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Abstract

Molecular complexes based on donor-acceptor interactions that involve n-systems with antiaromatic character are rarely
studied. Herein, we report the synthesis of biphenylene derivatives as potential electron donor components in x-complexes.
Molecules with two connected biphenylene units are suitable to probe the formation of differently folded complexes in
solution, while biphenylene derivatives with a pendant triethoxysilane group can be used to functionalize solid surfaces and
probe interfacial donor-acceptor complex formation. Our results show clear indication of complex formation in solution;
however, no observable interaction was found on the surface using UV-vis spectroscopy.

Keywords Antiaromaticity - Biphenylene - Donor-acceptor complex - Surface - Tetracyanoethylene -

Tetracyanoquinodimethane

Introduction

Organic co-crystal engineering [1] is a vibrant area of
research targeting the preparation of functional organic
materials beyond the covalent synthesis of carbon-carbon
and carbon-heteroatom bonds. Non-covalent interactions
between relatively simple organic molecules with struc-
tural and electronic complementarity may provide unique
structures and properties [2]. Among the possible non-
covalent interactions that can drive the assembly of organic
co-crystals, n-m interactions between electron donor and
acceptor units are of primary interest. These interactions
can be accompanied with different degrees of charge transfer
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between the components that can be harnessed in organic
optoelectronic and semiconducting applications [3, 4].
Donor-acceptor molecular complexes could also form at the
confined environment of molecular layers, which is a compa-
rably less explored area of research [5—11]. The development
of such 2D systems could be useful in thin film electronic
devices and sensors.

For complex formation, electron-rich polycyclic aromatic
compounds are mostly used as electron donors, while elec-
tron poor alkenes, quinoid structures, and cyano- and fluoro-
arenes are common electron acceptor partners [12]. Polycy-
clic conjugated molecules with antiaromatic character rarely
appear in the construction of organic co-crystals. From the
latter compound class, the biphenylene (BP) framework has
been investigated in more detail [13-23]. We have recently
shown in a combined experimental and computational study
that BP, as an electron donor, forms a weak molecular com-
plex with electron accepting TCNE that does not affect the
(anti)aromatic character of BP [24]. In the present contri-
bution, we report the structure of the BP/TCNQ complex
and the synthesis of BP dimers and a silane-functionalized
BP derivative to explore donor-acceptor interactions both in
solution and at interfaces. Preliminary result on their inter-
actions with TCNE and TCNQ electron acceptors is also
presented.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-024-02423-0&domain=pdf

938

Structural Chemistry (2025) 36:937-946

Experimental
General remarks

Commercial reagents, solvents, and catalysts (Sigma-
Aldrich, Fluorochem, and VWR) of reagent grade were
purchased and used without further purification. Solvents
for extraction or column chromatography were of a techni-
cal quality. Organic solutions were concentrated by rotary
evaporation at 40 °C. Thin-layer chromatography was car-
ried out on “Merck silica gel 60 F254” type UV-active
silica sheets. Column chromatography was performed
using a Teledyne Isco CombiFlash Rf+ automated flash
chromatographer with “RediSep Rf GOLD” silica gel col-
umn at 25(+1) °C. The cartridge was filled with Zeochem
“ZEOprep 60 25—40 um” silica gel. NMR spectra were
acquired on a Varian 500 (IH 500 MHz, 3C 126 MHZz) or
a Varian 300 (‘H 300 MHz, '3C 75 MHz) NMR spectrom-
eter. The residual solvent peaks were used as the internal
reference. Chemical shifts (8) are reported in ppm. The
following abbreviations are used to indicate the multiplic-
ity in 'H NMR spectra: s, singlet; d, doublet; t, triplet; and
m, multiplet. '>*C NMR spectra were acquired in a broad-
band decoupled mode. All NMR spectra were recorded at
30 °C. UV —vis absorption spectroscopy was executed on
a Jasco V-750 spectrophotometer. High-resolution mass
spectrometry measurements were performed on a Sciex
TripleTOF 5600+ high-resolution tandem mass spectrom-
eter equipped with a DuoSpray ion source. APCI ioniza-
tion was applied in positive ion detection mode. Samples
were dissolved in acetonitrile and flow injected into the
acetonitrile/water 1:1 flow. The flow rate was 0.2 mL/min.
The resolution of the mass spectrometer was 35,000.

