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ABSTRACT

Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have
uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG
codons. If an upstream non-canonical start site is located within a frame with an annotated coding
sequence (CDS), such translation events can lead to the production of proteoforms with altered
N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors
(e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational
analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated
proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We
identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2.
Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of
oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an
explanation for previously described functionalities or interactions of the proteins. In all, we identify
novel cases where PANTSs likely show different localization, functions, partner binding or turnover rates
compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of
translation initiation, often seen under conditions of cellular stress, may result in reprogramming of
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translation to generate novel PANTs that influence cancer progression.

Introduction

A crucial step in protein synthesis is the selection of the
translation initiation site on the mRNA. In eukaryotic cells,
this process is largely accomplished through a scanning
mechanism. The pre-initiation complex (PIC), which consists
of the 40S ribosomal subunit, certain translation initiation
factors, and a methionine-tRNA (met-tRNA), enters the
5’end of the mRNA and scans the mRNA sequence from 5’
to 3’. Recognition of a suitable start codon, typically AUG,
leads to the dissociation of the initiation factors and the join-
ing of the 60S subunit (reviewed in [1,2]). The ability of the
PIC to reach and select a specific start codon on the mRNA
depends on several factors, including the availability and
activity of the translation initiation factors, the structure of
the mRNA, and RNA-binding proteins. These factors can
interfere with the scanning process and the selection of the
start codon. Differences in mRNA sequences, which are
inspected by scanning proteins, dictate translation factor
dependency. While some mRNAs require a set of ‘canonical’
initiation factors for translation, others require additional
non-canonical factors (reviewed in [3]). This allows for selec-
tive translation control, where alterations in signalling

pathways differentially affect the translation of various
mRNA species, resulting in different proteomic changes.
When the PIC (pre-initiation complex) scans the mRNA 5’
leader region, it encounters a potential start codon that can
form a codon-anticodon interaction with the met-tRNA in
the P site. The optimality of this interaction is probed by
multiple components of the PIC, including rRNA bases, ribo-
somal proteins, and initiation factors. The efficiency of start
codon recognition depends on several factors, including the
identity of the codon (some non-AUG codons can also be
recognized), its nucleotide context, and the presence of certain
initiation factors, such as eIF1, eIF1A, and eIF5. Due to these
factors, the scanning ribosome can continue scanning if the
start codon is not optimal, a phenomenon known as leaky
scanning [4]. Leaky scanning means that translation initiation
can occur at more than one start codon on certain mRNAs.
If these start codons are located within the same open
reading frame and upstream of each other, translation can
produce polypeptides with extended N-termini [5,6] which
may yield alternative proteoforms. The term ‘proteoform’
describes all molecular variants in which a protein can exist
and is typically used to refer to differences at the protein level
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(i.e. translational products). While isoforms are typically pro-
duced by alternative splicing of the mRNAs, proteoforms can
be produced by translational and/or post-translational
mechanisms, such as alternative translation initiation, stop
codon readthrough, posttranslational modifications or proteo-
Iytic processing. Although we cannot precisely predict all the
posttranslational mechanisms, and thus the actual proteo-
forms that will exist in cells, we refer to the N-terminally
extended polypeptides as proteoforms because they differ
from the canonical forms on the level of translation.

Deregulated translation is a hallmark of cancer cells [7-14].
Regarding non-AUG initiation events, there are numerous
examples of N-terminally extended proteoforms for genes
involved in cancer progression, one of the earliest such dis-
coveries was made for the ¢-MYC oncogene in 1988 [15]. By
analysing the in vitro protein-coding capacity of ¢-MYC
c¢DNAs, Hann et al. found that c-MYC1 (p67) proteoform
was initiated by an upstream CUG codon, adding a 14-amino
acid extension; whereas the c-MYC2 (p64) proteoform was
initiated by the canonical AUG start [15]. While there was
lower translation efficiency of ¢-MYCI, with total synthesis
about 10-15% of the level of the canonical protein, this
changed when cells were grown to high densities, and this
effect seemed to be due to amino acid restriction [16,17].
Overall, early studies on ¢-MYC translation pointed to mod-
ulation of the scanning ribosomal pre-initiation complex that
impacted start codon selection, resulting in the production of
different MYC proteoforms. More recently, work by Sato et al.
(2019), showed that the balance of c-MYC proteoforms could
be tipped in favour of the AUG-initiated isoform by the
oncogenic protein, 5MP1 (eukaryotic initiation factor 5
(eIF5)-mimic protein) that competes with eIF5 [18] and pro-
motes malignancy in colorectal cancer by translational repro-
gramming [19].

In a cancer context, tumour suppressor proteins act as
negative regulators in biochemical and cellular processes,
essentially serving as brakes within a system. Indeed, loss or
disabling mutations of tumour suppressor genes, like RBI,
TP53 and PTEN, are found in numerous cancers [20]. The
phosphatase and tensin homolog on chromosome ten, PTEN,
encodes a protein that blocks the activation of the phospha-
tidylinositol 3-kinase (PI3K)/AKT pathway by dephosphory-
lating lipid substrates [21,22], thereby influencing cell
proliferation, survival, growth and metabolism.

The first description of N-terminal extension of PTEN
came from a systematic analysis of the extent of non-AUG
initiation in human [23]. Ivanov et al. (2011) proposed that
PTEN had a 173-aa extension due to translation initiation
from a CUG codon located 519 nucleotides upstream of the
canonical AUG start [23]. The extended form was supported
experimentally and termed PTEN-L (PTEN-Long or PTEN-a)
[24-26]. The PTEN family was further expanded by another
N-terminal extended proteoform that is initiated by an in-
frame AUU codon (PTEN-M or PTEN-b), adding 146 aa
[26,27]. Taken together, N-terminally extended proteoforms
of PTEN have been shown to have altered localization, sub-
strates and interaction partners [25,27,28].

More recent work suggests that PTEN translational var-
iants can modify gene expression by promoting histone

methylation, opposing PTEN’s traditional role as a tumour
suppressor [29]. Through a direct interaction with WD40
repeat-containing protein 5, WDR5, the extended PTEN pro-
teoforms can modulate the efficiency of histone H3K4
methyltransferases, which in turn, upregulates expression of
target genes such as Notch3 [29]. Binding studies and a crystal
structure (PDB:8X3S) showed that the N-terminal extension
of PTEN-a contains a WDR5-interacting motif (WIN; aall6-
-148) [30], wherein mutagenesis of the key residues effectively
reduced the protein’s pro-proliferative effect in different
tumour models [30]. Besides conferring new functionality to
PTEN, the N-terminal extension of PTEN is also responsible
for altered protein stability due to interactions with
a substrate recognition component of the SCF (SKP1-CUL1
-F-box protein) E3 ubiquitin-protein ligase complex, mediat-
ing ubiquitination [29].

