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Background: Sleep, especially non-rapid eye movement sleep depth is homeostatically regulated, as sleep pres-
sure builds up during wakefulness and diminishes during deep sleep. Previous evidence from this phenomenon,
however, mainly stems from experimental studies which may not generalize to an ecologically valid setting.

Methods: In the current study, we used a dataset of 246 individuals sleeping for at least seven nights each
with a mobile electroencephalography headband according to their ordinary daily schedule to investigate

Key Wor.dS: . the effect of time spent in wakefulness on sleep characteristics.

Synaptic homeostasis A . . . .

Slow wave Results: Increased time in wakefulness prior to sleep was associated with decreased sleep onset latency,
NREM increased sleep efficiency, a larger percentage of N3 sleep, and higher delta activity. Moreover, increased

sleep pressure resulted in an increase in both the slope and the intercept of the sleep electro-
encephalography spectrum. As predicted, power spectral density effects were most prominent in the ear-
liest hours of sleep.
Conclusion: Our results demonstrate that experimental findings showing increased sleep depth after ex-
tended wakefulness generalize to ecologically valid settings, and that time spent awake is an important
determinant of sleep characteristics on the subsequent night. Our findings are evidence for the efficacy of
sleep restriction, a behavioral technique already widely used in clinical settings, as a simple but powerful
method to improve the objective quality of sleep in those with sleep problems.

© 2025 The Author(s). Published by Elsevier Inc. on behalf of National Sleep Foundation. This is an open
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access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The concept of homeostasis covers the innate mechanisms of
organisms that enable them to maintain steady internal states in a
changing external environment.! The concept of sleep homeostasis
was coined to explain empirical evidence suggesting that several
aspects of sleep depend on the recent sleep-wake history of the
organism, thus sleep characteristics could be involved in main-
taining the regulated balance between sleep and waking.”> A now
widely received complete model of sleep characteristics is the two-
process model.>* In the two-process model, both homeostatic and
circadian processes operate to regulate sleep and wakefulness.
Homeostatic pressure for sleep builds up during wakefulness, while
the phase of the circadian process determines the sleep threshold at
which sleep is initiated or terminated. An explanatory model, known
as the synaptic homeostasis hypothesis, highlights the overall level
of synaptic strengths within the brain as the neurophysiological
mechanism behind sleep homeostasis.” In this model, sleep pressure
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reflects the overall level of synaptic strengths within the central
nervous system, whereas the function of sleep is to downscale these
strengths. According to this model, synaptic potentiation is an in-
evitable consequence of wakefulness, whereas deep sleep (and more
specifically, the slow waves that occur in deep sleep) serve synaptic
downscaling, enabled by low levels of noradrenergic activity.
Typical studies investigating the homeostatic regulation of sleep
focus on recovery sleep after an experimentally scheduled extension
of prior wakefulness®’ or the overnight dynamics of sleep as re-
flecting dissipating sleep pressure.>® Other commonly used research
designs to unravel sleep homeostasis are the experimental extension
of sleep opportunity by scheduled daytime naps'®!' or enforced
bedrest'? and the non-24-hour day protocols known as forced de-
synchrony settings.”® In each of these designs, changes in sleep
metrics after the experimental manipulation of the duration of
wakefulness are interpreted as evidence for sleep homeostasis.
Based on experimental research, several features of sleep macro-
structure and electroencephalography (EEG) indeed exhibit finely
graded homeostatic regulation. The propensity to initiate sleep (sleep
onset latency - SOL)'*'° total sleep time (TST),'® non-rapid eye move-
ment (NREM) sleep duration,'® sleep efficiency,'>!” slow wave sleep
time and percentage,'”'®'® and particularly slow wave activity (SWA,
spectral power in the 0.75-4.5 Hz range)’° were shown to reflect at
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least in part the sleep-wake history of the organism. SWA is an in-
dicator of sleep intensity that reflects a restorative function of sleep.’
Recent evidence indicates a gradual leveling off of excess EEG power
along the frequency scale, with lower frequencies showing stronger
wake time-dependent upregulation. Consequently, sleep-wake history
was best reflected by the steepness of the spectral slope of aperiodic
activity in the sleep EEG.”" In other words, a steeper (downward) slope
of the sleep EEG spectrum toward the higher frequencies, indicating
higher SWA, is an indicator of sleep pressure.

