BOOK OF ABSTRACTS

7th Conference on Cereal Biotechnology and Breeding 7-9 November 2023

18th EWAC
The European Cereals Genetics Co-operative Conference
6 November 2023

Wernigerode, Germany

Jointly organised with the Cereals Section of EUCARPIA

CBB7 2023 7th Conference on Cereal Biotechnology and Breeding

7–9 November 2023 Wernigerode, Germany

EWAC18 2023 18th EWAC – The European Cereals Genetics Co-operative Conference

6 November 2023 Wernigerode, Germany

AKCongress
P.O. Box 245, H-1519 Budapest, Hungary
E-mail: cbb@akcongress.com
https://akcongress.com/comec/

Please be aware that certain changes introduced in the Conference programme after editing has been closed may not be included in this Book of Abstracts due to the publishing deadline.

© Akadémiai Kiadó, Budapest, 2023 P.O. Box 245, H-1519 Budapest, Hungary Phone: +36 1 464 8240 E-mail: ak@akademiai.hu www.akjournals.com / www.akademiai.hu ISBN 978-963-454-987-1

CONTENTS

EWAC18 – Oral
EWAC18 – Poster
CBB7 – Invited
CBB7 – Oral
T1: Genetic Resources for Crop Improvement
T2: Environmental Adaptation
T3: Biotic Stress Response
T4: Plant-Microbe Interactions
T5: Yield and Quality Improvement
T6: Bioinformatics, Genomics and Genome Editing
T7: Phenotyping Technologies (Generally)
T8: Phenotyping Technologies – Wheat Initiative
T9: Phenotyping Technologies (CePPG)
CBB7 – Poster
T1: Genetic Resources for Crop Improvement
T2: Environmental Adaptation
T3: Biotic Stress Response
T4: Plant-Microbe Interactions
T5: Yield and Quality Improvement
T6: Bioinformatics, Genomics and Genome Editing
T7: Phenotyping Technologies (Generally)
T8: Phenotyping Technologies – Wheat Initiative
T9: Phenotyping Technologies (CePPG)

Effect of *PPD-D1*, photoperiod sensitivity gene on yield related traits under stress-free conditions in wheat

<u>Ildikó Karsai</u>^{1*}, Ádám Horváth¹, Zita Berki¹, Ádám D. Horváth¹, Krisztina Balla¹, András Cseh¹. Tibor Kiss^{1,2}

¹Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary ²Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary *E-mail: karsai.ildiko@atk.hu

Keywords: wheat, developmental patterns, adaptation, *PPD-D1*, minor developmental loci, field experiment

The dynamics of plant development not only has an impact on ecological adaptation but also contributes to the realization of genetically determined yield potentials in various environments. Dissecting the genetic determinants of plant development becomes urgent due to the global climate change, which can seriously affect and even disrupt the locally adapted developmental patterns. In order to determine the role plant developmental loci played in local adaptation and yield formation, a panel of 188 winter and facultative wheat cultivars from diverse geographic locations were characterized with the 15K Illumina Single Nucleotide Polymorphism (SNP) chip and functional markers of several plant developmental genes, and included into a multi-season field experiment. Genome-wide association analyses were conducted on five consecutive developmental phases spanning from the first node appearance to full heading together with various grain yield-related parameters. The panel was balanced for the PPD-D1 photoperiod response gene, which facilitated the analyses in the two subsets of photoperiod-insensitive and -sensitive genotypes in addition to the complete panel. PPD-D1 was the single highest source, explaining 12.1%-19.0% of the phenotypic variation in the successive developmental phases. In addition, 21 minor developmental loci were identified, each one explaining only small portions of the variance, but, together, their effects amounted to 16.6%–50.6% of phenotypic variance. Eight loci were independent of PPD-D1. Seven loci were only detectable in the PPD-D1 insensitive genetic background, and six loci were only detectable in the sensitive background. The combination of PPD-D1 insensitivity and sensitivity with the extremities of early or late alleles in the corresponding minor developmental loci resulted in significantly altered and distinct plant developmental patterns with detectable outcomes on some yield-related traits.

In conclusions, the contrasting combination of the early-late alleles of the minor loci with *PPD-D1* insensitivity—sensitivity alleles may lead to a series of developmental range that may be utilized to ensure a greater ecological plasticity of plant development. *PPD-D1* together with the minor loci also contribute to several morphological traits, but their effects on yields and yield-related traits depend more on the environment. The indirect effects of *PPD-D1* on yield-related traits may appear mostly as causal consequences of altered plant developmental patterns under unfavourable growing conditions that may occur randomly from the start of the intensive stem elongation for any of the two *PPD-D1* allele phases.

Acknowledgments

The research has been implemented with the financial support of the TKP2021-NKTA-06 project provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021 funding scheme. Tibor Kiss was supported by the NKFIH-FK-134234 and by János Bolyai Research Scholarship of the Hungarian Academy of Sciences.