Cancer-associated genes can have conflicting roles as onco-
genes and tumour suppressors, depending on the specific
context and cancer type. An example is Wilms’ tumour,
WT1, a transcription factor that has an important role in
developmental processes and cell survival [31]. WT1 was
first identified as a tumour suppressor gene in Wilms’
tumours [32] but subsequent work showed that overexpres-
sion or mutation of WT1 contributes to tumorigenesis of
some leukaemias and solid tumours [33,34]. For many years,
how WTI both promotes and suppresses cancers remained
elusive [35]. However, recent work indicates that WT1 with
a CUG-initiated, 68-aa N-terminal extension is the oncogenic
form of the protein, cugWT1 [36,37]. Lee et al. found that
cugWT]1 extension was phosphorylated at S62 by AKT, lead-
ing to increased stability of WT1 and increased expression of
its cancer-promoting target genes [36]. Subsequent work sup-
ported an oncogenic role of cugWT1 in mouse models of
colorectal and lung cancers [37].

All cells rely on growth factors to mediate cell prolifera-
tion, differentiation, survival and migration, and dysregula-
tion of growth factor signalling often contributes to cancer
[38]. N-terminally extended proteoforms also impact growth
factor signalling as illustrated by fibroblast growth factor 2
(FGF2, also known as basic FGF or bFGF) and vascular
endothelial growth factor (VEGF). For FGF2, four non-AUG
initiated forms of the protein were discovered, resulting in
proteins of 22, 22.5, 24 and 34kDa [39-41]. Within the
N-terminally extended versions, a conserved glycine-arginine
repeat motif with several methylated arginine residues has
been found to promote nuclear transport and/or retention
[42-44].

Similar to FGF2, VEGF also has several extended proteo-
forms that can be generated from initiation at upstream, in-
frame CUG codons [45,46], with the longest proteoform hav-
ing a 180-aa N-terminal extension (VEGF-L). VEGF-L is
subject to proteolytic processing [47], and in recent work,
Katsman et al. (2022) provide evidence that the resulting
proteolytic fragment, N-VEGF, translocates to the nucleus to
participate in transcriptional regulation of angiogenic genes,
including VEGF, and key genes associated with cell survival
under hypoxic conditions [48].

The development of ribosome profiling techniques has
allowed researchers to discover novel translated regions in



the human genome [49,50]. Recently, Fedorova and collea-
gues performed global analyses of Ribo-seq data and phylo-
genetic conservation, uncovering thousands of novel
N-terminal protein extensions encoded by human mRNAs
[51]. We reasoned that some of these novel N-terminal exten-
sions may be involved in cancer. Our study explores
N-terminal extensions of cancer-related proteins and pro-
poses different ways in which they may provide differential
intracellular localization, stability, and interactions.

Results

Fedorova et al. [51] performed two types of analysis. First,
they generated a set of genes with translated N-terminal
extensions called RiboSET using aggregated Riboseq data.
Second, they carried out an analysis of the evolutionary con-
servation of N-terminal extensions to show evidence of pro-
tein coding evolution. Genes with these evolutionary
conserved N-terminal extensions were included in
PhyloSET. We decided to find which genes from RiboSET
and PhyloSET were known in relation to cancer. Analysis of
OncoKB [52,53] yielded 49 cancer-related genes with poten-
tial N-terminal extensions (Figure 1). Manual annotation of
the translated N-terminal extensions of 18 PhyloSET-derived
genes using RiboCrypt allowed us to predict translated
N-terminal extensions in 9 cases (see Methods). Therefore,
our computational analysis was performed on 40 cancer-
associated genes with experimentally supported N-terminal
extensions (Figure 1; Supplementary Table S1).

We have considered several different scenarios regarding
how N-terminal extension can influence protein availability,
activity, or novel function. First, N-terminal extensions can
affect proteoform stability. To investigate this possibility, we
have compared the predicted stabilities of proteoform pairs
using the Degronopedia resource [54]. Second, the
N-terminal extension can either add a signal sequence or
interfere with an existing signal sequence to alter protein
targeting. This was explored using SignalP 6.0 [55]. Third,
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the N-terminal extension could potentially alter the folding
of a proteoform, which can influence or even completely
change its activity. For selected cases, we used AF3 [56] to
predict the structure of N-terminally extended proteoforms.
Finally, the N-terminal extension can obtain short linear
motifs (SLiMs/ELMs) that can add novel binding partners,
sites for posttranslational modifications, and localization
signals. To do this, we explored N-terminally extended pro-
teoforms using the ELM database, which is a resource con-
taining a collection of annotated eukaryotic linear
motifs [57].

When investigating the altered stabilities of proteoforms,
we consider two possible scenarios. If an N-terminally
extended proteoform is more stable than an AUG-initiated
proteoform, then increasing initiation at a non-AUG codon
could significantly increase the level of the protein.
Conversely, if an N-terminal extension makes a proteoform
less stable, then increasing non-AUG initiation would rapidly
deplete protein levels. Our analysis using Degronopedia shows
that for 6 proteins (UBE2A, LPP, SND1, CARM1, TCF7L2
and SOX2) the extended form is considerably less stable (at
least 1 unit on the predicted protein stability index (PSI)
scale) than the annotated form. Among these, the largest
reduction in stability is observed for the TCF7L2/TCF-4
tumour suppressor (more than 2 PSI units) that regulates
the WNT signalling pathway and transactivates downstream
target genes involved in the progression of colorectal cancer.
It is directly involved in regulating the expression of the
oncogene MYC and inducing epithelial-mesenchymal transi-
tion (EMT) [58-61]. At the same time, there are two proteins,
FSTL1 and PRSSS, for which the extended form is consider-
ably more stable (at least 1 unit on the PSI scale) than the
annotated form (Table S1). In the case of 12/40 cancer-
associated proteins the N-terminally extended form is also
predicted to alter the cleavage status of the initiator methio-
nine. For 8 proteins the Met is predicted to be cleaved in the
normal form, while not cleaved in the extended form, while
for 4 proteins it is the other way around (Table S1).

