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 A B S T R A C T

In dynamic vehicle routing problems (DVRPs), some part of the information is revealed or changed on the fly, 
and the decision maker has the opportunity to re-plan the vehicle routes during their execution, reflecting on 
the changes. Accordingly, the solution to a DVRP is a flexible policy rather than a set of fixed routes. A policy 
is a problem-specific algorithm that is invoked at various decision points in the planning horizon and returns 
a decision according to the current state. Since DVRPs involve dynamic decision making, a simulator is an 
essential tool for dynamically testing and evaluating the policies. Despite this, there are few tools available 
that are specifically designed for this purpose. To fill this gap, we have developed a simulation framework 
that is suitable for a wide range of dynamic vehicle routing problems and allows to dynamically test different 
policies for the given problem. In this paper, we present the background of this simulation tool, for which we 
proposed a general modeling framework suitable for formalizing DVRPs independently of simulation purposes. 
Our open source simulation tool is already available, easy to use, and easily customizable, making it a useful 
tool for the research community.
1. Introduction

A vehicle routing problem is dynamic, if some part of the informa-
tion is revealed or changed on the fly, and the decision maker (the 
service provider) has the opportunity to re-plan the vehicle routes dur-
ing their execution, reflecting on the changes. Dynamic vehicle routing 
problems (DVRPs) have received a lot of attention in the past decades, 
which is certified by a series of recent review papers, e.g., Berbeglia 
et al. (2010), Pillac et al. (2013), Bektaş et al. (2014), Psaraftis et al. 
(2016), Ritzinger et al. (2016), Rios et al. (2021), Soeffker et al. (2022), 
Zhang and Van Woensel (2023), Mardešić et al. (2023). This growing 
interest is due to the wide range of real-world applications and the fact 
that today’s technology enables real-time decision making.

Nowadays, DVRPs are usually modeled using the so-called sequential 
decision process (e.g., Ulmer et al. 2020, Soeffker et al. 2022). Briefly 
stated, the decision process transitions from decision point to decision 
point, where the decision maker is provided with the current state 
(i.e., all the available information) and has the opportunity to make a 
decision (e.g., update the vehicle routes), or in other words, to choose 
an action, see Fig.  1(a). Accordingly, a solution to the dynamic problem 
is a policy, which is a function that assigns a decision to every state.

Apart from survey articles, in the majority of the papers dealing 
with DVRPs, the authors propose policies for the problem at hand, and 
perform computational experiments to evaluate them, e.g., to compare 
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them with state-of-the-art or baseline policies. In addition to doing the 
obviously necessary implementation of their policy, they need some 
kind of simulator for dynamic evaluation. In this paper, we focus on this 
dynamic evaluation, and we approach the DVRPs from the simulation 
point of view. Even more emphasized, our focus is not on the solution 
approaches for a particular DVRP, but on the modeling of general 
problems and on the dynamic testing of arbitrary solution methods.

According to our primary goal, we have implemented a simula-
tion framework that is suitable for a wide range of dynamic vehicle 
routing problems and allows to dynamically test different solution 
approaches for the modeled problem. This article, however, is much 
more than technical documentation, as we also propose a general 
modeling framework suitable for formalizing DVRPs independently of 
simulation purposes.

1.1. Motivation

The simulation of the decision process is essential for the dynamic 
evaluation of solution approaches to dynamic vehicle routing problems. 
Despite this, there are few tools available that are specifically designed 
for this purpose.

In simpler cases, it is very easy to implement the sequential decision 
process, since the transition between the states is straightforward. 
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Fig. 1. Differences between the sequential and the discrete-event based decision process. Circles refer to distinct events (e.g., order requests, vehicle arrival). Black circles refer to 
decision points. Squares refer to states. Black squares refer to post-decision states.
However, in many other cases (especially when inter-route constraints 
make the problem difficult), it is necessary to run a more complex 
simulation to move the decision process from decision point to decision 
point. Although general-purpose simulation tools exist (e.g., AnyLogic, 
SimPy), they require the user to build the entire dynamic vehicle 
routing framework from scratch. Several publicly available simulators 
have been created using these tools, but they are only suitable for a 
specific problem (see e.g., Hao et al. 2022). Transportation simulation 
software packages (e.g., Eclipse SUMO, MATSim, PTV Vissim, Tran-
sims) could potentially support dynamic testing, but most of these tools 
focus primarily on microscopic traffic simulation (including elements 
such as traffic lights and pedestrian interactions), a level of detail that 
is rarely considered for research in our scope. We would like to high-
light the work of Maciejewski et al. (2016, 2017), where the authors 
developed a DVRP extension for MATSim. This extension allows the 
modeling of a wide variety of DVRPs and the plugging of different 
algorithms, therefore this tool is indeed suitable for dynamical testing. 
However, modeling and customization requires familiarity with Java 
and the relatively complex architecture of MATSim, including a batch 
of scenario files. Our understanding is that the implementation of the 
decision making algorithm is also tied to Java.

Based on the above, it is a reasonable goal to develop a standalone 
simulation tool for DVRPs according to the following criteria. (i) The 
simulation tool should be based on a generic modeling framework in 
which the problems can be clearly formulated, thus ensuring the recon-
struction of the research. (ii) The framework should be able to model a 
wide range of DVRPs, that is, the problem aspects and side constraints 
often occur in the literature should be included by default. (iii) The 
simulation tool should be easy to use, so it should be much easier to 
model a problem in it than to implement an entire decision process 
from scratch. (iv) The simulation tool should be easily customizable 
and adaptable to individual needs. (v) The implementation of the 
decision making algorithm should not be tied to a specific programming 
language, but the simulator should allow communication with it.

We note that, for example, in the field of reinforcement learning – 
which is also a possible solution approach for DVRPs (see e.g., Hilde-
brandt et al. 2023) –, the Python package gym (or more recently
gymnasium) has successfully standardized and simplified the testing 
and comparison of algorithms, which has facilitated the faster introduc-
tion and evaluation of new methods (Brockman et al., 2016; Towers 
et al., 2024).

1.2. Main contributions

Our main goal was to develop a general simulation tool for dynamic 
vehicle routing. To achieve this, we conducted an extensive literature 
review and developed a general modeling and simulation framework. 
Our main contributions are the following.
2 
Literature review on DVRPs. We studied the literature on dynamic vehi-
cle routing to identify those problem aspects and side constraints that 
are common and should therefore be considered in the development of 
the framework. For details, see Section 2.
Modeling and simulation framework for DVRPs. We developed a general 
modeling and simulation framework for dynamic vehicle routing. The 
framework is suitable for modeling a wide range of DVRPs, primarily 
pickup-and-delivery problems, but it is easily adaptable to other prob-
lems as well. Our discrete-event based decision process is a combination of 
the discrete-event based simulation and the sequential decision process, 
the latter of which is widely used to formalize DVRPs. For the modeling, 
we borrowed the route-based representation of Ulmer et al. (2020), but 
we propose a more detailed model suitable for simulation purposes, see 
Fig.  1(b). We also standardized and formalized some common aspects 
of decision making, such as postponing decisions and delaying the 
departure of vehicles. For details, see Sections 3 and 4.
Open source simulation tool for DVRPs. According to our primary goal, 
we created an implementation of our simulation framework. The source 
code of our Python package, called dvrpsim, is available online. 
Dynamic vehicle routing problems can be easily modeled, and the 
simulator is easily customizable, making it a useful tool for other 
researchers to dynamically test and evaluate their algorithms for a 
particular problem. To the best of our knowledge, this is the first 
simulation tool designed specifically for this purpose. For details, see 
Section 5.

2. Dynamic vehicle routing

In this section, we provide a brief introduction to dynamic vehicle 
routing. We also summarize our literature review on dynamic vehicle 
routing problems. We compiled the reviewed papers in Tables  A.1–A.3. 
The goal of the review was to identify those problem aspects and side 
constraints that often occur in the literature, therefore, they should be 
taken into account when developing a general modeling and simulation 
framework. As the focus is on modeling and simulation, the literature 
review does not cover problem aspects such as logistic context, objec-
tive functions, solution approaches, etc. For such an overview, we refer 
to the excellent review by Zhang and Van Woensel (2023).

2.1. Dynamic vehicle routing problems

Briefly stated, the well-known (static) vehicle routing problem (VRP) 
aims to determine an optimal set of routes to be performed by a 
fleet of vehicles to fulfill order requests at different locations within a 
planning horizon. The problem was introduced more than 60 years ago 
by Dantzig and Ramser (1959), then generalized by Clarke and Wright 
(1964), and many variations have appeared since then (e.g., Toth and 
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Vigo 2002, Eksioglu et al. 2009, Braekers et al. 2016, Zhang et al.
2022).

According to Psaraftis (1980), a vehicle routing problem is charac-
terized as dynamic, if the input of the problem is received and updated 
concurrently with the determination of the routes. The vehicle routes 
can be redefined in an ongoing fashion. This class of problems is often 
referred to as online or real-time. Using the taxonomy of Pillac et al. 
(2013), a dynamic problem is stochastic, if there is some exploitable 
stochastic knowledge about the dynamically revealed information, and
deterministic otherwise. Thus, stochastic dynamic vehicle routing problems
(SDVRPs) are also within the scope of our paper.

