

Deep learning-enabled echocardiographic assessment of biventricular ejection fractions: the dual-task QUEST-EF model

Ádám Szijártó¹, Béla Merkely¹, Attila Kovács^{1,2†}, and Márton Tokodi (1) ^{1,2}*†, on behalf of the QUEST-EF Investigators[‡]

¹Heart and Vascular Centre, Semmelweis University, 68 Városmajor Street, Budapest 1122, Hungary; and ²Department of Experimental Cardiology and Surgical Techniques, 68 Városmajor Street, Budapest 1122, Hungary

Received 12 February 2025; revised 3 April 2025; accepted 7 April 2025; online publish-ahead-of-print 12 May 2025

Introduction

Rapid and accurate assessment of left and right ventricular (LV and RV) systolic function is essential in contemporary cardiology practice. Although 2D echocardiography (2DE) remains the most commonly used imaging modality for this task, it has inherent limitations: it requires multiple views to appropriately assess LV ejection fraction (LVEF) and does not enable the quantification of RV ejection fraction (RVEF). 3D echocardiography (3DE) offers clear incremental value over 2DE. 1.2 However, recent surveys have revealed that 3DE is still underutilized for assessing ventricular volumes and ejection fractions, most commonly due to the lack of dedicated training, time constraints, and the complexity of post-processing, in addition to the limited availability of 3DE probes and software packages and challenges posed by poor acoustic windows. 3.4

Previously, we developed and externally validated a deep learning (DL)-based, segmentation-free tool to predict RVEF from a single 2D apical four-chamber view (A4C) echocardiographic video, which demonstrated diagnostic and prognostic utility comparable with 3DE and cardiac magnetic resonance imaging. In the present study, we built upon this work and aimed to develop QUEST-EF (**QU**antification of **E**chocardiographic **ST**udies—**E**jection **F**raction), a dual-task DL model for predicting both 3DE-derived LVEF and RVEF based on a single A4C video. Additionally, we sought to test QUEST-EF across a diverse spectrum of acquired and congenital cardiac diseases and various geographic regions.

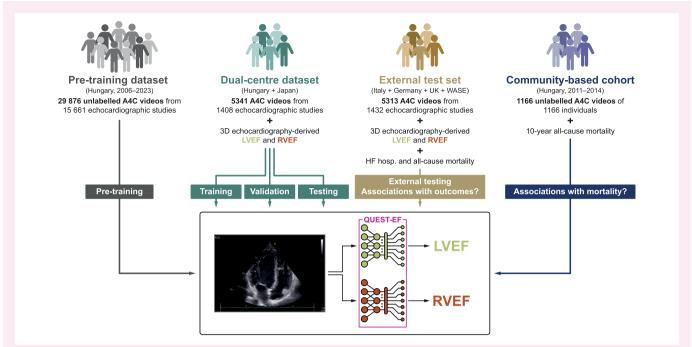
Methods

QUEST-EF is a complex end-to-end DL pipeline comprising two main components. The first component is responsible for preprocessing the input DICOM file through several steps, such as converting its frames to greyscale, generating a binary mask denoting the region of interest, cropping the frames and resizing them to 192×192 pixels, applying min—max scaling,