PhyloSET (177) RiboSET (390) |Intersection Genes in intersection
PhyloSET & RPTOR, SFPQ
RiboSET & OncoKB
PhyloSET & ; 4 ; ,
RiboSET =XR2. BRD7, H1FX, HDGF, PIM2
TRIM33, POU2AF1, ARID3A, DCUN1D1,
PhyloSET & SPEN, MAF, UBE2A, MIB1, ASXL1,
OncoKB
FSTL1, LPP, YWHAE, NPM1, SND1, EZR,
_ BLM, ZNF384, LASP1, GNA13, PPP4R2,
RiboSET & HNRNPA2B1, HSP90AA1, SOX2, SUFU,
OncoKB KLF5, PPP1CB, PMAIP1, ESCO2, KDSR,
SMARCA1, TCF7L2, PRSSS8, JUN, KAT7,
OncoKB (1164) MAD2L2, CARM1, TOP1, TRIP13

Figure 1. The Venn diagram shows the overlaps between the two datasets of genes encoding N-terminally extended proteins obtained from Fedorova et al.,
PhyloSET (177 genes) and RiboSET (390 genes), and the list of cancer-associated genes from OncoKB (1164 genes). On the right, genes belonging to the different
intersections of the Venn diagram are listed. Cancer-associated genes with experimentally supported N-terminal protein extensions that are in the focus of this study
are listed in black, while genes that were excluded due to not being annotated in OncoKB (intersection of PhyloSET & RiboSET) or showing no sign of translation
upstream of the annotated start codon by RiboCrypt (intersection of PhyloSET & OncoKB, second half of gene list) are listed in grey.
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Next, we investigated whether N-terminal extensions could
contribute to signal sequence recognition. Although none of
the extensions added novel signal sequences, in two genes,
N-terminal extensions may interfere with protein secretion
and translocation. For FSTLI, the N-terminal extension sig-
nificantly decreased the probability of protein targeting
(0.5716 vs 0.9998). In contrast, for PRSS8, the N terminus
was predicted to preclude targeting. PRSS8 has been described
as a potent tumour suppressor in colorectal carcinogenesis
and metastasis [62] and is normally secreted to the extracel-
lular space to be part of the seminal fluid. Increased expres-
sion of the N-terminally extended, likely mis-targeted
proteoform, at the expense of the canonical one, could reduce
the availability of PRSS8 in the seminal fluid and thereby
contribute to cancer progression.

As a next step, we selected cases for structural modelling by
AF3 [56] to identify structural changes introduced by the
extensions. We were primarily interested in the cases where
the extension could interfere with homo-oligomerization or
heterodimerization, so we selected a subset of the 40 proteins
with such information in UniProt [63](see Table S1 column
U). While there are likely structural changes introduced by
the N-terminal extensions, in our tested cases, the AF3 struc-
tural predictions did not show consistent changes between the
five models produced for WT and five models representing
extended forms. Often the five models obtained for the WT
form already showed large structural variability (based on
visual inspection in ChimeraX), which precluded the detec-
tion of structural changes caused by the extensions. Despite
considerable effort put into this part of the analysis, we found
the data to be too inconclusive to report any results.

Finally, we explored how SLiMs in N-terminal extensions
could affect the function of proteins. The extended proteo-
forms were searched for linear motif candidates using the
ELM database as a web server. The resulting hits were
filtered for motifs overlapping with the extensions (cleavage
motifs and overly redundant motifs with a probability score
>0.015 were removed; see candidate extension motifs per
protein in Table S1). Although this search resulted in
a plethora of candidate motifs, most of which are likely not
true, functional linear motifs, we believe that careful analysis
of such information on a case-by-case basis including func-
tional profiling, literature mining and consideration of the
known interaction partners of the investigated proteins
could result in the discovery of new protein functional mod-
ules. Therefore, we decided to conduct targeted analyses of
selected candidates and present our results in the next sec-
tion of the manuscript.

SFPQ

Splicing factor, proline- and glutamine-rich, SFPQ (Uniprot
P23246, also known as PSF; 707 aa) is a predominantly
nuclear matrix-associated, nucleic acid-binding protein that
is one member of the Drosophila behavior/human splicing
(DBHS) family of proteins [64]. Although the protein was
first identified through its participation in messenger RNA
(mRNA) splicing as a component of the spliceosome and U4/
U6.U5 small nuclear ribonucleoprotein  (tri-snRNP)

complexes [65-67], it is clear that SFPQ mediates many
nuclear events in addition to splicing [64].

SFPQ has an N-terminal disordered region that is enriched
with proline and glutamine residues, a DNA-binding domain
(DBD), two RNA-recognition motifs (RRM1 and RRM2), and
a protein interaction domain (NonA/paraspeckle (NOPS))
that includes an extended coiled-coil subdomain that is
important for dimerization, as shown in the resolved crystal
structure (PDB: 4WII [68]). SFPQ has a nuclear localization
sequence (NLS) at its C-terminus (aa701-707); however, there
are reports that the protein has non-nuclear roles in the
cytoplasm [69,70].

One of SFPQ’s main protein-binding partners is non-POU
domain-containing  octamer-binding  protein, NONO,
a multifunctional, RNA-binding protein that is also a DBHS
family member [71,72]. SFPQ and NONO can be arranged as
a heterodimer and a crystal structure has been resolved (PDB:
7PU5 [73]). SFPQ and NONO can also form a ternary com-
plex with topoisomerase I, TOP1 (see below) that stimulates
the enzyme’s activity [74,75].

Given a wide range of cellular activities, it is perhaps
unsurprising that SFPQ has been implicated in several
human diseases, including neurological disorders and cancer
[76]. Knockdown of SFPQ in colorectal cancer cells was
shown to enhance apoptosis [77], and multiple reports link
SFPQ to altered transcriptional, transport and splicing profiles
of mRNAs involved in cancer progression and drug resistance
[78-80]. Still the most direct involvement in cancer comes
from Xpll.2 translocation renal cell carcinoma (XP11.2
tRCC) in which SFPQ is the fusion partner of MiT (micro-
phthalmia transcription factor) family member gene, tran-
scription factor binding to IGHM enhancer 3 (TFE3) [81].
The SFPQ/TFE3 gene fusion is also present in perivascular
epithelioid cell tumours (PEComas) and melanotic Xpll
translocation renal cancers [82].

The N-terminal extension of SFPQ is supported by strong
ribosome footprint densities within the region upstream of
the annotated start codon (Figure 2(A)). To search for pro-
teomic evidence of the N-terminal extension of SFPQ, we
implemented targeted peptide search engine PepQuery2
[83]. The search in 48 MS/MS datasets available in the web
version (https://pepquery2.pepquery.org/) yielded 71 confi-
dent peptide spectrum matchings (PSMs) corresponding to 3
peptides: FCLDRPLTTDMSR (64x), MASTFPER (3x),
MASTFPERLLR (4x) (Supplementary Table S2). In the 21-
residue N-terminal extension of SFPQ we could identify two
unique motifs that likely confer new protein—protein interac-
tions (Figure 2(B)). The first is DOC_CYCLIN_RxL_1 (aa5--
15, FPERLLRFCLD), a cyclin N-terminal domain docking
motif. Work by Rayner et al. (2021), using a proximity liga-
tion method (Biotin Identification (BioID)), immunoprecipi-
tations and mass spectrometry, identified novel interaction
partners of cyclin F, including SFPQ [84]. This interaction
was further supported by high-throughput data [85].