In a recent survey, Zhang and Van Woensel (2023) considered three 
DVRP subcategories by distinguishing three types of order requests. 
(i) A pickup and delivery request consists of a pair of locations, and the 
serving vehicle must visit the pickup location before going to the deliv-
ery location. Table  A.1 summarizes the papers we have reviewed on the 
associated dynamic pickup-and-delivery problems (DPDPs). (ii) Delivery 
requests are special pickup and delivery requests because their pickup 
location refers to a depot. See Table  A.2 for our summary on the related
same-day delivery problems (SDDPs). (iii) A service request is associated 
with only a single location, so the assigned vehicle does not have to visit 
a specific pickup location (e.g., the depot) before serving the request. 
See Table  A.3 for our overview on vehicle routing problems with dynamic 
service requests (VRPDSRs).
Problems in our scope. In this paper, we focus on the three DVRP sub-
categories considered by Zhang and Van Woensel (2023). We present 
our modeling framework primarily for DPDPs (including SDDPs) as 
we assume that each request has a designated origin and a designated 
destination, however, with a slight modification the framework is also 
adaptable to DVRPs with service requests.

Note that Zhang and Van Woensel (2023) identified another DVRP 
variant in addition to the previous ones, called the dynamic multi-
period VRP (DMPVRP), which is characterized by multiple planning 
periods. In this paper, we do not consider these problems. We also 
do not consider those problems, where the transportation consists of 
multiple stages, such as multi-echelon vehicle routing or vehicle routing 
with transshipment. For a review on these problems, see e.g., Sluijk et al. 
(2023), Nielsen et al. (2024).

2.2. Sequential decision process

Nowadays, the state-of-the-art approach to modeling DVRPs is the
sequential (or Markov) decision process. For a thorough introduction, 
see Ulmer et al. (2020), Soeffker et al. (2022). Briefly stated, at certain 
time points in the planning horizon, called decision points, the decision 
maker has the opportunity to re-plan the vehicle routes, reflecting on 
the newly revealed information, see Fig.  1(a). These decision points 
may be predetermined (e.g., they occur at given intervals), or they can 
be imposed by certain events (e.g., requesting an order). The sequential 
decision process steps from decision point to decision point, called
transition. At a decision point, the decision maker is provided with the 
current state, which describes all the information available to make 
a decision. The resulted decision includes, for example, the updated 
vehicle routes.

Note in advance that our discrete-event based decision process dif-
fers from the sequential decision process in that it explicitly considers 
events between decision points, see Fig.  1(b). Besides the fact that 
this approach makes it easier to formalize the dynamic problem in 
some cases, this level of detail allows us to construct a general, easily 
customizable simulation framework.

2.3. Problem aspects and side constraints

Now, we present the main aspects and side constraints of dynamic 
vehicle routing problems that were considered when building our 
framework. We group these aspects by locations (Section 2.3.1), orders 
(Section 2.3.2), and vehicles (Section 2.3.3), but there may be some 
overlap between the groups.
3 
2.3.1. Locations
Location is a collective term for the places that vehicles may visit, 

such as depots, customers, restaurants, factories, etc., depending on the 
problem at hand.
Operating network. At this level of logistics planning, vehicles operate 
on networks. That is, the movement of vehicles is not detailed; they are 
either at a location (residing at a network node) or on the way (trav-
eling along a network edge). In the latter case, the exact positions of 
the vehicles are unknown, but their arrival can be calculated from the 
travel time. In certain cases, vehicle movements are simulated within a 
real-world road network, such that road crossings also refer to locations 
(e.g., Ferrucci and Bock 2014, 2015, 2016). Vehicles, especially if they 
are different types (e.g. drones and trucks), can operate on different 
networks (e.g., Ulmer and Thomas 2018).
Travel times. Travel times between locations can be arbitrary. For 
example, travel times can be calculated from the coordinates of the 
locations (Ulmer et al., 2021), or predefined values (e.g., taken from 
a map application or based on experience) can be used (Hao et al., 
2022). Travel times can be vehicle-dependent, for example, if vehicles 
have different speeds, and especially if the vehicles operate on differ-
ent networks (e.g., Ulmer and Thomas 2018). Travel times can also 
be time-dependent (e.g., Haghani and Jung 2005) or even stochastic 
(e.g., Schilde et al. 2014).
Docking restrictions. Locations often have limited space for loading 
or unloading, and sometimes the loading crew creates a bottleneck. 
Because of these inter-route constraints, vehicles may make each other 
wait. For example, Hao et al. (2022) proposed a problem, where each 
factory has a limited number of docking ports, so if a vehicle arrives and 
there is no port available, the vehicle must wait until a port becomes 
available.

2.3.2. Orders
Orders are transportation or service requests. The object of trans-

portation can be a variety of products, food (e.g., meal delivery prob-
lem), other vehicles (e.g., bike sharing rebalancing problem), or even 
people (e.g., dial-a-ride problem). Transportation requests typically 
have an origin (i.e., pickup location) and a destination (i.e., delivery 
location). In many cases, the terms ‘‘order’’ and ‘‘customer’’ are used 
interchangeably.

Service times. Various service times may arise when orders are picked 
up or delivered. Loading and unloading itself may take some time and 
may even depend on the quantity of orders (e.g., Hao et al. 2022). 
These times can also be location-dependent (e.g., Ulmer et al. 2019b) 
or vehicle-dependent (e.g., Ulmer and Thomas 2018). Additional order-
independent service times, such as parking or docking, may also occur 
(e.g., Hao et al. 2022). The above service times can even be stochastic 
(e.g., Goel et al. 2019), but in many cases they are simply neglected or 
incorporated in the travel times.
Service time windows. Orders often have service time windows for their 
pickup and/or delivery. Such a time window specifies an earliest and 
a latest service start time for the order. Earliest service start times are 
typically hard constraints, meaning that if a vehicle arrives early at a 
location, it has to wait until the time window opens, but Schilde et al. 
(2014), for example, allowed early arrivals. In contrast, latest service 
start times are often soft constraints, that is, the service can start after 
the latest required time, however, the tardiness may incur additional 
costs (e.g., Ulmer et al. 2021). In some rare cases, customers have 
multiple time windows in the planning horizon (e.g., de Armas and 
Melián-Batista 2015a,b). Service time windows can be stochastic. For 
example, in the problem proposed by Srour et al. (2018), customers first 
preannounce their request with an estimated time window for pickup, 
which can be changed when the customer confirms the request.
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Order cancellation. In some cases, customers can cancel their requests 
(e.g., Lin et al. 2014, Los et al. 2020). Cancellation is allowed only if 
the service of the corresponding order has not yet started. After the 
notification, the decision maker must remove the canceled orders from 
the vehicle routes. Cancellation is permanent, and canceled orders are 
no longer dealt with in the given planning horizon.

2.3.3. Vehicles
Vehicle is a collective term for the equipment or people that per-

form the transportation, such as trucks, drones, drivers, couriers, etc., 
depending on the problem at hand.
Vehicle fleet. The fleet of vehicles can be either homogeneous or het-
erogeneous. In the latter case, vehicles may differ not only in their 
basic parameters, but also in their operations. For example, Ulmer 
and Thomas (2018) considered a problem with heterogeneous fleets of 
drones and trucks that differ not only in their availability, capacity, and 
travel speed, but also in their requirement for charging and the network 
on which they operate.
Vehicle capacity. A vehicle is either capacitated or uncapacitated. In 
the former case, the total size or quantity of orders loaded on the 
vehicle must never exceed the capacity of the vehicle. In dial-a-ride 
or taxi-routing problems, the capacity of the vehicles is the number of 
non-driver seats, however, in some cases no shared rides are allowed, 
that is, a vehicle can only carry one passenger (or one passenger group) 
at a time (e.g., Hyland and Mahmassani 2018). The uncapacitated case 
is common with those problems where the packages are relatively small 
and therefore the trunk of the transporting vehicle is not a limiting 
factor.

Loading rule. Vehicles can be subject to loading rules. For example, 
in Hao et al. (2022), unloading must follow the last-in-first-out (LIFO) 
rule, i.e., the last loaded order must be unloaded first.
Vehicle availability. Vehicles can also have time windows, representing 
the working shifts of the drivers (e.g., de Armas and Melián-Batista
2015b, Steever et al. 2019). Sometimes, a time window [0, 𝐿] is associ-
ated with the depot, also called the depot deadline, which gives a latest 
return time (𝐿) for the vehicles (e.g., Côté et al. 2023).

2.4. Aspects in decision making

Several questions may arise when making decisions. When or how 
often is it necessary to re-optimize (Section 2.4.1)? Can and should 
an order be rejected (Section 2.4.2)? Should all decisions be taken as 
soon as possible, or can certain decisions be postponed (Section 2.4.3)? 
Should vehicles be sent on their way immediately or is it worth waiting 
(Section 2.4.4)? Can en route vehicles be diverted or should their 
destination not be changed (Section 2.4.5)? Can a request be served 
by multiple routes (Section 2.4.6)?

2.4.1. Decision points
In the case of DVRPs, the decision maker must decide when to 

process the new dynamic information and update the routes of the 
vehicles. Most of the articles use three different approaches, namely the 
decision maker makes a decision either periodically, when a new order 
request arrives, or when a vehicle arrives at a location, however, there 
are several other possibilities, and the various approaches can also be 
combined.

Periodic decision points. In many applications, the planning horizon is 
divided into predetermined decision epochs, typically of equal length 
(𝛥), i.e., decision points occur periodically. For example, Zolfagharinia 
and Haughton (2014) re-planned truck routes twice a day (𝛥 = 12 h). In 
the framework proposed by Hao et al. (2022) for a dynamic pickup-and-
delivery problem, information is updated every 10 min (𝛥 = 10 min). 
Bertsimas et al. (2019) re-optimized taxi routes even more frequently 
(𝛥 = 30 s).
4 
Decision point on order request. The most common case is that decisions 
are made when new orders are requested. Ninikas and Minis (2014) 
also considered a policy where, instead of imposing decision points on 
every order request, re-optimization would occur after a pre-defined 
number of requests.

