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The advances in the field of cancer genomics have enabled researchers and clinicians to identify altered pathways
and regulatory networks that differentiate subtypes manifesting as differential phenotypes of lung neuroendo-
crine neoplasms (NENs). The clinical heterogeneity observed among lung NEN subtypes reflects underlying

ztlrattlﬁ?atlon biological distinctions, including differential mutation patterns, epigenetic changes and immune microenvi-
usterin, P . . . . .
Survival & ronment activities. Although in many cases only a handful of underlying genes are used to differentiate patients,

broader gene signatures might result in finer separation and help identify patients with differential survival. Lung
NENSs are vastly underrepresented in pan-cancer studies, resulting in lacking options to explore datasets. To this
end, we developed a freely available website (https://survsig.hcemm.eu/) which allows users to upload potential
genes of interest, perform patient clustering, compare survival and explore gene expression signature of lung
NENSs. Leveraging these biological differences enhances the accuracy of gene expression-based prognostic clas-

Machine learning

sifiers like SurvSig.

1. Introduction

Lung neuroendocrine neoplasms (NENs) account for approximately
20-25 % of all lung cancers and exhibit a wide range of clinical be-
haviors, from indolent to highly aggressive forms [1]. Lung NENs are
classified into lung neuroendocrine tumors (NETSs), representing mainly
the well differentiated carcinoids (CARCI), and the poorly differentiated
lung neuroendocrine carcinomas, encompassing large cell neuroendo-
crine carcinoma (LCNEC) and small cell lung cancer (SCLC) [2]. Carci-
noids can be further separated to low-grade typical carcinoids and
intermediate-grade atypical carcinoids, having relatively better prog-
nosis compared to NECs. In contrast LCNEC and SCLC are high-grade
and poorly differentiated tumors associated with aggressive behavior,
rapid progression, and poor survival outcomes.

The molecular pathogenesis of lung NENs is complex and varies

across the different subtypes, typically lacking common oncogenic
driver mutations found in non-small cell lung cancer (NSCLC), such as
KRAS and EGFR in lung adenocarcinomas [3]. Carcinoid tumors present
with lower mutational burdens, often harboring somatic mutations in
chromatin remodeling genes, such as MEN1 and ATRX [4,5]. On the
other hand, SCLC and LCNEC are characterized by high mutational
burdens and frequent alterations in key tumor suppressor genes, such as
the TP53 gene. In addition, RB1 gene mutations can be found in most
SCLC tumors, and approximately half of LCNEC tumors. In case of
LCNEC tumors with no RB1 mutations are often enriched with STK11
and KEAPI gene mutations, potentially reflecting distinct subgroups [6,
71.

Recent advances have focused on stratifying lung NENs based on
transcriptional profiles, resulting in the classification of patients into
distinct molecular subtypes. Carcinoid tumors have been divided into
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three major molecular subtypes [5,8]: “cluster A1” is defined by DLL3
and ASCL1 expression, “cluster A2” manifests with SLIT/ROBO pathway
downregulation, and “cluster B” is comprised mainly of atypical carci-
noids and tumors with MEN1 mutations which display poorer outcomes
[5]. A fourth emerging subtype, known as supra-carcinoids, has also
been identified and shows molecular similarities to high-grade tumors
[5]. LCNEC tumors have also been subdivided into two primary cate-
gories: type I, which are highly neuroendocrine and enriched for STK11
and KEAPI mutations, and type II, which exhibit less neuroendocrine
features, including enrichment of RBI mutations and upregulation of the
NOTCH pathway [7]. SCLC, meanwhile, can be categorized into mo-
lecular subtypes based on the expression of lineage-specific transcription
factors ASCL1, NEUROD1, POU2F3, and YAP1 [9]. Taken together, these
analyses highlight that lung NENs comprise diverse subtypes exhibiting
distinct biological behaviors beyond traditional morphological classifi-
cations. Consequently, identifying novel patient subgroups, potentially
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independent of established molecular clusters, may lead to improved
prognostication, refined therapeutic strategies, and ultimately better
clinical outcomes.

