method is not deterministic in the sense that
distinct runs may result distinct scores. Thus, we first investigated how deterministic our method is in Section 5.5.1.

In a different set of experiments, we perturbed the instances, and run our method on the modified inputs, the results are summarized
in Section 5.5.2.

For these experiments, we chose 2-2 instances from the two largest groups, namely instances 49, 50, 61, and 62.

5.5.1. Impact of run-time limit

To check how deterministic our method is, we repeated the simulation 5 times for each instance. In all cases, we got the same
result in each of the 5 runs for the same instance. Therefore, we can state that the method is deterministic on the chosen instances,
and we expect the same behavior in most cases.
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Table 7
Sensitivity analysis: perturbed instances.

Instance 49 Instance 50 Instance 61 Instance 62
p=0 1 038 609.4 828 236.4 3499 727.4 3717 233.1
p=0.1 843 924.4 848 902.0 3287 735.0 3350 250.2
975 795.1 895 422.6 3353 655.2 3361 829.9

926 224.4 1 032 660.9 4174 461.7 3723 564.2
828 752.2 1013 947.7 3678 377.0 3217 902.2
926 095.3 785 364.6 3105979.1 3530 272.6

avg 900 158.3 915 259.6 3520 041.6 3436 763.8

std.dev 55 379.0 95 070.5 375 881.4 174 355.1

p=025 1037 437.1 745 218.8 3188 694.0 3579119.2
979 367.0 828 345.0 3333017.3 3138 076.2
909 484.3 892 606.9 3 818 538.0 3625110.4
997 086.7 1 040 584.6 3267 811.5 3759 841.7
891 435.3 783 811.6 3514 348.2 3 668 758.5

avg 962 962.1 858 113.4 3424 481.8 3554181.2
std.dev 54 692.0 103 573.8 224 438.6 216 434.9
p=05 1116 028.0 831 807.5 3 245 883.4 3942 387.9

1006 283.4 994 466.5 3451 303.7 3843 628.3
898 703.0 734 223.0 2935 480.3 3780 042.1
932 487.2 837 958.4 3684 915.5 3387 376.5
942 723.0 852 650.6 3395 947.6 3502 457.5

avg 979 244.9 850 221.2 3342706.1 3691178.5
std.dev 76 743.5 83 375.8 247 767.2 210 786.7

.10

Average scores
[N}

T T

Instance 49 Instance 50 Instance 61 Instance 62
‘an =0 Uip=01 Uop=025 Uop=05

Fig. 14. Sensitivity analysis: perturbed instances. Average scores and minimum/maximum values.

We also examined how the run-time limit affects the quality of the final solutions. For each instance, we performed tests where
we set reduced run-time limit for the variables neighborhood search. We made tests with run-time limits of 3 and 6 min as well.
Surprisingly, we found that for each instance, we got again the same result in every run.

5.5.2. Perturbed instances

For each instance in the chosen dataset, we created 5 perturbed instances, where the release dates of the orders are shifted up
to 20 min. That is, each order o; is selected to be shifted with a given probability p, and the new release date of the order is chosen
uniformly at random from the following set

{max{#’ = 1200,0}, ..., min{ + 1200, 86 399} },

where 0 and 86 399 refer to the beginning and the end of the day in seconds, respectively. The due dates are adjusted accordingly.
We performed experiments with p = 0.1, p=0.25 and p = 0.5.

The results are provided in Table 7, where the final scores are indicated for the experiments, along with the average value (avg)
and the standard deviation (std.dev) for each instance. The first row with p = 0 refers to the original, non-perturbed instances. We
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also depict the result in Fig. 14, where the bar plots refer to the average values, and the error intervals refer to the minimum and
maximum values.

The standard deviation compared to the average value is 5.1% — 10.7% for p = 0.1, 5.7% — 12.1% for p = 0.25, and 5.7% — 9.8% for
p = 0.5. We think that these values are low, compared to how many orders can be shifted. For example, in case of p = 0.5, each order
is shifted with a probability of 0.5, nevertheless, the standard deviation is lower than 10% for each instance.

