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Abstract: Let𝔽 ⊂ 𝕂 be fieldswith characteristic zero, n a positive integer and κ ∈ 𝕂. In this paper, we determine
those monomials f : 𝔽 → 𝕂 of degree n for which f (x2) = κ ⋅ xn f (x) holds for all x ∈ 𝔽. We show that, similar to
the classical results, where additive functions were considered, the monomial functions in the equation can be
represented with the aid of homomorphisms and higher-order derivations.
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1 Introduction

In this paper, 𝔽 ⊂ 𝕂 will be fields with characteristic zero, n will be a positive integer and κ will belong to the
field𝕂.

The study of polynomial equations, including those involving non-additive functions, is a complex and chal-
lenging topic in both algebra and the theory of functional equations. In particular, when considering solutions
in terms of generalized monomials, such as quadratic functions, the question of whether specific forms can
describe these functions arises. In this paper, we focus on addressing this problem by examining the equation
f (x2) = κ ⋅ xn f (x) (x ∈ 𝔽) for the unknown monomial function f : 𝔽 → 𝕂. Our goal is to present a method for
determining the solutions.

In the context of algebra and functional equations, the description of additive functions fulfilling certain
polynomial equations has attracted significant interest. According to some classical results, for the additive
function a, and specific polynomials P and Q, the solution to the functional equation a(P(x)) = Q(x, a(x)) nec-
essarily takes the form of a homomorphism, derivation, or some combination of these forms. These questions
can be generalized in several ways: instead of one, we can consider several additive functions, and instead of
additive functions, we can also consider generalized polynomials. Assume that n and k are positive integers,
Pi,j ∈ 𝔽[x] and P ∈ 𝕂[z, x1,1 , . . . , xn,k] are given polynomials for i = 1, . . . , n, j = 1, . . . , k. Suppose further that
f1 , . . . , fn : 𝔽 → 𝕂 are generalized monomials (of possibly different degree) such that

P(x, f1(P1,1(x)), . . . , f1(P1,k(x)), . . . , fn(Pn,1(x)), . . . , fn(Pn,k(x))) = 0

holds for all x ∈ 𝔽. The question is the same, namely what we can say about the unknown functions in the equa-
tion. Is it true, for example, that they can be represented using homomorphisms and (higher-order) derivatives?

In the case where the unknown functions in the equation are additive, many results are known, e.g. [7–10,
13–16]. Moreover, if the unknown functions in the equation are assumed to be higher-order (typically second-
order) monomials, we mention the papers [1–6].

Our study, inspired by [2], seeks to build upon the work of the authors who investigated real quadratic
functions f that satisfy the equation f (x2) = K ⋅ x2f (x) (x ∈ ℝ). Their research laid the foundation for our further
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exploration of functional equations involving monomial functions. Assuming that the functions involved are
monomials (possibly of different degrees), we started the systematic examination of polynomial equation in
the papers [11, 12]. Our paper delves into a natural extension of the aforementioned equation, as we set out to
uncover the properties of monomial functions f : 𝔽 → 𝕂 of degree n that satisfy the equation f (x2) = κ ⋅ xn f (x)
(x ∈ 𝔽). As we will see, similar to the additive and quadratic functions, the monomial functions in the equation
in some cases can be represented with the aid of homomorphisms and higher-order derivations.

Preliminaries

The most important concepts and statements related to generalized polynomial functions are described below.
The monograph [18] serves as an indispensable resource for this, providing a comprehensive examination of
the key notions and statements that will be necessary in the second section.

Definition 1. Let G, S be commutative semigroups, n ∈ ℕ and let A : Gn → S be a function. We say that A is
n-additive if it is a homomorphism of G into S in each variable. If n = 1 or n = 2, then the function A is simply
termed to be additive or bi-additive, respectively.

The diagonalization or trace of an n-additive function A : Gn → S is defined as A∗(x) = A(x, . . . , x) = A([x]n)
(x ∈ G). As a direct consequence of the definition, each n-additive function A : Gn → S satisfies

A(x1 , . . . , xi−1 , kxi , xi+1 , . . . , xn) = kA(x1 , . . . , xi−1 , xi , xi+1 , . . . , xn) (x1 , . . . , xn ∈ G)
for all i = 1, . . . , n, where k ∈ ℕ is arbitrary. The same identity holds for any k ∈ ℤ, provided that G and S are
groups, and for k ∈ ℚ, provided that G and S are linear spaces over the rationals. For the diagonalization of A,
we have A∗(kx) = knA∗(x) (x ∈ G).