Cannizzaro reaction of formylbiphenylene 3
to access compounds 1 and 2

2-Formylbiphenylene (3) [25] (500 mg, 2.77 mmol) was dis-
solved in MeOH (10 mL) and a solution of NaOH (5.55 g,
139 mmol) in distilled water (15 mL) was added. The reac-
tion was heated at 80 °C for 18 h. After cooling the mixture
to rt, water (85 mL) was added, and the aqueous mixture was
extracted with CH,Cl, (3x40 mL). The combined organic
layer was dried (MgSO,) and the solvent was evaporated
under reduced pressure. The crude product was purified by
column chromatography (SiO,, hexane — hexane/EtOAc
(40%)) to obtain alcohol 2 as a pale yellow solid (215 mg,
43%). '"H NMR (500 MHz, CDCl,) § = 6.77-6.58 (m, 7H),
4.44 (s, 2H), 1.89 (s, 1H) ppm. *C NMR (126MHz, CDCl,)
6 =151.89, 151.02, 150.87, 150.79, 141.20, 128.52, 128.41,
126.64, 117.63, 117.52, 117.15, 116.83 ppm.

@ Springer

The aqueous phase was acidified with HCI and extracted
with EtOAc (3x40 mL). The combined organic layer was
washed with water and brine, dried (MgSO,), and con-
centrated under reduced pressure. The product carboxylic
acid 1 was obtained as a yellow solid (220 mg, 41%). The
product did not require further purification steps. 'H NMR
(500 MHz, acetone-d6) & = 11.03 (bs, 1H), 7.61 (dd, J =
7.2, 1.1 Hz, 1H), 7.24 (s, 1H), 6.92-6.80 (m, SH) ppm. *C
NMR (126 MHz, Acetone-d6) 6 = 167.11, 157.12, 152.29,
151.23, 150.72, 133.08, 131.35, 130.58, 129.89, 119.59,
119.20, 117.98, 117.72 ppm.

Synthesis of compound 4

A mixture of biphenylene-2-carboxylic acid (1) (100 mg,
0.51 mmol), K,CO; (211 mg, 1.53 mmol), and CH;I (401
uL, 6.44 mmol) in acetone (10 mL) was stirred at 60 °C for
16 h. The resulting mixture was filtered through a pad of
celite, and the filtrate was concentrated in reduced pressure.
The crude product was purified by column chromatography
(SiO,, hexane/EtOAc 9:1). The product (4) was obtained as
a yellow solid (74.5 mg, 70%). "H NMR (300 MHz, CDCly)
06 =7.58(dd, J =173, 1.3 Hz, 1H), 7.21 (s, 1H), 6.85-6.66
(m, 5H), 3.86 (s, 3H) ppm. '3C NMR (75 MHz, CDCl,) &
= 166.80, 156.53, 151.48, 150.57, 149.99, 132.26, 130.04,
129.69, 128.93, 118.74, 118.32, 117.21, 116.80, 52.13 ppm.

Synthesis of compound 5

A mixture of biphenylen-2-ylmethanol (2) (50 mg, 0.27
mmol) and 4-dimethylaminopyridine (DMAP) (3.4 mg, 27.4
umol) under inert atmosphere (N,) was cooled to 0 °C in
an ice bath. Subsequently, acetic anhydride (Ac,0) (32 pL,
0.33 mmol) and N,N-diisopropylethylamine (DIPEA) (58
pL, 0.33 mmol) were added, and the reaction was stirred
at 0 °C for 15 min. The resulting mixture was diluted with
CH,Cl, (50 mL) and washed with 1% HCI solution (3x15
mL). The organic phase was dried (MgSO,), concentrated
under reduced pressure, and the crude product was purified
by column chromatography (SiO,, hexane — hexane/EtOAc
(10%)). The product (5) was obtained as a yellow solid (60
mg, >95%). "H NMR (300 MHz, CDCl;) 8 = 6.80-6.70
(m, 3H), 6.70-6.57 (m, 4H), 4.88 (s, 2H), 2.10 (s, 3H) ppm.
13C NMR (75 MHz, CDCl;) & = 171.16, 152.08, 151.62,
150.96, 150.90, 136.19, 128.79, 128.77, 128.69, 117.93,
117.90, 117.85, 117.28, 66.95, 21.30 ppm.