Despite the strong focus on sleep homeostasis in academic re-
search,” virtually all evidence for it stems from experimental stu-
dies. While experimental studies are powerful tools to demonstrate
causality, they may suffer from deficiencies in ecological validity and
their findings may not generalize to real-world settings.”” In the
specific case of sleep homeostasis, as recordings of undisturbed,
natural sleep were virtually never analyzed to demonstrate this
phenomenon, it is possible that the relatively drastic manipulations
of wake time introduced in experimental studies are poor models of
the much more modest day-to-day variability of sleep pressure, and
in real-world settings sleep parameters are more robust to slight
changes in the characteristics of the preceding wakefulness.

Here we aimed to fill this gap by analyzing the within-person
covariation of wakefulness duration and subsequent sleep in a
sample of healthy volunteers using wearable EEG-headbands on
consecutive nights in an ecologically valid naturalistic setting. Our
goal was to translate the concept of sleep homeostasis, conceived in
laboratory-based intervention studies, to an ecologically valid set-
ting and to demonstrate that small natural fluctuations in wake
duration also influence sleep characteristics in line with the two-
process model.

Our hypothesis was that natural variations in the duration of
wakefulness result in changes in subsequent sleep comparable to
those observed in experimental studies. Specifically, we hypothe-
sized that increased time in wakefulness results in (1) increased
overall sleep propensity, shown by reduced SOL and sleep frag-
mentation as well as an increase in the relative proportion of deep
sleep, (2) increased low-frequency activity in the sleep EEG as a
marker of homeostatic restorative processes, especially in the SWA
range and in the first hours of sleep, and (3) in line with the previous
hypothesis, a steeper spectral slope.

Methods
Participants

We used data from the Budapest Sleep, Experiences and Traits
Study (BSETS) a multiday observational study. The full protocol of
BSETS has been published separately.”* In short, BSETS participants
were community-dwelling volunteers who tracked their life for at
least seven consecutive days, including an array of demographic,
psychological and psychiatric questionnaires, diaries about daily and
nightly experiences, and an EEG recording of each night sleep, in
order to discover the relationship between sleep and daily experi-
ences in a causally informative time-lagged within-participant de-
sign exploiting natural variation in daily experiences and sleep
patterns. BSETS was designed to be radically ecologically valid,
hence, minimal inclusion criteria were applied. Participants were
recruited by branched diffusive convenience sampling in nonclinical
settings. Participants, often students of Semmelweis University,
were encouraged to include family members, friends and romantic
partners to participate. No experimental interventions or behavioral
limitations were given, participants were free to schedule their daily
activities and their sleep as they chose. The mean age of the sample
was 29.15 years (SD = 12.82), with 55% females and 45% males,
with a distinctly bimodal age distribution with a peak at the age of
students (<25 years old) and their parents (46-55 years old).
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The current study relies on night EEG recordings and subjective
sleep quality reported the following morning. Data availability de-
pended on the outcome of interest in each model. After discarding
first-night recordings (see Statistical analysis) and artifactual EEG
data (see EEG) 1358 nights of sleep macrostructure from 247 parti-
cipants, 1316 nights of subjective sleep quality from 245 participants,
and 1031 nights of quantitative EEG from 219 participants was
available.

The Institutional Review Board (IRB) of Semmelweis University,
as well as the Hungarian Medical Council (under 7040-7/2021/ EUIG
"Vondsok és napi események hatasa az alvasi EEG-re" [“The effect of
traits and daily activities and experiences on the sleep EEG"]), ap-
proved BSETS as compliant with the latest revision of the
Declaration of Helsinki. All participants gave written informed
consent on a form reviewed and approved by the IRB.

Electroencephalography

BSETS participants were issued a Dreem2 mobile EEG head-
band?*?° and trained in its use to record their sleep at their homes
for at least 7 consecutive nights. Dreem2 uses dry silicone electrodes
to record brain activity with a 250 Hz sampling frequency and
bandpass filtering at 0.4-18 Hz, and a validated complimentary al-
gorithm®*?° uses the resulting waveforms to score the vigilance
state of participants. Based on these scorings, the following sleep
macrostructure metrics were extracted: SE, TST, SOL, wake after
sleep onset (WASO), the number of awakenings, and the latency,
duration, and percentage of N1, N2, N3, and rapid eye moevment
(REM) sleep. Sleep macrostructure metrics are often bounded at
perfect values (e.g., SOL at 0 and SE at 100%), resulting in a skewed
distribution. In order to make these variables more appropriate for
linear analyses, we applied an outlier exclusion using the general-
ized form of Grubb's test (implemented with the isoutlier() MATLAB
function).>® We briefly report on findings without this data cleaning
procedure (see Results).

