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Abstract

Temporal changes in environmental conditions may play a major role in the year-to-year variation in fitness consequences of behaviours. Identifying
environmental drivers of such variation is crucial to understand the evolutionary trajectories of behaviours in natural contexts. However, our
understanding of how environmental variation influences behaviours in the wild remains limited. Using data collected over 14 breeding seasons
from a collared flycatcher (Ficedula albicollis) population, we examined the effect of environmental variation on the relationship between survival
and risk-taking behaviour, a highly variable behavioural trait with great evolutionary and ecological significance. Specifically, using annual recap-
ture probability as a proxy of survival, we evaluated the specific effect of predation pressure, food availability, and mean temperature on the
relationship between annual recapture probability and risk-taking behaviour (measured as flight initiation distance [FID]). We found a negative
trend, as the relationship between annual recapture probability and FID decreased over the study years and changed from positive to negative.
Specifically, in the early years of the study, risk-avoiding individuals exhibited a higher annual recapture probability, whereas in the later years,
risk-avoiders had a lower annual recapture probability. However, we did not find evidence that any of the considered environmental factors
mediated the variation in the relationship between survival and risk-taking behaviour.
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Introduction Previous research on phenotypic selection has primarily
concentrated on abiotic (i.e., climatic) factors (Charmantier
& Gienapp, 2014; Evans & Gustafsson, 2017; Gienapp et
al., 2008; Merila & Hendry, 2014), and our understanding of
the influence of biotic factors on phenotypic selection is still
imperfect (e.g., Morales-Mata et al., 2022). However, climatic
factors may not necessarily be the direct drivers of selection
but rather mediate the impact of biotic factors acting as true
environmental determinants of the evolution of phenotypic
traits (e.g., climatic factors mediate the prevalence and load
of ectoparasites; Moyer et al., 2002; Pollock et al., 20135).
Furthermore, most papers on phenotypic selection have con-
centrated on morphological and life-history traits (Kingsolver
etal.,2001,2012), with only a few studies focussing on orna-
mentation (Cuervo & Maoller, 1999, 2001) and even fewer on
behaviour (Dhellemmes et al., 2021; Garant, 2020; Lapiedra

The observation that a phenotypic trait in a population exhibits
covariation with certain environmental factors is a core concept
of evolutionary ecology (Michel et al., 2014). When analyzing
the evolution of a phenotypic trait, the focus is usually on the
association between the trait and individual fitness, assuming
that individuals express similar phenotypes when exposed to
similar environmental selective pressures, which is often false
(Bolnick et al., 2003). Variation in phenotypic expression is most
likely to evolve in spatially and temporally variable environ-
ments where there might not be a single optimal strategy (Coates
et al., 2019). Therefore, identifying those environmental factors
that shape the covariation between phenotypic traits and proxies
of fitness is fundamental for understanding how environmental
variation influences the evolution of animals’ phenotypes in wild
populations (Grant & Grant, 2003).
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et al., 2018; Réale & Festa-Bianchet, 2003). Undoubtedly, it
is challenging to quantify the relative influence of behaviour
on fitness due to the complexity and multifaceted nature of
the behaviour, compounded by the difficulty of directly mea-
suring and manipulating environmental factors in natural set-
tings and the challenges associated with gathering long-term
data.

Animal behaviour involves a wide range of activities and
strategies that animals use to interact with their environment,
trying to increase their survival and reproduction (Réale et
al., 2007; Wolf & Weissing, 2012). One remarkable feature
of animal behaviour is its ability to adjust to rapid environ-
mental changes (Wong & Candolin, 2015). Animals exhibit
behavioural plasticity, which allows them to react promptly
to new challenges and exploit available resources more effec-
tively by adjusting their responses in the face of changing envi-
ronmental conditions (Van Buskirk, 2012). Understanding
how animal behaviour adjusts to these rapid environmental
changes is crucial, as it provides insights into the evolution-
ary processes that shape species persistence in dynamic envi-
ronments (Sih, 2013). This understanding aids in identifying
traits that enable animals to cope with and thrive in the face
of environmental variability. Such knowledge contributes to
our broader understanding of how animal behaviour could
evolutionarily adapt to new environmental conditions and
how this adaptation influences the persistence of traits within
a population.

