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ABSTRACT
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have 
uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG 
codons. If an upstream non-canonical start site is located within a frame with an annotated coding 
sequence (CDS), such translation events can lead to the production of proteoforms with altered 
N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors 
(e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational 
analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated 
proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We 
identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. 
Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of 
oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an 
explanation for previously described functionalities or interactions of the proteins. In all, we identify 
novel cases where PANTs likely show different localization, functions, partner binding or turnover rates 
compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of 
translation initiation, often seen under conditions of cellular stress, may result in reprogramming of 
translation to generate novel PANTs that influence cancer progression.
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Introduction

A crucial step in protein synthesis is the selection of the 
translation initiation site on the mRNA. In eukaryotic cells, 
this process is largely accomplished through a scanning 
mechanism. The pre-initiation complex (PIC), which consists 
of the 40S ribosomal subunit, certain translation initiation 
factors, and a methionine-tRNA (met-tRNA), enters the 
5’end of the mRNA and scans the mRNA sequence from 5’ 
to 3’. Recognition of a suitable start codon, typically AUG, 
leads to the dissociation of the initiation factors and the join
ing of the 60S subunit (reviewed in [1,2]). The ability of the 
PIC to reach and select a specific start codon on the mRNA 
depends on several factors, including the availability and 
activity of the translation initiation factors, the structure of 
the mRNA, and RNA-binding proteins. These factors can 
interfere with the scanning process and the selection of the 
start codon. Differences in mRNA sequences, which are 
inspected by scanning proteins, dictate translation factor 
dependency. While some mRNAs require a set of ‘canonical’ 
initiation factors for translation, others require additional 
non-canonical factors (reviewed in [3]). This allows for selec
tive translation control, where alterations in signalling 

pathways differentially affect the translation of various 
mRNA species, resulting in different proteomic changes.

When the PIC (pre-initiation complex) scans the mRNA 5’ 
leader region, it encounters a potential start codon that can 
form a codon–anticodon interaction with the met-tRNA in 
the P site. The optimality of this interaction is probed by 
multiple components of the PIC, including rRNA bases, ribo
somal proteins, and initiation factors. The efficiency of start 
codon recognition depends on several factors, including the 
identity of the codon (some non-AUG codons can also be 
recognized), its nucleotide context, and the presence of certain 
initiation factors, such as eIF1, eIF1A, and eIF5. Due to these 
factors, the scanning ribosome can continue scanning if the 
start codon is not optimal, a phenomenon known as leaky 
scanning [4]. Leaky scanning means that translation initiation 
can occur at more than one start codon on certain mRNAs.

If these start codons are located within the same open 
reading frame and upstream of each other, translation can 
produce polypeptides with extended N-termini [5,6] which 
may yield alternative proteoforms. The term ‘proteoform’ 
describes all molecular variants in which a protein can exist 
and is typically used to refer to differences at the protein level 

CONTACT Kellie Dean k.dean@ucc.ie School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
*These authors contributed equally to the work.

Supplemental data for this article can be accessed online at https://doi.org/10.1080/15476286.2025.2498203

RNA BIOLOGY                                                                                                                                                       
2025, VOL. 22, NO. 1, 1–18
https://doi.org/10.1080/15476286.2025.2498203

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript 
in a repository by the author(s) or with their consent.

http://orcid.org/0000-0003-0849-9312
http://orcid.org/0000-0001-5320-3045
http://orcid.org/0000-0002-3213-8181
https://doi.org/10.1080/15476286.2025.2498203
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15476286.2025.2498203&domain=pdf&date_stamp=2025-04-29


(i.e. translational products). While isoforms are typically pro
duced by alternative splicing of the mRNAs, proteoforms can 
be produced by translational and/or post-translational 
mechanisms, such as alternative translation initiation, stop 
codon readthrough, posttranslational modifications or proteo
lytic processing. Although we cannot precisely predict all the 
posttranslational mechanisms, and thus the actual proteo
forms that will exist in cells, we refer to the N-terminally 
extended polypeptides as proteoforms because they differ 
from the canonical forms on the level of translation.

Deregulated translation is a hallmark of cancer cells [7–14]. 
Regarding non-AUG initiation events, there are numerous 
examples of N-terminally extended proteoforms for genes 
involved in cancer progression, one of the earliest such dis
coveries was made for the c-MYC oncogene in 1988 [15]. By 
analysing the in vitro protein-coding capacity of c-MYC 
cDNAs, Hann et al. found that c-MYC1 (p67) proteoform 
was initiated by an upstream CUG codon, adding a 14-amino 
acid extension; whereas the c-MYC2 (p64) proteoform was 
initiated by the canonical AUG start [15]. While there was 
lower translation efficiency of c-MYC1, with total synthesis 
about 10–15% of the level of the canonical protein, this 
changed when cells were grown to high densities, and this 
effect seemed to be due to amino acid restriction [16,17]. 
Overall, early studies on c-MYC translation pointed to mod
ulation of the scanning ribosomal pre-initiation complex that 
impacted start codon selection, resulting in the production of 
different MYC proteoforms. More recently, work by Sato et al. 
(2019), showed that the balance of c-MYC proteoforms could 
be tipped in favour of the AUG-initiated isoform by the 
oncogenic protein, 5MP1 (eukaryotic initiation factor 5 
(eIF5)-mimic protein) that competes with eIF5 [18] and pro
motes malignancy in colorectal cancer by translational repro
gramming [19].

In a cancer context, tumour suppressor proteins act as 
negative regulators in biochemical and cellular processes, 
essentially serving as brakes within a system. Indeed, loss or 
disabling mutations of tumour suppressor genes, like RB1, 
TP53 and PTEN, are found in numerous cancers [20]. The 
phosphatase and tensin homolog on chromosome ten, PTEN, 
encodes a protein that blocks the activation of the phospha
tidylinositol 3-kinase (PI3K)/AKT pathway by dephosphory
lating lipid substrates [21,22], thereby influencing cell 
proliferation, survival, growth and metabolism.

The first description of N-terminal extension of PTEN 
came from a systematic analysis of the extent of non-AUG 
initiation in human [23]. Ivanov et al. (2011) proposed that 
PTEN had a 173-aa extension due to translation initiation 
from a CUG codon located 519 nucleotides upstream of the 
canonical AUG start [23]. The extended form was supported 
experimentally and termed PTEN-L (PTEN-Long or PTEN-a) 
[24–26]. The PTEN family was further expanded by another 
N-terminal extended proteoform that is initiated by an in- 
frame AUU codon (PTEN-M or PTEN-b), adding 146 aa 
[26,27]. Taken together, N-terminally extended proteoforms 
of PTEN have been shown to have altered localization, sub
strates and interaction partners [25,27,28].