For quantitative EEG (qEEG) analysis, we used the channel F7-01
based on preliminary analyses>> showing a good tradeoff between this
channel’'s data quality and its ability to record topographically wide-
spread activity such as slow waves. For qEEG analyses, we used a
complimentary algorithm to automatically detect artifactual EEG epochs
on a 2-second basis. Based on preliminary analyses*® and in line with
published BSETS protocols®*?° epochs were discarded if this algorithm
estimated artifact probability as greater than 25%. If the proportion of
nonartifactual epochs for a night was below 20%, the night was dis-
carded entirely. Data availability is illustrated on Fig. 1.

We used the periodogram() function in MATLAB EEGLab with 2-
second nonoverlapping epochs and Hamming windows to perform
spectral analysis. Power spectral density (PSD) estimates were
averaged across epochs for each night and log10-transformed. PSDs
of each night were visually inspected for abnormalities, and if they
were detected, the night was discarded.”® Band-wise spectral values
were calculated by averaging power values within the following
frequency ranges: delta (0.5-4 Hz), theta (4-7 Hz), alpha (7-10 Hz),
low sigma (10-13 Hz), high sigma (13-16 Hz), and beta (16-25 Hz) by
averaging.

Spectral parametrization

We decomposed absolute spectra into periodic and aperiodic
components using FOOOF 1.1.0 (“Fitting Oscillations & One Over f,”
available at https://github.com/fooof-tools/fooof).?” The power law
function was estimated in the 3-20 Hz range. We allowed periodic
components (spectral peaks) with a width of 1-4 Hz, a minimum
peak height of 1 SD, a maximum of 10 peaks, and “fixed” aperiodic
mode. We discarded nights where periodic and aperiodic compo-
nents accounted for less than 95% of the variance in the power
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Data availability by time
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Fig. 1. Data availability in BSETS. The top panel illustrates the proportion of data
epochs surviving artifact detection criteria relative to all recorded EEG epochs as a
function of time since recording start. The bottom panel illustrates single epochs for
all nights. Epochs are marked black if data was available and white if either they did
not survive artifact detection criteria or no data was available for that night. EEG,
electroencephalography

spectrum (N = 6). We used the spectral intercept and spectral slope
as variables of interest indicating increased sleep pressure.

Subjective sleep quality and dreaming

Upon awakening, participants reported their subjectively rated
sleep quality using the Hungarian version of the Groningen Sleep
Quality Scale (GSQS). Higher scores on this instrument indicate
worse sleep. GSQS total were used as the main estimate of subjective
sleep quality. In line with previous analyses,?® we also specify two
alternative metrics, the first unscored question of the GSQS (“I had a
deep sleep last night”), treated as a binary variable, and an additional
question prompting participants to rate their subjective level of
restedness on a Likert scale of 1 to 10, which was treated as a con-
tinuous variable.

Participants also reported in this diary whether they recall a
dream from the night. We used this variable to attempt to replicate
previous research'® which indicated that dream recall is less fre-
quent under increased sleep pressure.

Time spent awake as the indicator of sleep pressure

Sleep pressure builds up steadily during wakefulness.” Thus, we
estimated the amount of sleep pressure at the beginning of the night
as the time since the previous night’s last sleep epoch and the cur-
rent night’s first sleep epoch (henceforth referred to as “time spent
awake” or “time awake”). The clock time of both was based on EEG
measurement.

EEG recordings were only performed at night, so sleep pressure
may be overestimated if daytime naps are not considered.
Participants recorded in their evening diary if they napped during
the day and self-reported the total duration of napping. 297 daytime
naps with an average duration of 70.34 minutes were recorded.

Because nap duration may be misreported and naps may be
shallower than nighttime sleep, simply excluding self-reported naps
from time awake may introduce bias. Therefore, in two alternative
specification of the analyses we calculated the effect of time spent
awake on sleep variables both with and without excluding naps.
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Statistical analysis

We investigated the relationship between sleep pressure and
objective and subjective sleep metrics using multilevel models,?®?°
implemented using the fitglme() MATLAB function. Multilevel
models are statistical tools which can handle dependent observa-
tions (such as multiple nights recorded from the same participant)
and can estimate if the effect of a predictor exists at the within-
person level (level 1) or the between-person level (level 2), also
allowing controlling for covariates at both levels. Within-person
effects are more in line with a causal interpretation (see limitations
below) as they reflect that the same person’s sleep changes after
increased sleep pressure, as opposed to between-person effects
which merely reflect a correlation observed between participants.”®