5.6. Key insights

Our computational results indicate that solving a dynamic vehicle routing problem necessitates a thorough analysis of both the
problem data and the resulting solutions. This process led us to introduce penalty terms into the objective function. We believe that
formulating the appropriate objective function is at least as important as the specific details of the optimization algorithm used to
solve these problems.

In the problem studied we introduced penalty terms for minimizing the waiting times of the vehicles at the facilities, and also
for minimizing the number of idle vehicles. While the former one is only effective if the docking capacity of some of the locations
is a bottleneck, the latter penalty is more effective if the number of vehicle is moderate (at most 50 in our benchmark instances),
while it is rather counterproductive when the number of vehicles is large (100 in our dataset). However, using the two penalty terms
simultaneously yielded better results than applying each one individually.

6. Conclusions

In this paper we investigated a dynamic pickup and delivery problem with docking constraints and the LIFO rule. We proposed a
cost function approximation (CFA) method for the problem, where we perturbed the objective function to make solutions flexible for
future changes. The main contribution of our method are the two penalty terms added to the cost function that penalize waiting for
service at the locations and also if the vehicles are idle. We proposed a variable neighborhood search with three LIFO-specific local
search operators to solve problems at the states with the perturbed objective function. As a case study, we evaluated our solution
procedure on the instances of the ICAPS 2021 DPDP competition. The computational experiments show that our method significantly
outperforms the other solution approaches on this dataset. The average improvement over the state-of-the-art on the full dataset is
more than 50%. Our method is especially good on the largest (and hardest) instances.

While no exploitable probabilistic information may be available in a single problem instance, statistical data about the distribution
of orders in time and space might be exploited even better than our current method does. This is an excellent subject for future research.

In an online setting with docking constraints, it seems difficult to handle hard time windows for the requests, which is a limitation
of our method.

Our method is easy to extend with other constraints, such as FIFO constraints instead of LIFO constraints, different vehicle capac-
ities, or travel times depending on the time of day. Such constraints frequently occur in practice, providing a wide application area
for the method proposed.

An emerging trend is the combined operation of trucks and drones, we refer to Wang and Sheu (2019) and Wandelt et al. (2023).
In this topic several static and dynamic problems appear, e.g., the vertiport location problem for urban air mobility (UAM) systems
(Jin et al., 2024). The approach proposed in this paper may be further extended in this direction.
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Appendix A. Serving vehicles at factories

In this section we describe the method of serving the vehicles at a factory in detail. Recall that each factory has a given number
of docking ports for loading and unloading, and the vehicles are served in non-decreasing arrival time order, where ties are resolved

randomly.
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Given a factory with ¢ ports for loading and unloading the vehicles, and suppose the current time is t. Let £ = (v, vy, ..., ;) be
the reservation list consisting of those vehicles which are currently at the factory. Let td; be the earliest departure time of vehicle v;. £
is ordered in non-decreasing departure time order, that is, td; < td;; for 1 <i < k — 1. Suppose vehicle v, arrives at the factory at
time r. Finally, let s, ; denote the service time of vehicle v, ;, which is the sum of the dock approaching time, the unloading time
and the loading time.

If k < ¢, the vehicle v, ; immediately starts to approach a free port. The waiting time is zero, and the earliest departure time is
tdy, =1+ st;,,. Otherwise, if k > ¢, then all ports are occupied, and the vehicle must wait until vehicles v, v,, ..., v;_.,; finish, that
is, until time td;__, ;. Thus, the waiting time is td,_.,; — t, and the earliest departure time is td; .| = td;_.,; + st;,;. In both cases, the
vehicle is inserted into the appropriate position of the reservation list. When a vehicle finishes, it is removed from the list.