As genome-wide profiling gains popularity, the identification of
transcriptional signatures associated with various conditions and
cellular states has become increasingly common. These signatures have
proven useful for identifying patient subtypes and stratifying cell lines,
demonstrating that complex gene expression patterns can provide more
precise classification of patient groups than single-gene analyses
[10-14]. By integrating multi-omics data, these have led to identifica-
tion of dysregulated pathways, such as p53 and ATM in neuroendocrine
neoplasms, related to miRNA-mediated regulation with the potential for
use as prognostic markers [15]. Furthermore, these signatures can have
therapeutic implications, where a notable example is the identification
of the inflamed subtype in SCLC, which has significantly better response
to different treatments, including immunotherapy [12,16,17].
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Fig. 1. Datasets and SurvSig website. A) number of samples from each dataset for the three lung Nen histologies. B) number of patients for each histology of the
rousseaux cohort. C) summary of the TCGA integrated dataset. D) Kaplan-Meier survival plot of lung histologies in the rousseaux cohort. E) Kaplan-Meier survival
comparison of SCLC patients from the 5 collected cohorts. F) summary of the SurvSig website.
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Unfortunately, lung NENs are often underrepresented in large-scale
pan-cancer studies, such as The Cancer Genome Atlas (TCGA), due to
challenges associated with obtaining sufficient tumor specimens.
Consequently, the availability of tools for exploring lung NEN data is
extremely limited, impeding both research advancements and clinical
interpretations. Our aim was to address these limitations by developing
an online tool that that enables the interactive exploration of these
datasets. For this reason, we have compiled publicly accessible gene
expression data from multiple lung NEN cohorts and developed a freely
available online website allowing users to upload and interactively
analyze gene signatures with various machine learning approaches. This
novel and unique approach will facilitate identifying potential sub-
groups in these heterogeneous diseases, discovery potential biomarkers
and aiding in the interpretation of complex transcriptional data.

2. Results

We collected publicly available gene expression data for over 600
lung NENSs across six datasets, encompassing the three major histological
subtypes (Fig. 1A). The majority of samples are from small cell lung
cancer (SCLC, n = 359) [6,18-21], which is the most prevalent NEN
subtype, followed by carcinoid tumors (n = 139) [4,5,21] and large cell
neuroendocrine carcinoma (LCNEC, n = 122) [7,21]. Among the data-
sets, one cohort includes transcriptional data for non-NEN tumors,
allowing for cross-histology comparisons (Fig. 1B) [21]. Additionally,
we incorporated the TCGA (The Cancer Genome Atlas) integrated cohort
(33 cancer types, >10k samples) [22], enabling the examination of
transcriptional patterns across other cancer types (Fig. 1C).

Patient survival varies significantly among the main histological
subtypes of lung NENs, demonstrating a pronounced bimodal distribu-
tion. Carcinoid tumors are associated with notably favorable outcomes,
where median survival was not reached in either the Alcala or Rousseaux
cohorts. High-grade SCLC and LCNEC display poor survival outcomes,
with median survivals of approximately 15 and 20 months, respectively
(Rousseaux cohort, Fig. 1D). Detailed survival analysis of SCLC patients
expectedly found significantly better prognosis in limited-stage and
chemo-naive cohorts (George-SCLC, Liu-SCLC and Jiang-SCLC)
compared to the Lissa and Rousseaux cohorts, where most patients
received systemic chemotherapies (Fig. 1E). Comparisons between
LCNEC and carcinoid tumors across the datasets showed no significant
differences in survival (Fig. STA-B).