We modeled the effect of sleep pressure by first creating a be-
tween-person and a within-person specification of sleep pres-
sure.”®?? For the between-person specification, the mean amount of
time spent awake (across all days) was entered for all observations
from the same person. For the within-person specification, devia-
tions from the individual mean were used, with each person’s data
centered around 0. A separate model was fitted for each sleep
macrostructure variable, EEG power band, and subjective sleep
metric as dependent variables. For binwise qEEG analyses, a separate
model was fitted for each frequency bin. Each model used a random
intercept per participant, both the between-person and the within-
person specification of sleep pressure as predictors, together with
age, sex, a dummy variable for weekend/weekday, and lagged out-
comes (the previous day’s value of the dependent variable) to con-
trol models for these potential confounders. In Wilkinson notation,
the equation was:

sleep_metric ~ 1 + weekend + age + sex + time_awake
+ (1]ID)

means

+ time_awake , _+ sleep_metric

devs lag

that is, each sleep metric was expressed as a function of a fixed in-
tercept, control variables age, sex and weekend, individual mean
wakefulness duration and within-individual deviations from this
value, the previous night’s sleep metric, and a random intercept per
participant.

From each model, the critical result was the within-person re-
gression coefficient: the estimated causal effect of an additional hour
of time spent awake on a given person’s sleep. Within-person re-
gression coefficients cannot be automatically interpreted as a causal
effect of wakefulness duration on sleep due to the possibility of
confounding.’ For example, it is possible that it is not extended
wakefulness, but events leading to it (e.g., increased social activity)
that cause changes in sleep. Within-person regression coefficients in
a time-lagged analysis such as ours, however, severely constrain the
possible causal paths compared to cross-sectional and/or between-
person analyses. First, because wakefulness duration always pre-
cedes sleep, reverse causation (sleep causing increased wakefulness)
is impossible. Second, due to the within-person nature of the ana-
lyses any confounding must be time-variant. For example, sex, age or
personality characteristics cannot confound the associations we
found because we show that sleep is altered in the same person after
increased wakefulness: anything that confounds this relationship
must be something that also varies from one day to the other. Third,
our analyses are well-suited to falsify causal associations (with
cautions about reductions in power to detect indirect associations).
While positive findings can be due to time-variant confounding (the
causes of wakefulness, not wakefulness itself, changing sleep), ne-
gative findings indicate that wakefulness duration, either directly or
via its causes, is not related to sleep characteristics.

The p-values of regression coefficients were corrected for mul-
tiple testing using the Benjamini-Hochberg method of false dis-
covery rate correction.’! All nominally significant (p < .05) p-values
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reported in the manuscript also survive this correction unless in-
dicated otherwise.

Because time spent awake (calculated since the end of the first
night’s sleep) could only be estimated starting on the second night,
first night recordings could not be directly used for our analyses. We
did use first night recordings, however, to control for lagged out-
comes to eliminate spillover effects from the previous nights. For
example, a model estimating the effect of time spent awake on
WASO is controlled for WASO on the previous night. Controls for
lagged outcomes was another separate reason for not using first-
night recordings.

Data availability

Raw data is available at https://osf.io/2p8hj/.

Results
Descriptive statistics

The mean time spent awake was 17.05hours (SD = 2.03).
Intraclass coefficients ranged from 0.076 (time spent awake) to 0.718
(alpha power). Detailed descriptive statistics (valid Ns, means, SDs,
intraclass correlation coefficients and within- and between-partici-
pant correlations are available in the Supplementary File 1).

Sleep macrostructure

Increased time spent awake during the previous day was asso-
ciated with deeper and less disturbed sleep (Fig. 2). For each addi-
tional hour spent awake, SOL was reduced by 0.62 minute and WASO
by 1.31 minutes, SE was increased by 0.23% points and 0.5 fewer
awakenings were observed.

TST was reduced after increased sleep pressure: however, this is
expected as longer wakefulness results in less time to sleep due to
the normal obligations of the following day. Consequently, increased
sleep pressure was associated with later bedtimes (32 minutes for
each additional hour spent awake). Controlling for bedtime reduced
the association between sleep pressure and TST by 70% to
4.13 minutes, but it remained statistically significant (p = .002).

The analysis of sleep composition revealed that - mirroring reduc-
tions in TST - time spent in N1, N2 and REM was significantly reduced
after longer wakefulness, but N3 duration remained unchanged. When
we used relative durations, the percentage of N3 sleep was increased, N2
sleep was reduced, while N1 and REM were unchanged.

All effects replicated with only slight variation in the effect sizes
after naps were excluded (Table 1).