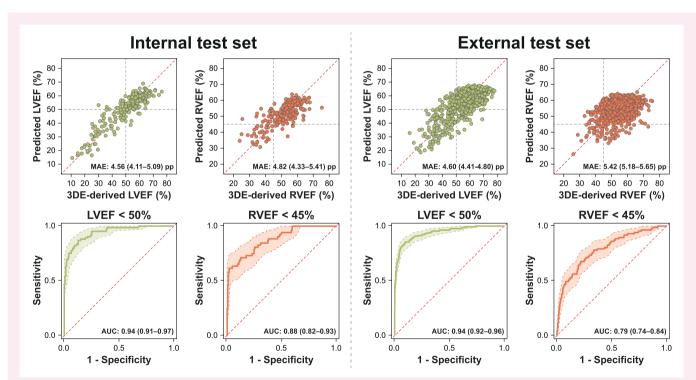
and sampling 16 frames from each cardiac cycle. Additionally, this component includes a view classifier to ensure that only A4C videos are passed to the next pipeline component, an orientation classifier that enables the horizontal flipping of videos recorded in the Stanford orientation, and a transformer we previously trained as proposed by Reynaud et al.⁶ to identify end-systolic frames, which are then used to split the videos into cardiac cycles without relying on an electrocardiographic signal. The second component comprises two video vision transformers (ViViT-b 16 × 2), which were first pre-trained on 29 876 unlabelled A4C videos from 15 661 echocardiographic studies in a self-supervised fashion as described previously. In the subsequent supervised training phase, one of the transformers was trained for predicting LVEF on the publicly available EchoNet-Dynamic dataset comprising 10 030 A4C videos with 2DE-derived labels (only LVEF) and a dual-centre 3DE dataset comprising 5341 A4C videos with 3DE-derived labels (both LVEF and RVEF), whereas the other transformer was trained for predicting RVEF only on the latter dataset.

Beyond testing QUEST-EF internally on 20% of the dual-centre dataset (i.e. the internal test set), its performance was also evaluated in a labelled external test set, which included (i) 238 A4C videos of 238 patients with mixed cardiac diseases from an Italian centre of whom 187 had available data regarding heart failure hospitalizations and all-cause mortality during follow-up, (ii) 177 A4C videos of 90 adults with congenital heart disease from a British centre, (iii) 183 A4C videos (with LVEF labels only) of 183 patients with mixed cardiac diseases from a German centre, (iv) 20 A4C videos (with RVEF labels only) of 20 patients with severe tricuspid regurgitation from another German centre, and (v) 4695 A4C videos of 901 healthy adults enrolled in the World Alliance of Societies of Echocardiography study (*Figure 1*). Last, the associations between the predictions and 10-year all-cause mortality were also investigated in a Hungarian, low-risk, community-based cohort (1166 unlabelled A4C videos of 1166 individuals).

Performance metrics are reported at the study level. The source code of QUEST-EF is available on GitHub (https://github.com/szadam96/quest-ef),


This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

 $[\]hbox{$*$ Corresponding author. E-mails: tokmarton@gmail.com; tokodi.marton@semmelweis.hu}\\$


[†] These authors contributed equally to this work and are joint last authors.

[‡] See Appendix for the list of investigators.

[©] The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology.

Figure 1 Training and testing datasets used for the development and testing of QUEST-EF. A4C, apical four-chamber view; hosp., hospitalization; LVEF, left ventricular ejection fraction; RVEF, right ventricular ejection fraction; WASE, World Alliance of Societies of Echocardiography.

Figure 2 Performance of QUEST-EF. The internal test set for predicting LVEF included 822 A4C videos [LVEF < 50%: 322 (39.2%) videos] from 225 studies [LVEF < 50%: 85 (37.8%) studies], whereas the test set for predicting RVEF comprised 825 A4C videos [RVEF < 45%: 196 (23.8%) videos] from 219 studies [RVEF < 45%: 52 (23.7%) studies]. The external test set for predicting LVEF included 5293 A4C videos [LVEF < 50%: 212 (4.0%) videos] of 1412 patients [LVEF < 50%: 174 (12.3%) patients], whereas the test set for predicting RVEF comprised 5130 A4C videos [RVEF < 45%: 210 (4.1%) videos] of 1249 patients [RVEF < 45%: 87 (7.0%) patients]. The performance of QUEST-EF is reported at the study level (i.e. by averaging the predictions of all A4C videos acquired during the same echocardiographic study). 95% confidence intervals and bands were calculated from 10 000 stratified bootstrap resamples. 3DE, three-dimensional echocardiography; A4C, apical four-chamber view; AUC, area under the receiver operating characteristic curve; LVEF, left ventricular ejection fraction; MAE, mean absolute error; pp, percentage point; RVEF, right ventricular ejection fraction.

1404 Á. Szijártó et al.

ensuring transparency and reproducibility. The study protocol conforms with the principles outlined in the Declaration of Helsinki and was approved by the ethics committees of the institutions participating in this study.