More recent work suggests that PTEN translational var
iants can modify gene expression by promoting histone 

methylation, opposing PTEN’s traditional role as a tumour 
suppressor [29]. Through a direct interaction with WD40 
repeat-containing protein 5, WDR5, the extended PTEN pro
teoforms can modulate the efficiency of histone H3K4 
methyltransferases, which in turn, upregulates expression of 
target genes such as Notch3 [29]. Binding studies and a crystal 
structure (PDB:8X3S) showed that the N-terminal extension 
of PTEN-a contains a WDR5-interacting motif (WIN; aa116
–148) [30], wherein mutagenesis of the key residues effectively 
reduced the protein’s pro-proliferative effect in different 
tumour models [30]. Besides conferring new functionality to 
PTEN, the N-terminal extension of PTEN is also responsible 
for altered protein stability due to interactions with 
a substrate recognition component of the SCF (SKP1-CUL1 
-F-box protein) E3 ubiquitin-protein ligase complex, mediat
ing ubiquitination [29].

Cancer-associated genes can have conflicting roles as onco
genes and tumour suppressors, depending on the specific 
context and cancer type. An example is Wilms’ tumour, 
WT1, a transcription factor that has an important role in 
developmental processes and cell survival [31]. WT1 was 
first identified as a tumour suppressor gene in Wilms’ 
tumours [32] but subsequent work showed that overexpres
sion or mutation of WT1 contributes to tumorigenesis of 
some leukaemias and solid tumours [33,34]. For many years, 
how WT1 both promotes and suppresses cancers remained 
elusive [35]. However, recent work indicates that WT1 with 
a CUG-initiated, 68-aa N-terminal extension is the oncogenic 
form of the protein, cugWT1 [36,37]. Lee et al. found that 
cugWT1 extension was phosphorylated at S62 by AKT, lead
ing to increased stability of WT1 and increased expression of 
its cancer-promoting target genes [36]. Subsequent work sup
ported an oncogenic role of cugWT1 in mouse models of 
colorectal and lung cancers [37].

All cells rely on growth factors to mediate cell prolifera
tion, differentiation, survival and migration, and dysregula
tion of growth factor signalling often contributes to cancer 
[38]. N-terminally extended proteoforms also impact growth 
factor signalling as illustrated by fibroblast growth factor 2 
(FGF2, also known as basic FGF or bFGF) and vascular 
endothelial growth factor (VEGF). For FGF2, four non-AUG 
initiated forms of the protein were discovered, resulting in 
proteins of 22, 22.5, 24 and 34kDa [39–41]. Within the 
N-terminally extended versions, a conserved glycine-arginine 
repeat motif with several methylated arginine residues has 
been found to promote nuclear transport and/or retention 
[42–44].

Similar to FGF2, VEGF also has several extended proteo
forms that can be generated from initiation at upstream, in- 
frame CUG codons [45,46], with the longest proteoform hav
ing a 180-aa N-terminal extension (VEGF-L). VEGF-L is 
subject to proteolytic processing [47], and in recent work, 
Katsman et al. (2022) provide evidence that the resulting 
proteolytic fragment, N-VEGF, translocates to the nucleus to 
participate in transcriptional regulation of angiogenic genes, 
including VEGF, and key genes associated with cell survival 
under hypoxic conditions [48].

The development of ribosome profiling techniques has 
allowed researchers to discover novel translated regions in 
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the human genome [49,50]. Recently, Fedorova and collea
gues performed global analyses of Ribo-seq data and phylo
genetic conservation, uncovering thousands of novel 
N-terminal protein extensions encoded by human mRNAs 
[51]. We reasoned that some of these novel N-terminal exten
sions may be involved in cancer. Our study explores 
N-terminal extensions of cancer-related proteins and pro
poses different ways in which they may provide differential 
intracellular localization, stability, and interactions.

Results

Fedorova et al. [51] performed two types of analysis. First, 
they generated a set of genes with translated N-terminal 
extensions called RiboSET using aggregated Riboseq data. 
Second, they carried out an analysis of the evolutionary con
servation of N-terminal extensions to show evidence of pro
tein coding evolution. Genes with these evolutionary 
conserved N-terminal extensions were included in 
PhyloSET. We decided to find which genes from RiboSET 
and PhyloSET were known in relation to cancer. Analysis of 
OncoKB [52,53] yielded 49 cancer-related genes with poten
tial N-terminal extensions (Figure 1). Manual annotation of 
the translated N-terminal extensions of 18 PhyloSET-derived 
genes using RiboCrypt allowed us to predict translated 
N-terminal extensions in 9 cases (see Methods). Therefore, 
our computational analysis was performed on 40 cancer- 
associated genes with experimentally supported N-terminal 
extensions (Figure 1; Supplementary Table S1).

We have considered several different scenarios regarding 
how N-terminal extension can influence protein availability, 
activity, or novel function. First, N-terminal extensions can 
affect proteoform stability. To investigate this possibility, we 
have compared the predicted stabilities of proteoform pairs 
using the Degronopedia resource [54]. Second, the 
N-terminal extension can either add a signal sequence or 
interfere with an existing signal sequence to alter protein 
targeting. This was explored using SignalP 6.0 [55]. Third, 

the N-terminal extension could potentially alter the folding 
of a proteoform, which can influence or even completely 
change its activity. For selected cases, we used AF3 [56] to 
predict the structure of N-terminally extended proteoforms. 
Finally, the N-terminal extension can obtain short linear 
motifs (SLiMs/ELMs) that can add novel binding partners, 
sites for posttranslational modifications, and localization 
signals. To do this, we explored N-terminally extended pro
teoforms using the ELM database, which is a resource con
taining a collection of annotated eukaryotic linear 
motifs [57].

When investigating the altered stabilities of proteoforms, 
we consider two possible scenarios. If an N-terminally 
extended proteoform is more stable than an AUG-initiated 
proteoform, then increasing initiation at a non-AUG codon 
could significantly increase the level of the protein. 
Conversely, if an N-terminal extension makes a proteoform 
less stable, then increasing non-AUG initiation would rapidly 
deplete protein levels. Our analysis using Degronopedia shows 
that for 6 proteins (UBE2A, LPP, SND1, CARM1, TCF7L2 
and SOX2) the extended form is considerably less stable (at 
least 1 unit on the predicted protein stability index (PSI) 
scale) than the annotated form. Among these, the largest 
reduction in stability is observed for the TCF7L2/TCF-4 
tumour suppressor (more than 2 PSI units) that regulates 
the WNT signalling pathway and transactivates downstream 
target genes involved in the progression of colorectal cancer. 
It is directly involved in regulating the expression of the 
oncogene MYC and inducing epithelial-mesenchymal transi
tion (EMT) [58–61]. At the same time, there are two proteins, 
FSTL1 and PRSS8, for which the extended form is consider
ably more stable (at least 1 unit on the PSI scale) than the 
annotated form (Table S1). In the case of 12/40 cancer- 
associated proteins the N-terminally extended form is also 
predicted to alter the cleavage status of the initiator methio
nine. For 8 proteins the Met is predicted to be cleaved in the 
normal form, while not cleaved in the extended form, while 
for 4 proteins it is the other way around (Table S1).