General procedure for the synthesis of BP dimers
9-11

Biphenylen-2-ylmethanol (2) (1 equiv.), the dicarboxylic
acid (0.5 equiv.), N,N'-dicyclohexylcarbodiimide (DCC) (1.1
equiv), and DMAP (0.025 equiv), under an inert atmosphere
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(N,), were cooled to 0 °C in an ice bath. Subsequently, ace-
tonitrile (10 mL) was added, the ice bath was removed,
and the reaction was stirred at rt for 1 h. The mixture was
diluted with CH,Cl,, celite was added, and the solvent was
evaporated under reduced pressure. The crude product was
purified by column chromatography (dry-loaded on celite,
SiO,, hexane — hexane/EtOAc (25%)). The BP dimers were
obtained as yellow solids.

BP-dimer 9 (253 mg, 80%). '"H NMR (500 MHz, CDCl,)
0 =6.78-6.73 (m, 4H), 6.71 (d, J = 7.0 Hz, 2H), 6.67-6.60
(m, 6H), 6.58 (d, J = 7.0 Hz, 2H), 4.94 (s, 4H), 3.46 (s,
2H) ppm. '*C NMR (75 MHz, CDCl,) § = 166.38, 151.97,
151.69, 150.75, 150.70, 135.26, 128.74, 128.70, 128.67,
117.87,117.82, 117.68, 117.14, 67.81, 41.77 ppm. HRMS
(APCI) m/z: [M]™ caled for C,oH,,0, 432.1361; found,
432.1341.

BP dimer 10 (152 mg, 62%). "H NMR (500 MHz, CDCl,)
8 =6.78-6.73 (m, 4H), 6.71 (d, J = 7.0 Hz, 2H), 6.67-6.60
(m, 6H), 6.58 (d, J = 7.0 Hz, 2H), 4.89 (s, 4H), 2.69 (s,
4H) ppm. '3C NMR (75 MHz, CDCl;) 6 =172.16, 151.92,
151.50, 150.80, 150.74, 135.85, 128.64 (2C), 128.54,
117.82, 117.76, 117.67, 117.14, 67.08, 29.36 ppm. HRMS
(APCI) m/z: [M]* caled for C;H,,0, 446.1518; found,
446.1496.

BP dimer 11 (159 mg, 63%). "H NMR (500 MHz, CDCl,)
8 =6.78-6.73 (m, 4H), 6.71 (d, J = 7.0 Hz, 2H), 6.67-6.61
(m, 6H), 6.59 (d, J = 7.0 Hz, 2H), 4.88 (s, 4H), 2.42 (t, J =
7.4 Hz, 4H), 1.99 (p, J = 7.4 Hz, 2H) ppm. '3C NMR (75
MHz, CDCl,) & = 172.84, 151.93, 151.47, 150.81, 150.75,
136.02, 128.64 (2C), 128.52, 117.82, 117.76, 117.68,
117.15, 66.79, 33.43, 20.25 ppm. HRMS (APCI) m/z: [M]™*
calcd for C5,H,,0, 460.1674; found, 460.1653.