Risk-taking is an important behavioural trait that defines
how individuals respond to various risky situations, includ-
ing encounters with predators (Quinn & Cresswell, 2005),
potential exposure to parasites (Moller et al., 2013), or com-
petition for resources (Behney et al., 2019). Risk-taking may
confer advantages, such as reducing negative consequences
for survival and increasing potential benefits (e.g., gaining
access to resources or higher-quality territories, Ydenberg &
Dill, 1986). Risk-taking is considered highly plastic because
individuals can adjust it to environmental conditions and
contextual factors (Heynen et al., 2016; Jolles et al., 2019;
Krenhardt et al., 2021). For example, animals may exhibit
bolder behaviours in resource-limited environments with low
predation pressure, thus taking greater risks to access valu-
able resources (Borcherding & Magnhagen, 2008). In con-
trast, in resource-limited environments with high predation
pressure, individuals may adopt more cautious behaviours to
decrease risks and increase their chances of survival (Smith
& Blumstein, 2008). The plasticity of risk-taking behaviour
may allow animals to adjust to varying ecological condi-
tions and optimize their trade-offs between potential rewards
and costs. However, it is important to note that while this
behavioural change is often attributed to plasticity, it could
also be achieved without plasticity if animals that consis-
tently differ in their behaviour are favoured by selection in
these different predation scenarios. This nuanced understand-
ing of risk-taking behaviour is crucial when considering its
evolutionary significance. Risk-taking is not only a heritable
behaviour (Carrete et al., 2016) with considerable fitness con-
sequences, particularly through its relation to survival (Smith
& Blumstein, 2008), but it also exhibits substantial variation
among individuals.

Predation pressure is an important biotic agent of selec-
tion for risk-taking behaviour, as exposure to predators can
strongly and directly affect the risk-taking behaviour of prey
while simultaneously affecting their survival (D’Anna et al.,
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2012; Moller, 2014). Individuals under elevated risk of pre-
dation have to make an immediate decision whether to con-
tinue their current activity (e.g., foraging, singing, defending
territory) with an elevated risk of mortality (Kortet et al.,
2010) or avoid predation by escaping (Verdolin, 2006). Thus,
individuals have to face a trade-off between the costs of pre-
dation and their intrinsic necessities (e.g., energetic demands)
to optimize their chances of survival (Brown & Kotler, 2004).
The balance between costs and benefits is expected to be con-
text dependent (Lima & Bednekoff, 1999), with individuals
adjusting the balance between current activity and future sur-
vival in response to the actual predation risk. We know from
the study of Lapiedra et al. (2018) on brown anoles (Anolis
sagrei) and the study of Dhellemmes et al. (2021) on lemon
sharks (Negaprion brevirostris) that predation pressure can
influence the relationship between risk-taking behaviour and
survival. Both studies found that bolder individuals have a
lower survival chance in case of higher predation pressure.
However, we still know little about how temporally fluctu-
ating selection works on risk-taking behaviour in the case of
bird species.

Besides predation pressure, another biotic environmen-
tal factor potentially mediating the relationship between
survival and individual risk-taking behaviour is the relative
abundance of food resources, which continuously changes
over the years (Le Cceur et al., 2015; Santicchia et al., 2018).
Foraging (or acquiring other valuable resources) typically
comes with associated costs, and a growing body of evidence
suggests that animals weigh these costs and benefits strategi-
cally (Caraco, 1980; Hurly & Healy, 2018). Food availability
directly impacts the benefits an animal can obtain compared
to the costs it incurs. Consequently, an animal’s ideal level of
risk-taking (or foraging effort) ought to be influenced by food
availability (Abrams, 1991). Theoretically, bolder individuals
could acquire resources more efficiently in years of low food
availability. A higher food intake could translate into better
body condition and, subsequently, a higher survival chance.
In contrast, bolder individuals could have a lower survival
chance in years with high food availability, as being bold is
costly for animals, and when the benefit does not offset this
cost (as it does under low food availability), bold animals are
worse off than shy ones (Biro & Stamps, 2010).