Figure 1. The Venn diagram shows the overlaps between the two datasets of genes encoding N-terminally extended proteins obtained from Fedorova et al., 
PhyloSET (177 genes) and RiboSET (390 genes), and the list of cancer-associated genes from OncoKB (1164 genes). On the right, genes belonging to the different 
intersections of the Venn diagram are listed. Cancer-associated genes with experimentally supported N-terminal protein extensions that are in the focus of this study 
are listed in black, while genes that were excluded due to not being annotated in OncoKB (intersection of PhyloSET & RiboSET) or showing no sign of translation 
upstream of the annotated start codon by RiboCrypt (intersection of PhyloSET & OncoKB, second half of gene list) are listed in grey.
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Next, we investigated whether N-terminal extensions could 
contribute to signal sequence recognition. Although none of 
the extensions added novel signal sequences, in two genes, 
N-terminal extensions may interfere with protein secretion 
and translocation. For FSTL1, the N-terminal extension sig
nificantly decreased the probability of protein targeting 
(0.5716 vs 0.9998). In contrast, for PRSS8, the N terminus 
was predicted to preclude targeting. PRSS8 has been described 
as a potent tumour suppressor in colorectal carcinogenesis 
and metastasis [62] and is normally secreted to the extracel
lular space to be part of the seminal fluid. Increased expres
sion of the N-terminally extended, likely mis-targeted 
proteoform, at the expense of the canonical one, could reduce 
the availability of PRSS8 in the seminal fluid and thereby 
contribute to cancer progression.

As a next step, we selected cases for structural modelling by 
AF3 [56] to identify structural changes introduced by the 
extensions. We were primarily interested in the cases where 
the extension could interfere with homo-oligomerization or 
heterodimerization, so we selected a subset of the 40 proteins 
with such information in UniProt [63](see Table S1 column 
U). While there are likely structural changes introduced by 
the N-terminal extensions, in our tested cases, the AF3 struc
tural predictions did not show consistent changes between the 
five models produced for WT and five models representing 
extended forms. Often the five models obtained for the WT 
form already showed large structural variability (based on 
visual inspection in ChimeraX), which precluded the detec
tion of structural changes caused by the extensions. Despite 
considerable effort put into this part of the analysis, we found 
the data to be too inconclusive to report any results.

Finally, we explored how SLiMs in N-terminal extensions 
could affect the function of proteins. The extended proteo
forms were searched for linear motif candidates using the 
ELM database as a web server. The resulting hits were 
filtered for motifs overlapping with the extensions (cleavage 
motifs and overly redundant motifs with a probability score  
> 0.015 were removed; see candidate extension motifs per 
protein in Table S1). Although this search resulted in 
a plethora of candidate motifs, most of which are likely not 
true, functional linear motifs, we believe that careful analysis 
of such information on a case-by-case basis including func
tional profiling, literature mining and consideration of the 
known interaction partners of the investigated proteins 
could result in the discovery of new protein functional mod
ules. Therefore, we decided to conduct targeted analyses of 
selected candidates and present our results in the next sec
tion of the manuscript.

SFPQ

Splicing factor, proline- and glutamine-rich, SFPQ (Uniprot 
P23246, also known as PSF; 707 aa) is a predominantly 
nuclear matrix-associated, nucleic acid-binding protein that 
is one member of the Drosophila behavior/human splicing 
(DBHS) family of proteins [64]. Although the protein was 
first identified through its participation in messenger RNA 
(mRNA) splicing as a component of the spliceosome and U4/ 
U6.U5 small nuclear ribonucleoprotein (tri-snRNP) 

complexes [65–67], it is clear that SFPQ mediates many 
nuclear events in addition to splicing [64].

SFPQ has an N-terminal disordered region that is enriched 
with proline and glutamine residues, a DNA-binding domain 
(DBD), two RNA-recognition motifs (RRM1 and RRM2), and 
a protein interaction domain (NonA/paraspeckle (NOPS)) 
that includes an extended coiled-coil subdomain that is 
important for dimerization, as shown in the resolved crystal 
structure (PDB: 4WII [68]). SFPQ has a nuclear localization 
sequence (NLS) at its C-terminus (aa701–707); however, there 
are reports that the protein has non-nuclear roles in the 
cytoplasm [69,70].

One of SFPQ’s main protein-binding partners is non-POU 
domain-containing octamer-binding protein, NONO, 
a multifunctional, RNA-binding protein that is also a DBHS 
family member [71,72]. SFPQ and NONO can be arranged as 
a heterodimer and a crystal structure has been resolved (PDB: 
7PU5 [73]). SFPQ and NONO can also form a ternary com
plex with topoisomerase I, TOP1 (see below) that stimulates 
the enzyme’s activity [74,75].

Given a wide range of cellular activities, it is perhaps 
unsurprising that SFPQ has been implicated in several 
human diseases, including neurological disorders and cancer 
[76]. Knockdown of SFPQ in colorectal cancer cells was 
shown to enhance apoptosis [77], and multiple reports link 
SFPQ to altered transcriptional, transport and splicing profiles 
of mRNAs involved in cancer progression and drug resistance 
[78–80]. Still the most direct involvement in cancer comes 
from Xp11.2 translocation renal cell carcinoma (XP11.2 
tRCC) in which SFPQ is the fusion partner of MiT (micro
phthalmia transcription factor) family member gene, tran
scription factor binding to IGHM enhancer 3 (TFE3) [81]. 
The SFPQ/TFE3 gene fusion is also present in perivascular 
epithelioid cell tumours (PEComas) and melanotic Xp11 
translocation renal cancers [82].

The N-terminal extension of SFPQ is supported by strong 
ribosome footprint densities within the region upstream of 
the annotated start codon (Figure 2(A)). To search for pro
teomic evidence of the N-terminal extension of SFPQ, we 
implemented targeted peptide search engine PepQuery2 
[83]. The search in 48 MS/MS datasets available in the web 
version (https://pepquery2.pepquery.org/) yielded 71 confi
dent peptide spectrum matchings (PSMs) corresponding to 3 
peptides: FCLDRPLTTDMSR (64×), MASTFPER (3×), 
MASTFPERLLR (4×) (Supplementary Table S2). In the 21- 
residue N-terminal extension of SFPQ we could identify two 
unique motifs that likely confer new protein–protein interac
tions (Figure 2(B)). The first is DOC_CYCLIN_RxL_1 (aa5–
15, FPERLLRFCLD), a cyclin N-terminal domain docking 
motif. Work by Rayner et al. (2021), using a proximity liga
tion method (Biotin Identification (BioID)), immunoprecipi
tations and mass spectrometry, identified novel interaction 
partners of cyclin F, including SFPQ [84]. This interaction 
was further supported by high-throughput data [85].