Quantitative EEG: PSD

Increased time spent awake led to NREM sleep EEG PSD increases in
the delta through the low sigma frequency range (Table 2).

In more detailed analyses, we calculated a multilevel model for each
0.5 Hz frequency bin. Fig. 3 illustrates the expected change in the PSD of
each frequency bin per one of our additional wakefulness. Increased PSD
was most prominent in the ~1-2 Hz frequency range corresponding to
slow waves, but the PSD increase remained at least nominally significant
into the high alpha-low sigma frequency ranges (Fig. 3).

Quantitative EEG: Bi-hourly PSD

In the next step, we calculated NREM PSD separately from bi-
hourly periods (with 1 hour of overlap up to the fifth hour) of re-
cordings to test how homeostatic effects are distributed across the
night.
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Fig. 2. Selected effects of increased sleep pressure. The scatterplots show the within-
participant relationship between time spent awake (horizontal axis) and sleep onset
latency (SOL, r = 0.08), wake after sleep onset (WASO, r = - 0.13), sleep stage N3%
(N3%, r = 0.17) and delta power (r = 0.15). Both variables are expressed as residuals
controlling for age, sex, and day of the week and consequently centered on zero.
Pearson correlations displayed before have also been controlled for these covariates.
log, logarithm

As the duration of recordings and the distribution of artifact-free
NREM sleep was nonuniform across the nights, the total number of
available EEG nights varied by hour. We limited analyses for the first
5 hours of recordings in 2-hour overlapping batches. For these
batches, a total of 1632, 1606, and 1508 nights (including first nights)
were available. Statistical modeling was performed in a manner
identical to full-night recordings.

For all periods, a trend for increased low-frequency activity as a
function of increased time spent awake was observed. This trend,
however, only reached significance across a broad frequency range in
the first 2 hours of sleep. After the first 2 hours of sleep, significance
was limited to a single isolated bin in the theta ranges.

The results are summarized in Fig. 4.
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Table 1
Within-person effects of time spent awake on sleep macrostructure

Naps included Naps excluded

B SE p B SE p
SOL (min) -0.616  0.217 .005  -0.633 0.213 .003
Sleep efficiency (%) 0.225 0.097 .021 0.268  0.095 .005
Awakenings (count) -0.488 0124 <.001 -0.535 0119  <.001
WASO (min) -1313 0299 <.001 -1.287 0.283 <.001
TST (min) -13.518 1394 <.001 -11.005 1404 <.001
N1 duration (min) -0.619 0141 <.001 -0.637 0135 <.001
N2 duration (min) -9.122 0853 <.001 -7.764 0.837 <.001
N3 duration (min) -0.325 0.380 392 -0.008 0.376 983
REM duration (min)  -1.823  0.625 .004 -1.818 0614 .003
N1% (%) 0.010  0.031 755  -0.018  0.030 541
N2% (%) -0.785 0.120 <.001 -0.686 0.117  <.001
N3% (%) 0.630 0.122  <.001 0.647 0119 <.001
REM percentage (%) 0.181 0.115 117 0.088 0.113 438

Abbreviations: SOL, sleep onset latency; TST, total sleep time; WASO, wake after sleep
onset.

In each line, we show the expected effect of one additional hour spent awake during
the previous day on the sleep macrostructure indicators in the first column (B), the
standard error (SE) and the p-value of this coefficient. Values are expressed in natural
units (in parentheses). All models are controlled for age, sex and day of the week
(weekday/weekend). The left half of the table shows effects without and the right half
with the inclusion of self-reported naps from time spent awake.

Table 2
Within-person effects of time spent awake on absolute spectral power of the NREM
sleep electroencephalography (EEG)

Naps included Naps excluded

B SE p B SE p
Delta 0.011 0.003 <.001 0.010 0.003 <.001
Theta 0008  0.002 <.001 0008  0.002 <.001
Alpha 0008  0.002 <.001 0008  0.002 <.001
Low sigma 0005 0002  .002 0004  0.002 016
High sigma  0.003 0002  .047* 0002  0.002 208
Beta 0003 0002  .199 0002  0.002 262

In each line, we show the expected effect of one additional hour spent awake during
the previous day on the power spectral density (PSD) of the EEG band indicated in the
first column (B), the standard error (SE) and the p-value of this coefficient. PSD values
were log10-transformed before analyses. All models are controlled for age, sex, and
day of the week (weekday/weekend). The left half of the table shows effects without
and the right half with the inclusion of self-reported naps from time spent awake.
*Indicates a nominally significant (p < .05) effect which does not survive correction
for multiple testing.