Decision point on vehicle arrival. Often, a decision point is imposed 
when a vehicle arrives at a location. In some cases, complete order 
information is not available until arrival, so routes may need to be 
re-planned prior to the start of service (e.g., Goodson et al. 2016). 
For some same-day delivery problems, the planned vehicle routes are 
fixed, so re-optimization occurs only when a vehicle returns to the 
depot (e.g., Dayarian et al. 2020). In fact, most of the cases decision 
making is required after the service is finished, but since service times 
are neglected, it coincides with the arrival. In many approaches, the 
planned route of a vehicle consists only of the next location to visit, so it 
is necessary to re-plan the route after the service is finished (e.g., Ulmer 
et al. 2018, 2019a).

Self-imposed decision points. In some cases, certain decisions can be 
postponed, which often involves the introduction of self-imposed de-
cision points. That is, if no other event imposes a decision point 
by a certain time point, then reaching that time will impose one to 
reconsider the decision. For example, Zhang et al. (2018) considered 
an orienteering problem in which a traveler must join a waiting queue 
upon arrival at a location. If the traveler joins the queue, the next 
decision point is imposed when the size of the queue decreases or a 
predetermined maximum waiting time elapses, whichever occurs first. 
Ulmer et al. (2021) investigated a restaurant meal delivery problem, 
where the assignment of an order to a driver, once made, cannot be 
altered. Thus, the authors proposed a policy, where the assignment of 
some non-urgent orders is postponed for a given unit of time, and if 
no new orders are requested during this period, the expiration of the 
postponement imposes a decision point. In certain cases, delaying the 
departure of the vehicles can also cause self-imposed decision points, 
see later in Section 2.4.4.

2.4.2. Order rejection
In many applications, the decision maker can reject orders, if they 

are unable or unwilling to fulfill them. The rejection is permanent, and 
rejected orders are no longer dealt with in the given planning horizon. 
In practice, rejected orders may be outsourced to a third party or moved 
to another planning horizon. In the problem proposed by Ehmke and 
Campbell (2014), the decision maker allows the customer to request an 
alternative order with a different time window, if the original order is 
rejected.

2.4.3. Decision postponement
As we touched on in Section 2.4.1, certain decisions can be post-

poned in some cases. In our interpretation, decision postponement 
means that certain non-changeable decisions are not made at the 
current decision point, but are postponed to a later one. For example, 
if order rejection is allowed, the acceptance/rejection is permanent, 
therefore some authors do not want to make the decision at the first 
possible decision point (e.g., Zhang et al. 2018, Voccia et al. 2019). 
Sometimes, the assignment of orders to vehicles, once made, cannot be 
altered, so the decision on this assignment is postponed (e.g., Ulmer 
et al. 2021). Note that the case where the order requests do not 
impose decision points, and the orders are accepted or rejected at the 
first decision point after their request, is not considered as decision 
postponement.



M. Horváth and T. Tamási EURO Journal on Transportation and Logistics 14 (2025) 100159 
2.4.4. Delaying the departure
In addition to assigning routes to vehicles, it is also important to 

decide when to send vehicles on their way, since waiting for possible 
future orders could be beneficial. The two basic waiting strategies, 
the drive-first and the wait-first, require a vehicle to departure from 
its current location at the earliest possible time and at the latest 
possible time, respectively, but several other waiting strategies have 
been applied to delay the departure of the vehicles (e.g., Mitrović-Minić 
and Laporte 2004, Branke et al. 2005, Ichoua et al. 2006).

As mentioned in Section 2.4.1, delaying the departure may involve 
the use of self-imposed decision points. For example, Voccia et al. 
(2019) considered a same-day delivery problem, where the depot-to-
depot tours cannot be modified during their execution. In their policy, 
the authors did not start the vehicles immediately after determining 
their routes, but postponed them for a certain period of time. A decision 
point was implied at the end of the waiting period, unless another event 
triggered one in the meantime.

2.4.5. Diversion from the planned route
Due to the dynamic nature of the problem, the decision maker may 

modify the vehicle routes during execution. Although the majority of 
papers consider decision making to be instantaneous, in practice it 
may cover longer periods of time during which the state of the system 
may change so much (e.g., some vehicles may have already departed) 
that the decision is no longer feasible with respect to this new state. 
Therefore, it may be advisable to fix the first parts of the routes, i.e. to 
make them non-changeable.

In most SDDPs, once the vehicle leaves the depot, its entire route 
is fixed until it returns to the depot. In some other cases, however, a
preemptive depot return is allowed, that is, the delivery vehicle can return 
to the depot before delivering all the orders it is currently carrying 
(e.g., Ulmer et al. 2019b, Côté et al. 2023).

In general, the next location of a vehicle is fixed. This is especially 
true when the vehicle is already en route. In some rare cases, however, 
researchers enable en route diversion (e.g., Ulmer et al. 2017, Bosse 
et al. 2023). In some other cases, vehicle movements are simulated 
within a real-world road network, where turning on the street is not 
allowed, so diversions from the current route can only take place at the 
next road crossing (e.g., Ferrucci and Bock 2014, 2015, 2016). Since in 
these problems, the road crossings can also be modeled as locations, 
we do not consider this approach as an en route diversion. In a similar 
approach, Haferkamp (2024) considered those locations to be deviation 
points that were located on a traveled shortest path.

2.4.6. Split delivery
Split delivery means that a single request can be served by multiple 

vehicles (or multiple routes of the same vehicle). Although split de-
livery is more typical of VRPDSRs (e.g., Schyns 2015, Sarasola et al.
2016), it also occurs in some DPDPs (e.g., Arslan et al. 2021). In 
the problem formulation of Hao et al. (2022) for a DPDP, orders are 
inherently split into the smallest deliverable units, and can only be 
shipped separately if their total demand exceeds the uniform vehicle 
capacity.

3. A general modeling framework for dynamic vehicle routing I. 
— Basic concepts

In this section, we propose the basic concept and terminology of our 
modeling framework. First, we provide an overview of the problems 
under investigation (Section 3.1). Then, we discuss the main elements 
in detail, which are the locations (Section 3.2), the orders (Section 3.3), 
and the vehicles (Section 3.4).
5 
3.1. Main overview: modeling scope

A heterogeneous fleet of vehicles must serve pickup-and-delivery 
type orders that arrive dynamically in the planning horizon. The 
pickup/delivery locations can refer to a designated depot, so our 
modeling framework is suitable for modeling not only DPDPs, but also 
SDDPs. Various VRPDSRs can be modeled, for example, by specifying 
coincident pickup and delivery locations. Due to the dynamic nature 
of the problem, the decision maker has the opportunity to re-plan 
the vehicle routes at certain decision points. Decision points may be 
imposed by arbitrary events (e.g., on order request, on vehicle arrival) 
or may occur periodically. Any parameter of the problem, (e.g., order 
requests, travel times, etc.) can be deterministic or stochastic.

A service time window can be associated with both the pickup and 
the delivery of the orders. Both cancellation by the customers and 
rejection by the decision maker can be handled. In the latter case, the 
postponement of the decision on acceptance/rejection is also allowed.

Split deliveries are allowed, but in this case, the orders must be split 
into the smallest deliverable units in advance. It is the decision maker’s 
responsibility to combine and assign them to vehicles according to the 
splitting rules.

Vehicles can be capacitated or uncapacitated, and may be subject to 
loading rules. Delaying the departure is possible. The planned routes of 
the vehicles can be modified during their execution, however, en route 
diversion is not allowed. Locations may have limited docking capacity, 
so the vehicles may have to wait for service.
Simulation vs. Decision making. Certain aspects of the problem (Sec-
tion 2.3) and the decisions (Section 2.4) are not necessarily subject to 
simulation, but rather to decision making. For example, earliest service 
start times must obviously be considered by the simulation (since the 
vehicles must be kept waiting), but latest service start times are the 
responsibility of the decision maker. Therefore, some aspects, such as 
order due dates or depot deadlines are not discussed in our modeling 
framework. However, they can be easily adapted.

3.2. Locations

Locations can refer to different places, such as where orders are 
to be picked up or delivered, where vehicles are initially located, or 
they can represent intersections in the real road network. The physical 
movement of vehicles between locations is not detailed, we just assume 
that after a vehicle departed for its next location, it will arrive there 
after a certain amount of time. This travel time must be given or 
calculable between any two locations that may appear consecutively 
in the vehicle’s route plan, see later in Section 3.4.1. Travel times can 
be stochastic.

3.3. Orders

Each order 𝑜𝑖 has a pickup location 𝑙𝑝𝑖  and a delivery location 𝑙𝑑𝑖 , which 
can refer to depots. An order 𝑜𝑖 is requested at its release time 𝑟𝑖 (for 
static orders, if any, 𝑟𝑖 = 0). Orders may be associated with an earliest 
start time for both pickup and delivery. If the vehicle arrives early, it 
must wait until the latest earliest start time.

3.3.1. Order postponement
In our approach, the decision on an order (i.e., accept/reject) can be 

postponed until a specific time point. Assume that a decision is made at 
time 𝑡1 in which an order is postponed until time 𝑡2. The postponement 
means the following.
Case 1 (postponement is expired). If no decision point is imposed in 
time interval [𝑡1, 𝑡2], the postponement of the order is expired. Thus, a 
decision point will be imposed at 𝑡2, which enables the decision maker 
to reconsider the order.
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Fig. 2. Vehicle operations between two consecutive departures.
Case 2 (postponement is interrupted). If a decision point is imposed in 
[𝑡1, 𝑡2], the postponement of the order will be interrupted at that time. 
The decision maker may now accept/reject the order, or postpone it 
again.