Although not examined in a cancer context, an interaction 
between cyclin F and SFPQ is of clinical relevance to familial 
and sporadic amyotrophic lateral sclerosis (ALS) and fronto
temporal dementia (FTD). In 2016, mutations of the cyclin 
F gene, CCNF, were discovered in ALS/FTD, and CCNF 
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variant (cyclin F: S621G) resulted in an accumulation of 
ubiquitinated proteins, likely due to abnormal ubiquitination 
or transport to the proteasome [86]. SFPQ was already linked 
to pathological features of neurological disorders, including 
ALS [87]. Following on from this, it was shown that over
expression of the cyclin F mutant S621G led to an increase in 
the insoluble fraction of SFPQ and disrupted its subcellular 
distribution [84]; thus, cyclin F mutations could lead to dys
regulation of SFPQ’s influence on RNA metabolism, which 
contributes to the pathomechanisms of ALS/FTD.

It is possible that the RxL motif in the N-terminal exten
sion might mediate this interaction, as there is no other copy 
of this motif within SFPQ. Although cyclin F is more of an E3 
ligase adaptor than an ordinary cyclin [88], it has cell cycle 
regulatory activity under certain circumstances and a cyclin 
domain that was shown to be functional and binding to RxL 
motifs (also called Cy motif) in several proteins [89–91]. 
Modeling of the interaction by AF3 led to a complex wherein 
the RxL motif of the SFPQ extension binds to the known RxL- 
binding groove of the Cyclin F cyclin domain in helical 

Figure 2. (A) Aggregated Riboseq data for SFPQ (ENST00000357214) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints 
are colour-coded according to the translated reading frames shown below the diagram. (B) Domain map of the N-terminally extended SFPQ protein is depicted. The 
21 aa extension (blue) and the 707 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with respect to the 
extended proteoform). Below, the extension is depicted separately with the two identified, likely functional short linear motifs marked by dark blue and black, 
respectively. (C) AlphaFold 3 (AF3) models of the proposed domain-motif complexes are provided below the domain maps in cartoon representation. Structural 
model of human cyclin F cyclin domain (P41002, residues 290–531) modelled with SFPQ extension peptide residues 1–20, containing the predicted cyclin-binding 
RxL motif. (D) Structural model of human Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (P62136, residues 1–305) modelled with SFPQ extension 
peptide residues 1–18, containing the predicted PP1 docking RVxF motif.
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conformation, similarly to RxL motif complexes with known 
structure (e.g. PDB: 1H24, 1H25, 1H26, 1H27, 1H28 [92]) 
(Figure 2(C)).

The second motif identified in the N-terminal extension is 
DOC_PP1_RVXF_1 (aa6–13, PERLLRFC), which overlaps 
with the RxL motif. The RVxF motif mediates the interaction 
with serine/threonine-protein phosphatase 1, PP1 [93]. 
Previous data provide evidence for an interaction between 
SFPQ and PP1. SFPQ was found to interact with PP1CA 
(the catalytic subunit of the PP1 phosphatase) in a low- and 
high-throughput study [94]. While for the close-relative 
NONO, the RVxF motif could be identified and was deter
mined to mediate an interaction with PP1, it could not be 
found in SFPQ [94].

We suggest that the RVxF motif within the N-terminal 
extension of SFPQ could be functional and mediating the 
interaction with PP1, which could be especially important 
when SFPQ forms homodimers and does not form 
a complex with NONO. In the AF3-predicted complex the 
RVxF motif of the SFPQ extension binds to PP1-alpha cata
lytic subunit in beta-augmentation, similarly to other bound 
RVxF motifs with known structure (e.g. PDB: 3N5U [95]) 
(Figure 2(D)). This interaction could lead to dephosphoryla
tion of SFPQ and loss of its transcriptional co-repressor 
activity [94].

SPEN

The SHARP protein encoded by gene SPEN is a huge tran
scriptional repressor of 3664 residues that acts as a scaffold for 
different proteins and complexes important for expression 
regulation. It was identified as a component of transcriptional 
repression complexes in both nuclear receptor and Notch/ 
RBP-Jkappa signalling pathways. The N-terminal ~ 600 resi
dues contain 4 RRM domains that were reported to mediate 
DNA as well as RNA binding, and the protein has extended 
disordered regions that exceed thousand residues in length. 
A central RID domain was reported to bind nuclear receptors, 
while the C-terminal SPOC domain is known to recruit tran
scriptional corepressors SMRT/NCoR and histone deacety
lases HDAC1/2 through binding their LSD motifs [96–98], 
as well as the C-terminal disordered domain of RNA poly
merase II (Pol II [99]). The RBP-Jkappa/SHARP complex was 
shown to recruit the CtIP and CtBP corepressors to silence 
Notch target genes in a manner that CtIP/CtBP functionally 
complement SHARP in repression [100]. While CtIP binding 
could be mapped to the repressor domain of SHARP, CtBP 
binding could not be precisely mapped.

However, translation from an in-frame CUG codon in 5’lea
der leads to a 22 aa-long N-terminal extension (Figure 3(A)), 
which is supported by PepQuery2 proteomics analysis uncover
ing 6 confident peptide spectrum matchings (Table S2). 
Interestingly, this short extension of SHARP contains a CtBP- 
binding motif, while the annotated fraction of the giant protein 
does not, which makes it highly likely that the extended form 
plays a key role at least in the silencing of Notch genes, where 
CtBP binding is required (Figure 3(A,B)). Modeling of the 
interaction by AF3 resulted in a complex structure wherein the 
SHARP CtBP-binding motif binds to the same groove of the 

CtBP dimer with beta-augmentation as seen for known CtBP- 
motif complexes (e.g. PDB:1HL3 [101]) (Figure 3(C)). Thus, the 
extension might contribute to CtBP binding simultaneously to 
CtIP binding by the annotated part of the protein, and/or could 
enable direct binding of SHARP to CtBP without the contribu
tion of CtIP in certain processes.

SUFU

Suppressor of fused homolog, SUFU (Uniprot Q9UMX1; 484 
aa), is a negative regulator within the evolutionarily conserved 
Hedgehog (HH) signalling pathway that is fundamental in 
embryogenesis and adult tissue homoeostasis [102]. SUFU 
interacts with zinc finger GLI transcription factors (GLI1, 
GLI2 and GLI3) in the cytoplasm [103,104], preventing their 
translocation to the nucleus to activate transcriptional pro
grams. However, it was also shown that SUFU can interact 
with GLI1 while bound to DNA [104]. SUFU N-terminal 
domain (aa 64–240) binds to the C-terminal region of GLI; 
while SUFU_C (aa 253–473) binds to the N terminal of GLI, 
and interactions between SUFU and GLI1 at both sites are 
required for cytoplasmic tethering and repression of GLI1 
[105]. The repressive effect of SUFU on GLI transcription 
factors can be overcome by serine-threonine kinase, Fused 
(serine-threonine kinase protein-36, STK36 in humans) [106].