Furthermore, changes in abiotic environmental factors
could also directly affect the relationship between sur-
vival and risk-taking behaviour. Temperature is one of the
most studied abiotic factors shaping phenotypic selection
(Charmantier et al., 2008; Kingsolver et al., 2015; Le Vaillant
et al., 2021; Marrot et al., 2018). Temperature affects the
energy requirements of animals, and in cold environments,
animals may need to allocate more energy towards ther-
moregulation, leaving fewer resources available for risky
activities and vice versa (Smith et al., 2019). Moreover, tem-
perature can influence biotic environmental factors, such as
predator—prey dynamics and food availability. For exam-
ple, warmer temperatures may increase the activity levels
of predators, making foraging riskier for prey (Johnson &
Buller, 2016). This could result in prey exhibiting more cau-
tious behaviour and reducing risk-taking to mitigate preda-
tion risk and increase the chance of survival. Temperature
can also affect food availability, as extreme temperatures
change the abundance, distribution, and accessibility of
food resources, forcing animals to modify their risk-taking
behaviour accordingly (Mathot et al., 2014).
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Here, we empirically examined the effect of environmental
variation on the relationship between survival and risk-taking
behaviour using data collected over 14 breeding seasons from
a wild population of collared flycatchers (Ficedula albicollis).
Specifically, using annual recapture probability as a proxy
of survival, we evaluated the effect of predation pressure,
food availability, and mean temperature on the relation-
ship between survival and risk-taking behaviour (measured
as flight initiation distance [FID]; Blumstein, 2006; Maeller,
2008). We predicted that risk-averse individuals would have
a higher survival chance in years of higher predation pressure
and/or favourable environmental conditions (i.e., abundant
food and higher mean temperature).

Materials and methods

Study area and model species

Data were obtained from a population of collared flycatch-
ers breeding in the Pilis Mountains (47° 43'N, 19° 01’E),
Hungary. The study population is located in a continuous,
mainly oak-dominated woodland within the protected and
managed area of the Duna-Ipoly National Park and the Pilisi
Parkerd6 Zrt. The study area is approximately 45 ha, and
it contains 550 nest boxes, mainly occupied by collared fly-
catchers. In each breeding season (April-June), the reproduc-
tive performance of collared flycatchers has been intensively
monitored as part of a long-term study initiated in 1982
(Torok & Toéth, 1988). Intensive monitoring also allowed us
to estimate annual recapture probability.

The collared flycatcher is a small, relatively short-lived (4-5
years on average), long-distance migratory bird that breeds in
deciduous forests in Central Europe (Cramp & Perrins, 1993).
After spring migration from their winter quarters in Africa
(arriving by mid-April), males establish territories around a
nest hole, defend it by aggressive interactions against intrud-
ing individuals (Garamszegi et al., 2006), and try to attract
prospecting females to the nesting site by singing close to
it. The species nests in tree cavities but prefers artificial nest
boxes (if available) over natural holes (Lundberg et al., 1981).
The collared flycatcher is a highly philopatric species. In our
population, males bred on average only 128 m and females
358 m away from the nest box occupied in the previous year
(Konczey et al., 1992).

Fieldwork

We used field data on the risk-taking behaviour of male col-
lared flycatchers from 2007 to 2020 and data on annual recap-
ture probability from 2008 to 2021 (see Table 1 for annual
sample sizes and Figure 1 for summary statistics). We assayed
individual risk-taking behaviour in a standardized way by
measuring FID during the courtship period (Garamszegi et al.,
2008). FID quantifies the distance at which a focal individual
flees from an approaching experimenter (Blumstein, 2003;
Ydenberg & Dill, 1986). Therefore, it is an inverse measure
of risk-taking behaviour, as risk-taking individuals allow the
experimenter to approach closer, while risk-averse individuals
flee when the experimenter is at a greater distance. The cri-
tique of FID is that it primarily reflects responses to humans
rather than natural predators, and our results thus should be
considered in this light. However, several studies have demon-
strated that FID is related to antipredator behaviour in natu-
ral settings (Diaz et al., 2013; Moller & Tryjanowski, 2014;
Moiller et al., 2010). Thus, it is reasonable to assume that FID
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Table 1. Total number of collared flycatcher males (N, ) assayed annually
for their risk-taking behaviour (by estimating flight initiation distance

[FID]) during the courtship period upon arrival to the breeding ground.