To support data mining and exploration of gene expression signa-
tures, we developed the SurvSig website (https://survsig.hcemm.eu/),
which facilitates clustering-based analysis of complex gene expression
patterns (Fig. 1F). After uploading a gene signature or gene list (up to
2000 genes), the website performs dimensionality reduction and clus-
tering to group patients based on similar transcriptional profiles. Mul-
tiple dimensionality reduction and clustering algorithms are available
and customizable by the user. The generated clustered expression
heatmaps allow for survival comparisons among patient clusters,
revealing potential differences in survival outcomes. Multivariate anal-
ysis and patient annotation enrichment can also be compared between
patient clusters to account for clinical variables. Additionally, uploaded
genes can be clustered to identify groups with similar expression pat-
terns. SurvSig also includes gene set enrichment analysis for both
uploaded and clustered gene sets to quantify pathway activity, which
can be used for survival analysis in a single-gene context. The expression
profiles of single genes and enrichment scores can be compared through
correlation and violin plots, where samples can be grouped and color
coded based on annotations and clinical characteristics.

2.1. Neuroendocrine gene signatures
We classified tumors into neuroendocrine (NE) and non-

neuroendocrine (non-NE) subtypes using the NE50 gene signature
[23], which includes 25 genes highly expressed in NE tumors and 25
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genes highly expressed in non-NE SCLC tumors (Fig. 2A, Table S1). A
representative heatmap for the signature in the George-SCLC cohort can
be seen in Fig. 2B. Approximately 75-80 % of SCLC tumor cases scored
positively for NE characteristics. Conversely, a substantial proportion of
LCNEC tumors exhibited stronger non-NE features (50 % in the Geor-
ge-LCNEC and 70 % in the Rousseaux-LCNEC cohorts). Carcinoid tumors
were predominantly highly neuroendocrine, except for a few cases that
were enriched for non-NE genes, potentially linked to the emerging
supra-carcinoid subtype (Fig. S2A-B).

Next, each patient from all lung NEN datasets was classified using the
Rudin classification for SCLC tumors [9], which assigns subtypes based
on the expression of ASCL1 (A), NEURODI (N), POU2F3 (P), or YAPI
(Y). As expected, chemo-naive SCLC cohorts were predominantly
enriched for ASCLI1+ tumors (George-SCLC, Liu and Jiang cohorts),
whereas the highly treated Lissa cohort had higher prevalence of
YAPI+ tumors (Fig. 2A). LCNEC tumors presented a significantly
greater proportion of YAP1+ cases compared to SCLC. The most notable
difference was seen in carcinoid tumors, where the tumors in the Alcala
cohort had significantly fewer YAP1 + cases compared to the carcinoid
tumors in the Rousseaux cohort despite retaining similar NE signature
characteristics.

While most lung NENs retain distinct neuroendocrine (NE) charac-
teristics, a subset exhibits prominent non-NE features, showing molec-
ular similarities to non-small cell lung cancers (NSCLC) (Fig. 2C). This
observation is supported by ssGSEA-based enrichment analyses, which
demonstrate strong negative correlations between NE and non-NE gene
expression across all lung tumor histologies (Fig. 2D, with differential
activity quantified in Fig. S2C). Notably, while ASCL1—a key NE mar-
ker—predictably shows positive correlation with NE-specific genes in
the NE50 gene set, its expression is absent in many carcinoids (Fig. 2E,
with sample tumor histology indicated by color). Moreover, some
NSCLC adenocarcinomas (ADC) exhibit high ASCLI expression while
maintaining a non-NE phenotype, as observed in both the Rousseaux
cohort and TCGA datasets (Fig. S2D-E). These findings reinforce the
notion that although ASCL1 serves as a critical regulator in neuroen-
docrine cells, additional factors are necessary to drive full neuroendo-
crine differentiation 24,

We subsequently assessed the gene signature employed to classify
the Type L, Type II, and ‘nan’ (unassigned or unknown) molecular sub-
types within the George-LCNEC tumors cohort (clustered data available
in Table S2) 7. Using two-dimensional UMAP dimensionality reduction
combined with dynamicTreeCut clustering, we identified four distinct
patient groups and three primary gene sets (Fig. 2F). This clustering
analysis delineated the George-LCNEC cohort into four groups that
correlated with molecular subtypes: S1 was predominantly Type II, S2
exclusively Type I, S3 a mixture of Type I and II, and S4 exclusively
‘nan’. The S1 cluster was characterized by POU2F3 + and
YAP1 + tumors, while clusters S2-S4 were nearly exclusively ASCL1 + .
This pattern was also reflected in the NE scores, with S1 displaying a
non-NE profile, S2 and S4 being mainly NE, and the mixed S3 cluster
showing non-NE characteristics despite elevated ASCL1 expression.