Disruption of the HH pathway is linked to cancer devel
opment and components of the pathway are targets for antic
ancer therapeutics [107]. In humans, germline and somatic 
mutations in SUFU, accompanied by loss of heterozygosity 
(LOH), results in a predisposition to medulloblastoma [108], 
a type of brain cancer most often affecting children. 
Subsequent work in mouse models showed that Sufu ± mice 
crossed within a p53 null background led to a stark increase in 
medulloblastoma in the animals [109]. SUFU has also been 
implicated in other cancers, including basal cell carcinoma 
[110]. In somatic cells, missense mutations across the protein 
are most common, with 27.94% of 1124 unique samples con
taining SUFU missense mutations recorded in COSMIC (can
cer.sanger.ac.uk) [111].

SUFU is normally targeted for degradation by the Skp1- 
Cul1-F-box protein complex (SCF) through its polyubiquiti
nation by E3 ubiquitin ligase, FBXL17 (F-box and leucine-rich 
repeat protein 17), while in complex with GLI1 [112]. 
Although FBXL17 directs downregulation of SUFU in the 
nucleus [112], it does not seem to do this in a cell cycle- 
dependent fashion, due to the lack of cyclin-dependent kinase 
(CDK) phosphorylation sites in SUFU. More recent work has 
shown that SUFU can operate outside of its role in HH 
signalling by negatively regulating initiation of centrosome 
duplication and DNA replication at the G1-S transition of 
the cell cycle [113].

Analysis of Riboseq datasets allowed the detection of trans
lation of CUG-initiated N-terminal extension (Figure 4(A)), 
which is also supported by PeptideQuery2-based identifica
tion of 5 confident PSMs (Table S2). Based on our subsequent 
motif analysis, the N-terminal extended form of SUFU could 
be under the control of the cell cycle (Figure 4(B)), as sug
gested by the joint presence of several motifs implicated in 
granting cell cycle phase-dependent availability. Efficient 
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phosphorylation by CDKs at motifs (MOD_CDK_SPK_2, 
MOD_CDK_SPxK_1) could be largely fostered by the 
observed cyclin-dependent kinases regulatory subunit 1 
(CKS1) docking motif (DOC_CKS1_1). The sequence pattern 
of the CDK phosphorylation site also matches the target 
sequence pattern required for dephosphorylation by the CDK- 
antagonistic phosphatase, CDC14 (MOD_CDC14_SPxK_1). 
Furthermore, on the border of the extension and the canoni
cal protein sequence, a DEG_SCF_FBW7_2 motif is also 
formed. The SCF ubiquitin ligase substrate recognition sub
unit F-box/WD repeat-containing protein 7, FBXW7, is 
a well-known tumour suppressor, initiating the ubiquitination 
and subsequent degradation of many cell cycle-regulated pro
teins, including oncogenes such as CCNE1(cyclin E), MYC 
and RICTOR [114–116]. In the AF3-predicted model of the 
SUFU-FBXW7 interaction, the SUFU motif is placed onto the 
top of the doughnut-shaped WD40 domain of FBXW7 in 
a similar conformation as seen for other FBXW7 substrates 
(e.g. PDB:2OVQ [117]) (Figure 4(C)). Modeling of the 

potential SUFU-CKS1 interaction resulted in a complex, 
where the clam-shaped CKS1 binds the SUFU extension pep
tide (phosphorylated at T22) in a similar conformation as 
seen for other CKS1-phosphopeptide complexes (e.g. 
PDB:2AST [118]) ((Figure 4(D)). Presence of all these motifs 
conferring cell-cycle dependent control within the relatively 
short, 23-residue disordered extension of SUFU can be con
sidered as a solid support for the existence of a cell cycle- 
regulated SUFU proteoform.

SOX2

One example of N-terminal extension is found in SOX2. The 
high-mobility group (HMG) box transcription factor, SOX2, 
is a master regulator of stemness and pluripotency. By pro
moting oncogenic signalling and maintaining cancer stem 
cells, SOX2 is implicated in the development of several differ
ent cancer types, including breast [119], prostate [120,121], 
pancreatic [122], gastric [123], lung [124] and cervical cancers 

Figure 3. (A) Aggregated Riboseq data for SPEN (ENST00000375759) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints 
are colour-coded according to the translated reading frames shown below the diagram. (B) Domain map of the N-terminally extended SPEN/SHARP protein is 
depicted. The 22 aa extension (blue) and the 3664 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with 
respect to the extended proteoform). Below, the extension is depicted separately with the identified, likely functional CtBP-binding motif marked by dark blue. (C) 
the AF3 model of the proposed domain-motif complex between human CtBP1 dimer (2× P41002, residues 28–370) and the SHARP extension peptide residues 15–30 
(containing the predicted CtBP-binding motif) is provided on the right of the domain maps in cartoon representation.
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[123]. SOX2 was proposed to promote metastasis [125–128], 
and its amplification was observed in several cancer types 
[125,129–135].

Aggregated Riboseq data for SOX2 is consistent with trans
lation of an N-terminal extension from the UUG codon 
located 288nts upstream of the annotated AUG start codon 
(Figure 5(A)). PepQuery2 analysis [83] allowed identification 
of as many as 90 peptide spectrum matches, corresponding to 
several unique peptides including AGPAHSAR (23X), 
MITIIGGGR (18X), MITIIGGGRIGQR (22X) and 
LPSSSPPAR (11X) (Table S2). Identification of semi-tryptic 

peptides started with methionine (MITI . . .) supports the 
assumption that the UUG codon of SOX2 N-terminal exten
sion is decoded with initiator met-tRNAi.