The above notion can also be extended for the case n = 0 by letting G0 = G and by calling 0-additive any
constant function from G to S.

One of the most important theoretical results concerning multiadditive functions is the so-called polar-
ization formula that briefly expresses that every n-additive symmetric function is uniquely determined by its
diagonalization under some conditions on the domain as well as on the range. Suppose that G is a commuta-
tive semigroup and S is a commutative group. The action of the difference operator Δ on a function f : G → S is
defined by the formula Δy f (x) = f (x + y) − f (x) (x, y ∈ G). Note that the addition in the argument of the function
is the operation of the semigroup G and the subtraction means the inverse of the operation of the group S.

The following result that is [18, Lemma 1.4] will be used in the following sections.

Theorem 1 (Polarization formula). Suppose that G is a commutative semigroup, S is a commutative group, n ∈ ℕ.
If A : Gn → S is a symmetric, n-additive function, then for all x, y1 , . . . , ym ∈ G, we have

Δy1 ,...,ymA∗(x) = {{
{

0 if m > n,
n! A(y1 , . . . , ym) if m = n.

Corollary 1. Suppose that G is a commutative semigroup, S is a commutative group, n ∈ ℕ. If A : Gn → S is a
symmetric, n-additive function, then ΔnyA∗(x) = n! A∗(y) for all x, y ∈ G.
Besides the polarization formula, [18, Lemma 1.6] will play an important role, that is the following statement.

Lemma 1. Let n ∈ ℕ and suppose that the multiplication by n! is surjective in the commutative semigroup G or
injective in the commutative group S. Then, for any symmetric, n-additive function A : Gn → S, A∗ ≡ 0 implies
that A is identically zero, as well.

Definition 2. Letting G and S be commutative semigroups, a function p : G → S is called a generalized polyno-
mial from G to S if it has a representation as the sum of diagonalizations of symmetric multi-additive functions
from G to S. In otherwords, a function p : G → S is a generalized polynomial if and only if it has a representation

p =
n
∑
k=0 A∗k ,
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where n is a nonnegative integer and Ak : Gk → S is a symmetric, k-additive function for each k = 0, 1, . . . , n.
In this case, we also say that p is a generalized polynomial of degree at most n.

Letting n be a nonnegative integer, functions pn : G → S of the form pn = A∗n , where An : Gn → S is a sym-
metric, n-additive function, are the so-called generalized monomials of degree n.

Remark 1. Generalized monomials of degree 0 are constant functions and generalized monomials of degree 1
are additive functions. Furthermore, generalized monomials of degree 2 are termed quadratic functions.

In what follows, we will work on fields (with characteristic zero). Accordingly, let 𝔽,𝕂 be fields with character-
istic zero such that 𝔽 ⊂ 𝕂, and let n be a positive integer. Let further

Mn(𝔽,𝕂) = {f : 𝔽 → 𝕂 | f is a monomial of degree n}.

As we will see in the next section, in many cases, the solutions of the investigated functional equation can
be obtained using higher-order derivatives. Thus, we also recall this concept; the interested reader will find
further results in [17, 19].

Definition 3. Let 𝔽 ⊂ 𝕂 be fields with characteristic zero. The identically zero map is the only derivation of
order zero. For each n ∈ ℕ, an additive mapping f : 𝔽 → 𝕂 is termed a derivation of order n if there exists
B : 𝔽 × 𝔽 → 𝕂 such that B is a bi-derivation of order n − 1 (that is, B is a derivation of order n − 1 in each
variable) and

f (xy) − xf (y) − f (x)y = B(x, y) (x, y ∈ 𝔽).

The set of derivations of degree n of the field 𝔽 will be denoted by Dn(𝔽,𝕂).

2 Results

Theorem 2. Let n be a given positive integer, κ ∈ 𝕂 and f ∈Mn(𝔽,𝕂) such that

f (x2) = κ ⋅ xn f (x) (2.1)

holds for all x ∈ 𝔽.
(i) If κ ∉ {2k | k = 0, 1, . . . , n}, then f is identically zero.
(ii) If κ = 1, then

f (x) = f (1) ⋅ xn (x ∈ 𝔽).