Results

During internal and external testing, QUEST-EF predicted LVEF with mean absolute errors (MAEs) of 4.56 [95% confidence interval (CI): 4.11-5.09] and 4.60 (95% CI: 4.41-4.80) percentage points, respectively, and RVEF with MAEs of 4.82 (95% Cl: 4.33-5.41) and 5.42 (95% Cl: 5.18–5.65) percentage points (Figure 2). In the internal test set, the model identified LV and RV systolic dysfunction (i.e. LVEF < 50% and RVEF < 45%) with areas under the receiver operating characteristic curve (AUCs) of 0.94 (95% CI: 0.91-0.97) and 0.88 (95% CI: 0.82-0.93), respectively, whereas, in the labelled external test set, it achieved AUCs of 0.94 (95% CI: 0.92-0.96) and 0.79 (95% CI: 0.74-0.84) in these tasks (Figure 2). Among the 187 patients with available outcome data [28 (15.0%) died or were hospitalized due to heart failure during the median follow-up duration of 1.1 (interquartile range: 0.5-1.6) years], the QUEST-EF-predicted EF values were associated with the composite endpoint of all-cause death and heart failure hospitalization [LVEF adjusted hazard ratio (aHR): 0.945 (95% CI: 0.913-0.979), P = 0.002; RVEF—aHR: 0.927 (95% CI: 0.877–0.979), P = 0.006], independent of age and sex. In the community-based cohort [10-year all-cause mortality rate: 131/1166 (11.2%)], the predictions were also associated with allcause mortality [LVEF-aHR: 0.947 (95% CI: 0.924-0.970), P < 0.001; RVEF—aHR, 0.877 (95% CI: 0.845–0.909), P < 0.001], independent of the Framingham Risk Score and LV filling pressures estimated by E/e' ratio.

Discussion

LVEF and RVEF are the most important non-invasive surrogates of systolic cardiac function, serving as strong determinants of symptoms, functional capacity, quality of life, and clinical outcomes. To support clinicians in the echocardiographic assessment of these parameters, we developed QUEST-EF, a vendor-independent and segmentation-free DL-based solution capable of accurately predicting biventricular EFs using a single, routinely acquired A4C video. While designing QUEST-EF, we intentionally chose a segmentation-free approach to enable the model to extract both direct and indirect indicators of ventricular function from all visualized anatomical structures rather than restricting it to outlining and tracking the endocardial border of the ventricles. This approach is particularly relevant for predicting RVEF, as contouring the RV in a single plane would only yield RV fractional area change that has shown significant disagreements with 3DE-derived RVEF.⁸ Moreover, not relying on accurate endocardial border tracking ensures that the model's performance is less likely to degrade if some LV or RV myocardial segments are visualized poorly or fall outside the imaging sector.

Another key strength of QUEST-EF is its end-to-end design, which enables the rapid and simultaneous prediction of LVEF and RVEF from a single echocardiographic video without requiring manual intervention. The use of transformers instead of spatiotemporal convolutional neural networks represents another technical advancement over our previously published single-task model, 5 as well as the employment of a state-of-the-art pretraining technique that leveraged a large, unlabelled dataset to enhance performance in the downstream task of predicting LVEF and RVEF. We believe these technical innovations collectively contributed to the robust performance of QUEST-EF that we observed across a wide range of acquired and congenital cardiac diseases at centres spanning six continents. Although we should be very cautious when comparing performance metrics calculated in different datasets, the performance of QUEST-EF falls within a similar range to that reported for other recently published DL models, ^{5,9,10} further supporting its robustness.

We recognized the importance of providing users with a ready-to-use tool. To achieve this, in addition to publishing the source code of QUEST-EF, we developed an intuitive web interface for the model (http://quest-ef.com/) to facilitate further testing and allow free use for research purposes.

We foresee that QUEST-EF could be particularly valuable in clinical scenarios where 3D imaging is not feasible or available—such as point-of-care ultrasound examinations performed by non-cardiologist users, including internal medicine specialists, pulmonologists, cardiac surgeons, intensivists, and emergency physicians—by enabling fast, automated, and accurate screening for LV and RV dysfunction.