Although not examined in a cancer context, an interaction
between cyclin F and SFPQ is of clinical relevance to familial
and sporadic amyotrophic lateral sclerosis (ALS) and fronto-
temporal dementia (FID). In 2016, mutations of the cyclin
F gene, CCNF, were discovered in ALS/FTD, and CCNF
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Figure 2. (A) Aggregated Riboseq data for SFPQ (ENST00000357214) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints
are colour-coded according to the translated reading frames shown below the diagram. (B) Domain map of the N-terminally extended SFPQ protein is depicted. The
21 aa extension (blue) and the 707 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with respect to the
extended proteoform). Below, the extension is depicted separately with the two identified, likely functional short linear motifs marked by dark blue and black,
respectively. (C) AlphaFold 3 (AF3) models of the proposed domain-motif complexes are provided below the domain maps in cartoon representation. Structural
model of human cyclin F cyclin domain (P41002, residues 290-531) modelled with SFPQ extension peptide residues 1-20, containing the predicted cyclin-binding
RxL motif. (D) Structural model of human Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (P62136, residues 1-305) modelled with SFPQ extension

peptide residues 1-18, containing the predicted PP1 docking RVXF motif.

variant (cyclin F: S621G) resulted in an accumulation of
ubiquitinated proteins, likely due to abnormal ubiquitination
or transport to the proteasome [86]. SFPQ was already linked
to pathological features of neurological disorders, including
ALS [87]. Following on from this, it was shown that over-
expression of the cyclin F mutant S621G led to an increase in
the insoluble fraction of SFPQ and disrupted its subcellular
distribution [84]; thus, cyclin F mutations could lead to dys-
regulation of SFPQ’s influence on RNA metabolism, which
contributes to the pathomechanisms of ALS/FTD.

It is possible that the RxL motif in the N-terminal exten-
sion might mediate this interaction, as there is no other copy
of this motif within SFPQ. Although cyclin F is more of an E3
ligase adaptor than an ordinary cyclin [88], it has cell cycle
regulatory activity under certain circumstances and a cyclin
domain that was shown to be functional and binding to RxL
motifs (also called Cy motif) in several proteins [89-91].
Modeling of the interaction by AF3 led to a complex wherein
the RxL motif of the SFPQ extension binds to the known RxL-
binding groove of the Cyclin F cyclin domain in helical
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conformation, similarly to RxL motif complexes with known
structure (e.g. PDB: 1H24, 1H25, 1H26, 1H27, 1H28 [92])
(Figure 2(C)).

The second motif identified in the N-terminal extension is
DOC_PP1_RVXF_1 (aa6-13, PERLLRFC), which overlaps
with the RxL motif. The RVxXF motif mediates the interaction
with serine/threonine-protein phosphatase 1, PP1 [93].
Previous data provide evidence for an interaction between
SFPQ and PP1. SFPQ was found to interact with PP1CA
(the catalytic subunit of the PP1 phosphatase) in a low- and
high-throughput study [94]. While for the close-relative
NONO, the RVxF motif could be identified and was deter-
mined to mediate an interaction with PP1, it could not be
found in SFPQ [94].

We suggest that the RVXF motif within the N-terminal
extension of SFPQ could be functional and mediating the
interaction with PP1, which could be especially important
when SFPQ forms homodimers and does not form
a complex with NONO. In the AF3-predicted complex the
RVXF motif of the SFPQ extension binds to PP1-alpha cata-
lytic subunit in beta-augmentation, similarly to other bound
RVxF motifs with known structure (e.g. PDB: 3N5U [95])
(Figure 2(D)). This interaction could lead to dephosphoryla-
tion of SFPQ and loss of its transcriptional co-repressor
activity [94].

SPEN

The SHARP protein encoded by gene SPEN is a huge tran-
scriptional repressor of 3664 residues that acts as a scaffold for
different proteins and complexes important for expression
regulation. It was identified as a component of transcriptional
repression complexes in both nuclear receptor and Notch/
RBP-Jkappa signalling pathways. The N-terminal ~ 600 resi-
dues contain 4 RRM domains that were reported to mediate
DNA as well as RNA binding, and the protein has extended
disordered regions that exceed thousand residues in length.
A central RID domain was reported to bind nuclear receptors,
while the C-terminal SPOC domain is known to recruit tran-
scriptional corepressors SMRT/NCoR and histone deacety-
lases HDAC1/2 through binding their LSD motifs [96-98],
as well as the C-terminal disordered domain of RNA poly-
merase II (Pol II [99]). The RBP-Jkappa/SHARP complex was
shown to recruit the CtIP and CtBP corepressors to silence
Notch target genes in a manner that CtIP/CtBP functionally
complement SHARP in repression [100]. While CtIP binding
could be mapped to the repressor domain of SHARP, CtBP
binding could not be precisely mapped.

However, translation from an in-frame CUG codon in 5’]ea-
der leads to a 22 aa-long N-terminal extension (Figure 3(A)),
which is supported by PepQuery2 proteomics analysis uncover-
ing 6 confident peptide spectrum matchings (Table S2).
Interestingly, this short extension of SHARP contains a CtBP-
binding motif, while the annotated fraction of the giant protein
does not, which makes it highly likely that the extended form
plays a key role at least in the silencing of Notch genes, where
CtBP binding is required (Figure 3(A,B)). Modeling of the
interaction by AF3 resulted in a complex structure wherein the
SHARP CtBP-binding motif binds to the same groove of the

CtBP dimer with beta-augmentation as seen for known CtBP-
motif complexes (e.g. PDB:1HL3 [101]) (Figure 3(C)). Thus, the
extension might contribute to CtBP binding simultaneously to
CtIP binding by the annotated part of the protein, and/or could
enable direct binding of SHARP to CtBP without the contribu-
tion of CtIP in certain processes.