Year Nind Annual recapture Recapture probability
Not recaptured Recaptured
2007 15 7 8 0.53
2008 S 4 1 0.20
2009 35 21 14 0.40
2010 21 11 10 0.48
2011 29 23 6 0.21
2012 8 7 1 0.13
2013 39 25 14 0.36
2014 35 24 11 0.31
2015 37 16 21 0.57
2016 36 19 17 0.47
2017 9 7 2 0.22
2018 43 25 18 0.42
2019 31 21 10 0.32
2020 11 9 2 0.18
) 354 0.34

Note. The focal males were also categorized based on whether they
were recaptured in the following breeding season. Recapture probability
indicates the proportion of focal males recaptured in the next breeding
seasons.

measured in the presence of an approaching human reflects
the overall risk-taking behaviour of the tested individual. FID
is a reliable measure of variation in risk-taking behaviour in
our collared flycatcher population, as the adjusted repeat-
ability of FID is moderate and significant in the within-day
(R = 0.461, CI (95%) = 0.049-0.951, p = 0.002) and within-
year (R = 0.524, CI (95%) = 0.395-0.624, p < 0.001) context,
while the adjusted repeatability of FID is low in the among-
year context (R = 0.004, CI (95%) = 0.000-0.335,p = 0.955;
Krenhardt, 2022).

We could only gather FID data for males because their
behaviour can be assessed around the defended nest boxes
during courtship, while a similar procedure cannot be estab-
lished for females. To assess FID, we first located singing and
displaying males in their occupied territories just after their
arrival from their winter quarters. Then, we simulated territo-
rial aggression against the focal male by presenting a live male
flycatcher (Garamszegi et al., 2006). The experimenter placed
the decoy male—representing an intruder—1 m from the
front of the focal male’s nestbox inside a small cage. By doing
so, we ensured that each focal bird was engaged in the same
behavioural situation before assessing FID. When the focal
male was observed displaying typical territorial behaviour
(involving calls and excited flights) around the nest box or on
the cage of the decoy male with a clear intention to fight, the
experimenter started to approach the focal male from a dis-
tance of about 30 m at normal walking speed. The approach
continued until the focal male flew away from the surround-
ings of the nest box. When this happened, the experimenter
stopped and stood still, waiting. If the focal male returned to
the surroundings within 2 min to continue its original activ-
ity, the experimenter started to approach the male again. This
process was continued until the focal male did not return for
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Figure 1. The annual mean of flight initiation distance (FID) characterizing the risk-taking behaviour of collared flycatcher males during the courtship
season. The error bars show the +SE, and the size of each diamond represents the sample size in the given year (also given above the error bars). There
is no relationship between the annual mean FID and the study year (B (SE) = =0.280 (0.153), z= -1.836, p = 0.091).

at least 1 min. FID was measured as the distance between the
cage of the decoy male and the last position of the experi-
menter that caused the focal male to flee and stay away from
the stimulus cage for more than 1 min. FID measurements
were carried out by 6 trained experimenters. Previous studies
showed that the among-experimenter effect was negligible, so
we did not consider this a potentially confounding factor here
(Jablonszky et al., 2017).

We approximated individual survival with annual recap-
ture probability, a binary variable describing whether or not
a focal male was recaptured in the following breeding sea-
son. Individuals not recaptured in the following years were
treated as dead. It is important to note that individuals in
the study population show a strong breeding fidelity. Most
individuals (95%) showed no gaps during their breeding his-
tory. Furthermore, instances of breeding outside the study
plots were infrequent (personal observation), whether in the
surrounding areas or in more distant locations (including
other study populations of flycatchers, as indicated by ring
recoveries). The above evidence suggests that most surviving
individuals bred in the study population and that the frac-
tion of surviving individuals broadly represented all surviv-
ing individuals. Thus, akin to similar long-term studies (Parn
et al., 2009), we assumed that local recruitment estimates
were unbiased and reliably estimated survival.

Environmental factors

We characterized each breeding season with three different
environmental factors at the population level: yearly estimates
of nest predation pressure, food availability, and mean tem-
perature during the courtship period. Nest predation pressure