Example. In Fig. A.15 we depict a situation where four vehicles arrive at a factory with two docking ports. Vehicle v, arrives
at the factory at time ¢, and occupies a free docking port (1d; =15, £ = (v;)). Vehicle v, arrives at time 7, and occupies the other
free port (td, =t5, L = (vy,v;)). Vehicle v; arrives at time #;, however, since both ports are in use (that is, currently vehicle v, is
under unloading at the first port, and vehicle v, approaches the other one), it has to wait until a port is freed at time 5 (td; =1;,
L = (vy,0,,03)). Vehicle v, arrives at time #,, however, both ports are in use, moreover, vehicle v; is already allocated to the port
becoming free at time 15, thus, it has to wait until time #,, when loading is finished at the first port (td, = 15, L = (v, vy, U3, Uy)).

vehicle 1 ’ ‘ | ‘ port 1

vehicle 2 \:I:I:' port 2
vehicle 3 s [ [ o2
vehicle 4 - ‘ | ‘ port 1

>

t1 to t3 ty ts tg t7 ts

Fig. A.15. Example for vehicles arriving at a factory with two docking ports. White rectangles represent dock approaching, gray rectangles represent
unloading and loading orders, black rectangles represent waiting for ports to become free.

Appendix B. Feasibility of route plans in states

In this section we characterize feasible route plans in some state s,.
Orders. For a vehicle v, let O, , be the set of those orders that are carried by the vehicle or picked up in its route plan 6, ,. That

. Chw o . S .
is, O, = G, U U/’ ii P,J(,v. These, and only these orders must be delivered by the vehicle in the route plan, that is,
ko

U Di,u = Okvu'
j=1

y,
j=

Ck,

. y
Moreover, the sets P,ﬁ v P,ﬁ , must be disjoint for j # j’, and C; , must be disjoint from | J s

v v pJ
| Py, Further on, ¢, u .2} P;  must be

disjoint from C; ,, U Uji'l P]’('w for distinct vehicles v # w. Clearly, orders must be picked up before their delivery, that is, if o; € P,i‘u
j2 . . . kv i ~
for some j, then o; € DL“_U for some j; < j,. Finally, Uj k'l” P,J(YU must be a subset of @, for each v € V.

. . . Cro Cro _ s
LIFO constraint. Let £, , be the concatenation of lists C; ,, D}( v P,f b Dkkl} s Pk"u‘ . Let pos(o,.*) and pos(o;") denote the position of

the first and the second (i.e., last) occurrence of order o; € O, , in £, ,, respectively. Then, route plan 6, , satisfies the LIFO constraint,
if

pos(o}) < pos(o}') = pos(o;) < pos(o}') v pos(o;) < pos(o})

holds for all 0;,0; € Oy .
Capacity constraint. The route plan 6, , satisfy the capacity constraint, if the total quantity of the loaded orders never exceeds the
vehicle’s capacity. That is,

Y q,-+é Y a- ) a|<o

0;€Crp =t oer! 0, €D,

holds forall £ = 1,..., £} .
Fundamental routing constraints. The travel time between factories are fixed:

tal —1di~" = travel(fS7', 4y forall j=1,....7,.
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Let 7/ be the waiting time of the vehicle at the jth visited factory.

J J docking d P J
mv+rlu+h + 2 hk+ thstdb'

okEDi. okeT’L/.

Appendix C. Transition

In the following, we formally describe the transition from state s, to state s, ; according to action x,, postponed from Section 3.1.6.
The various cases are summarized in Table C.8, and explained in the following. Recall that 0;; , refers to the ith visit of vehicle v in

its route plan belongs to state s;, and 0;”” refers to the ith visit of the route plan belongs to action x,.

Table C.8
Transition from state s, into state s,,, according to action x,.

state s, action x; state s,
curr 1 x,1 x.2 curr 1
Case &%) b O Oh Ten i Osr

1 yes * * * Tepr <TAQT P 0y
2a yes * no no tdT < 1y (e Tegr) no
2b yes * yes % 1d"" <7y MO 0:::

1 1
3 no yes yes * Tipr <14, no 0%
1 | 1 :
4 no yes yes * ta, < Ty (feortdy,) 9;0

[%] could be ‘yes’ or ‘no’ (i.e., ‘given’ or ‘not given’). Recall that if 6}“” is
given, so is 0;:} with f kl,v =f kxvl and ra; = ta;'l.

Case 1. The vehicle is not finished at its current factory. If the vehicle had a current factory and the associated earliest departure time
is later then the current update point, then the current factory remains the same as in the previous state, and the destination is the
one specified in the previous action, if any.

Case 2. The vehicle is finished at its current factory. Assume that the vehicle had a current factory and the associated earliest departure
time has passed. If the vehicle was not assigned a destination factory in the previous action (Case 2a), then the vehicle remains parked
at this factory, but will be immediately available. Otherwise (Case 2b), the vehicle is already on the way to its destination specified
in the last action.