The sequence of the predicted N-terminal extension was 
analysed with the eukaryotic linear motif (ELM) resource [57] 
and yielded 36 motifs that met our criteria (see Methods and 
Table S1). Interestingly, one of such motifs is a putative 
reverse nuclear export signal (NES; ELM class: 
TRG_NESrev_CRM1_2) located in the middle of the 
N-terminal extension (Figure 5(B)). While as a transcription 
factor, SOX2 is expected to operate only in nuclei, a cytosolic 

Figure 4. (A) Aggregated Riboseq data for SUFU (ENST00000369902) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints 
are colour-coded according to the translated reading frames shown below the diagram. (B) Domain map of the N-terminally extended SUFU protein is depicted. The 
23 aa extension (blue) and the 484 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with respect to the 
extended proteoform). Below, the extension is depicted separately with the four identified, likely functional short linear motifs mapped onto two regions (in dark 
blue), respectively. (C) AF3 models of two of the proposed domain-motif complexes are provided below the domain maps in cartoon representation. Structural model 
of human FBXW7 WD40 domain (Q969H0, residues 370–707) bound to SUFU extension peptide residues 15–31, containing the predicted degron in a phosphorylated 
form (p22T). (D) Structural model of human CKS1 (P61024, residues 1–79) modelled with SUFU extension peptide residues 15–31, containing the predicted CKS1 
docking motif in a phosphorylated form (p22T). The phosphorylation is highlighted in stick representation. For the identified modification-type motifs, complexes 
could not be modelled due to the transient nature of the interactions and lack of available experimentally determined complex structures.
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pool of SOX2 also exists [136,137]. Cytosolic SOX2 was 
reported to interact with ribosomes and to regulate the trans
lation of mRNAs that code for proteins implicated in sugar 
metabolism, matrix contacts, and development [137]. While 
the annotated sequence of SOX2 has a known NES that needs 
to get acetylated (at K75, probably by CBP/p300) for mediat
ing the nuclear export of SOX2 [138], the extended isoform 
could potentially ensure a cytoplasmic pool of SOX2 

independent of acetylation. Thus, decreased stringency of 
start codon selection has the potential to change the ratio of 
cytoplasmic and nuclear SOX2 to reprogram gene expression.

Additionally, the 85 residues long extension of SOX2 also 
contains a predicted Anaphase promoting complex (APC/C) 
D box degron motif (Figure 5(B)). This is likely functional, as 
one of the substrate recognition/activator subunits of the 
APC/C that can recognize this motif, CDH1/FZR1, is 

Figure 5. (A) Aggregated Riboseq data for SOX2 (ENST00000325404) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints 
are colour-coded according to the translated reading frames shown below the diagram. (B) Domain map of the N-terminally extended SOX2 protein is depicted. The 
85 aa extension (blue) and the 317 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with respect to the 
extended proteoform). Below, the extension is depicted separately with the three identified, likely functional short linear motifs marked by dark blue and black, 
respectively. (C) AlphaFold 3 (AF3) models of the proposed domain-motif complexes are provided below the domain maps in cartoon representation. Structural 
model of human CDC20 WD40 domain (Q12834, residues 160–477) modelled with SOX2 extension peptide residues 9–27, containing the predicted APC/C D box 
motif. (D) Structural model of human cytoplasmic actin (P60709, residues 1–375) modelled with SOX2 extension peptide residues 17–45, containing the predicted 
actin-binding WH2 motif. (E) structural model of a CRM1-ran-RanBP complex (chains A, B and C of the PDB:5DIF structure were used) modelled with SOX2 extension 
peptide residues 24–46, containing the predicted reverse NES motif.
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a SOX2 binding partner [139], and because for CDC20 (the 
other D box-binding activator subunit), a CDC20-APC/SOX2 
signalling axis has been proposed to control some key biolo
gical properties of glioblastoma stem cells [140]. Since other 
binding modules enabling binding to the APC/C do not seem 
to be present in the annotated SOX2 sequence, it is likely that 
the D box motif of the extension mediates these interactions.

Furthermore, the extension contains a predicted actin- 
binding WH2 motif (Figure 5(B)), which could also be func
tional. We have analysed previously performed pull-down 
assays of SOX2 from the cell lysates of three different cell 
types [137,140] and found that SOX2 bound cytoplasmic actin 
(ACTB) in all three cell types along with some proteins 
involved in the regulation of actin filament assembly, such 
as cofilin and actin capping protein. The presence of this 
rather complex, low-probability actin-binding motif and con
sistently detected SOX2–actin interactions suggest a hitherto 
undiscovered function of cytoplasmic SOX2 in binding to or 
regulating the actin cytoskeleton.

We have performed AF3 predictions of the three identified 
SOX2 extension motifs with the respective motif-binding 
domains (CDC20 WD40 domain for the D box, Actin for 
the WH2 motif and the CRM1-Ran-RanBP1 complex for the 
reverse NES), which resulted in complex structures (Figure 5 
(C,D,E)) where the SOX2 motifs were bound to the right 
surface patch/binding groove of the interacting domains 
with respect to the experimentally determined structures of 
the same motif-domain interactions (e.g. PDB:4UI9,8A2T 
[141,142] and PDB:4BH6 [143]; PDB:5YPU [144] and 
PDB:5DIF [145] for the three motifs, respectively).

TOP1

Analysis of Topoisomerase I, TOP1 allowed identification of 
CUG-initiated N-terminal extension (Figure 6(A)) which is 
supported by 30 PSMs identified with PepQuery2 (Table S2). 
TOP1 is an enzyme that can relax positive and negative 
supercoiling as well as torsional tension of the DNA induced 
by DNA replication and transcription. While performing this 
task, TOP1 creates single strand breaks (SSBs) that allow 
relaxation of the torsional tension of DNA and forms covalent 
DNA-protein crosslinks (DPCs), specifically TOP1 cleavage 
complexes (TOP1ccs) [147]. DPCs represent a double-edged 
sword as they are necessary for genome maintenance, but at 
the same time, when they accumulate due to deregulated 
removal, they can be detrimental for the cell due to blocking 
replication and transcription, as well as other processes invol
ving DNA. TOP1ccs are among the most frequently occurring 
DPCs and therefore even anticancer drugs were developed 
that aim to kill cancer cells by trapping TOP1ccs [147].

The repair of TOP1ccs is regulated on one hand by the 
PARylation-dependent TDP1 pathway, wherein TDP1 is cap
able to cleave the covalent bond between TOP1 and DNA 
[148], and the ubiquitylation-dependent proteasome pathway 
that mediated TOP1 degradation [149]. PARylation of the 
TOP1ccs was demonstrated to enhance USP7-mediated deu
biquitination [150], indicating that USP7 can probably reverse 
RNF4-induced ubiquitylation of TOP1-DPCs [150,151].

The annotated, N-terminal disordered region of TOP1 
contains 20 predicted USP7 ubiquitin-like 2 (UBL2) domain 
docking sites, wherein many lysins involved in the predicted 
docking motifs (described as KxxxK) are known sumoylation 
sites of the SUMO ligase PIAS4. When sumoylated, these 
lysins are masked from UBL2 domain binding and sumoyla
tion was demonstrated to recruit the SUMO-targeted ubiqui
tin ligase RNF4, which ubiquitinates the TOP-DPCs for 
subsequent proteasomal degradation [151]. While the anno
tated fraction of USP7 does not contain predicted docking 
motifs for the main substrate recognition domain, the MATH 
domain of USP7, the identified N-terminal extension contains 
3 copies of MATH domain docking motifs (2 copies of the 
type 1 (DOC_USP7_MATH_1) and one copy of the type 2 
motif (DOC_USP7_MATH_2), which were reported to bind 
the same binding groove of the USP7 MATH domain [152]), 
and thus it is expected to mediate multivalent interactions 
with USP7 (Figure 6(B)). Therefore, our premise is that the 
extended TOP1 proteoform could be more efficiently deubi
quitinated by USP7 than the normal proteoform.