3.4. Vehicles

We consider a heterogeneous fleet of vehicles, denoted with  . Each 
vehicle 𝑣 is associated with an initial location 𝑙init𝑣 .

3.4.1. Route plans
The movements of the vehicles are controlled by their route plans. 

The route plan of a vehicle 𝑣 is a sequence of visits

𝜃𝑣 =
(

𝜃𝑗𝑣 ∶ 𝑗 = 1,… ,𝓁𝑣
)

with 𝜃𝑗𝑣 =
(

𝑙𝑗𝑣,
𝑗
𝑣 ,

𝑗
𝑣; 𝑒𝑠𝑡

𝑗
𝑣
)

,

where each visit 𝜃𝑗𝑣 is specified by a location (𝑙𝑗𝑣) to which the vehicle 
must travel (unless it is currently there), and by (possibly empty) 
ordered lists (𝑗

𝑣 and 𝑗
𝑣) containing the orders that must be picked up 

and delivered at the location, respectively. In addition, an earliest start 
time (𝑒𝑠𝑡𝑗𝑣) can be associated with the visit, indicating the earliest time 
when the vehicle can depart for that location, see later in Section 3.4.3. 
Route plans will be used later in our decision process to describe the 
states (Section 4.2) and the decisions (Section 4.4). For an insightful 
example of route plans we also refer to that section (Section 4.5).

3.4.2. Execution of the route plans
Vehicles – according to their route plan – travel from location to 

location to perform services there, i.e. to pickup and/or deliver orders. 
In Fig.  2, we depicted the vehicle operations.

Travel. By travel, we mean that the vehicle departs from its current 
location to a specific location, called destination. From departure to
arrival, the vehicle is en route (i.e., on the way). While the vehicle is en 
route, its exact position is not known. Consequently, the travel cannot 
be interrupted nor redirected, that is, once the vehicle departed from 
its current location, it must arrive sooner or later at its destination.

Service. At locations, vehicles perform services. The service includes 
the delivery (unloading) and the pickup (loading) of the corresponding 
orders, if any, but it may also include other operations, for example, 
parking or docking. During the service, the vehicle is under service. Note 
that the service may be void, for example, when empty vehicles return 
back to a depot, or when the location represents a road crossing. Similar 
to travel, the service cannot be interrupted.
6 
Pre-service. When a vehicle arrives at a location, its service may not 
start immediately for various reasons. For example, some orders may 
have an earliest service start time that has not yet passed, some orders 
may not be ready upon arrival, or some docking restrictions may delay 
the service. The period between the arrival and the subsequent service 
start is called pre-service. During this period, we say the vehicle is
waiting for service.
Pre-departure. When the service is finished, the vehicle may not depart 
immediately for various reasons. For example, the vehicle may have 
completed its route plan, so the vehicle remains at that location until 
a new route plan is set. Or the vehicle may have a remaining route, 
but the start of its execution has been postponed to a later time (see 
later in Section 3.4.3). The period between the service finish and the 
subsequent departure is called pre-departure. During this period, we say 
the vehicle is idle.

3.4.3. Delaying the departure
Now, we describe our concept for delaying the departure of the 

vehicles. Assume that vehicle 𝑣 is ready to departure at time 𝑡1 to its 
next location, however, an earliest start time 𝑡2 is associated with its 
next visit. Delaying the departure means the following.
Case 1 (departure postponement is expired). If no decision point is im-
posed in time interval [𝑡1, 𝑡2], then the postponement of the vehicle is 
expired.

Case 1.1 (decision point on departure postponement expiration). If de-
cision points must be imposed on postponement expiration, then a 
decision point is imposed at 𝑡2, which allows the decision maker, for 
example, to re-plan the route of the vehicle.
Case 1.2 (no decision point is needed). If no decision points need to be 
imposed on postponement expiration, then the vehicle departs toward 
its next location to visit.
Case 2 (departure postponement is interrupted). If a decision point is 
imposed at [𝑡1, 𝑡2], then the postponement of the vehicle’s departure is 
interrupted at that time. The decision maker may re-plan the route of 
the vehicle.

4. A general modeling framework for dynamic vehicle routing II. 
- Discrete-event based decision process

In this section, we propose our modeling framework, which is called
discrete-event based decision process reflecting on that it is a combi-
nation of the discrete-event simulation and the sequential decision 
process. The sketch of the process is depicted in Fig.  3. First, we give a 
main overview of the framework (Section 4.1). Then, we describe the 
main elements in detail, which are the states (Section 4.2), the events 
(Section 4.3), and the decisions (Section 4.4).
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Fig. 3. Sketch of the discrete-event based decision process.
4.1. Main overview

The status of the system – including the current position of vehicles 
and the current status of orders – is described by states. Various events
(e.g., an order is requested, a vehicle arrives at a location, etc.) occur 
in the planning horizon. These events are stored in an event queue, 
and the decision process jumps from event to event, always to the 
one associated with the earliest time. Note that different events can 
be associated with the same time, and events can be prioritized to 
establish a processing order between them. There are two special 
events, the decision point event and the decision enforcement event. 
When a decision point event occurs, the decision maker is provided 
with the current state, and then makes a decision. This decision is set 
when the corresponding decision enforcement event occurs.

4.2. States

A state is a tuple
𝑠 = (𝑡𝑠, 𝛷𝑠, 𝛹𝑠),

where 𝑡𝑠 is the current simulation time, 𝛷𝑠 = {𝛷𝑠,𝑣 ∶ 𝑣 ∈ } is the status 
of the vehicles, and 𝛹𝑠 is the status of the orders, which are discussed 
in the following. Note that although the system has a state at any given 
time, since the discrete-event based decision process jumps from event 
to event, we will later only deal with the states (𝑠0, 𝑠1,…) induced by 
these events.

4.2.1. Vehicle status
The status of vehicle 𝑣 with respect to state 𝑠 is given as a tuple

𝛷𝑠,𝑣 =
(

𝑠,𝑣, 𝜃𝑠,𝑣
)

,

where 𝑠,𝑣 is the load, i.e., the list of orders currently carried by the 
vehicle, and
𝜃𝑠,𝑣 =

(

𝜃𝑗𝑠,𝑣 ∶ 𝑗 = 0,… ,𝓁𝑠,𝑣
)

is the route plan of the vehicle consisting of a sequence of visits, where
𝜃0𝑠,𝑣 =

(

𝑙0𝑠,𝑣,
0
𝑠,𝑣,

0
𝑠,𝑣; 𝑎𝑡

0
𝑠,𝑣, 𝑠𝑡

0
𝑠,𝑣, 𝑓 𝑡

0
𝑠,𝑣, 𝑑𝑡

0
𝑠,𝑣

)

is the origin visit, and
𝜃𝑗𝑠,𝑣 =

(

𝑙𝑗𝑠,𝑣,
𝑗
𝑠,𝑣,

𝑗
𝑠,𝑣; 𝑒𝑠𝑡

𝑗
𝑠,𝑣

)

for all 𝑗 = 1,… ,𝓁𝑠,𝑣.

are the next visits. The origin visit refers to either the current visit of 
the vehicle, if the vehicle is at a location, or to its previous visit, if 
the vehicle is en route. Each visit 𝜃𝑗𝑠,𝑣 consists of a location (𝑙𝑗𝑠,𝑣) and 
two lists of orders to pickup and to deliver (𝑗

𝑠,𝑣 and 𝑗
𝑠,𝑣), respectively. 

The origin visit has four additional elements: the arrival time (𝑎𝑡0𝑠,𝑣), 
the service start time (𝑠𝑡0𝑠,𝑣), the service finish time (𝑓𝑡0𝑠,𝑣), and the 
departure time (𝑑𝑡0𝑠,𝑣) corresponding to the visit. The arrival time is 
always given, but the other times may not be applicable (denoted by 
∅) if the corresponding event has not happened yet. For example, if the 
vehicle is currently at a location, then 𝑑𝑡0𝑠,𝑣 = ∅. Otherwise, if 𝑑𝑡0𝑠,𝑣 ≠ ∅, 
the vehicle is currently on the way to its next location 𝑙1 .
𝑠,𝑣
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4.2.2. Order status
The status of the orders with respect to state 𝑠 is given as a tuple

𝛹𝑠 =
(

open
𝑠 ,canc

𝑠
)

,

where open
𝑠  is the set of open orders (i.e., already released, neither 

canceled nor rejected, and not yet delivered orders), and canc
𝑠  is the 

set of those orders that are canceled since the last decision point.

4.2.3. Initial state (𝑠0)
In the beginning (𝑡𝑠0 = 0) vehicles are empty and idle at their initial 

locations without next visits, i.e., 𝑠0 ,𝑣 = ∅ and 𝜃𝑠0 ,𝑣 = ((𝑙init𝑣 , ∅, ∅; 0, 0, 0,
∅)) for each vehicle 𝑣. No orders are requested yet, that is, open

𝑠0 = ∅
and canc

𝑠0
= ∅.

4.3. Events

Each event is associated with a time. Events are stored in an 
event queue. When an event occurs, the state of the system changes 
(Section 4.3.1), and then several other events may be inserted to or 
removed from the event queue (Section 4.3.2).