Synthesis of compound 12

Methyltriphenylphosphonium iodide (239 mg, 610 pmol)
was dissolved in abs. THF (5 mL), cooled to 0 °C in an ice
bath, and n-butyllithium (244 pL, 2.5 M, 610 pmol) were
added dropwise and stirred for 30 min under N, atmos-
phere. Biphenylene-2-carbaldehyde (3) (100 mg, 555
umol) was dissolved in abs. THF (5 mL) was transferred
dropwise to the reaction mixture. The resulted suspension
was stirred at rt for 1 h. After completion of the reaction,
the product mixture was diluted with CH,Cl, (30 mL),
and the resulting solution was washed with water (50 mL)
and brine (20 mL). The organic phase was dried MgSO,)
and the solvent was removed by rotary evaporation. The
crude product was purified by flash column chromatogra-
phy (Si0O,, n-hexane) to obtain 2-vinylbiphenylene 12 as a
yellow solid (52.6 mg, 53%). '"H NMR (500 MHz, CDCly)
8 =6.84 (s, 1H), 6.79 — 6.75 (m, 2H), 6.72-6.63 (m, 3H),
6.60 (dd, J=17.1,0.6 Hz, 1H), 6.53 (dd, J = 17.5, 10.9 Hz,
1H), 5.61 (d, J = 17.5 Hz, 1H), 5.15 (d, J = 10.9 Hz, 1H)

ppm. *C NMR (126 MHz, CDCl,) & = 151.68, 151.02,
150.90, 150.72, 138.02, 137.21, 128.63, 128.50, 127.96,
117.72, 117.59, 117.40, 114.09, 112.76 ppm.

Synthesis of compound 13

2-Vinylbiphenylene 12 (128 mg, 718 pmol) was dissolved
in triethoxysilane (1 mL) in a vial and purged with argon.
Pt/C (14 mg, 2 mol%) was added and the mixture was
stirred at 120 °C for 24 h. Subsequently, the reaction mix-
ture was diluted with EtOAc (10 mL) and filtered through
a pad of celite, which was washed with small portions of
EtOACc several times. The solvent was removed by rotary
evaporation and the crude product was purified by flash
column chromatography (SiO,, n-hexane) to obtain com-
pound 13 as a yellow oil (61 mg, 25%, contains small
amount of triethoxysilane as impurity). 'TH NMR (500
MHz, CD,Cl,) 8§ = 6.75-6.69 (m, 2H), 6.66—6.50 (m,
5H), 3.81 (q, J = 7.0 Hz, 6H), 2.55-2.46 (m, 2H), 1.22
(t, J = 7.0 Hz, 9H), 0.91-0.84 (m, 2H) ppm. '°C NMR
(75 MHz, CD,Cl,) 6 = 151.86, 151.60, 128.75, 128.39,
127.11, 118.50, 117.75, 117.66, 117.41, 58.90, 30.02,
18.71, 12.82 ppm (not all quaternary carbons are observ-
able due to low intensity).

X-ray crystallographic analysis

Single crystals of BP/TCNQ could be obtained from
DCM solution by slow evaporation. A suitable crystal was
selected and mounted on a loop on a Rigaku R-Axis Rapid
II Spider diffractometer. The crystal was kept at 294.15
K during data collection. Using Olex2 [26], the structure
was solved with the olex2.solve [27] structure solution
program using Charge Flipping and refined with the olex2.
refine [27] refinement package using Gauss-Newton mini-
mization. Crystal data and structure refinement parameters
are shown in Table S1 (Supporting Information). CCDC
deposition number 2384673 contains further supplemen-
tary crystallographic data for this paper.

Single crystals of 10 could be obtained from THF solu-
tion by slow evaporation. A suitable crystal was selected
and mounted on a loop on a XtaLAB Synergy-R, HyPix
diffractometer. The crystal was kept at 113.7(3) K dur-
ing data collection. Using Olex2 [26], the structure was
solved with the SHELXT [28] structure solution program
using Intrinsic Phasing and refined with the SHELXL [28]
refinement package using Least Squares minimisation.
Crystal data is shown in Table S1 (Supporting Informa-
tion). CCDC deposition number 2384674 contains further
supplementary crystallographic data for this paper.

@ Springer
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Quartz surface modification with compound 13

Compound 13 (12 mg, 35 umol) was dissolved in a mixture
of THF (12 mL) and cyclohexane (50 mL). Subsequently,
70 pL hydrochloric acid (di. water/cc. HCI 8:1) was added
to the mixture and stirred for 30 s. Quartz slides (previously
washed with piranha solution, di. water and dried under a N,
flow) were immersed in 10 mL portions of the reagent solu-
tion at rt for different times. After surface modification, the
slides were washed with acetonitrile (spectroscopic grade)
and dried under a N, flow, and the solid-phase UV-Vis spec-
trum of each slide was recorded.