was calculated as the proportion of nests that were partially
or fully predated from the egg-laying to the nestling-feeding
period (breeding efforts were monitored in each nest box
by regular checks) to the total number of nests (including
all breeding bird species) in each year. This measure aimed
to quantify the perceived risk of predation. The most com-
mon nest predators in our study area were the European pine
marten (Martes martes) and the beech marten (Martes foina)
during the investigated time period. Both are opportunistic
predators and have a diverse diet (Bakaloudis et al., 2012;
Twining et al., 2019). While they primarily feed on small
mammals and birds, both species are skilled tree climbers
and can opportunistically target the nests of various birds in
tree cavities. They also targeted the artificial nest boxes in our
study area, and they left clear signs of their activity at the
nest boxes, including heavily disturbed nest material, nestling
remains, or parts of the parents around or on the top of the
nest box. The female martens give birth to their offspring in
the first half of April, and their offspring live on their mother’s
milk for about 6 weeks (Mead, 1994). Therefore, during this
period, females have elevated energy demands. As this inten-
sive offspring care in martens overlaps with the egg-laying
period of the two tit species (Parus major and Cyanistes
caeruleus) in our study area, we relied on the assumption
that predation pressure measured from the egg-laying of the
tit species (from the beginning of April) reflected predation
pressure when we perform the behavioural tests of collared
flycatcher males from mid-April to early May. Predation pres-
sure varied from negligible to 50% over the study years.
Food availability was estimated by the peak of the cater-
pillar biomass in each breeding season (we had data between
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2007 and 2018). Given that foliage-eating caterpillars are one
of the main items in the flycatchers’ diet (Lohrl, 1976), we
could reasonably assume that caterpillar biomass is a good
predictor of the overall annual food supply. Each year, we
collected caterpillar frass about every 5 days (the range was
between 4 and 6 days) during the breeding season using five
standard collectors (0.25 m? each) at two standard locations
(ten in total). The mean annual frass masses were similar in
the two locations (two-sample Welch’s ¢-test; p = 0.73), sug-
gesting that the spatial variation of caterpillar biomass is low
in our study area and, therefore, that the collectors used are
sufficient to characterize it. We weighed the collected frass
samples to the nearest 0.001 g. After calculating the daily
mean of the collected frass mass for each collection inter-
val, we could determine the date of the peak of caterpillar
biomass (see also Laczi et al., 2019). In most cases (8 of 12
study years), the date of the peak of the caterpillar biomass
overlapped with the period of the behavioural tests, while in
the rest of the years, the peak date was later. Moreover, the
frass mass measured at the peak of the caterpillar biomass
predicted the frass mass earlier in the season (Spearman’s
rank correlation: p = 0.846, p < 0.001). Therefore, we could
reasonably assume that the measured frass mass at the peak
of the caterpillar biomass reflected the food supply when the
behavioural tests were performed. Two of the 12 study years
were gradation years, when the population of caterpillars
reached extremely high densities, resulting in almost 4 times
higher food supply than the average food availability in other
years. Therefore, we binarized our data based on whether
the given study year was an ordinary or a graduation year.
Although binarization caused information loss, we chose to
binarise frass mass as other transformations could not handle
its unusual distribution, and the values clearly fell into two
categories.

Finally, we calculated the average value of the mean
daily temperatures for each day between the first and last
behavioural tests conducted within a given study year (i.e.,
one temperature estimate per year), using measurements
from a nearby meteorological station supplied to the NOAA’s
National Climatic Data Centre (ftp://ftp.ncdc.noaa.gov/pub/
data/gsod). This calculation provided a summary measure
of the temperature conditions experienced by the collared
flycatcher males throughout the behavioural testing period
within a particular study year. By considering the average
value of the mean daily temperatures, we obtained an over-
all representation of the temperature environment during the
study period, capturing the central tendency of temperature
values experienced by the animals over that time frame.

Statistical analyses

We built generalized linear mixed models (binomial distribu-
tion) using our 14-year-long dataset to examine whether the
among-year variation in the annual predation pressure, food
availability, and the average value of the mean daily mean
temperatures during the courtship season was related to the
among-year variation in the relationship between annual
recapture probability and FID. Since the number of measured
males in several study years was moderate (see Table 1), the
effect of the three environmental factors was analyzed inde-
pendently in separate models to avoid over-parametrization.
Each model contained annual recapture probability (proxy of
fitness) as the binary response variable, FID, z-transformed
year (as a continuous variable to estimate trend effects), and
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one of the environmental factors as predictor variables. We
also included the interaction between FID and z-transformed
year (as a continuous variable) to test whether there was
a temporal trend in the relationship between risk-taking
behaviour and annual recapture probability and the interac-
tion between FID and the environmental factor to test the
effect of the environmental factor on the relationship between
annual recapture probability and FID. The random part of
the models contained the random intercept and random slope
of FID for the year. Individual risk-taking behaviour might
change along the repeated tests, as the individuals, based on
their experiences during the tests, may become either bolder
by getting accustomed to the test conditions (habituation)
or shyer due to increased caution (sensitization). Therefore,
we only considered the males’ first tests in our current study;
thus, neither habituation nor sensitization could have influ-
enced their behaviour.