Quantitative EEG: Spectral slopes and intercepts

We found that both spectral slopes and intercepts were sig-
nificantly increased after increased time spent awake, mirroring
results about PSD (Table 3).

Fig. 5 shows the predicted spectral intercept and slope across a
range of plausible wakefulness durations.

Subjective sleep quality

We found no significant effect of time spent awake on self-re-
ported subjective sleep quality, either considering GSQS total scores,
the first item of the GSQS not counted toward the total score, or self-
reported restedness on a Likert scale (Table 4). Thus, although in-
creased sleep pressure resulted in objectively deeper and more ef-
ficient sleep, this was not translated into a perception of higher sleep
quality the following morning.

Dream recall
We found no compelling evidence that increased sleep pressure

reduces the chance of reporting a dream in the morning diary. While
the effect sizes were in this direction both with (within-participant
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odds ratio = 0.94 per hour of wakefulness, p = .12) and without
(odds ratio = 0.95, p = .11) the exclusion of naps, they were not
statistically significant. The failure to replicate previous findings may
be due to differences in the setting (home vs. laboratory) or the
magnitude of additional wakefulness.

Between-participant effects

Our research focused on within-participant effects, that is, how a
given participant’s sleep changed after varying degrees of wakeful-
ness. However, between-participant effects (associations between
average wake duration and average sleep characteristics across
participants) are also of interest.

Between-participant effects of wakefulness were very similar to
within-participant effects, although less precisely estimated due to
fewer observations (Fig. 6).

The duration of sleep and specific sleep stages was much more
strongly associated with wakefulness, which is unsurprising as these
are zero-sum variables at the between-participant level (on average,
a given participant spends a certain amount of time sleeping and the
rest awake). However, longer typical wakefulness was also asso-
ciated with significantly higher delta power, N3%, significantly re-
duced WASO and awakenings, and a within-participant-like trend
for lower SOL, higher SE, higher spectral slopes and intercepts, and
higher EEG power even at higher frequency ranges. Notably, despite
the zero-sum nature of sleep and wakefulness, typical N3 duration
was not affected by typical wake duration, suggesting a compensa-
tory mechanism where the lower absolute amount of sleep is com-
posed of deeper stages. These findings show that homeostatic
processes operate on the between-participant level as well, and -
even after controlling for age - participants with longer typical
wakefulness tend to have increased sleep propensity.

Outlier effects and channel choice

We elected to exclude observations with extreme values to make
analyses more amenable for linear analyses (see Methods). In
Supplementary File 2, we report regression results without this
correction. Outlier exclusion made minimal effect on the results, and
except for affecting marginal significance in the case of two be-
tween-participant effects it was limited to changes in the signs of
otherwise nonsignificant findings. Results were also replicated if
non-normally distributed sleep metrics (sleep efficiency, WASO, and
SOL) were subjected to a transformation instead of artifact exclusion
(see also®” for a discussion of non-normality in BSETS variables).
WASO and SOL were log-transformed while sleep efficiency was
reflected (SEt = log10(100-SE)) and then log transformed. Increased
sleep duration still had substantial associations with reduced SOL
(B = - 0.014, p = 107%), WASO (B = - 0.02, p = 10®), while the
effect on sleep efficiency was nonsignificant (B = - 0.006, p = .068,
note the inversion of the coefficient sign due to reflecting the
variable).

Our results were based on the F7-0O1 channel. At a reviewer’s
suggestion, we replicated findings using F8-02 instead. Using this
channel, PSD in all spectral bands was still increased as a function of
increased wakefulness duration, with or without excluding naps
(p < .01, except high sigma and beta [p = .017 and p = .018 re-
spectively]).

Discussion

Electrophysiological evidence for sleep homeostasis has pre-
viously only been sourced from experimental studies. This is po-
tentially problematic as experiments in the biomedical sciences
often fail to translate into ecologically valid settings.*” In the current
case, it is possible that while drastic experimental manipulations in
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Fig. 3. Within-person effects of time spent awake on NREM sleep electroencephalography (EEG) power spectral density (PSD) as a function of frequency (Hz). The chart shows the
within-person estimates of the effect of one additional hour spent awake during the previous day on the NREM sleep EEG PSD of each frequency. PSD values were log10-
transformed before analyses. All models are controlled for age, sex, and day of the week (weekday/weekend). The shaded area shows 95% confidence intervals

wake duration can affect sleep characteristics, the effect of much learning or cognitive load,*® auditory stimulation,”” or meals.>®° In

smaller variations in wake duration experienced by a typical person the current study, we show that experimental studies of sleep
are overpowered by other determinants of sleep, such as stress,>**° homeostasis indeed replicate in an ecologically valid, naturalistic

x10°
T T T T T T T T T
Hour 1-3
Hour 2-4

%15- Hour 3-5 | 1
[0)
£ .
5

e o o 0 0 0 0 ® © 0 0 0 0 0 0 0 00
S 10r i
=
—
S}
—_
3
2 5
S
()
Q
S
c 0
© \——J
<
[5)
m)
(2]
o -5r h