Results and discussion

We have recently shown that biphenylene (BP), as an elec-
tron donor, forms a weak molecular complex with elec-
tron accepting TCNE [24]. In the crystal structure of the
complex, the two components were found non-co-planar
with only a moderate overlap between the n-systems. Fur-
thermore, the molecular planes were not parallel but tilted
by an angle of 9.84° with respect to each other (Fig. 1a).
As a comparison, we crystallized the BP/TCNQ complex
(Fig. 1b) from CH,Cl, solution (BP/TCNQ 1:1) that formed

(a)
===

~

\_ Y,

mixed stacks of alternating donor and acceptor molecules in
a 1:1 ratio, similarly to the BP/TCNE complex. However, in
contrast to the BP/TCNE system, a large intrastack molecu-
lar overlap between the n-systems of the donor BP and the
acceptor TCNQ was observed with an interplane distance
of 3.287 A.

To test the effect of multiple donor units on the formation
and stability of these complexes, we explored the synthesis
of BP dimers and their interactions with acceptor molecules
TCNE and TCNQ. We envisioned the formation of com-
plexes with possibly different arrangements depending on
the interacting donor and acceptor components (Fig. 2a, b).
Furthermore, as a complementary strategy, we aimed at the
synthesis of a BP derivative that is suitable for covalently
bound layer formation on solid surfaces (Fig. 2c).

For the synthesis of BP dimers, we considered two
approaches using the relatively straightforward esterification
chemistry of BPs: A based on the reaction of biphenylene-
2-carboxylic acid (1) with diols and B based on the reac-
tion of 2-biphenylenemethanol (2) with dicarboxylic acids
(Fig. 3).

The crucial difference between the two structures is the
position of the electron withdrawing carboxyl group relative
to the BP unit. In design A, where it is directly attached,
the electron donor BP is somewhat more electron deficient

(b)
/

\
e ~6-0-6—0-0-0-

$8e628%  eoce oo

- /

Fig. 1 X-ray crystal structure of the BP/TCNE complex (a) and the BP/TCNQ complex (b) (ORTEP style representation is drawn at the 50%

probability level)
(a)

(b)

10)daooe
10)daooe

| solid surface |

Fig.2 Potential interactions between BP dimers (a, b) and surface bound BP layers (c¢) with electron acceptors
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Fig. 3 Different esterification strategies to construct molecules with two BP units

compared to the second, B, where the electron withdrawing
group is decoupled from the BP ring system by a methylene
group.

To probe the effect of these arrangements, we synthesized
two control molecules 4 and 5 (Fig. 4). To access these com-
pounds, instead of synthesizing the carboxylic acid (1) and
the alcohol (2) separately, we explored the disproportiona-
tion of the relatively easily accessible aldehyde 3 through
the Cannizzaro reaction (Fig. 4a) [29]. It turned out to be an
efficient approach that required only NaOH as reagent, while
providing both 1 and 2 in a single step in good yields. Sub-
sequently, acid 1 was converted to its methyl ester 4 using
Mel for the O-alkylation reaction (Fig. 4b), and the alcohol 2
was reacted with acetic anhydride to give the benzyl acetate
type product 5 in high yield (Fig. 4c).

We looked at the changes in the optical properties of
esters 4 and 5 upon mixing them with TCNE and TCNQ in
CH,Cl, (107* M solutions were used to prepare the mixtures
due to the absence of apparent complex formation in more
diluted solutions) (Fig. 5). The colour changes of the yellow