Discussion

Differential expression of N-terminally extended proteoforms 
in cancer cells can be achieved through alterations in certain 
initiation factors that are involved in start codon stringency. 
Experiments using reporter constructs and genome-wide 
CRISPRi screens have shown that dozens of canonical and 
non-canonical initiation factors can alter initiation at subop
timal start codons in mammals. These ‘stringency’ factors 
include eIF1, eIF1A, eIF5, BZW1, BZW2, eIF4G2 and eIF3 
[19,153–158]. Certain somatic mutations in these ‘stringency’ 
factors and regulators can lead to altered non-AUG initiation 
in cancer cells. For example, mutations in the unstructured 
N-terminal tail (NTT) of EIF1A have been associated with 
uveal melanoma [159], and corresponding mutations in yeast 
eIF1A’s NTT can suppress initiation at non-AUG codons 
[160]. Additionally, several somatic mutations in the EIF4G2 
gene have been identified in primary tumours from cancer 
patients. Some of these mutations affect the binding of the 
eIF4G2 protein to interacting proteins and its ability to direct 
mRNA translation [161].

However, as ‘stringency’ factors in general do not seem to 
be frequently mutated in cancer, other mechanisms may con
tribute to the altered usage of non-optimal start codons. One 
possible explanation is the differential protein stability of 
initiation factors such as eIF1 and eIF5. It has been proposed 
that the half-life of these proteins differs, and therefore, 
changes in global protein synthesis or protein degradation 
can alter their ratio which will result in alterations on start 
codon selection [162]. Changes in ‘stringency factors’ can also 
be achieved through modulation of their intracellular locali
zation. Recent study has shown that an increase in the strin
gency of start-codon selection during mammalian mitosis is 
mediated by the release of nuclear eIF1 after nuclear envelope 
breakdown [163]. In addition, post-translational modifica
tions may affect eIF activity. For example, eIF5 can be phos
phorylated by casein kinase 2 (CK2), which alters its 
association with other eIFs. This PTM affects translation 
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initiation [164–167]. However, whether CK2-mediated phos
phorylation of eIF5 affects the stringency of start codon selec
tion is still an open question. In summary, deregulation of 
protein homoeostasis, signalling cascades, and cell cycle pro
gression in cancer cells may lead to differential translation 
from non-AUG codons.

Finally, it should be noted that the probability of initiation 
at certain non-AUG codons can critically depend on the 
mRNA sequences upstream and downstream. Therefore, dif
ferential translation of specific N-terminally extended proteo
forms can be achieved on a gene-specific basis even without 
any changes to ‘stringency’ factors [6]. For instance, it has 
been shown that ribosomal pausing immediately downstream 
of alternative initiation sites can increase the use of upstream 
start codons [168]. This pausing is typically relieved by the 
specialized translation factor eIF5A, and its depletion 

increases translation from the CUG codon in MYC and 
other transcripts [169]. We expect that the putative 
N-terminal extensions described in our study may also be 
under extensive translational control in both normal and 
cancer cells. This has also been suggested for upstream open 
reading frames (ORFs) that can impact the main coding 
sequence and/or produce proteins that contribute to 
a cancer phenotype [170]. In this study we analysed recently 
proposed N-terminal extensions of cancer-associated proteins 
for possible functional readouts. Our analysis highlights that 
PANTs represent a further layer in protein functional versa
tility, similar to alternative and tissue-specific splice isoforms 
[171–173]. We found that the additional sequence regions 
harbour short linear motifs that confer novel functionalities 
and regulatory possibilities on the extended proteoforms com
pared to the canonical ones.

Figure 6. A) Aggregated Riboseq data for TOP1 (ENST00000361337) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints 
are colour-coded according to the translated reading frames shown below the diagram. B) at the top, the domain map of the N-terminally extended TOP1 protein is 
depicted. The 37 aa extension (blue) and the 765 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with 
respect to the extended proteoform). Below, the extension is depicted separately with the three identified, likely functional USP7 MATH domain-binding short linear 
motifs marked by dark blue. At the bottom, the domain map of USP7 is shown, with the domain boundaries provided based on Figure 1 of Valles et al. [146]. Thick 
black arrows connect the domains of USP7 with the corresponding binding motifs in extended TOP1 that likely interact. The interactions could not be modelled by 
AF3, because it could not correctly predict the beta-rich domain structure of the USP7 MATH domain.
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Recent work by Bogaert et al. [174] generated a catalogue 
of N-terminal extended proteoforms from the cytosol of 
HEK293T cells and selected 22 N-terminal/canonical protein 
pairs for interaction mapping using a high-throughput work
flow (Virotrap [175]) and yeast two-hybrid screening. From 
those pairs, three were selected for further experimental vali
dation using affinity purification-mass spectrometry (AP-MS). 
In agreement with our work, the N-terminal extended proteo
forms identified by Bogaert et al. had unique interaction 
partners when compared to the canonical protein, highlight
ing the functional diversity created by the presence of the 
extended proteoforms.

We successfully discovered some very interesting cases 
where N-terminal extensions (supported by both ribosome 
footprinting and proteomics evidence) could confer different 
localization, turnover rates or interactions on proteins classi
fied oncogenic and tumour suppressive. Indeed applications 
of proteomic approaches are allowing the functional interpre
tation of proteomics data [176]. Top-down proteomics meth
ods that do not include proteolytic digestion and employ 
multi-dimensional separation techniques, followed by mass 
spectrometry [177–179], could be used to comprehensively 
identify and characterize N-terminally extended proteoforms 
in different cancers and various cell types. Methods that focus 
on N-termini, such as COmbined FRActional DIagonal 
Chromatography (COFRADIC) [180,181], as successfully 
employed in the work by Bogaert et al. [174], could have 
expanded use across cancer cell lines. To discover and validate 
the interactors of N-terminal extensions, AP-MS remains one 
of the best ways to characterize interactomes [174]; however, 
it can be labour intensive. Nevertheless, we encourage the 
scientific community to experimentally validate the discov
ered interaction sites of the extended proteoforms and eluci
date their role in tumorigenesis and cancer progression. The 
expansion of proteomic methods, in combination with sys
tems and computational biology, will aim to address the vast 
diversity and dynamics of the proteome and continue to 
improve our understanding of human biology and disease.