(iii) If κ = 2, then there exists an a ∈ D2n−1(𝔽,𝕂) such that
f (x) =

n
∑
j=1 λn,jxn−ja(xj) (x ∈ 𝔽)

holds with appropriate constants λ1 , . . . , λn ∈ 𝕂.
(iv) If κ = 2n , then there exists a symmetric and n-additive mapping An : 𝔽n → 𝕂 such that

∑
σ∈Sn+1{An(xσ(1) ⋅ xσ(2) , xσ(3) , . . . , xσ(n+1))

− xσ(1) ⋅ An(xσ(2) , . . . , xσ(n+1)) − xσ(2) ⋅ An(xσ(1) , . . . , xσ(n+1))} = 0 (x1 , . . . , xn+1 ∈ 𝔽)
and

f (x) = An(x, . . . , x) (x ∈ 𝔽).

holds.

Proof. Since f ∈Mn(𝔽,𝕂), there exists a uniquely determined symmetric n-additive functionAn : 𝔽n → 𝕂 such
that f (x) = An(x, . . . , x) = An([x]n) (x ∈ 𝔽). In terms of the mapping An , equation (2.1) reads as

An(x2 , . . . , x2) − κxnAn(x, . . . , x) = 0 (x ∈ 𝔽).
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If we write x + 1 in place of x in the above identity and expand the terms,

∑
α1+α2+α3=n
α1 ,α2 ,α3≥0 (

n
α1 , α2 , α3

)An([x2]α1 , [2x]α2 , [1]α3 )

− κ( ∑
β1+β2=n
β1 ,β2≥0(

n
β1 , β2
)xβ1) ⋅ ( ∑

γ1+γ2=n
γ1 ,γ2≥0(

n
γ1 , γ2
)An([x]γ1 , [1]γ2 )) = 0 (2.2)

follows for all x ∈ 𝔽. Observe that the left-hand side of this equation is a generalized polynomial of degree
2n, which is identically zero. Thus all of its monomial terms should vanish. If α1 , α2 , α3 are nonnegative and
α1 + α2 + α3 = n, then the degree of the mapping

x 󳨃→ ( n
α1 , α2 , α3

)An([x2]α1 , [2x]α2 , [1]α3 )

is 2α1 + α2. Similarly, if β1 , β2 , γ1 , γ2 are nonnegative integers with β1 + β2 = n and γ1 + γ2 = n, then the degree
of the generalized monomial

x 󳨃→ κ( n
β1 , β2
)xβ1 ⋅ ( n

γ1 , γ2
)An([x]γ1 , [1]γ2 )

is β1 + γ1.
Computing the zero-degree terms in (2.2), (1 − κ)An([1]n) = 0 follows. So κ = 1 or An([1]n) = f (1) = 0. The

first-degree terms of the generalized polynomial in equation (2.2) must vanish; thus we have

(
n

0, 1, n − 1)An([2x1], [1]n−1) − κ{( n0, n)( n
1, n − 1)An([x]1 , [1]n−1) + ( n

1, n − 1)(
n
0, n)xAn([1]n)} = 0,

that is, (2 − κ)An([x]1 , [1]n−1) − κxAn([1]n) = 0 for all x ∈ 𝔽. If κ = 1, then this leads to

An([x]1 , [1]n−1) = An([1]n) ⋅ x (x ∈ 𝔽).

If κ ̸= 1, then due to the previous step An([1]n) = 0, the above identity reduces to

(2 − κ)An([x]1 , [1]n−1) = 0 (x ∈ 𝔽).
So κ = 2 (and in this case, we do not have any information for the values An([x]1 , [1]n−1)), or κ ̸= 1, 2 and then
An([x]1 , [1]n−1) = 0 for all x ∈ 𝔽. In general, if k = 0, 1, . . . , 2n, we have to distinguish two cases, depending on
whether k is even or odd.

If k is even, then the k-th-degree term in (2.2) is
k
2

∑
l=0( n

l, k − 2l, n − k)An([x2]l , [2x]k−2l , [1]n−k)
− κ

k
∑
m=0( n

m, n − m)(
n

k − m, n − k + m)x
mAn([x]k−m , [1]n−k−m).