Fig.4 Synthesis of BP esters. (a)

solutions of the BP derivatives were immediately apparent in
contact with the acceptor compounds. The appearance of a
blue colour in all cases indicated the formation of molecular
complexes, which was also supported by UV-vis measure-
ments. In the UV-vis spectra of the 4/TCNE and 5/TCNE
systems, new bands appeared above 500 nm (A, (4/TCNE)
= 624 nm, A,,(5/TCNE) = 678 nm), where none of the
individual components showed absorptions (Table 1). The
new absorption bands were the most intense at 1:1 compo-
nent ratio, although variations in the ratios (1:1, 1:2, 2:1)
showed little effect on the intensity of the new absorption
bands. This suggests that the formation of the 1:1 complex
dominated in solution. Notably, in the case of the 5/TCNE
mixture, the new absorption band was more intense com-
pared to that observed for the 4/TCNE mixture. This finding
can be paralleled with the electronic considerations in the
molecular design. In compound 4, the electron withdrawing
ester group is directly connected to BP that decreases its
electron donating character. On the other hand, in compound
5, the ester moiety is connected to the BP unit through a

a Cannizzaro reaction of BP %
aldehyde 3; b O-alkylation of B NaOH OH OH
biphenylene-2-carboxylic acid O - . O-O + 0.0
1 with Mel; ¢ O-acylation of Me?H /Hz0
biphenylen-2-ylmethanol 2 with 3 80°C, 18 h 1 (41%) 2 (43%)
Ac,0
(b)
0 Mel 0
Oy o Oy
acetone
1 60°C, 16 h 4 (70%)
(©) o
ACzo
Croy ™ S5 ooy
DCM
2 0°C, 15 min 5 (95%)
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Fig.5 The charge transfer bands in the UV-vis spectra upon interaction of BP esters 4 and 5 with TCNE (a, b) and TCNQ (¢, d) in CH,Cl, at rt

Table 1 Position of the charge transfer bands in the UV-vis spectra of
the different complexes of compounds 4 and 5

D/A ratio Amax (M)
4/TCNE 5/TCNE 4/TCNQ 5/TCNQ
1:1 624 678 620-660 670
1:2 624 678 620-660 670
2:1 624 678 620-660 670

methylene group that eliminates the direct electron with-
drawing effect. These variations in the donating ability of the
BP units are likely responsible for the changes in intensity
and A, values in the UV-spectra of the mixtures.

The observations for the 4/TCNQ and the 5/TCNQ
systems were qualitatively similar to those containing
TCNE; however, some of their features were somewhat
different. These solutions were prepared identical to the
TCNE containing systems. The formation of complexes
with TCNQ was evident by the colour changes; however,

@ Springer

the new absorption bands overlapped with the spectrum
of pristine TCNQ that contains bands in the same spectral
region (550-700 nm). The effect of the TCNQ ratio was
stronger on the absorption intensity compared to that of
TCNE. Both 4/TCNQ and 5/TCNQ absorptions showed
maximum intensity at 1:2 ratio followed by the 1:1 and
2:1 mixture. The excess amount of uncomplexed TCNQ
could contribute to differences in intensity due to spectral
overlap. Analogously to the TCNE containing systems, the
stronger interaction between compound 5 with TCNQ com-
pared to that of 4 likely accounts for the stronger absorp-
tion intensity and shifted A, values in the UV-spectrum
in this case.

Generally, the overall stronger interaction of the BP
derivatives with TCNQ than with TCNE is reflected in the
appearance of higher intensity absorptions for 4/ TCNQ and
S5/TCNQ compared to the 4/TCNE and 5/TCNE.

Based on these results, we experimentally considered BP
dimers of type B, where the ester moieties are electronically
decoupled from the donor BP units with a methylene group.
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0°Cto 25°C, 1h

2 (2 equiv.)

oo ~NO»
—~

3 3 5
imnmnn

WN =
-

Fig.6 The general synthetic route applied to access esters 9-11

Fig.7 X-ray crystal structure of compound 10 (ORTEP style repre-
sentation is drawn at the 50% probability level; H atoms are omitted
for clarity)

We synthesized three structures using different dicarboxylic
acids leading to different carbon chain lengths between the
ester groups (Fig. 6). The coupling of alcohol 2 and reagent
dicarboxylic acids 6—8 using DCC as the coupling agent
provided the dimers 9-11 in good yields.

Compound 10 could be crystallized for single crystal
X-ray diffraction measurements (Fig. 7). In the solid state,
the dominant part of the inter- and intramolecular interac-
tions involved the oxygen atoms of the ester groups.