Various events can be considered in the model. In the following 
(we can call it the default model), we consider the following twelve 
events: order request, order cancellation, order pickup, order delivery,
order postponement expiration, vehicle arrival, vehicle departure, service 
start, service finish, departure postponement expiration, decision point, and
decision enforcement.

The first ten events have a medium priority. In contrast, decision 
point events have a high priority, so if multiple events occur at the same 
time, decision point events are processed last. In addition, we do not 
allow multiple decision point events with the same time to be put in the 
event queue in order to avoid multiple, superfluous decision making. 
Decision enforcement events have a low priority, so they are processed 
before all other events.

Uncertainty coming from times (e.g., request time of orders, trav-
eling times, loading times, etc.) can be modeled by adding the corre-
sponding events with ‘‘uncertain’’ (i.e., randomly generated) times to 
the event queue.

4.3.1. Transition
The decision process steps from event to event, and thus the process 

transitions from state to state. Formally, transition is a function 𝜙 ∶
× → , where  is the set of all feasible states, and  is the set of all 
events. In fact, only certain events can be considered for a given state 
(for example, an en route vehicle cannot depart). For the feasibility of 
states, see Appendix  B.

In the following, we formally define the transition from state 𝑠𝑘 to 
the subsequent state 𝑠𝑘+1 = 𝜙(𝑠𝑘, 𝑒). Since 𝑠𝑘 and 𝑠𝑘+1 differ only in a 
few parameters, in order to save space, we only indicate the differences 
between these states. So first of all, copy the state: 𝑠𝑘+1 ← 𝑠𝑘. Regardless 
of the type of 𝑒, 𝑡 ← 𝑡, where 𝑡 is the time associated with the event.
𝑠𝑘+1
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Fig. 4. Events are inductive, meaning that processing one event can cause several new events to be added to or removed from the event queue.
Order request. If event 𝑒 refers to the request of order 𝑜𝑖, then the order 
is added to the set of open orders: open

𝑠𝑘+1 ← open
𝑠𝑘 ∪ {𝑜𝑖}.

Order pickup. If event 𝑒 refers to the pickup of order 𝑜𝑖 (i.e., the end of 
loading) by vehicle 𝑣, then the order is added to the carrying order list 
of the vehicle: 𝑠𝑘+1 ,𝑣 ← 𝑠𝑘 ,𝑣 ∪ {𝑜𝑖}.

Order delivery. If event 𝑒 refers to the delivery of order 𝑜𝑖 (i.e., the 
end of unloading) by vehicle 𝑣, then the order is removed from the 
set of open orders, and from the carrying list of the vehicle: open

𝑠𝑘+1 ←

open
𝑠𝑘 ⧵ {𝑜𝑖} and 𝑠𝑘+1 ,𝑣 ← 𝑠𝑘 ,𝑣 ⧵ {𝑜𝑖}.

Order cancellation. If event 𝑒 refers to the cancellation of order 𝑜𝑖, then 
the order is moved from the set of open orders to the list of canceled 
orders: open

𝑠𝑘+1 ← open
𝑠𝑘 ⧵ {𝑜𝑖} and canc

𝑠𝑘+1
← canc

𝑠𝑘
∪ {𝑜𝑖}.

Vehicle arrival. If event 𝑒 refers to the arrival of vehicle 𝑣, then 
the origin visit is removed from the route plan: 𝜃0𝑠𝑘+1 ,𝑣 ← (𝑙1𝑠𝑘 ,𝑣,
1
𝑠𝑘 ,𝑣

,1
𝑠𝑘 ,𝑣

; 𝑡,∅,∅,∅), 𝓁𝑠𝑘+1 ,𝑣 ← 𝓁𝑠𝑘 ,𝑣 − 1, and 𝜃𝑗𝑠𝑘+1 ,𝑣 ← 𝜃𝑗+1𝑠𝑘 ,𝑣 for all 
𝑗 = 1,… ,𝓁𝑠𝑘+1 ,𝑣.

Service start. If event 𝑒 refers to the service start of vehicle 𝑣, then the 
service start time of the origin visit is set: 𝑠𝑡0𝑠𝑘+1 ← 𝑡.

Service finish. If event 𝑒 refers to the service finish of vehicle 𝑣, then 
the service finish time of the origin visit is set: 𝑓𝑡0𝑠𝑘+1 ← 𝑡.

Vehicle departure. If event 𝑒 refers to the departure of vehicle 𝑣, then 
the departure time of the origin visit is set: 𝑑𝑡0𝑠𝑘+1 ← 𝑡.

Decision enforcement. If event 𝑒 refers to a decision enforcement, the list 
of canceled orders is cleared: canc

𝑠𝑘+1
← ∅, and the decision is enforced 

(see later in Section 4.4.1).

4.3.2. Event processing
After the transition, the event queue is adjusted, that is, some events 

may be removed, some new events may be inserted. In Fig.  4, we depict 
which events can induce which other events. Note that decision points, 
order request, and order cancellation events can be inserted to the 
queue from other processes as well.
Decision enforcement. When a decision enforcement event occurs, the 
associated decision is set (Section 4.4.1). For each postponed order 𝑜𝑖, if 
any, an order postponement expired event with time 𝑝𝑡𝑖 is put into the 
queue. For each idle vehicle 𝑣, if any, a vehicle departure event with 
the current time (𝑡now) or a departure postponement expiration event 
associated with the earliest start time (𝑒𝑠𝑡1𝑠,𝑣) is put into the queue, 
depending on the next visit of the vehicle.
8 
Decision point. When a decision point event occurs, the decision maker 
is provided with the current state and returns a decision in response. 
Then, a decision enforcement event associated with that decision and 
time 𝑡 is put into the event queue. Instantaneous decision making can 
be modeled with 𝑡 = 𝑡now (where 𝑡now is the current time), while real-
time time decision making can be modeled with 𝑡′ = 𝑡now + 𝛿, where 
𝛿 is the time elapsed during the decision making. In accordance with 
Sections 3.3.1 and 3.4.3, order postponement expiration and departure 
postponement expiration events, if any, are removed from the queue.
Order requests and cancellations. When an order request event occurs, 
a decision point event with time 𝑡now may be put into the queue. On 
the other hand, if an order cancellation event occurs, it may necessary 
to insert a decision point event into the queue to prevent the canceled 
order from being picked up.
Vehicle pre-service. After the vehicle arrives at a location, a service start 
event is put into the event queue. The time associated with the event 
refers to the time point when the service can be started. Note that this 
service start time may depend on the service finish of another vehicles.
Vehicle service. A vehicle service may consist of several steps. In the 
following, we describe the case where orders are first unloaded from 
the vehicle according to the delivery list, and then orders are loaded 
to vehicle according to the pickup list. So, after the service starts, 
order delivery events, then order pickup events, and finally a service 
finish event are put into the event queue, one after the other, with the 
previous one inducing the next.
Vehicle pre-departure. After the transition triggered by a service finish 
event, the vehicle can continue to execute its remaining route plan, 
if any. (i) If the vehicle has no next visit, there is nothing to do. (ii) 
If the vehicle has a next visit, and no earliest start time is associated 
with it, then a departure event is put into the event queue with the 
actual simulation time (i.e., the vehicle can depart immediately). (iii) 
If an earliest start time is associated with the vehicle’s next visit, than a 
departure postponement expired event is put into the event queue with 
that time.
Vehicle travel. After the vehicle departures, a vehicle arrival event – 
with the time when the vehicle will arrive – is put into the event queue.

4.4. Decisions

A decision is given as a tuple
𝑥 =

(

𝛷̃ , 𝛹̃
)

,
𝑥 𝑥
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Fig. 5. Selected states from the following scenario: (𝑠0) Vehicle 𝑣 is located at location 𝑙1. (𝑠1) Order 𝑜1 is requested. (𝑠2) Decision point is imposed. (𝑠3) Decision maker creates 
the route plan. (𝑠4) Order 𝑜2 is requested. (𝑠5) Decision point is imposed. (𝑠6) Decision maker updates the route plan. (𝑠7) Vehicle is departed. (𝑠8) Order 𝑜2 is requested. (𝑠9) 
Decision point is imposed. (𝑠10) Decision maker updates the route plan.
where 𝛷̃𝑥 = {𝛷̃𝑥,𝑣 ∶ 𝑣 ∈ } is set of the updated route plans, and 𝛹̃𝑥 is 
the decision on orders, which are discussed in the following.
Decision on orders. The decision on orders is given as a tuple

𝛹̃𝑥 =
(

̃acc
𝑥 , ̃rej

𝑥 , ̃post
𝑥

)

,

where ̃acc
𝑥 , ̃rej

𝑥 , and ̃post
𝑥  are the set of accepted, rejected, and post-

poned orders, respectively. Each postponed order 𝑜𝑖 ∈ ̃post
𝑥  has a time 

point 𝑝𝑡𝑖 until the decision on the order is postponed (see Section 3.3.1).
Updated route plans. The updated route plan of a vehicle 𝑣 is a sequence 
of visits
𝛷̃𝑥,𝑣 =

(

𝜃𝑗𝑥,𝑣 ∶ 𝑗 = 0,… ,𝓁𝑥,𝑣
)

with origin visit

𝜃0𝑥,𝑣 =
(

𝑙0𝑥,𝑣, ̃
0
𝑥,𝑣, ̃

0
𝑥,𝑣

)

and next visits
𝜃𝑗𝑥,𝑣 =

(

𝑙𝑗𝑥,𝑣, ̃
𝑗
𝑥,𝑣, ̃

𝑗
𝑥,𝑣; ̃𝑒𝑠𝑡𝑗𝑥,𝑣

)

for all 𝑗 = 1,… ,𝓁𝑥,𝑣.