If k is odd, then the only difference is that, in the first expression, we must not sum up to k
2 , but to

k−1
2 , i.e.,

k−1
2

∑
l=0( n

l, k − 2l, n − k)An([x2]l , [2x]k−2l , [1]n−k)
− κ

k
∑
m=0( n

m, n − m)(
n

k − m, n − k + m)x
mAn([x]k−m , [1]n−k−m).

This means that, for all k = 0, 1, . . . , 2n, we have⌊ k2 ⌋
∑
l=0( n

l, k − 2l, n − k)An([x2]l , [2x]k−2l , [1]n−k)
− κ

k
∑
m=0( n

m, n − m)(
n

k − m, n − k + m)x
mAn([x]k−m , [1]n−k−m).
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By selecting the members with indices l = 0 and m = 0 from the sums, we get that

(
n

k, n − k)
(2k − κ)An([x]k , [1]n−k)
= −
⌊ k2 ⌋
∑
l=1( n

l, k − 2l, n − k + l)
An([x2]l , [2x]k−2l , [1]n−k+l)

+ κ
k
∑
m=1( n

m, n − m)(
n

k − m, n − k + m)x
mAn([x]k−m , [1]n−k−m) (2.3)

for all x ∈ 𝔽. This identity indicates that the values of the left-hand k-variable function are determined by the
right-hand side, with the aid of the at most (k − 1)-variable functions, for all k = 0, 1, . . . , n.

First assume that, for all k = 0, 1, . . . , n, we have κ ̸= 2k . Then, for all k = 0, 1, . . . , n,

An([x]k , [1]n−k) = 0 (x ∈ 𝔽);
thus, especially, f (x) = An([x]n) = 0 (x ∈ 𝔽). We will show this by induction on k. Above, in the comparison of
zero-degree terms, we have already seen that (1 − κ)An([1]n) = 0. Since κ ̸= 1 in this case, An([1]n) = 0. There-
fore, the statement holds for k = 0. Assume now that there exists a positive integer such that the statement holds
for all indices less than k. In otherwords, suppose that, for all l = 0, 1, . . . , k − 1,An([x]l , [1]n−l) = 0 (x ∈ 𝔽). Since
the left-hand side is a generalizedmonomial of degree l, which is identically zero, the symmetric, l-additivemap-
ping, defined uniquely by it, must also be identically zero. This means however that An(x1 , . . . , xl , [1]n−l) = 0
holds for all x1 , . . . , xl ∈ 𝔽. This means that the right-hand side of equation (2.3) is identically zero, from which

(
n

k, n − k)
(2k − κ)An([x]k , [1]n−k) = 0 (x ∈ 𝔽)

can be deduced. So the statement holds also for k. Summing up, if κ ̸= 2k for all k = 0, 1, . . . , n, then

An([x]k , [1]n−k) = 0 (x ∈ 𝔽);
thus, especially, f (x) = An([x]n) = 0 (x ∈ 𝔽). We now turn to discussing the case κ = 1. In this case, we will also
use equation (2.3) by choosing different indices k. We show that, for all k = 0, 1, . . . , n, we have

An([x]k , [1]n−k) = f (1) ⋅ xk (x ∈ 𝔽).
For k = 0, this holds true trivially since An([1]n) = f (1). Assume now that there exists a positive k less than or
equal to n such that the statement holds for l = 0, . . . , k − 1, i.e., An([x]l , [1]n−l) = f (1) ⋅ xl (x ∈ 𝔽). Since An is
a symmetric and n-additivemapping, for all l = 0, . . . , n, themappings𝔽l ∋ (x1 , . . . , xl) 󳨃→ An(x1 , . . . , xl , [1]n−l)
are symmetric and l-additive. Due to the induction hypothesis, for all fixed l = 0, . . . , k − 1, the mapping
𝔽 ∋ x 󳨃→ An([x]l , [1]n−l) − f (1) ⋅ xl is identically zero. At the same time, for all fixed l = 0, . . . , k − 1, thismapping
is the trace of the symmetric and l-additive mapping 𝔽l ∋ (x1 , . . . , xl) 󳨃→ An(x1 , . . . , xl , [1]n−l) = f (1) ⋅ x1 ⋅ ⋅ ⋅ xl .
As the trace is identically zero, this mapping should be identically zero, too. Therefore,