1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Hz

Fig. 4. Within-person effects of time spent awake on NREM sleep electroencephalography (EEG) power spectral density (PSD) as a function of frequency (Hz) and hours of sleep.
The chart shows the within-person estimates of the effect of one additional hour spent awake during the previous day on the NREM sleep EEG PSD of each frequency, calculated
separately for three bi-hourly, overlapping period of recordings (separate lines). PSD values were log10-transformed before analyses. All models are controlled for age, sex, and day
of the week (weekday/weekend). Dots above the lines indicate that the effect is significant after correcting for multiple comparisons in the hour indicated by the line with the
matching color
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Table 3
Within-person effects of time spent awake on aperiodic spectral parameters

Naps included Naps excluded

B SE p B SE p
Intercept 0.014 0.004 <.001 0.013 0.004 <.001
Slope 0.009 0.004 018 0.009 0.004 011

In each line, we show the expected effect of one additional hour spent awake during
the previous day on the spectral intercepts and slopes, as indicated in the first column
(B), the standard error (SE) and the p-value of this coefficient. All models are con-
trolled for age, sex, and day of the week (weekday/weekend). The left half of the table
shows effects without and the right half with the inclusion of self-reported naps from
time spent awake.

25

INg
i

N
w

Spectral intercept
N N
EEN [N)

20

25
Time awake (hours)

N
~

Spectral slope
N N
N w

,/4

N
N

20 25
Time awake (hours)

15 30

Fig. 5. Predicted values of the spectral intercept (left) and spectral slope (right) as a
function of the duration of previous wakefulness

Table 4

Within-person effects of time spent awake on three measures of self-reported sleep
quality: Groningen Sleep Quality Scale (GSQS) total score, the first unscored GSQS
item, and self-reported restedness

Naps included Naps excluded

B SE p B SE p
GSQS 0.020 0.057 722 0.011 0.055 .847
GSQs1 -0.009 0.048 .854 0.003 0.046 941
Restedness 0.010 0.038 788 -0.019 0.037 611

For the first GSQS item, the linear effect is shown for simplicity, although this estimate
is derived from logistic regression as this is a binary variable. In each line, we show
the expected effect of one additional hour spent awake during the previous day on the
sleep quality indicators in the first column (B), the standard error (SE) and the p-value
of this coefficient. Values are expressed in raw scores. All models are controlled for
age, sex, and day of the week (weekday/weekend). The left half of the table shows
effects without and the right half with the inclusion of self-reported naps from time
spent awake.

study, and sleep characteristics change as a function of sleep-wake
history within the normal range.

Longer wakefulness resulted in an increased propensity for sleep,
especially of deep sleep and slow waves. Furthermore, time spent
awake translated into an increased propensity for sleep initiation, in
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coherence with laboratory studies.® Specifically, longer presleep
wakefulness was followed by reduced SOL, increased SE and higher
N3% at the expense of other sleep stages, as well as decreased WASO
and fewer awakenings. Spectral analyses replicated experimental
laboratory studies®® and reveal that increased wakefulness results
in increased NREM sleep PSD, most prominently at the lowest fre-
quencies but extending up to the sigma range. Binwise statistics
revealed that effects transcend the canonical SWA range,’' extend
over higher frequencies, but increasing EEG frequencies are char-
acterized by decreasing sensitivity to extensions in presleep wake-
fulness. Moreover, both the NREM sleep EEG spectral slope and
intercept values increased as a function of time awake, supporting
the relevance of these indices in depicting sleep homeostasis.

Importantly, we found no evidence that increased wakefulness
duration also resulted in improvements in subjectively rated sleep
quality the next morning. We also could not replicate a previous
finding'® that increased sleep pressure results in a reduced like-
lihood of dreaming.