Similarly to the states (Section 4.2), each visit 𝜃𝑗𝑥,𝑣 consists of a location 
(𝑙𝑗𝑥,𝑣), and pickup and delivery lists (̃𝑗

𝑥,𝑣 and ̃𝑗
𝑥,𝑣). With the exception 

of the origin visit, each visit can be associated with an earliest start time 
( ̃𝑒𝑠𝑡𝑗𝑥,𝑣). The origin visit – more precisely, its pickup and delivery lists 
– can be modified until the corresponding service starts. If no changes 
have been made to the previous state, the origin visit may not be given 
(denoted with 𝜃0𝑥,𝑣 = ∅).

4.4.1. Transition to post-decision state
When a decision 𝑥 is enforced (see Section 4.3), the decision pro-

cess transitions to the next state, called post-decision state (cf. Powell
2007). Rejected orders, if any, are removed from the list of open 
orders: open

𝑠𝑘+1 ← open
𝑠𝑘 ⧵ ̃rej

𝑥 . Then, the route plans of the vehicles 
are updated. That is, 𝜃0 ← 𝜃0  if 𝜃0 = ∅, otherwise 𝜃0 ←
𝑠𝑘+1 ,𝑣 𝑠𝑘 ,𝑣 𝑥,𝑣 𝑠𝑘+1 ,𝑣
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(𝜃0𝑥,𝑣; 𝑎𝑡
0
𝑠𝑘 ,𝑣

,∅,∅,∅). Further, 𝓁𝑠𝑘+1 ,𝑣 ← 𝓁𝑥,𝑣 and 𝜃𝑗𝑠𝑘+1 ,𝑣 ← 𝜃𝑗𝑥,𝑣 for all 
𝑗 = 1,… ,𝓁𝑥,𝑣.

4.4.2. Feasibility of decisions
A decision 𝑥 is feasible with respect to state 𝑠, if the following 

constraints are satisfied. For further feasibility conditions, see Appendix 
B.

Decision on orders. Exactly one decision must be made on each order, 
that is
̃acc
𝑥 ∪ ̃rej

𝑥 ∪ ̃post
𝑥 = open

𝑠

such that the sets ̃acc
𝑥 , ̃rej

𝑥 , and ̃post
𝑥  are pairwise disjunctive.

Origin visit. The origin visit of a vehicle 𝑣 cannot be changed if the 
service has already started (i.e., the vehicle is either under service or 
idle or en route).
𝑠𝑡0𝑠,𝑣 ≠ ∅ ⇒ 𝜃0𝑥,𝑣 = ∅

En route diversion. If vehicle 𝑣 is en route, its destination cannot be 
changed.

𝑑𝑡0𝑠,𝑣 ≠ ∅ ⇒ 𝑙1𝑥,𝑣 = 𝑙1𝑠,𝑣

4.5. Example

In Fig.  5, we depicted selected states from the following scenario 
for a dynamic pickup-and-delivery problem. (𝑠0) Vehicle 𝑣 is initially 
located at location 𝑙1: 𝑡𝑠0 = 0, open

𝑠0 = ∅, 𝜃𝑠0 ,𝑣 = ((𝑙1, (), (); 0, 0, 0,∅)). 
(𝑠1) Order 𝑜1 from 𝑙2 to 𝑙5 is requested: open

1 = {𝑜1}. (𝑠2) A decision 
point is imposed. The decision maker makes a decision (𝑥1) that the 
order is accepted, and the initial route plan is created. However, the 
departure of the vehicle is delayed until time 10. That is, ̃acc

𝑥1
= {𝑜1}

and 𝜃 = ((𝑙 , (𝑜 ), ∅; 10), (𝑙 , ∅, (𝑜 ); ∅)). (𝑠 ) The decision is enforced: 
𝑥1 ,𝑣 2 1 5 1 3
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𝜃𝑠3 ,𝑣 = ((𝑙1, ∅, ∅; 0, 0, 0,∅), (𝑙2, (𝑜1), (); 10), (𝑙5, (), (𝑜1); ∅)). (𝑠4) Order 𝑜2
from 𝑙3 to 𝑙5 is requested at time 5, thus 𝑡𝑠4 = 5, open

𝑠4 = {𝑜1, 𝑜2}. (𝑠5) A 
decision point is imposed. The decision maker accepts the order and 
inserts it into the route plan of the vehicle (𝑥2). That is, ̃acc

𝑥2
= {𝑜1, 𝑜2}

and 𝜃𝑥2 ,𝑣 = ((𝑙2, (𝑜1), ∅; 10), (𝑙3, (𝑜2), ∅;∅), (𝑙5, ∅, (𝑜1, 𝑜2); ∅)). (𝑠6) The deci-
sion is enforced: 𝜃𝑠6 ,𝑣 = ((𝑙1, ∅, ∅; 0, 0, 0,∅), (𝑙2, (𝑜1), ∅; 10), (𝑙3, ∅, (𝑜2); ∅), 
(𝑙5, ∅, (𝑜1, 𝑜2); ∅)). (𝑠7) The vehicle is departed at time 10, that is, 𝑡𝑠7 =
10, and 𝜃0𝑠7 ,𝑣 = (𝑙1, 0, 0, 0, 10). (𝑠8) Order 𝑜3 from 𝑙4 to 𝑙6 is requested 
at time 12, that is, 𝑡𝑠8 = 12, and open

𝑠8 = {𝑜1, 𝑜2, 𝑜3}. (𝑠9) A decision 
point is imposed. The decision maker accepts the order and inserts 
it into the route plan of the vehicle (𝑥3). That is, ̃acc

𝑥3
= {𝑜1, 𝑜2, 𝑜3}

and 𝜃𝑥3 ,𝑣 = ((𝑙2, (𝑜1), ∅; 10), (𝑙3, (𝑜2), ∅;∅), (𝑙6, (𝑜3), ∅;∅), (𝑙5, ∅, (𝑜1, 𝑜2); ∅), 
(𝑙4, ∅, (𝑜3); ∅)). (𝑠10) The decision is enforced: 𝜃𝑠10 ,𝑣 = ((𝑙1, ∅, ∅; 0, 0, 0, 10), 
(𝑙2, (𝑜1), ∅; 10), (𝑙3, (𝑜2), ∅;∅), (𝑙6, (𝑜3), ∅;∅), (𝑙5, ∅, (𝑜1, 𝑜2); ∅), (𝑙4, ∅, (𝑜3); ∅))
(𝑠11) The vehicle is arrived at location 𝑙2 at time 20: 𝑡𝑠11 = 20 and 
𝜃0𝑠11 ,𝑣 = (𝑙2, (𝑜1), ∅; 20,∅,∅,∅). (𝑠12) After the one-minute parking, the 
service started: 𝑡𝑠12 = 21 and 𝜃0𝑠12 ,𝑣 = (𝑙2, (𝑜1), ∅; 20, 21,∅,∅). (𝑠13) The 
loading of order 𝑜1 took two minutes: 𝑡𝑠13 = 23, 𝑠13 ,𝑣 = (𝑜1) and 
𝜃0𝑠13 ,𝑣 = (𝑙2, (𝑜1), ∅; 20, 21, 23,∅). (𝑠14) The vehicle departed immediately 
to its next location: 𝜃0𝑠14 ,𝑣 = (𝑙2, (𝑜1), ∅; 20, 21, 23, 23).

5. An open source simulation tool for dynamic vehicle routing

In this section, we briefly present the main components of our 
simulation framework for dynamic vehicle routing, called dvrpsim. 
Our goal is to provide a concise overview of how to use the simula-
tion package. For an extended, technical description, we refer to the 
supplementary material. A more detailed tutorial can be found on the 
webpage of the package: https://sztaki-hu.github.io/dvrpsim/.

5.1. A short introduction

Our simulator is implemented in Python language, however, the 
implementation of the decision making procedure (also called exter-
nal routing algorithm) is not tied to Python. For the implementation, 
we used the SimPy package,1 which is a single-thread process-based 
discrete-event simulation framework.

5.1.1. Installation
The source code is available at https://github.com/sztaki-hu/dv

rpsim. Assuming Python is already installed, the package can also 
be installed by typing python -m pip install dvrpsim at the 
command prompt.

5.1.2. Modeling (dynamic) vehicle routing problems
To model a vehicle routing problem, the user needs to build a

Model, and to add the necessary Locations, Orders, and Vehi-
cles that represent the corresponding locations, orders, and vehicles, 
respectively. These classes have several callback methods, which can 
be customized to model their desired behavior. The routing callback of 
the Model must be also implemented to connect the external routing 
algorithm and the simulator.

By starting the simulation (i) each order is requested at its release 
time; (ii) when a decision point is imposed, the external routing algo-
rithm is called; (iii) once a route plan is set for a vehicle, it begins 
to execute it. Unless the user implements otherwise, the simulation 
ends when all orders have been processed (i.e., delivered, canceled, or 
rejected).

At the end of the simulation, the historical data of the vehicles and 
orders are available, thus various statistics can be generated. For ex-
ample, the traveled distance and the total moving/waiting/service/idle 
time for the vehicles, and the tardiness for the orders are calculated by 
default.

1 https://simpy.readthedocs.io/en/latest/
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5.1.3. Locations
Each Location can optionally be associated with coordinates and 

a shared resource to model its capacity. The distances and travel times 
between the locations can be defined and/or used in the corresponding 
callbacks of the Vehicles.