Case 3. The vehicle is not reached its destination factory. If a vehicle was on the way to its destination factory, and did not reach it
in the last epoch, then the destination remains the same (however, the list of orders to pickup may be changed in the action).

Case 4. The vehicle has reached its destination factory. Assume that the vehicle was on the way to its destination factory, and reached
that in the last epoch. Then, that former destination becomes the current factory, and earliest departure time is also calculated. If the
vehicle was not assigned further factories to visit in the previous action, then the vehicle is not assigned a destination factory in the
current state. Otherwise, the first factory to visit becomes the next destination factory.

Carrying orders. In all cases P = ]?‘U, except in Case 4, when PV = (PI?’U \ D}w) U P,E,U, since the vehicle has reached its

k+1,0 k+1,0
destination, although loading and unloading may be in progress at time point 7, ;.

Appendix D. Feasibility of solutions

In the following, we formally define the feasibility of the route plans in a solution.
Orders. First of all, all orders must be dispatched in a solution. Let ©, be the set of those orders which belong to (i.e., picked up
and delivered by) vehicle v. Then, each order belongs to exactly one vehicle:

Yo.=o0,

vey

with O, n O,, = @ for all v # w. Also, each order is picked up and delivered only once:
¢y ty
(Du = U Df] = U Pl/} s
j=1 j=1

with D/ N D =@ and P/ nP) =@ forall i # j.

Each order must be picked up before its delivery, that is, if o, € P! for some Jji, theno; € D2 for some J1 < Jo-

LIFO constraint. Let £, be the concatenation of lists Di,, Pul, - Df“, Pf v, Let pos(o;r) and pos(o;’) denote the position of the first
and the second (i.e., last) occurrence of order o; € O, in L, respectively. Then, route plan 0, satisfies the LIFO constraint, if

pos(o}) < pos(o}') = pos(o;) < pos(o}') v pos(o;) < pos(o;)

holds for all 0;,0; € O,,.
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Capacity constraint. The route plan 6, satisfy the capacity constraint, if the total quantity of the orders carried by the vehicle never
exceeds its capacity. That is,

Z‘L“Zqi <0

1 a,EPﬁ o,EDL

holds forall# =1,...,7,.
Fundamental routing constraints. The travel time between factories are fixed:

A

J

. i1 Lo o
tal —td)™" =travel(f)™', f}) forallj=1,....7,.
Let 5/, be the waiting time of the vehicle at the jth visited factory.

J J docking d 4 Jj
tal +n) +h + z‘hk+ thstdu

okeDé okeTJé

Appendix E. Evaluation procedure

The purpose of the evaluation procedure is to compute the value of the cost functions (2) and (3). To this end, the timing
information for the routes defined in Section 4.2 has to be computed. We apply a basic event-based simulation procedure. The
procedure maintains a priority queue (event queue) in order to process arrival and departure events. In addition, each factory is
associated with a reservation list containing vehicles that are currently at the factory, see Appendix A.

Step 1 (Initialization). First, consider the vehicles with current factory. If the earliest departure time of a vehicle is in the future
(i.e., the vehicle is not finished yet at this factory), we insert the vehicle into the sorted reservation list of the factory. We also create a
departure event associated with the corresponding departure time. Then, for each vehicle without current factory, we create an arrival
event associated with the corresponding arrival time.

Step 2 (Processing events). If the event queue is empty, we are done, and thus stop by returning the calculated objective function
value. Otherwise, we take out from the queue an event with the earliest associated time. Denote the corresponding factory with f,,
and the associated time with 7,. If this event is a departure event, we remove the corresponding vehicle from the reservation list of
the corresponding factory. Also, if the vehicle has a next factory to visit, say f,, we create and store an arrival event associated with
the arrival time 7, + travel(f,, f,). Otherwise, if the event taken out is an arrival event, then we calculate and store its contribution
to the cost function value, as defined in Section 3.1.7. We also calculate the earliest departure time of the vehicle (see Appendix A),
and create a departure event associated with this time. We repeat this step.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.multra.2025.100194
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