An(x1 , . . . , xl , [1]n−l) = f (1) ⋅ x1 ⋅ ⋅ ⋅ xl (x1 , . . . , xl ∈ 𝔽)
holds for all l = 0, . . . , k − 1. In this case, however, equation (2.3) takes the form

(
n

k, n − k)(2
k − 1)An([x]k , [1]n−k) = − ⌊ k2 ⌋∑

l=1( n
l, k − 2l, n − k + l)An([x2]l , [2x]k−2l , [1]n−k)
+

k
∑
m=1( n

m, n − m)(
n

k − m, n − k + m)x
mAn([x]k−m , [1]n−k−m)

= −
⌊ k2 ⌋
∑
l=1( n

l, k − 2l, n − k + l)f (1) ⋅ x
k

+
k
∑
m=1( n

m, n − m)(
n

k − m, n − k + m)x
m ⋅ f (1) ⋅ xk−m

= (
n

k, n − k)(2
k − 1) ⋅ f (1)xk (x ∈ 𝔽),
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showing that the statement also holds for k. Note, however, that this means (with k = n) that An([x]n) = f (1) ⋅ xn

(x ∈ 𝔽), that is, f (x) = f (1) ⋅ xn (x ∈ 𝔽). We continue with the case κ = 2. Recall that, in this case, we have already
seen that An([1]n) = 0 and equation (2.3) for k = 1 does not contain any information for the values of the map-
ping x 󳨃→ An([x]1 , [1]n−1). Consider the additive function a defined on 𝔽 by a(x) = An([x]1 , [1]n−1) (x ∈ 𝔽). We
show that, for all k = 1, . . . , n,

An([x]k , [1]n−k) = k
∑
l=1 λk,lxk−la(xl)

holds with some appropriate constants λk,1 , . . . , λk,l ∈ 𝕂. Due to the definition of the function a, this state-
ment is true for k = 1. Assume an index k ≥ 2 exists now, such that the above statement holds for all indices
l = 1, . . . , k − 1. Note that, from the induction hypothesis, it follows that we have

An(x1 , . . . , xl , [1]n−l) = 1l! ∑σ∈Sl

l
∑
m=1 λl,mxσ(m+1) ⋅ ⋅ ⋅ xσ(l) ⋅ a(xσ(1) ⋅ ⋅ ⋅ xσ(m)) = 1l! l

∑
m=1 Δx1 ,...,xl xl−ma(xm)

for all x1 , . . . , xl and for all l = 1, . . . , k − 1. Therefore, we have

An([x2]l , [2x]k−2l , [1]n−k+l) = 1
(k − l)!

l
∑
m=1 Δ[x2]l ,[2x]k−2l yl−ma(ym) = k

∑
j=1 λ̃k,jxk−ja(xj)

for all x1 , . . . , xl and for all l = 1, . . . , k − 1. Due to identity (2.3) and the induction hypothesis, we have

(
n

k, n − k)(2
k − κ)An([x]k , [1]n−k)

= −
⌊ k2 ⌋
∑
l=1( n

l, k − 2l, n − k + l)An([x2]l , [2x]k−2l , [1]n−k+l)
+ κ

k
∑
m=1( n

m, n − m)(
n

k − m, n − k + m)
xmAn([x]k−m , [1]n−k−m)

=
k
∑
j=1 λ̃k,jxk−ja(xj) + κ k

∑
m=1( n

m, n − m)(
n

k − m, n − k + m)
xm

k−m
∑
j=1 λk−m,jxk−m−ja(xj)

=
k
∑
j=1 λ̃k,jxk−ja(xj) + κ k

∑
m=1 k−m∑j=1 ( n

m, n − m)(
n

k − m, n − k + m)
λk−m,jxk−ja(xj)

=
k
∑
j=1 λ∗k,jxk−ja(xj)

for all x ∈ 𝔽. From this, we obtain that the statement also holds for k. Observe that this means that

f (x) = An([xn]) =
n
∑
j=1 λn,jxn−ja(xj) (x ∈ 𝔽)

holds with appropriate constants λ1 , . . . , λn . Using this representation and equation (2.1), the identity
n
∑
j=1 λn,jx2n−2ja(x2j) − n