5.1.4. Orders
Each Order must be associated with a release time, a pickup 

location, and a delivery location. There are also several other op-
tional parameters (such as quantity, pickup/delivery time window, 
pickup/delivery duration, etc.).

During the simulation, each order is requested at its release time, 
after which the order is available for insertion into a vehicle route. 
Note that orders can also be created on the fly, while the simulation 
is running.

An Order has several callback methods that are invoked, for exam-
ple, when the order is requested, rejected, canceled, postponed, picked 
up, delivered, or when the postponement of the order is expired. By 
requesting routing in such a callback, the user can model, for example, 
decision points on order request/cancellation/postponement.

5.1.5. Vehicles
Each Vehicle must be associated with an initial location, and 

there are several other optional parameters (such as capacity, loading 
rule, etc.). In addition, the travel time callback should be defined 
that returns the travel time for the vehicle between the corresponding 
locations.

During the simulation, once a route plan is set for a vehicle as a 
result of decision making, the vehicle begins to execute it. Recall that 
the execution procedure of a vehicle consists of four main parts, these 
are, the pre-departure, the travel, the pre-service, and the service (see 
Fig.  2). By default, the pre-departure procedure delays the departure 
of the vehicle when an earliest start time is associated with the next 
visit. The travel procedure uses the travel time callback to obtain the 
arrival time at the next location. The pre-service procedure takes into 
account the earliest service start times of the corresponding orders and 
the capacity of the corresponding location and, if necessary, makes the 
vehicle wait accordingly. The service procedure models the unloading 
and the loading of the corresponding orders.

A Vehicle have several callback methods that are invoked, for 
example, when the vehicle arrives/departs at/from a location, when 
the service of the vehicle starts/finishes, or when one of its process is 
interrupted. By requesting routing in such a callback, we can model, 
for example, decision points on vehicle arrival.

5.1.6. Decision making procedure
The routing callback of the Model can be used to connect the 

external routing algorithm and the simulator. The external routing 
algorithm can be implemented in arbitrary programming language. 
Note that the external routing algorithm does not have to be necessary 
‘‘external’’, as the algorithm itself can also be implemented in that 
callback.

At each decision point, a routing callback is invoked, which includes 
invoking the external routing algorithm. The simulator provides the 
current state in JSON format, allowing file-based interaction with the 
external routing algorithm, which is especially useful if the latter 
is not implemented in Python. The output of the routing algorithm 
(i.e., the decision) is processed and enforced. Before enforcing the 
decision, it is possible to check various problem constraints (e.g., the 
capacity constraints of the vehicles). By default, the simulator assumes 
instantaneous (i.e., zero time) decision making, but real-time decision 
making can also be modeled.
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5.2. Case studies

As a proof-of-concept, we implemented several examples using our 
simulator, which are available together with the source code. The 
following three examples deal with three very different problems with 
very different problem aspects and constraints, demonstrating that the 
framework is suitable for modeling a wide range of dynamic vehicle 
routing problems.

5.2.1. A dynamic pickup-and-delivery problem
A dynamic pickup-and-delivery problem was introduced in a com-

petition organized by the International Conference on Automated Plan-
ning and Scheduling in 2021 (ICAPS 2021), see Hao et al. (2022).
Problem overview. There is a fleet of homogeneous vehicles that has 
to serve pickup-and-delivery order requests which occur over a day. 
Each order is characterized by a quantity, a pickup factory, a delivery 
factory, a release time, and a due date. The vehicles can be loaded 
up to their capacity, while unloading has to follow the last-in-first-
out (LIFO) rule. Those, but only those orders whose quantity exceeds 
the capacity of the vehicles, can be split and delivered separately. The 
travel times and the distances between the factories are given. Each 
factory has a given number of docking ports for serving (that is, loading 
and unloading) the vehicles. Vehicles are served on a first-come-first-
served basis. If a vehicle arrives at a factory and all ports are occupied, 
its service cannot begin immediately, but the vehicle has to join the 
waiting queue. That is, the vehicle must wait until one of the docking 
ports becomes free, and no vehicle that arrived earlier is waiting for a 
port. The objective is to satisfy all the requests such that a combination 
of tardiness penalties and traveling distances is minimized. Decision 
points occur in every 10 min.
Proof-of-concept. To model this problem, we used the default Loca-
tion class, where each location is associated with a shared resource 
to model its docking ports. We also used the default Order class, and 
we split orders into their smallest deliverable units. We inherited a 
custom Vehicle class, where (i) the travel time callback returns the 
travel times provided in the problem data; (ii) the service procedure is 
extended to model dock approaching of the vehicles. The latter means 
that a timeout occurs at the beginning of the service, after which the 
default service procedure is applied. Capacity and LIFO loading rule 
are also set for the vehicles. A pre-defined method is used to impose 
decision points in every 10 min. The form of states and decisions is 
also modified, so that the Model can be connected with the already 
implemented algorithms for the problem. For more details, we refer to 
the supplementary material (Section 2.1).

5.2.2. A same-day delivery problem
Voccia et al. (2019) introduced a same-day deliver problem for 

online purchases. The benchmark instances for their work are publicly 
available.

Problem overview. The problem is characterized by a fleet of vehicles 
operating from a depot and by a set of locations. Customers request ser-
vice throughout the day until a fixed cut-off time. Arrivals of requests 
are described by a known arrival rate and distribution. Associated with 
each request is a known service time and a delivery time window at the 
customer location. Once requests are made, a vehicle at the depot can 
be assigned requests and leave the depot immediately. Alternatively, 
a vehicle can wait at the depot before being assigned requests. Once 
a vehicle leaves the depot, the route for that vehicle is fixed, and the 
vehicle returns to the depot when it has made all its assigned deliveries. 
A request is assigned to a third party when it is no longer feasible 
for the request to be served by a vehicle at the depot or one of the 
vehicles en route. A decision point is imposed as a result of at least one 
of the following: (i) a vehicle arrives at the depot; (ii) a vehicle ends 
its waiting period; (iii) a new request arrives and at least one vehicle 
is waiting at the depot.
11 
Proof-of-concept. To model this problem, we used the default Loca-
tion and Order classes. There is a location for the depot, and there is 
a separate location for each customer. Each location is associated with 
latitude and longitude coordinates in order to calculate distances and 
travel times between locations, when needed. We inherited a custom
Vehicle class, where the travel time callback returns the travel times 
calculated on Manhattan-distances. The ’on arrival’ and the ’on request’ 
callback of the Model are customized to impose decision points on 
the appropriate events. For more details, we refer to the supplementary 
material (Section 2.2).

5.2.3. A restaurant meal delivery problem
Ulmer et al. (2021) introduced a restaurant meal delivery problem 

with random ready times. The benchmark instances for their work are 
publicly available.
Problem overview. The problem is characterized by a fleet of vehicles 
that seeks to fulfill a random set of delivery orders that arrive during 
the finite order horizon from restaurants located in a service area. 
Orders occur according to a known stochastic process. Each realized 
order is associated with an order time, a delivery location, a pickup 
restaurant, and a soft deadline. The time to prepare a customer’s food 
at each restaurant is random. Thus, the driver may need to wait for 
the order’s completion when arriving to a restaurant. The dispatcher 
determines which orders are assigned to which vehicles. Once made, 
assignments cannot be altered, therefore, assignments can be post-
poned. A decision point occurs when a new customer requests service. A 
decision point can also be self-imposed, which happens when an order 
is postponed.
Proof-of-concept. To model this problem, we used the default Lo-
cation and Order classes. There is a separate location for each 
restaurant, each customer, and each vehicle. Each location is associated 
with latitude and longitude coordinates. We inherited a custom Vehi-
cle class, where (i) the travel time callback returns the travel times 
calculated based on Euclidean-distances; (ii) the pre-service procedure 
is customized to model stochastic ready times. The latter means that 
when a vehicle (driver) arrives at a restaurant to pick up an order, 
the callback checks whether it is ready (note that pre-generated ready 
times are provided in the problem data). If not, the callback schedules 
an event with the corresponding completion time, and the driver must 
wait for this event before it can pick up the order. For more details, we 
refer to the supplementary material (Section 2.3).

6. Conclusion

In this paper, we focused on developing a simulation tool designed 
to model a wide range of dynamic vehicle routing problems (DVRPs) 
to support the dynamic testing of different solution methods.

We began by conducting an extensive literature review to identify 
the key aspects and common constraints in DVRPs that should be 
considered in the modeling framework. Based on these findings, we 
developed a general modeling and simulation framework tailored for 
simulation purposes. Finally, we have created an implementation of the 
framework and made it freely available. As a proof-of-concept, we have 
implemented several examples with our framework. These case studies 
deal with different problems with very different problem aspects and 
constraints, demonstrating that the framework is suitable for modeling 
a wide range of dynamic vehicle routing problems.