Previous studies revealed that the age of the individual,
the date of the behavioural test, and the year of the test sig-
nificantly affect the risk-taking behaviour of male flycatch-
ers in our population (Krenhardt et al., 2016, 2021). Thus,
the model above used relative FIDs, which were estimated as
residuals from a linear model that contained the square root
of (FID + 1) as a continuous response variable, and the age
of the individual (two-level class variable: first-year old and
older), the standardized date of the behavioural test (the num-
ber of days from the first day in the given year), and the year
of the behavioural test as predictor variables.

To calculate and visualize the yearly slopes of the relation-
ship between annual recapture probability and FID (Figure
2), we run a Bayesian regression model using Stan. This
contained recapture probability as response variable (with
Bernoulli distribution) and log10-transformed (FID + 1),
age of the focal individual, and date of the behavioural test
as fixed variables, a random intercept for the year and ran-
dom slope of FID for the year. All continuous variables were
z-transformed. The model was built with the “brms” package
(Burkner, 2017).

All analyses were carried out in the R statistical environ-
ment (version 4.1.2, R Core Team 2023). GLMM were fit-
ted using the “glmmTMB” function from the “glmmTMB”
package (version: 1.1.3, Brooks et al., 2017). This frequentist
framework and the use of “glmmTMB” package allowed us
to fit more complex models, as this package was specifically
designed to deal with convergence issues common to complex
generalized linear mixed models by working in the model
template builder.

Ethical approval

All applicable international, national, and/or institutional
guidelines for the care and use of animals were followed.
Permissions for the fieldwork have been provided by the
Middle-Danube-Valley Inspectorate for Environmental
Protection, Nature Conservation and Water Management
and the Inspectorate for Environmental Protection, Nature
Conservation and Waste Management of the Government
Office of Pest County, Hungary (reference numbers: KTVF
16360-2/2007, KTVF 30871-1/2008, KTVF 43355-
1/2008, KTVF 10949-8/2013, PE/KTF/11978-5/2015,
PE-06/KTF/8550-4/2018, PE-06/KTF/8550-5/2018, PE-06/
KTF/3331-4/2018), and the experimental procedure was
approved by the ethical committee of the Eotvos Lordand
University (reference number: TTK/2203/3). No individual

G20z Joquiaydas |0 Uo Josn 1IB9APIH POjT Aq G¥29v9./99G/S/2€/aI01e/qal/woo"dnoo1wapeoe//:sd)ly Woly papeojumod


ftp://ftp.ncdc.noaa.gov/pub/data/gsod
ftp://ftp.ncdc.noaa.gov/pub/data/gsod

Journal of Evolutionary Biology, 2024, Vol. 37, No. 5

15

w

N

35 18

=%

o
I

Yearly slopes for the relationship

between annual recapture probability and FID

'
N

571

2007 2008 2009 2010 2011 2012

2013 2014
Year

2015 2016 2017 2018 2019 2020
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and is shown for guidance.

was harmed during our experiments, and none suffered any
short-term consequences of the behavioural tests. To assess
FID during the courtship period, we used live decoys that we
captured on a remote study plot to ensure that the focal males
were not familiar with the decoys. During the behavioural
tests, we presented the decoys to the focal males in small
cages (15 cm x 20 cm x 15 ¢cm), which protected the decoys
from any harmful encounters with the focal males. After
the behavioural tests, we placed the decoys in larger cages
(40 cm x 24 cm x 40 cm) covered with cotton sheets to min-
imize the level of stress and provided them with food (i.e.,
mealworms) and freshwater ad libitum. The decoys were held
in captivity for as shortly as possible, and they were released
at the site of capture after we ensured they were in good con-
dition (i.e., proper body mass, active, and vivid behaviour).
The time spent in captivity did not have any long-term effects
on the decoys, as their reproductive success and survival in
the given year did not differ from other flycatchers in the pop-
ulation (Garamszegi et al., 2009).

Results

We measured risk-taking behaviour in 354 individuals, on
average 25 individuals (range 5-43) per season (see Table 1
for annual sample sizes). Mean risk-taking behaviour varied
markedly over the years (Figure 1).