∑
j=1 2λn,jx2n−ja(xj) = 0 (x ∈ 𝔽)

follows for the additive function a. In view of [15, Corollary 4], this means that a ∈ D2n−1(𝔽,𝕂).
Let us consider the case κ = 2n . We show that, in this case, An([x]k , [1]n−k) = 0 (x ∈ 𝔽) holds for all

k = 0, . . . , n − 1. Since, in case κ = 2n , we have An([1]n) = 0, the statement holds for k = 0. Assume now that
there exists a k ∈ {1, . . . , n} such that the statement holds for all l = 0, . . . , k − 1, that is, we have

An([x]l , [1]n−l) = 0 (x ∈ 𝔽)
for all l = 0, . . . , k − 1. Since the left-hand side of this equation is the trace of a symmetric and l-additive function,
we have An(x1 , . . . , xl , [1]n−l) = 0 (x1 , . . . , xl ∈ 𝔽) for all l = 0, . . . , k − 1. Using this and equation (2.3), we obtain
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that

(
n

k, n − k)
(2k − κ)An([x]k , [1]n−k) = − ⌊ k2 ⌋∑

l=1( n
l, k − 2l, n − k + l)

An([x2]l , [2x]k−2l , [1]n−k+l)
+ κ

k
∑
m=1( n

m, n − m)(
n

k − m, n − k + m)
xmAn([x]k−m , [1]n−k−m) = 0

for all x ∈ 𝔽. Indeed, since l + (k − 2l) ≤ k − 1 and k −m ≤ k − 1 holds for all l = 1, . . . , ⌊ k2 ⌋ and for allm = 1, . . . , k,
the mappings𝔽 ∋ x 󳨃→ An([x2]l , [2x]k−2l , [1]n−k+l) and𝔽 ∋ x 󳨃→ An([x]k−m , [1]n−k−m) are identically zero. Since
the left-hand side of equation (2.3) vanishes for κ = 2n , we have no information for the mapping x 󳨃→ An([x]n).

Using this and computing the (n + 1)-th-degree terms in (2.2), we deduce that

n ⋅ An(x2 , [2x]n−1) − n ⋅ x ⋅ 2n ⋅ An([x]n) = 0 (x ∈ 𝔽),

that is, An([x2]1 , [x]n−1) − 2x ⋅ An([x]n) = 0 (x ∈ 𝔽). The left-hand side of this equation (as a mapping of the
variable x) is the trace of a symmetric and (n + 1)-additive function. However, the (n + 1)-additive mapping
is necessarily identically zero if the trace vanishes. Thus we have

∑
σ∈Sn+1{An(xσ(1) ⋅ xσ(2) , xσ(3) , . . . , xσ(n+1)) − xσ(1)An(xσ(2) , . . . , xσ(n+1)) − xσ(2)An(xσ(1) , . . . , xσ(n+1))} = 0

for all x1 , . . . , xn+1 ∈ 𝔽.
Remark 2. Notice that the above theorem does not state anything about the cases when

κ ∈ {2k | k = 2, 3, . . . , n − 1}.

We conjecture that, in the case of k = 2, the order of the higher-order derivation, appearing in the representation
of the function f , can be reduced. This conjecture is supported by our results for the case n = 3, which can be
found in the next section.

Results on the special case n = 3
As a supplement to the result in the previous section, we will deal with the special case n = 3 below. Compared
to Theorem 2, we can prove two more things. On the one hand, we show that, in the case κ = 2, the order of
the higher-order derivation appearing in the representation of the function f is at most 3, not at most 5. On the
other hand, we show that, in the case κ = 4, the function f is identically zero.

First, we prove the following lemma, which will help in part (ii) of Theorem 3.

Lemma 2. Let a : 𝔽 → 𝕂 be an additive mapping such that

2a(x6) − 9x2a(x4) − 4x3a(x3) + 36x4a(x2) − 36x5a(x) = 0 (x ∈ 𝔽).

Then a ∈ D3(𝔽,𝕂).

Proof. Let a : 𝔽 → 𝕂 be an additive function such that

2a(x6) − 9x2a(x4) − 4x3a(x3) + 36x4a(x2) − 36x5a(x) = 0 (x ∈ 𝔽).