Compounds 9-11 exhibited similar UV-vis absorp-
tion profiles, independent of the number of carbon atoms
between the ester units (Fig. 8a). None of them showed
absorption bands in the visible region. Upon addition of
TCNE and TCNQ to BP dimers 9-11, the observed spectral
changes (Fig. 8b—d and Table 2) were similar to that of 5/
TCNE and 5/TCNQ, respectively. The intensities of the new
bands were largely independent of the component ratio at
this concentration range (107> M solutions in CH,Cl, were
used to prepare the mixtures). Unfortunately, no single crys-
tals of the molecular complexes could be obtained.

As a complementary strategy, we synthesized a BP deriv-
ative with a triethoxysilane group for surface attachment

9 (n = 1) (80%)
10 (n = 2) (62%)
11 (n = 3) (63%)

(Fig. 9). We used aldehyde 3 to access vinylbiphenylene 12
via a Wittig olefination with methyltriphenylphosphonium
iodide. In a subsequent Pt-catalyzed hydrosilylation reaction
with triethoxysilane, compound 13 could be isolated. We
expected that this molecule will be suitable for the covalent
modification of Si-based solid surfaces.

We treated quartz slides with a slightly acidic solution
of compound 13 in THF/cyclohexane [30] and followed
the changes in their absorption profile over time using
UV-vis spectroscopy (Fig. 10a). The absorptions that are
characteristic of BP (Fig. 10b) appeared even after 1 h and
became more intense up to 24 h treatment. This suggests
that the silanization of the surface with compound 13 was
successful.

However, upon immersion of the surfaces into CH,Cl,
solutions of TCNE and TCNQ with different concentra-
tions (5%107°, 4x107%) for different times (1, 3, 8, 24, and
48 h), no charge transfer complex formation was observ-
able by UV-vis spectroscopy. This could be due to the
small number of molecules involved in persistent donor-
acceptor interactions on the surface, which is below the
detection limit by UV-vis spectroscopy, while crowding
effects could also play a role [31]. Nevertheless, this sur-
face bound BP system might be suitable for the study of
interfacial m-molecular complexes with other analytical
techniques in the future.

Conclusion

We prepared new BP derivatives that are suitable to study
the formation of molecular n-complexes in different envi-
ronments. The synthesis of molecules that contain two BP
chromophores was realized using the Cannizzaro reaction to
access the necessary BP precursors. These compounds with
two pendant BP electron donors provide the opportunity to
study the formation of different supramolecular assemblies
guided by donor-acceptor interactions. We also synthe-
sized a BP derivative that is suitable for surface attachment
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Fig.8 a The UV-vis spectra of compounds 9-11; b—d the charge transfer bands in the UV-vis spectra upon interaction of BP esters 9, 10, and 11

with TCNE and TCNQ in CH,Cl, at rt

Table 2 Position of the

. D/A ratio Amax (M)

charge transfer bands in the
UV-vis spectra of the different 9/TCNE 10/TCNE 11/TCNE 9/TCNQ 10/TCNQ 11/TCNQ
complexes of compounds 9-11

1:1 673 678 678 668 668 673

1:2 674 678 678 667 668 668

(Ph)sP~CHg I~ HSI(OEt

- i
D BuLi A Si(OEty)
O nBuLi 0.0 X t
THF,0°Ctort,1.5h 120°C, 24 h

12 (53%)

Fig.9 Synthesis of the triethoxysilane containing BP (13)
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Fig. 10 a Solid-state UV-vis spectra of quartz slides immersed in the solution of 13 for different times; b UV-vis spectrum of BP in CH,Cl, at rt

through its triethoxysilane function. Surface assemblies
could be useful to probe complex formation in confined
environments and could be the basis for sensing acceptor
type analytes. We used TCNE and TCNQ acceptors to probe
the interaction of the electron donor and acceptor partners.
Our preliminary results show that both TCNE and TCNQ
form complexes with the dimeric BP chromophores; how-
ever, so far, we did not succeed in growing suitable single
crystals for the structural analysis of the complexes. Meas-
urements involving the surface attached BP donor and the
TCNE and TCNQ acceptors did not show apparent complex
formation using UV-vis spectroscopic detection.
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