SUFU

Suppressor of fused homolog, SUFU (Uniprot QOUMX1; 484
aa), is a negative regulator within the evolutionarily conserved
Hedgehog (HH) signalling pathway that is fundamental in
embryogenesis and adult tissue homoeostasis [102]. SUFU
interacts with zinc finger GLI transcription factors (GLII,
GLI2 and GLI3) in the cytoplasm [103,104], preventing their
translocation to the nucleus to activate transcriptional pro-
grams. However, it was also shown that SUFU can interact
with GLI1 while bound to DNA [104]. SUFU N-terminal
domain (aa 64-240) binds to the C-terminal region of GLI;
while SUFU_C (aa 253-473) binds to the N terminal of GLI,
and interactions between SUFU and GLII at both sites are
required for cytoplasmic tethering and repression of GLI1
[105]. The repressive effect of SUFU on GLI transcription
factors can be overcome by serine-threonine kinase, Fused
(serine-threonine kinase protein-36, STK36 in humans) [106].

Disruption of the HH pathway is linked to cancer devel-
opment and components of the pathway are targets for antic-
ancer therapeutics [107]. In humans, germline and somatic
mutations in SUFU, accompanied by loss of heterozygosity
(LOH), results in a predisposition to medulloblastoma [108],
a type of brain cancer most often affecting children.
Subsequent work in mouse models showed that Sufu * mice
crossed within a p53 null background led to a stark increase in
medulloblastoma in the animals [109]. SUFU has also been
implicated in other cancers, including basal cell carcinoma
[110]. In somatic cells, missense mutations across the protein
are most common, with 27.94% of 1124 unique samples con-
taining SUFU missense mutations recorded in COSMIC (can-
cer.sanger.ac.uk) [111].

SUFU is normally targeted for degradation by the Skpl-
Cull-F-box protein complex (SCF) through its polyubiquiti-
nation by E3 ubiquitin ligase, FBXL17 (F-box and leucine-rich
repeat protein 17), while in complex with GLI1 [112].
Although FBXL17 directs downregulation of SUFU in the
nucleus [112], it does not seem to do this in a cell cycle-
dependent fashion, due to the lack of cyclin-dependent kinase
(CDK) phosphorylation sites in SUFU. More recent work has
shown that SUFU can operate outside of its role in HH
signalling by negatively regulating initiation of centrosome
duplication and DNA replication at the G1-S transition of
the cell cycle [113].

Analysis of Riboseq datasets allowed the detection of trans-
lation of CUG-initiated N-terminal extension (Figure 4(A)),
which is also supported by PeptideQuery2-based identifica-
tion of 5 confident PSMs (Table S2). Based on our subsequent
motif analysis, the N-terminal extended form of SUFU could
be under the control of the cell cycle (Figure 4(B)), as sug-
gested by the joint presence of several motifs implicated in
granting cell cycle phase-dependent availability. Efficient
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Figure 3. (A) Aggregated Riboseq data for SPEN (ENST00000375759) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints
are colour-coded according to the translated reading frames shown below the diagram. (B) Domain map of the N-terminally extended SPEN/SHARP protein is
depicted. The 22 aa extension (blue) and the 3664 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with
respect to the extended proteoform). Below, the extension is depicted separately with the identified, likely functional CtBP-binding motif marked by dark blue. (C)
the AF3 model of the proposed domain-motif complex between human CtBP1 dimer (2x P41002, residues 28-370) and the SHARP extension peptide residues 15-30
(containing the predicted CtBP-binding motif) is provided on the right of the domain maps in cartoon representation.

phosphorylation by CDKs at motifs (MOD_CDK_SPK_2,
MOD_CDK_SPxK_1) could be largely fostered by the
observed cyclin-dependent kinases regulatory subunit 1
(CKS1) docking motif (DOC_CKS1_1). The sequence pattern
of the CDK phosphorylation site also matches the target
sequence pattern required for dephosphorylation by the CDK-
antagonistic phosphatase, CDC14 (MOD_CDC14_SPxK_1).
Furthermore, on the border of the extension and the canoni-
cal protein sequence, a DEG_SCF_FBW?7_2 motif is also
formed. The SCF ubiquitin ligase substrate recognition sub-
unit F-box/WD repeat-containing protein 7, FBXW?7, is
a well-known tumour suppressor, initiating the ubiquitination
and subsequent degradation of many cell cycle-regulated pro-
teins, including oncogenes such as CCNEI(cyclin E), MYC
and RICTOR [114-116]. In the AF3-predicted model of the
SUFU-FBXW? interaction, the SUFU motif is placed onto the
top of the doughnut-shaped WD40 domain of FBXW?7 in
a similar conformation as seen for other FBXW7 substrates
(e.g. PDB:20VQ [117]) (Figure 4(C)). Modeling of the

potential SUFU-CKS1 interaction resulted in a complex,
where the clam-shaped CKS1 binds the SUFU extension pep-
tide (phosphorylated at T22) in a similar conformation as
seen for other CKSI1-phosphopeptide complexes (e.g.
PDB:2AST [118]) ((Figure 4(D)). Presence of all these motifs
conferring cell-cycle dependent control within the relatively
short, 23-residue disordered extension of SUFU can be con-
sidered as a solid support for the existence of a cell cycle-
regulated SUFU proteoform.

SOX2

One example of N-terminal extension is found in SOX2. The
high-mobility group (HMG) box transcription factor, SOX2,
is a master regulator of stemness and pluripotency. By pro-
moting oncogenic signalling and maintaining cancer stem
cells, SOX2 is implicated in the development of several differ-
ent cancer types, including breast [119], prostate [120,121],
pancreatic [122], gastric [123], lung [124] and cervical cancers
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Figure 4. (A) Aggregated Riboseq data for SUFU (ENST00000369902) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints
are colour-coded according to the translated reading frames shown below the diagram. (B) Domain map of the N-terminally extended SUFU protein is depicted. The
23 aa extension (blue) and the 484 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with respect to the
extended proteoform). Below, the extension is depicted separately with the four identified, likely functional short linear motifs mapped onto two regions (in dark
blue), respectively. (C) AF3 models of two of the proposed domain-motif complexes are provided below the domain maps in cartoon representation. Structural model
of human FBXW7 WD40 domain (Q969HO, residues 370-707) bound to SUFU extension peptide residues 15-31, containing the predicted degron in a phosphorylated
form (p22T). (D) Structural model of human CKS1 (P61024, residues 1-79) modelled with SUFU extension peptide residues 15-31, containing the predicted CKS1
docking motif in a phosphorylated form (p22T). The phosphorylation is highlighted in stick representation. For the identified modification-type motifs, complexes
could not be modelled due to the transient nature of the interactions and lack of available experimentally determined complex structures.

[123]. SOX2 was proposed to promote metastasis [125-128],
and its amplification was observed in several cancer types
[125,129-135].