Applying the operator Δ1 to both sides of this equation, we get that

4a(x5) − 6xa(x4) + 7a(x4) − 16x2a(x3) − 28xa(x3) + 44x3a(x2) + 42x2a(x2) − 36x4a(x) − 28x3a(x) = 0

for all x ∈ 𝔽. Observe that the left-hand side of this equation is a generalized polynomial of degree 5, that has
fifth-degree and also fourth-degree monomial terms that should vanish simultaneously. Thus collecting the
fourth-degree terms, we arrive at 7a(x4) − 28xa(x3) + 42x2a(x2) − 28x3a(x) = 0 (x ∈ 𝔽), that is, at

a(x4) − 4xa(x3) + 6x2a(x2) − 4x3a(x) = 0 (x ∈ 𝔽).

In view of [15, Corollary 2], this means that a ∈ D3(𝔽,𝕂).
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Theorem 3. Let κ ∈ 𝕂 be arbitrarily fixed and let f ∈M3(𝔽,𝕂) be a monomial for which

f (x2) = κ ⋅ x3f (x) (2.4)

holds for all x ∈ 𝔽. Then the following cases are possible.
(i) κ = 1 and then

f (x) = f (1) ⋅ x3 (x ∈ 𝔽).

(ii) κ = 2 and then there exists a d ∈ D3(𝔽,𝕂) such that

f (x) = d(x3) − 9 x d(x
2)

2
+ 9x2 d(x) (x ∈ 𝔽).

(iii) κ = 8 and then there exists a symmetric and 3-additive mapping D3 for which

∑
σ∈S4

[D3(xσ(1)xσ(2) , xσ(3) , xσ(4)) − xσ(1)D3(xσ(2) , xσ(3) , xσ(4))
− xσ(2)D3(xσ(1) , xσ(3) , xσ(4))] = 0 (x1 , x2 , x3 , x4 ∈ 𝔽)

such that
f (x) = D3(x, x, x) (x ∈ 𝔽).

(iv) κ ∈ 𝕂 \ {1, 2, 8} and f is identically zero.

Proof. The cases κ ∈ 𝕂 \ {2, 4} immediately follow from Theorem 3. Therefore, it is sufficient to deal only with
the cases κ ∈ {2, 4}. In case n = 3, equation (2.2) reads as

∑
α1+α2+α3=3( 3

α1 , α3 , α3
)A3([x2]α1 , [2x]α2 , [1]α3 )

− κ(x3 + 3x2 + 3x + 1) ∑
α1+α2=3( 3

α1 , α2
)A3([x]α1 , [1]α2 ) = 0 (x ∈ 𝔽). (2.5)

At first, we consider the case κ = 2. Collecting the constant terms, we get that f (1) = A3(1, 1, 1) = 0. Further,
computing the first-degree monomial terms, we do not get any information for the values of A3(x, 1, 1). The
second-degree monomial terms must also vanish; thus

(
3

1, 0, 2
)A3([x2]1 , [1]2) + (

3
0, 2, 1
)A3([2x]2 , [1]1) − 3κx2(

3
0, 3
)A3([1]3)

− 3κx( 3
1, 2
)A3([x]1 , [1]2) − κ(

3
2, 1
)A3([x]2 , [1]1) = 0,

or after some rearrangement,

(4 − κ)A3(x, x, 1) + A3(x2 , 1, 1) − κx2A3(1, 1, 1) − 3κxA3(x, 1, 1) = 0

for all x ∈ 𝔽. If κ = 2, then we have

2A3(x, x, 1) + A3(x2 , 1, 1) − 6xA3(x, 1, 1) = 0 (x ∈ 𝔽),

where the identity A3(1, 1, 1) = 0 was also used. Thus,

2A3(x, x, 1) + a(x2) − 6xa(x) = 0

holds with the additive function a : 𝔽 → 𝕂, where

a(x) = A3(x, 1, 1) (x ∈ 𝔽).