Despite its robustness, QUEST-EF has a few limitations that should be acknowledged. First, it is currently intended for research use only and has not been approved for clinical application. Therefore, regulatory approval and further rigorous testing are required before it can be integrated into clinical decision-making. Second, QUEST-EF has higher prediction errors and a larger generalization gap for RVEF than for LVEF, most likely due to the RV's more complex geometry and contraction pattern, which make single-view assessment of its function more challenging than that of the LV. However, in our previous work with a single-task model,⁵ we demonstrated that a similarly segmentationfree approach could still achieve higher sensitivity than expert human readers, implying that it may be particularly well suited for screening purposes by non-expert physicians. Last, we may assume that a model analysing multiple views would achieve even better performance than our single-view model, particularly for RVEF prediction. Nevertheless, we deliberately opted for this more simplistic approach, which requires only a single routinely acquired echocardiographic view, to facilitate QUEST-EF's future clinical adoption and integration into handheld ultrasound devices and ensure ease of use, even for physicians with limited expertise in echocardiography.

Funding

Project number RRF-2.3.1-21-2022-00004 (MILAB) has been implemented with support from the European Union. TKP2021-NVA-12 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme. M. Tolvaj was supported by the 2024-2.1.1-EKÖP-2024-00004 University Research Scholarship Programme of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund and by the EFOP-3.6.3-VEKOP-16-2017-00009 project (EKÖP-2024-111). C.G. has been supported by an Excellence Grant German Centre for Cardiovascular the (FKZ-81X3600511). A.K. has received grant support from the National Research, Development and Innovation Office (NKFIH) of Hungary (FK 142573) and has been supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. M. Tokodi has been supported by the János Bolyai Research Scholarship of the Hungarian Academy

Conflict of interest: Á. Szijártó, Á. Szeier, and B. Magyar are employees of Argus Cognitive, Inc. and receive financial compensation for their work (unrelated to the content of the present manuscript). A.C. has received educational grants, personal fees, and non-financial support from Janssen-Cilag, Ltd. (unrelated to the content of the present manuscript). B.K.L. and A.F. report personal fees from Argus Cognitive, Inc. (unrelated to the content of the present manuscript). E.S. has received personal fees from GE Healthcare and 123sonography and is an employee and a shareholder of AstraZeneca (all unrelated to the content of the present manuscript). M. Takeuchi has received grants from Philips Medical Systems (unrelated to the content of the present manuscript). B. Merkely has received grants from Boston Scientific and Medtronic and personal fees from Biotronic, Abbott, AstraZeneca, Novartis, and Boehringer Ingelheim (all unrelated to the content of the present manuscript). R.M.L. is in the

speaker's bureau and receives grant support from Philips Medical Systems (unrelated to the content of the present manuscript). A.K. reports personal fees from Argus Cognitive, Inc. and CardioSight, Inc. (unrelated to the content of the present manuscript). M. Tokodi reports consulting fees from CardioSight, Inc. (unrelated to the content of the present manuscript). All other authors and QUEST-EF Investigators have reported that they have no relationships relevant to the content of this paper to disclose.

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Appendix

QUEST-EF Investigators:

Germany: Christian Graesser, Johannes Krefting, and Ferdinand Roski, German Heart Centre Munich, Technical University of Munich, Munich, Germany; Vera Fortmeier, Heart and Diabetes Centre North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, Germany; Mark Lachmann, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Teresa Trenkwalder, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany and German Heart Centre Munich, Munich, Germany

Hungary: Ádám Szijártó, Bálint K. Lakatos, Alexandra Fábián, Zsolt Bagyura, Máté Tolvaj, Luca Szávai, Béla Merkely, Attila Kovács, and Márton Tokodi, Heart and Vascular Centre, Semmelweis University, Budapest, Hungary; Ákos Szeier, Independent Researcher, Budapest, Hungary; Bálint Magyar, Pázmány Péter Catholic University, Budapest, Hungary

Italy: Francesca Righetti, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Anna Mancinelli, University of Messina, Messina, Italy; Denisa Muraru and Luigi P. Badano, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, and University of Milano-Bicocca, Milan, Italy