Methods

Dataset assembly

Genes encoding proteins with non-annotated N-terminal 
extensions translated from non-AUG alternative translation 
initiation sites (TISs) were obtained from the PhyloSET and 
RiboSET datasets published by Fedorova et al. [51,182]. The 
two sets were merged to look for an overlap with the list of 
cancer-associated protein-coding genes downloaded from 
OncoKB (1164 protein-coding genes as of 8/11/2024) 
[52,53]. 49 cancer-associated genes could be identified within 
the merged set of N-terminally extended genes. Of these, 31 
belong to RiboSET where the position of the alternative TIS 
was indicated, thus the extended proteoforms and the exten
sion sequences could be obtained in an automated manner. 
For the remaining 18 genes belonging to PhyloSET, the 
N-terminal extension was only predicted by Fedorova et al. 
based on PhyloSCF scores and thus the alternative TISs were 
not indicated. For these genes, we manually annotated 

translated N-terminal extensions using RiboCrypt. This man
ual annotation allowed us to identify translated N-terminal 
extensions for 9 genes (TRIM33 (with alternative initiation 
codon: CUG), ARID3A (CUG), POU2AF1 (CUG), SPEN 
(CUG), DCUN1D1 (CUG), UBE2A (CUG), MAF (CUG), 
ASXL1 (GUG), MIB1 (GUG)), while the other 9 genes were 
removed from the dataset due to the lack of convincing 
ribosome footprint patterns N-terminal to the annotated 
TIS. Therefore, we ended up with a list of 40 cancer- 
associated genes with experimental evidence for an 
N-terminal extension resulting from an alternative TIS 
(Table S1), which were subjected to further analysis.

Computational investigation of the N-terminal extensions

We performed degron and stability predictions on the normal 
and extended proteoforms of the 40 genes using 
Degronopedia [54]. The number of predicted degrons, all 
predicted protein stability index (PSI) scores (N-terminal 
PSI assuming cleaved initiator Met, N-terminal PSI assuming 
non-cleaved initiator Met and C-terminal PSI) and the pre
dicted cleavage status of the initiator Met (cleaved/not cleaved 
(C/NC)) were obtained and compared between the two pro
teoforms (Table S1).

Prediction of Signal Peptides and their cleavage sites was 
performed with SignalIP 6.0 [55] web server with the follow
ing settings: Organism – Eukarya; Output format – Long 
output; Model mode – Fast.

The webserver part of the ELM linear motif database [57] 
was used to obtain predicted short linear motifs (SLiMs) for 
the extended proteoforms. The predicted linear motifs of the 
N-terminal extensions (if at least one residue was contributed 
by the extension sequence to the predicted motif, it was 
already accepted as an extension motif to be able to identify 
all possible binding sites contributed or complemented by the 
extensions) were filtered for those with a pattern probability <  
0.015 (this value is provided by the ELM database for anno
tated motif classes and represents how likely the motif pattern 
occurs in random sequences) to avoid highly degenerate 
motifs with excessive false positive prediction rates. For 
strictly nuclear genes (according to UniProt), the motif search 
was limited to nuclear motifs, and this was indicated with ‘N!’ 
in Table S1 column T before listing the detected motifs. The 
resulting, predicted extension motifs are listed for all 40 genes 
(Table S1). Subsequently, we performed extensive literature 
search and mining of protein–protein interaction databases, 
e.g. BioGRID [183], to identify the subset of the predicted 
motifs that are likely functional based on matching the func
tional landscape of the given protein, i.e. providing an expla
nation for a known functionality or binding partner of the 
protein that could not be derived from the normal 
proteoform.

For a subset of the 40 proteins, mainly those undergoing 
homo-oligomerization or heterodimerization, the 
AlphaFold 3 (AF3) web server [56] was used to model the 
potential structural effect of the N-terminal extensions on 
oligomerization (Table S1). Similarly, AF3 was used to 
model the selected domain–motif interactions described in 
the article and depicted in Figures 2–5. In these AF3 
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predictions, the motifs were provided in the form of pep
tides that include  ±  5 residues flanking regions around the 
actual motifs predicted by ELM. Phosphorylated form of 
the motif was used in the case of phospho-dependent inter
actions, such as the CKS1 docking motif and the FBXW7 
degron motif of SUFU.

Identification of proteomics evidence for the existence of 
N-terminal extensions

Sequences of N-terminal extensions including the overlap 
with corresponding CDS until the first trypsin cleavage site 
were used as input (SPEN: MTVSYEAGEGEPAAAVAGTP 
PSMVR; SOX2: MITIIGGGRIGQRRREALFLILIPVCLSLFFP 
QIILRLIFLAEPCAPDTPARLPSSSPPARGPPKVPAGPRVG
GRRRAGPAHSAR; SUFU: MARQCSPRRLPSPVPPVPALRT 
PMAELRPSGAPGPTAPPAPGPTAPPAFASLFPPGLHAIYG
ECR; TOP1: MRLLEPPESPSARTGRFAVCVSPTPPRLPPRSS 
LRADMSGDHLHNDSQIEADFR; SFPQ: MASTFPERLLRFC 
LDRPLTTDM SR;) we searched for proteomic evidence 
using targeted peptide search engine PepQuery2 [83]. 
PepQuery analysis was conducted using a web-based applica
tion with the following default settings: PepQuery version 
2.0.2, Fixed modification -Carbamidomethylation of C, 
Variable modification – Oxidation of M, Maximal allowed 
variable modification  −  3, Add AA substitution – false, 
Enzyme – Trypsin, Max Missed cleavages  −  1, Precursor 
mass tolerance  −  20.0, Range of allowed isotope peak errors   
−  0, Precursor ion mass tolerance unit – ppm, Fragment ion 
mass tolerance  −  0.6, Fragment ion mass tolerance unit – 
Da, Scoring algorithm – Hyperscore, Min score  −  12.0, Min 
peaks  − 10, Min peptide length  − 7, Max peptide length  −  
45, Min peptide mass500.0, Max peptide mass  −  10000.0, 
Random peptide number  −  1000 in fast searching mode. 
The reference database used is Gencode_V34_human. The 
following MS/MS datasets identifiers were used for analysis: 
PDC000220, PDC000219, MSV000085836, PDC000128, 
PDC000127, PDC000245, PDC000205, PDC000204, 
PDC000222, PDC000221, PDC000233, PDC000232, 
PDC000234, PDC000237, PDC000224, PDC000149, 
PDC000153, PDC000271, PDC000270, PDC000176, 
PDC000180, PDC000239, PDC000121, PDC000120, 
PDC000117, PDC000116, PDC000109, PDC000251, 
PDC000110, PDC000119, PDC000118, PDC000174, 
PDC000173, PDC000111, PDC000112, PDC000115, 
PDC000114, PDC000226, PDC000126, PDC000125, 
PDX010154, PDX016999, PDC000198, PDC000262, 
PDC000216, PDC000215, PDC000214.

Software tools used for visualizations

Figure panels showing domain maps were created using 
DOG2 visualization software [184], while AF3-predicted 
structural models were depicted using UCSF ChimeraX 
[185]. The Venn diagram was drawn using a dedicated web
site: https://bioinformatics.psb.ugent.be/webtools/Venn/.
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