Finally, the fact that the third-degree terms should vanish yields

12A3(x2 , x, 1) + 8A3(x, x, x) − κx3A3(1, 1, 1) − 9κx2A3(x, 1, 1) − 9κxA3(x, x, 1) − κA3(x, x, x) = 0 (x ∈ 𝔽),

that is,

(8 − κ)A3(x, x, x) + 12A3(x2 , x, 1) − 9κxA3(x, x, 1) − 9κx2A3(x, 1, 1) − κx3A3(1, 1, 1) = 0 (x ∈ 𝔽). (2.6)



E. Gselmann and M. Iqbal, A functional equation  9

If κ = 2, then equation (2.6) furnishes

A3(x, x, x) = a(x3) −
9 xa(x2)

2
+ 9x2a(x)

for all x ∈ 𝔽. This means that the function f can be represented as

f (x) = a(x3) − 9 xa(x
2)

2
+ 9x2a(x)

for all x ∈ 𝔽. Since f satisfies equation (2.4), the additive function a necessarily fulfills

2a(x6) − 9x2a(x4) − 4x3a(x3) + 36x4a(x2) − 36x5a(x) = 0 (x ∈ 𝔽).

This, however, in view of Lemma 2 implies that a ∈ D3(𝔽).
Finally, in case κ = 4, we show that f is identically zero. Similarly, as in case κ = 2, we determine the first,

second, and third-degree terms in (2.5). Computing the first-degree terms, A3(x, 1, 1) = 0 (x ∈ 𝔽) follows. The
second-degree terms should also vanish. Thus we have

(4 − κ)A3(x, x, 1) + A3(x2 , 1, 1) − κx2A3(1, 1, 1) − 3κxA3(x, 1, 1) = 0

for all x ∈ 𝔽, yielding no information for the values A3(x, x, 1) in the case κ = 4. Further, if we compute the
third-degree terms, we obtain that

A3(x, x, x) = 9xA3(x, x, 1) − 3A3(x2 , x, 1) = 9xB(x, x) − 3B(x2 , x) (x ∈ 𝔽),

where the symmetric and bi-additive function B : 𝔽2 → 𝕂 is defined through B(x, y) = A3(x, y, 1) (x, y ∈ 𝔽). This
means that the values of function B completely determine the function A3. Indeed, we have

A3(x, y, z) = 3[xB(y, z) + yB(x, z) + zB(x, y)] − [B(xy, z) + B(xz, y) + B(yz, x)] (x, y, z ∈ 𝔽).

Reformulating equation (2.4) with the aid of the mapping B,

0 = f (x2) − 4x3f (x) = −3B(x4 , x2) + 9x2B(x2 , x2) + 12x3B(x2 , x) − 36x4B(x, x),

that is, B(x4 , x2) − 3x2B(x2 , x2) − 4x3B(x2 , x) + 12x4B(x, x) = 0 follows for all x ∈ 𝔽. The left side, as a function of
the variable x, i.e., g(x) = B(x4 , x2) − 3x2B(x2 , x2) − 4x3B(x2 , x) + 12x4B(x, x) is a monomial of degree 6, which
is identically zero. Thus τ1g is a generalized polynomial of degree at most 6. Computing the fourth-degree
monomial terms of τ1g, we get that

3B(x2 , x2) − 36xB(x2 , x) + 8B(x3 , x) + 36x2B(x, x) = 0 (x ∈ 𝔽). (2.7)

On the other hand, if we collect the fourth-degree terms in (2.5),

A3(x2 , x, x) − 3x2A3(x, x, 1) + xA3(x, x, x) = 0;

expressing this, with the aid of the function B,

−2B(x3 , x) − B(x2 , x2) + 9xB(x2 , x) − 9x2B(x, x) = 0 (2.8)

follows for all x ∈ 𝔽. Combining equations (2.7) and (2.8), B(x2 , x2) = 0 can be concluded for all x ∈ 𝔽. Since the
left-hand side of this identity is the trace of the symmetric and 4-additive mapping

B4(x1 , x2 , x3 , x4) =
1
3
[B(x1x2 , x3x4) + B(x1x3 , x2x4) + B(x1x4 , x2x3)] (x1 , x2 , x3 , x4 ∈ 𝔽),

we have
0 = B4(x, y, 1, 1) =

B(xy, 1)
3
+
2B(x, y)

3
=
2
3
B(x, y)

for all x, y ∈ 𝔽. So B is identically zero. Therefore,

f (x) = A3(x, x, x) = 9xB(x, x) − 3B(x2 , x) = 0 (x ∈ 𝔽),

as stated.
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