Aggregated Riboseq data for SOX2 is consistent with trans-
lation of an N-terminal extension from the UUG codon
located 288nts upstream of the annotated AUG start codon
(Figure 5(A)). PepQuery2 analysis [83] allowed identification
of as many as 90 peptide spectrum matches, corresponding to
several unique peptides including AGPAHSAR (23X),
MITIOGGGR  (18X), MITIIGGGRIGQR (22X) and
LPSSSPPAR (11X) (Table S2). Identification of semi-tryptic

peptides started with methionine (MITI ...) supports the
assumption that the UUG codon of SOX2 N-terminal exten-
sion is decoded with initiator met-tRNAI.

The sequence of the predicted N-terminal extension was
analysed with the eukaryotic linear motif (ELM) resource [57]
and yielded 36 motifs that met our criteria (see Methods and
Table SI). Interestingly, one of such motifs is a putative
reverse nuclear export signal (NES; ELM class:
TRG_NESrev_CRMI1_2) located in the middle of the
N-terminal extension (Figure 5(B)). While as a transcription
factor, SOX2 is expected to operate only in nuclei, a cytosolic
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85 aa extension (blue) and the 317 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with respect to the
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motif. (D) Structural model of human cytoplasmic actin (P60709, residues 1-375) modelled with SOX2 extension peptide residues 17-45, containing the predicted
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peptide residues 24-46, containing the predicted reverse NES motif.

pool of SOX2 also exists [136,137]. Cytosolic SOX2 was
reported to interact with ribosomes and to regulate the trans-
lation of mRNAs that code for proteins implicated in sugar
metabolism, matrix contacts, and development [137]. While
the annotated sequence of SOX2 has a known NES that needs
to get acetylated (at K75, probably by CBP/p300) for mediat-
ing the nuclear export of SOX2 [138], the extended isoform
could potentially ensure a cytoplasmic pool of SOX2

independent of acetylation. Thus, decreased stringency of
start codon selection has the potential to change the ratio of
cytoplasmic and nuclear SOX2 to reprogram gene expression.

Additionally, the 85 residues long extension of SOX2 also
contains a predicted Anaphase promoting complex (APC/C)
D box degron motif (Figure 5(B)). This is likely functional, as
one of the substrate recognition/activator subunits of the
APC/C that can recognize this motif, CDHI1/FZR1, is
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a SOX2 binding partner [139], and because for CDC20 (the
other D box-binding activator subunit), a CDC20-APC/SOX2
signalling axis has been proposed to control some key biolo-
gical properties of glioblastoma stem cells [140]. Since other
binding modules enabling binding to the APC/C do not seem
to be present in the annotated SOX2 sequence, it is likely that
the D box motif of the extension mediates these interactions.

Furthermore, the extension contains a predicted actin-
binding WH2 motif (Figure 5(B)), which could also be func-
tional. We have analysed previously performed pull-down
assays of SOX2 from the cell lysates of three different cell
types [137,140] and found that SOX2 bound cytoplasmic actin
(ACTB) in all three cell types along with some proteins
involved in the regulation of actin filament assembly, such
as cofilin and actin capping protein. The presence of this
rather complex, low-probability actin-binding motif and con-
sistently detected SOX2-actin interactions suggest a hitherto
undiscovered function of cytoplasmic SOX2 in binding to or
regulating the actin cytoskeleton.

We have performed AF3 predictions of the three identified
SOX2 extension motifs with the respective motif-binding
domains (CDC20 WD40 domain for the D box, Actin for
the WH2 motif and the CRM1-Ran-RanBP1 complex for the
reverse NES), which resulted in complex structures (Figure 5
(CD,E)) where the SOX2 motifs were bound to the right
surface patch/binding groove of the interacting domains
with respect to the experimentally determined structures of
the same motif-domain interactions (e.g. PDB:4UI9,8A2T
[141,142] and PDB:4BH6 [143]; PDB:5YPU [144] and
PDB:5DIF [145] for the three motifs, respectively).

TOP1

Analysis of Topoisomerase I, TOP1 allowed identification of
CUG-initiated N-terminal extension (Figure 6(A)) which is
supported by 30 PSMs identified with PepQuery2 (Table S2).
TOP1 is an enzyme that can relax positive and negative
supercoiling as well as torsional tension of the DNA induced
by DNA replication and transcription. While performing this
task, TOP1 creates single strand breaks (SSBs) that allow
relaxation of the torsional tension of DNA and forms covalent
DNA-protein crosslinks (DPCs), specifically TOP1 cleavage
complexes (TOPlccs) [147]. DPCs represent a double-edged
sword as they are necessary for genome maintenance, but at
the same time, when they accumulate due to deregulated
removal, they can be detrimental for the cell due to blocking
replication and transcription, as well as other processes invol-
ving DNA. TOPlccs are among the most frequently occurring
DPCs and therefore even anticancer drugs were developed
that aim to kill cancer cells by trapping TOPlccs [147].

The repair of TOPlccs is regulated on one hand by the
PARylation-dependent TDP1 pathway, wherein TDP1 is cap-
able to cleave the covalent bond between TOP1 and DNA
[148], and the ubiquitylation-dependent proteasome pathway
that mediated TOP1 degradation [149]. PARylation of the
TOPlccs was demonstrated to enhance USP7-mediated deu-
biquitination [150], indicating that USP7 can probably reverse
RNF4-induced ubiquitylation of TOP1-DPCs [150,151].

The annotated, N-terminal disordered region of TOP1
contains 20 predicted USP7 ubiquitin-like 2 (UBL2) domain
docking sites, wherein many lysins involved in the predicted
docking motifs (described as KxxxK) are known sumoylation
sites of the SUMO ligase PIAS4. When sumoylated, these
lysins are masked from UBL2 domain binding and sumoyla-
tion was demonstrated to recruit the SUMO-targeted ubiqui-
tin ligase RNF4, which ubiquitinates the TOP-DPCs for
subsequent proteasomal degradation [151]. While the anno-
tated fraction of USP7 does not contain predicted docking
motifs for the main substrate recognition domain, the MATH
domain of USP7, the identified N-terminal extension contains
3 copies of MATH domain docking motifs (2 copies of the
type 1 (DOC_USP7_MATH_1) and one copy of the type 2
motif (DOC_USP7_MATH_2), which were reported to bind
the same binding groove of the USP7 MATH domain [152]),
and thus it is expected to mediate multivalent interactions
with USP7 (Figure 6(B)). Therefore, our premise is that the
extended TOP1 proteoform could be more efficiently deubi-
quitinated by USP7 than the normal proteoform.