We found that the relationship between annual recapture
probability and FID varied along a temporal trend over the
study years, which was indicated by the statistically signifi-
cant interaction between FID and year in the models (Table
2). Specifically, we found that the relationship between annual

recapture probability and FID decreased over the study years
and changed from positive to negative (Figure 2). The nega-
tive trend in the relationship between annual recapture prob-
ability and FID was also confirmed by our base model (8
(SE) = -0.255 (0.128), 2 = -1.991, p = 0.046), in which none
of the three environmental variables were included. However,
none of the environmental factors considered independently
or iteratively with FID affected annual recapture probability.
Overall, these results suggest that these environmental fac-
tors did not mediate the temporal variation in the relationship
between annual recapture probability and FID.

Discussion

During 14 breeding seasons, we investigated the mediating
effects of three environmental factors (i.e., predation pressure,
food availability, and mean temperature) on the relationship
between survival and risk-taking behaviour in a free-living
population of collared flycatchers. We found significant varia-
tion in the relationship between annual recapture probability
and FID across the study years, as indicated by the interaction
between FID and year in our models, revealing a negative lin-
ear trend. Specifically, we found that the relationship between
annual recapture probability and FID decreased over the
study years. However, none of the three considered environ-
mental factors, independently or iteratively with FID, affected
annual recapture probability.

Understanding the nuances of risk-taking behaviour is
crucial for interpreting the observed patterns. Flight initia-
tion distance is a critical component of an individual’s anti-
predatory strategy, reflecting its ability to assess and respond to
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Table 2. Results from generalized linear mixed models investigating the effect of environmental factors on the relationship between annual recapture
probability and flight initiation distance (FID).

Predation pressure

Food availability

Mean temperature

Predictors B (SE) z p B (SE) z p B (SE) z p
FID 0.206 (0.127) 1.618 0.106 0.144 (0.149) 0.966 0.334 0.199 (0.125) 1.595 0.111
Year -0.081 (0.163) -0.500 0.617 0.078 (0.127) 0.613 0.54 0.042 (0.147) 0.289 0.773
Env. factor™ -0.043 (0.167) -0.257 0.797 -0.406 (0.311) -1.304 0.192 -0.217 (0.150) -1.448 0.148
FID: Year -0.280 (0.182) -1.539 0.124  -0.283 (0.126) -2.249 0.025 -0.338 (0.154) -2.196 0.028
FID: Env. factor™ -0.025 (0.166) -0.153 0.878 0.310 (0.298) 1.042 0.297 0.162 (0.154) 1.053 0.293
Random effects Variance Variance Variance

Year 0.07 0.018 0.048

FID | year 0.008 0.003 0.002

Note. All models had the same structure except for the environmental factor (Env. factor*) considered. Three environmental factors were analyzed
independently, and the statistics for each of those models are shown in each vertical section of the table for predation pressure (left), food availability
(centre), and mean temperature (right). See the main text for further details. The significant results are shown in bold. N = 354.

potential environmental threats. Thus, a few metres of reduc-
tion in FID could suggest a nuanced but critical adjustment
in the risk-taking behaviour of the population. One plausible
interpretation is that individuals exhibiting a shorter FID may
be more tolerant of proximity to potential threats in general
and predators in particular. This behavioural change could
be driven by various factors, including a perceived decrease
in predation pressure, increased familiarity with the environ-
ment, or alterations in resource distribution. Such changes
in anti-predatory responses could influence the survival and
reproductive success of individuals within the population,
thus population structure, predator—prey dynamics, and com-
munity interactions.

One possible explanation for the linear trend observed
for the relationship between annual recapture probability
and FID might be the adaptation to climate change. Climate
change via elevated temperatures and unpredictable cli-
matic variations has drastically altered the environmental
conditions in the last few decades, to which migrant birds
are particularly sensitive (Romano et al., 2023). European
flycatchers have demonstrated considerable phenological
responses to climate change, advancing the onset of breed-
ing through early arrival from their winter quarters and early
clutch initiation as springs get warmer (Both & Visser, 2001;
Both et al., 2005). In the studied population, we have also
observed a remarkable shift in breeding dates (i.e., the laying
date of the first egg in a particular breeding season has shifted
significantly (approximately 1 week) earlier between 2000
and 2020: B (SE)=-0.336 (0.127), z=-2.645, p =0.016,
unpublished data). Selection for breeding earlier also selects
for early arrival, resulting in individuals exposing themselves
to the more unpredictable weather conditions of early spring
(Brown & Brown, 2000). Individuals that leave their win-
ter quarters early are likely to find favourable environmen-
tal conditions at the breeding areas, but in some years, they
may also meet very harsh conditions upon arrival (Béty et al.,
2004). Furthermore, climate change can also cause increased
fluctuations in the local weather; thus, early arriving birds
may put themselves at a higher risk as investments into early
arrival can incur costs if breeding is delayed due to local con-
ditions (Shipley et al., 2020). Therefore, adaptation to cli-
mate change via the advancement of laying date requires the