Our plan for the future is to maintain and improve the framework. 
We will try to answer all user questions and be open to ideas for im-
provement (e.g., new features). We would like to create more thorough 
documentation on the package website and to add more case studies 
to the example collection. We have several ideas for further improve-
ments, the first of which is to implement more extensive checking 
of possible route feasibility constraints, and to provide more detailed 
statistics. We also want to use this framework in our research on various 
dynamic vehicle routing problems.
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Table A.1
Problem and decision making aspects for DPDPs.
 Paper VEH CAP TW CAN DPs DEL REJ PP ERD  
 Ferrucci and Bock (2014) He Yes S – P – Yes – (Yes) 
 Schilde et al. (2014) Ho Yes S – P Yes – – –  
 Zolfagharinia and Haughton (2014) He Yes H – P – Yes – (Yes) 
 Ma et al. (2015) He Yes H – OR – Yes – –  
 Muñoz-Carpintero et al. (2015) He Yes – – OR – – – –  
 Sayarshad and Chow (2015) He Yes – Yes OR – – – –  
 Wang and Kopfer (2015) He Yes H – OR/P – Yes – –  
 Vonolfen and Affenzeller (2016) Ho Yes H – OR Yes – – –  
 Zolfagharinia and Haughton (2016) He Yes H – P Yes Yes – –  
 Tirado and Hvattum (2017a) He Yes H – OR, VA Yes Yes Yes –  
 Tirado and Hvattum (2017b) He Yes H – OR, VA – Yes Yes –  
 Hyland and Mahmassani (2018) Ho Yes – – P – – – –  
 Sayarshad and Oliver Gao (2018) He Yes – – OR – – – –  
 Srour et al. (2018) Ho Yes H – OM Yes Yes – –  
 Arslan et al. (2019) He Yes H – NI – – – –  
 Bertsimas et al. (2019) Ho Yes H – P – Yes Yes –  
 Györgyi and Kis (2019) Ho Yes H – OM Yes Yes – –  
 He et al. (2019) Ho Yes S – OR – – – –  
 Liu (2019) He Yes – – P – – Yes –  
 Steever et al. (2019) He Yes S – OR – – – –  
 Duan et al. (2020) Ho Yes H – P – Yes – –  
 Karami et al. (2020) Ho – S – P – – – –  
 Los et al. (2020) He Yes H Yes OR Yes Yes – –  
 Arslan et al. (2021) Ho Yes H – OR – Yes – –  
 Tafreshian et al. (2021) Ho Yes H – P Yes Yes – –  
 Ulmer et al. (2021) Ho – S – OR, SI – – Yes –  
 Ghiani et al. (2022) Ho – – – OR – – – –  
 Haferkamp and Ehmke (2022) Ho – H – OR – Yes – –  
 Kullman et al. (2022) Ho – H – OR, VA – Yes – –  
 Hao et al. (2022) Ho Yes S – P – – – –  
 Ackermann and Rieck (2023) Ho Yes – – OR, VA, SI – Yes Yes –  
 Auad et al. (2023) Ho Yes S – P – – Yes –  
 Bosse et al. (2023) Ho Yes – – OR – Yes – Yes  
 Dieter et al. (2023) Ho Yes – – OR – – – –  
 Heitmann et al. (2023) Ho Yes H – OR – Yes – –  
 Ackva and Ulmer (2024) Ho Yes H – OR Yes Yes – –  
 Jeong and Moon (2024) Ho Yes – – OR – – – –  
 Heitmann et al. (2024) Ho Yes H – OR – Yes – –  
 Haferkamp (2024) Ho Yes H (Yes) OR – – – (Yes) 
Table A.2
Problem and decision making aspects for SDDPs.
 Paper VEH CAP TW CAN DPs DEL REJ PP ERD 
 Ehmke and Campbell (2014) Ho – H – OR – Yes – –  
 Klapp et al. (2018a) 1 – – – P – Yes Yes –  
 Klapp et al. (2018b) 1 – – – P Yes Yes – –  
 Ulmer and Thomas (2018) He Yes H – OR – Yes – –  
 Ulmer and Streng (2019) Ho Yes – – P – – Yes –  
 Ulmer et al. (2019b) 1 – – – VA – Yes – –  
 van Heeswijk et al. (2019) Ho Yes H – P – – Yes –  
 Voccia et al. (2019) Ho – H – OR, VA, SI Yes Yes Yes –  
 Dayarian and Savelsbergh (2020) He Yes S – P, VA Yes – Yes –  
 Dayarian et al. (2020) He Yes H – VA Yes Yes – –  
 Klapp et al. (2020) Ho – – – P, OR Yes Yes – –  
 Ulmer (2020) Ho – H – OR – Yes – –  
 Chen et al. (2022) He Yes H – OR – Yes – –  
 Chen et al. (2023) He – H – OR – Yes – –  
 Côté et al. (2023) Ho – H – OR, VA, SI Yes Yes – –  
 Liu and Luo (2023) Ho Yes H – P – – (Yes) –  
12 
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Table A.3
Problem and decision making aspects for VRPDSRs.
 Paper VEH CAP TW CAN DPs DEL REJ PP ERD  
 Lin et al. (2014) Ho Yes H Yes OR – – – –  
 Ninikas and Minis (2014) Ho Yes H – OR – – – –  
 Ferrucci and Bock (2015) Ho – S – P – – – (Yes) 
 de Armas and Melián-Batista (2015b) He Yes S – OR – Yes – –  
 Schyns (2015) He Yes H Yes NI – – – –  
 Ferrucci and Bock (2016) Ho – S – P Yes – – (Yes) 
 Sarasola et al. (2016) Ho Yes – – P – – – –  
 Angelelli et al. (2016) 1 – – – VA – – – –  
 Goodson et al. (2016) Ho Yes – – VA – – – –  
 Ng et al. (2017) Ho Yes – – VA – – – –  
 Ulmer et al. (2017) 1 – – – OR, VA, SI – Yes Yes Yes  
 Pillac et al. (2018) He – H – OR,VA Yes Yes – –  
 Ulmer et al. (2018) 1 – – – VA Yes Yes – –  
 Zhang et al. (2018) 1 – H – VA, SI – Yes Yes –  
 Ulmer (2019) 1 – – – VA – Yes – –  
 Ulmer et al. (2019a) 1 – – – VA (Yes) Yes – –  
 Bono et al. (2021) Ho Yes S – VA – – – –  
 Xiang et al. (2022) Ho Yes – – P – – – –  
 Zhang et al. (2023) Ho – – – OR – Yes – –  
 Soeffker et al. (2024) Ho – – – OR – Yes – –  
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Appendix A. Tables for literature review

In Tables  A.1–A.3 we compiled the reviewed papers. Abbreviations 
stand for the following. Vehicles (VEH): Single (1), Homogeneous 
fleet (Ho), Heterogeneous fleet (He). Capacitated vehicles (CAP). Order 
time-windows (TW): Soft (S), Hard (H). Order cancellation (CAN). 
Decision points (DPs): Periodic (P), Order request (OR), Vehicle arrival 
(VA), Self-imposed (SI), New information (NI), Order modification 
(OM). Delaying the departure (DEL). Order rejection (REJ). Decision 
postponement (PP). En route diversion (ERD).

Appendix B. Feasibility of states and decisions

A state 𝑠 is feasible if the following constraints are satisfied. A 
decision 𝑥 is feasible with respect to the feasible state 𝑠 if, in addition to 
the constraints described in Section 4.4.2, the post-decision state 𝜙(𝑠, 𝑥)
is feasible.
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B.1. General constraints

Regardless of the problem, the following constraints must always be 
taken into account.
Assigned orders. Only open orders can be assigned to vehicles.

⋃

𝑣∈

⎛

⎜

⎜

⎝

𝑠,𝑣 ∪
𝓁𝑠,𝑣
⋃

𝑗=0

(

𝑗
𝑠,𝑣 ∪𝑗

𝑠,𝑣

)
⎞

⎟

⎟

⎠

⊆ open
𝑠

Pickup and delivery locations. Orders can only be picked up at their 
pickup location (𝑙𝑝⋅ ), and can only be delivered at their delivery location 
(𝑙𝑑⋅ ).

𝑜𝑖 ∈ 𝑗
𝑠,𝑣 ⇒ 𝑙𝑗𝑠,𝑣 = 𝑙𝑝𝑖

𝑜𝑖 ∈ 𝑗
𝑠,𝑣 ⇒ 𝑙𝑗𝑠,𝑣 = 𝑙𝑑𝑖

Pickup and delivery with the same vehicle. Orders must be delivered by 
the same vehicle that picked them up.

𝑜𝑖 ∈ 𝑗
𝑠,𝑣 ⇒ 𝑜𝑖 ∈ 𝑠,𝑣 ∪

𝑗−1
⋃

𝑘=0
𝑘
𝑠,𝑣

Pickup and deliver only once. Orders can only be picked up and deliv-
ered once. That is, the sets 𝑠,𝑣 and 𝑗

𝑠,𝑣 (𝑗 = 0,… ,𝓁𝑠,𝑣) must be pairwise 
disjunctive for each vehicle 𝑣. Similarly, for each vehicle 𝑣, the sets 𝑗

𝑠,𝑣
(𝑗 = 0,… ,𝓁𝑠,𝑣) must be pairwise disjunctive.

B.2. Problem specific constraints

There may be several other constraints for a particular problem at 
hand (e.g., capacity constraints, loading rules).
Capacity constraints. If vehicle 𝑣 is capacitated, then the total quantity 
of the loaded orders cannot exceed its capacity 𝑄𝑣 That is,

∑

𝑜𝑖∈𝑠,𝑣

𝑞𝑖 +
𝑗′
∑

𝑗=0

⎛

⎜

⎜

⎝

∑

𝑜𝑖∈
𝑗
𝑠,𝑣

𝑞𝑖 −
∑

𝑜𝑖∈
𝑗
𝑠,𝑣

𝑞𝑖
⎞

⎟

⎟

⎠

≤ 𝑄𝑣 for all 𝑗′ = 0,… ,𝓁𝑠,𝑣,

where it is assumed that unloading takes place first and then loading 
takes place afterwards.

Appendix C. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.ejtl.2025.100159.
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