Discussion

Differential expression of N-terminally extended proteoforms
in cancer cells can be achieved through alterations in certain
initiation factors that are involved in start codon stringency.
Experiments using reporter constructs and genome-wide
CRISPRi screens have shown that dozens of canonical and
non-canonical initiation factors can alter initiation at subop-
timal start codons in mammals. These ‘stringency’ factors
include elF1, elF1A, elF5, BZW1, BZW2, elF4G2 and elF3
[19,153-158]. Certain somatic mutations in these ‘stringency’
factors and regulators can lead to altered non-AUG initiation
in cancer cells. For example, mutations in the unstructured
N-terminal tail (NTT) of EIF1A have been associated with
uveal melanoma [159], and corresponding mutations in yeast
eIlF1A’s NTT can suppress initiation at non-AUG codons
[160]. Additionally, several somatic mutations in the EIF4G2
gene have been identified in primary tumours from cancer
patients. Some of these mutations affect the binding of the
e]F4G2 protein to interacting proteins and its ability to direct
mRNA translation [161].

However, as ‘stringency’ factors in general do not seem to
be frequently mutated in cancer, other mechanisms may con-
tribute to the altered usage of non-optimal start codons. One
possible explanation is the differential protein stability of
initiation factors such as eIF1 and eIF5. It has been proposed
that the half-life of these proteins differs, and therefore,
changes in global protein synthesis or protein degradation
can alter their ratio which will result in alterations on start
codon selection [162]. Changes in ‘stringency factors’ can also
be achieved through modulation of their intracellular locali-
zation. Recent study has shown that an increase in the strin-
gency of start-codon selection during mammalian mitosis is
mediated by the release of nuclear eIF1 after nuclear envelope
breakdown [163]. In addition, post-translational modifica-
tions may affect elF activity. For example, eIF5 can be phos-
phorylated by casein kinase 2 (CK2), which alters its
association with other elFs. This PTM affects translation
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Figure 6. A) Aggregated Riboseq data for TOP7 (ENST00000361337) from the Ribocrypt transcriptome browser (ribocrypt.Org, in preparation). Ribosome footprints
are colour-coded according to the translated reading frames shown below the diagram. B) at the top, the domain map of the N-terminally extended TOP1 protein is
depicted. The 37 aa extension (blue) and the 765 aa canonical protein are shown, with known domains of the protein depicted (residue boundaries provided with
respect to the extended proteoform). Below, the extension is depicted separately with the three identified, likely functional USP7 MATH domain-binding short linear
motifs marked by dark blue. At the bottom, the domain map of USP7 is shown, with the domain boundaries provided based on Figure 1 of Valles et al. [146]. Thick
black arrows connect the domains of USP7 with the corresponding binding motifs in extended TOP1 that likely interact. The interactions could not be modelled by
AF3, because it could not correctly predict the beta-rich domain structure of the USP7 MATH domain.

initiation [164-167]. However, whether CK2-mediated phos-
phorylation of eIF5 affects the stringency of start codon selec-
tion is still an open question. In summary, deregulation of
protein homoeostasis, signalling cascades, and cell cycle pro-
gression in cancer cells may lead to differential translation
from non-AUG codons.

Finally, it should be noted that the probability of initiation
at certain non-AUG codons can critically depend on the
mRNA sequences upstream and downstream. Therefore, dif-
ferential translation of specific N-terminally extended proteo-
forms can be achieved on a gene-specific basis even without
any changes to ‘stringency’ factors [6]. For instance, it has
been shown that ribosomal pausing immediately downstream
of alternative initiation sites can increase the use of upstream
start codons [168]. This pausing is typically relieved by the
specialized translation factor eIF5A, and its depletion

increases translation from the CUG codon in MYC and
other transcripts [169]. We expect that the putative
N-terminal extensions described in our study may also be
under extensive translational control in both normal and
cancer cells. This has also been suggested for upstream open
reading frames (ORFs) that can impact the main coding
sequence and/or produce proteins that contribute to
a cancer phenotype [170]. In this study we analysed recently
proposed N-terminal extensions of cancer-associated proteins
for possible functional readouts. Our analysis highlights that
PANTS represent a further layer in protein functional versa-
tility, similar to alternative and tissue-specific splice isoforms
[171-173]. We found that the additional sequence regions
harbour short linear motifs that confer novel functionalities
and regulatory possibilities on the extended proteoforms com-
pared to the canonical ones.
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Recent work by Bogaert et al. [174] generated a catalogue
of N-terminal extended proteoforms from the cytosol of
HEK293T cells and selected 22 N-terminal/canonical protein
pairs for interaction mapping using a high-throughput work-
flow (Virotrap [175]) and yeast two-hybrid screening. From
those pairs, three were selected for further experimental vali-
dation using affinity purification-mass spectrometry (AP-MS).
In agreement with our work, the N-terminal extended proteo-
forms identified by Bogaert et al. had unique interaction
partners when compared to the canonical protein, highlight-
ing the functional diversity created by the presence of the
extended proteoforms.

We successfully discovered some very interesting cases
where N-terminal extensions (supported by both ribosome
footprinting and proteomics evidence) could confer different
localization, turnover rates or interactions on proteins classi-
fied oncogenic and tumour suppressive. Indeed applications
of proteomic approaches are allowing the functional interpre-
tation of proteomics data [176]. Top-down proteomics meth-
ods that do not include proteolytic digestion and employ
multi-dimensional separation techniques, followed by mass
spectrometry [177-179], could be used to comprehensively
identify and characterize N-terminally extended proteoforms
in different cancers and various cell types. Methods that focus
on N-termini, such as COmbined FRActional DIagonal
Chromatography (COFRADIC) [180,181], as successfully
employed in the work by Bogaert et al. [174], could have
expanded use across cancer cell lines. To discover and validate
the interactors of N-terminal extensions, AP-MS remains one
of the best ways to characterize interactomes [174]; however,
it can be labour intensive. Nevertheless, we encourage the
scientific community to experimentally validate the discov-
ered interaction sites of the extended proteoforms and eluci-
date their role in tumorigenesis and cancer progression. The
expansion of proteomic methods, in combination with sys-
tems and computational biology, will aim to address the vast
diversity and dynamics of the proteome and continue to
improve our understanding of human biology and disease.