selection of more risk-taker individuals that cope with unpre-
dictable environmental conditions during early arrival. We
might have captured this selection process via the observed
temporal trend in the relationship between annual recapture
probability and FID over the study period.

Other environmental factors, not inherently connected to
climate change, could also be responsible for the temporal
variation in the relationship between survival and risk-taking
behaviour, resulting in linear changes over time (e.g., popula-
tion density, Nicolaus et al., 2016). In our statistical models,
the effects of the year may be assumed to reflect the effects
of climate change, but they may also reflect other environ-
mental factors that linearly changed over the years inde-
pendently of climate change. Moreover, selection for higher
risk-taking may occur during the winter quarters or during
migration; thus, the linear trend in our study area may not
necessarily reflect changes in the environment at the breeding
areas (Remisiewicz & Underhill, 2022). Note that our mod-
els included mean temperature, but always as an additional
covariate to the linear trend; thus, this variable can be inter-
preted to reflect temperature variations that are independent
of climate change.

We found no evidence that the analyzed environmental fac-
tors (i.e., predation pressure, food availability, and mean tem-
perature) mediated the temporal variation in the relationship
between survival and risk-taking behaviour, which could be
due to several reasons. First, it is plausible that other une-
valuated environmental factors, such as habitat complexity,
may have a greater impact on shaping selection for this trait
than those considered here (Boon et al., 2008) or elsewhere (le
Vaillant et al., 2021), especially if these factors act outside the
breeding season. Unfortunately, as occurs with other migra-
tory taxa, our current understanding of the numerous environ-
mental factors affecting collared flycatcher males during their
annual cycle is very limited (Briedis et al., 2017). Second, it is
also possible that we have considered the right environmen-
tal factors as predictors, but we relied on unjustified assump-
tions. For example, we assessed predation pressure from the
egg-laying to the nestling-feeding period, and we assumed
that the predation pressure of the two marten species was
stable during the whole breeding season (Mead, 1994). Third,
it is possible that we did not have adequate statistical power.
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Although we were able to incorporate data from 14 study
years, it is important to note that in a few instances, partic-
ularly in 3 or 4 years, our sample sizes were relatively small.
This variability in sample sizes may introduce difficulties in
making robust inferences and could potentially impact the
reliability of our interpretations. We may have also needed a
longer time period to detect the effects of the measured envi-
ronmental factors, given that the environmental factors may
operate through weak or intermediate effects (Li et al., 2019).
Fourth, within-individual variation in risk-taking behaviour
could have also been a confounding, unaccounted factor in
our study, which may introduce an error in the year-specific
estimates of fitness costs associated with risk-taking behaviour.
Birds may plastically adjust their risk-taking behaviour to the
changing environment across years, which is corroborated by
the low among-year repeatability of FID. Finally, it is possible
that individuals with different behavioural phenotypes might
have different chances to disperse beyond the study area, and
therefore, they remain undetected, thereby introducing noise
in our data (Duckworth et al., 2015).

In conclusion, we found temporal variation in the relation-
ship between survival and risk-taking behaviour over our
14-year-long study period. We found that the relationship
between annual recapture probability and FID decreased over
the study years. Specifically, in the early years of the study,
risk-avoiding individuals exhibited a higher annual recap-
ture probability, whereas in the later years, risk-avoiders had
a lower annual recapture probability. However, the specific
factors driving this apparent selective pattern remained elu-
sive, as none of the three assessed biotic and abiotic factors
mediated this relationship. Further research is needed to delve
into the intricate interplay of behaviours and environmental
factors in wild populations. Comprehending the evolutionary
dynamics of risk-taking along with those of other behavioural
characteristics within a population is essential to gain insights
into the adaptive nature of these traits and their role in shap-
ing the survival and persistence of animal populations over
time.
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