Japan: Tetsuji Kitano, Mie University Hospital, Tsu, Mie, Japan; Yosuke Nabeshima, Saga University, Saga, Japan; Masaaki Takeuchi, Hospital of University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan

UK: Andrew Constantine, Marichelle Alviento, and Armi Austria-Manlapig, Harefield Hospital, Part of Guy's and St. Thomas' NHS Foundation Trust, London, UK; Elena Surkova, Harefield Hospital, Part of Guy's and St. Thomas' NHS Foundation Trust, and National Heart and Lung Institute, Imperial College London, London, UK USA: Juan I. Cotella, Karima Addetia, and Roberto M. Lang, Noninvasive Cardiac Imaging Laboratory, University of Chicago, Chicago, Illinois, USA; Federico M. Asch, MedStar Health Research Institute, Washington, District of Columbia, USA

References

- Medvedofsky D, Maffessanti F, Weinert L, Tehrani DM, Narang A, Addetia K et al. 2D and 3D echocardiography-derived indices of left ventricular function and shape: relationship with mortality. JACC Cardiovasc Imaging 2018;11:1569–79.
- Sayour AA, Tokodi M, Celeng C, Takx RAP, Fábián A, Lakatos BK et al. Association of right ventricular functional parameters with adverse cardiopulmonary outcomes: a meta-analysis. J Am Soc Echocardiogr 2023;36:624–33.e8.
- Corbett L, O'Driscoll P, Paton M, Oxborough D, Surkova E. Role and application of three-dimensional transthoracic echocardiography in the assessment of left and right ventricular volumes and ejection fraction: a UK nationwide survey. *Echo Res Pract* 2024;**11**:8.
- Soliman-Aboumarie H, Joshi SS, Cameli M, Michalski B, Manka R, Haugaa K et al. EACVI survey on the multi-modality imaging assessment of the right heart. Eur Heart J Cardiovasc Imaging 2022;23:1417–22.
- Tokodi M, Magyar B, Soos A, Takeuchi M, Tolvaj M, Lakatos BK et al. Deep learningbased prediction of right ventricular ejection fraction using 2D echocardiograms. *JACC Cardiovasc Imaging* 2023;**16**:1005–18.
- Reynaud H, Vlontzos A, Hou B, Beqiri A, Leeson P, Kainz B. Ultrasound video transformers for cardiac ejection fraction estimation. In: de Bruijne M, Cattin PC, Cotin S, Padoy N, Speidel S, Zheng Y, Essert C, eds. Medical Image Computing and Computer Assisted Intervention MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science. vol. 12906. Cham: Springer International Publishing; 2021. p495–505. https://doi.org/10. 1007/978-3-030-87231-1 48.
- Szijártó Á, Magyar B, Szeier TÁ, Tolvaj M, Fábián A, Lakatos BK et al. Masked autoencoders for medical ultrasound videos using ROI-aware masking. In: Gomez A, Khanal B, King A, Namburete A, eds. Simplifying Medical Ultrasound. ASMUS 2024. Lecture Notes in Computer Science. vol. 15186. Cham: Springer Nature Switzerland; 2025. p167–176. https://doi.org/10.1007/978-3-031-73647-6_16.
- Tolvaj M, Kovács A, Radu N, Cascella A, Muraru D, Lakatos B et al. Significant disagreement between conventional parameters and 3D echocardiography-derived ejection fraction in the detection of right ventricular systolic dysfunction and its association with outcomes. J Am Soc Echocardiogr 2024;37:677–86.
- Holste G, Oikonomou EK, Tokodi M, Kovács A, Wang Z, Khera R. PanEcho: complete Al-enabled echocardiography interpretation with multi-task deep learning. medRxiv 24317431. https://doi.org/10.1101/2024.11.16.24317431. 16 April 2025, preprint: not peer reviewed.
- Lau ES, Di Achille P, Kopparapu K, Andrews CT, Singh P, Reeder C et al. Deep learning-enabled assessment of left heart structure and function predicts cardiovascular outcomes. J Am Coll Cardiol 2023;82:1936–48.