Methods
Dataset assembly

Genes encoding proteins with non-annotated N-terminal
extensions translated from non-AUG alternative translation
initiation sites (TISs) were obtained from the PhyloSET and
RiboSET datasets published by Fedorova et al. [51,182]. The
two sets were merged to look for an overlap with the list of
cancer-associated protein-coding genes downloaded from
OncoKB (1164 protein-coding genes as of 8/11/2024)
[52,53]. 49 cancer-associated genes could be identified within
the merged set of N-terminally extended genes. Of these, 31
belong to RiboSET where the position of the alternative TIS
was indicated, thus the extended proteoforms and the exten-
sion sequences could be obtained in an automated manner.
For the remaining 18 genes belonging to PhyloSET, the
N-terminal extension was only predicted by Fedorova et al.
based on PhyloSCF scores and thus the alternative TISs were
not indicated. For these genes, we manually annotated

translated N-terminal extensions using RiboCrypt. This man-
ual annotation allowed us to identify translated N-terminal
extensions for 9 genes (TRIM33 (with alternative initiation
codon: CUG), ARID3A (CUG), POU2AFI (CUG), SPEN
(CUG), DCUNIDI (CUG), UBE2A (CUG), MAF (CUG),
ASXL1 (GUG), MIBI (GUG)), while the other 9 genes were
removed from the dataset due to the lack of convincing
ribosome footprint patterns N-terminal to the annotated
TIS. Therefore, we ended up with a list of 40 cancer-
associated genes with experimental evidence for an
N-terminal extension resulting from an alternative TIS
(Table S1), which were subjected to further analysis.

Computational investigation of the N-terminal extensions

We performed degron and stability predictions on the normal
and extended proteoforms of the 40 genes using
Degronopedia [54]. The number of predicted degrons, all
predicted protein stability index (PSI) scores (N-terminal
PSI assuming cleaved initiator Met, N-terminal PSI assuming
non-cleaved initiator Met and C-terminal PSI) and the pre-
dicted cleavage status of the initiator Met (cleaved/not cleaved
(C/NC)) were obtained and compared between the two pro-
teoforms (Table S1).

Prediction of Signal Peptides and their cleavage sites was
performed with SignallP 6.0 [55] web server with the follow-
ing settings: Organism - Eukarya; Output format - Long
output; Model mode - Fast.

The webserver part of the ELM linear motif database [57]
was used to obtain predicted short linear motifs (SLiMs) for
the extended proteoforms. The predicted linear motifs of the
N-terminal extensions (if at least one residue was contributed
by the extension sequence to the predicted motif, it was
already accepted as an extension motif to be able to identify
all possible binding sites contributed or complemented by the
extensions) were filtered for those with a pattern probability <
0.015 (this value is provided by the ELM database for anno-
tated motif classes and represents how likely the motif pattern
occurs in random sequences) to avoid highly degenerate
motifs with excessive false positive prediction rates. For
strictly nuclear genes (according to UniProt), the motif search
was limited to nuclear motifs, and this was indicated with ‘NI’
in Table S1 column T before listing the detected motifs. The
resulting, predicted extension motifs are listed for all 40 genes
(Table S1). Subsequently, we performed extensive literature
search and mining of protein—protein interaction databases,
e.g. BioGRID [183], to identify the subset of the predicted
motifs that are likely functional based on matching the func-
tional landscape of the given protein, i.e. providing an expla-
nation for a known functionality or binding partner of the
protein that could not be derived from the normal
proteoform.

For a subset of the 40 proteins, mainly those undergoing
homo-oligomerization ~ or  heterodimerization,  the
AlphaFold 3 (AF3) web server [56] was used to model the
potential structural effect of the N-terminal extensions on
oligomerization (Table S1). Similarly, AF3 was used to
model the selected domain-motif interactions described in
the article and depicted in Figures 2-5. In these AF3



predictions, the motifs were provided in the form of pep-
tides that include + 5 residues flanking regions around the
actual motifs predicted by ELM. Phosphorylated form of
the motif was used in the case of phospho-dependent inter-
actions, such as the CKS1 docking motif and the FBXW7
degron motif of SUFU.

Identification of proteomics evidence for the existence of
N-terminal extensions

Sequences of N-terminal extensions including the overlap
with corresponding CDS until the first trypsin cleavage site
were used as input (SPEN: MTVSYEAGEGEPAAAVAGTP

PSMVR; SOX2: MITIIGGGRIGQRRREALFLILIPVCLSLFFP
QIILRLIFLAEPCAPDTPARLPSSSPPARGPPKVPAGPRVG-

GRRRAGPAHSAR; SUFU: MARQCSPRRLPSPVPPVPALRT
PMAELRPSGAPGPTAPPAPGPTAPPAFASLFPPGLHAIYG-
ECR; TOP1: MRLLEPPESPSARTGRFAVCVSPTPPRLPPRSS
LRADMSGDHLHNDSQIEADEFR; SFPQ: MASTFPERLLRFC
LDRPLTTDM SR;) we searched for proteomic evidence
using targeted peptide search engine PepQuery2 [83].
PepQuery analysis was conducted using a web-based applica-
tion with the following default settings: PepQuery version
2.0.2, Fixed modification -Carbamidomethylation of C,
Variable modification - Oxidation of M, Maximal allowed
variable modification - 3, Add AA substitution - false,
Enzyme - Trypsin, Max Missed cleavages — 1, Precursor
mass tolerance — 20.0, Range of allowed isotope peak errors
— 0, Precursor ion mass tolerance unit - ppm, Fragment ion
mass tolerance — 0.6, Fragment ion mass tolerance unit -
Da, Scoring algorithm - Hyperscore, Min score — 12.0, Min
peaks — 10, Min peptide length —7, Max peptide length —
45, Min peptide mass500.0, Max peptide mass - 10000.0,
Random peptide number — 1000 in fast searching mode.
The reference database used is Gencode V34 human. The
following MS/MS datasets identifiers were used for analysis:

PDC000220, PDC000219, MSV000085836, PDC000128,
PDC000127,  PDC000245, PDC000205, PDC000204,
PDC000222, PDC000221, PDCO000233, PDC000232,
PDC000234, PDC000237, PDC000224, PDC000149,
PDC000153, PDC000271,  PDC000270,  PDC000176,
PDC000180, PDCO000239, PDC000121, PDC000120,
PDCO000117,  PDCO000116, @ PDC000109, PDC000251,
PDCO000110, PDC000119, PDCO000118, PDC000174,
PDC000173, PDCO000111, PDCO000112, PDCO000115,
PDCO000114, PDC000226, PDC000126, @ PDC000125,
PDX010154, PDXO016999, PDC000198, PDC000262,

PDC000216, PDC000215, PDC000214.

Software tools used for visualizations

Figure panels showing domain maps were created using
DOG?2 visualization software [184], while AF3-predicted
structural models were depicted using UCSF ChimeraX
[185]. The Venn diagram was drawn using a dedicated web-
site: https://bioinformatics.psb.ugent.be/webtools/Venn/.
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