Sleep characteristics are to some extent habitual or trait-like.*” This
was also observed in our dataset (Supplementary File 1): on average,
41% of the variance of macrostructure variables, 66% of PSD values, 57%
of spectral parameters, and 21% of subjective sleep quality reports was
at the within-participant level, showing that the same participant ex-
periences similar sleep across nights. Between-participant analyses
using habitual sleep metrics generally replicated the within-participant
effects of time awake on sleep propensity and structure. Participants
with habitually longer periods of wakefulness were characterized by
higher N3%, delta power, as well as by significantly reduced WASO and
number of awakenings, with trends in line with within-participant
effects for most other sleep metrics as well. These findings suggest that
while fluctuations in a person’s sleep propensity can reflect fluctua-
tions sleep pressure, habitual sleep patterns may also be partially the
result of the habitual duration and intensity of wakefulness.

Our results have important implications for both sleep research and
somnology. The replication of laboratory studies of sleep homeostasis
provides not only evidence for the two-process model, but also for the
feasibility of conducting sleep research outside of the laboratory. Effect
sizes were moderate (e.g., within-person correlation between wake-
fulness duration of delta power r = 0.15, see Fig. 2 for further stan-
dardized within-person effects), highlighting the necessity for a large
sample in detecting the effect of small fluctuations of wakefulness on
sleep. Using wearable EEG devices at home is substantially less cost
and labor intensive than standard laboratory PSG studies and this ap-
proach may result in larger, better-powered studies to test hypotheses
about sleep regulation and function with relatively little compromise
toward fidelity. Studying impairments of sleep regulation in a natur-
alistic setting might especially be useful to understand the mechanisms
behind insomnia, depression, and circadian rhythm disorders.

A special case where sleep homeostasis under natural conditions is
important is sleep restriction therapy (SRT), commonly used to alle-
viate symptoms of insomnia. In SRT, patients are instructed to reduce
time spent asleep (or attempting to sleep) to increase sleep pressure
and the depth and efficiency of subsequent sleep. A recent meta-ana-
lysis of SRT randomized controlled trials*' supported the efficacy of SRT
to reduce the insomnia severity index, SOL and WASO, but this evi-
dence was rated as low quality due to the low number of studies, be-
tween-study heterogeneity, and lack of long-term follow-up. Our study
using a causally informative non-randomized controlled trial design
confirms that SRT might be a promising therapy for sleep problems,
and that increasing time spent awake may be a highly efficacious way
to increase sleep quality. Caution must be warranted, however, as SRT
was shown to negatively affect vigilance and sleepiness*’ suggesting
that while sleep following SRT is biologically more efficient, its re-
storative properties might be missing. In line with these observations,
we also found that next-morning subjective sleep quality was not
significantly improved after longer time spent awake. Wearable
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Fig. 6. Comparison of within- and between participants effects. Each tile shows the estimated within- and between-participant effects of 1 hour of wakefulness (without taking
into account naps) on sleep characteristics. Estimates originate from multilevel models adjusted for age, sex and day of the week. Error bars show 95% confidence intervals. GSQS,
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instruments could be used in clinical settings to fine-tune SRT in way
that balances the efficiency and restorative property of sleep in in-
dividual patients.

Our work has limitations. First, ours was a relatively young volun-
teer sample without clinically significant sleep complaints or other
medical issues. The findings may not generalize to older populations or
those with significant sleep problems, requiring replication. Second,
our study relied on a mobile EEG headband instead of gold-standard
PSG to measure sleep. While the general reliability of the method has
been demonstrated in previous studies, sleep structure may be better
determined using PSG. This limitation especially affects qEEG findings,
as the Dreem2 headband has strong hardware filtering above 18 Hz and
the accurate mapping of higher frequencies is not possible with this
method. This especially concerns our analysis of beta-frequency oscil-
lations, which should therefore be treated with caution. Another lim-
itation of our mobile EEG headband is its limited topographical
sampling of brain activity. While our findings were robust to the choice
of channel, other (e.g., frontal or prefrontal channels with mastoid or
earlobe references) channels might be better suited for the analysis of
homeostatic effects. Third, we could imperfectly model events in wa-
kefulness which may affect the amount of sleep pressure that was
generated. While we had self-reported data on naps which did not
substantially affect findings, an ideal study would include actigraphic
measures of the day which could precisely model sleep pressure by
taking into account the exact duration of napping and physical activity.

In sum, our findings demonstrate that validity of the two-process
model in the description of day-to-day natural variations in sleep.
Similarly to experimental manipulations, a naturally longer wake-
fulness period also results in increased sleep propensity and depth
but no change in subjective sleep quality, informing clinical inter-
ventions aimed to improve sleep.
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