The identified clusters were differentially enriched in three gene sets
(G1-G3, gene ontoloy in Table S3). G1 was associated with the ‘nan’
subtype and enriched in synaptic pathway-related genes, showing
significantly higher expression of neuroendocrine markers such as
INSM1 and SYP (Fig. S2E). G2 was linked to the Type I subtype, with
enrichment in coagulation pathways, while G3 corresponded to the
Type II subtype, mainly composed of non-NE tumors and enriched for
the G3 gene cluster, which includes genes related to NFKB and adhesion
pathways. Notably, we observed similar clustering patterns within
LCNEC samples from the Rousseaux cohort (Fig. 2G, distribution of
INSM1 and SYP expression in Fig. 2F), where expression was quantified
using microarray in comparison the RNA-seq based Alcala cohort,
underscoring the robust reproducibility of this gene signature in the
molecular classification of LCNEC tumors.



K. Nemes et al.

A B

George et al., 2015 (SCLC)

Computational and Structural Biotechnology Journal 27 (2025) 2574-2583

Rousseaux etal., 2013

SCLC LCNEC CARCI S3 S2 S1 S5 s4 S$1
l--- B
S ] e 10 L N TR v
<L NE (11T napy
S =i | ne
'g - LI e Cluster
Q. ™ 1 T ES1 sS4
o | WS2 1S5
E 0rs NAPY non-NE |. WS3
I | g;@éﬁk‘c’m B AL mLCNEC
gl A || s
20 HE NAPY
’,o? e & (,f"é’ 4’,4” NE ASCL1  POU2F3
& / ’/ NEUROD1 YAP1
< % o NE
NE [Finon-NE
D Exp(log2)
Rousseaux et al., 2013 1086420
. o Corr. Coef.: -0.85 P-value: 9.48e-80 F
g George et al., 2018 (LCNEC) Rousseaux et al., 2013 (LCNEC)
g S2 s4 s2 s3 s1
Clust NE
5 Cluster ---- D g2 53 M
: waev [ I () 82 8% s non-ve
§ ne [l]]]]]Il][l]]]]]]Iﬂl]l]l]]]]][l]Iﬂllllm I NAPY  Mol.ST
3 wost [ MMMONOO0ND AEGkbor mivpe 1
LI o= = BMPOU2F3 [ Type 2
02 04 o8 YAP1
E $SGSEA Score of Cluster non-NE genes
Corr. Coef.: 0.62 P-value: 1.00e-31 | Synaptic
i . Histology (p adj. =9.6e™)
¥, @ ADC
02 BAS
é o1 830(; NF-kappaB, Adhesion
o © CARCI (p adj. = 1.32e%)
§ - OLCNEC Coagulation
< adj. = 4.87e
- @scLc (pad. = 40767

w2 Z-Score

.8 -
3210-1-2

g 10
Expression of ASCL1

Fig. 2. Transcriptional patterns defining lung NENs. A) distribution of rudin subtypes (NAPY, top) and NE subtypes (NE50 signature, bottom) of lung NENs. B)
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2.2. Identifying signatures related to patient annotations

We implemented the option to identify genes of interest through
various statistical approaches, enabling the detailed exploration of the
datasets (“Gene Set Finder” tab on SurvSig). This can be achieved either
by using an entire patient cohort, or a subset of patients, considering
either the full gene set or a gene list uploaded by the user. Two main
approaches are implemented: 1) selecting informative genes based on
expression profiles, such as standard deviation, PCA, SVD and other
approaches; 2) identifying gene groups with differential expression
profiles between predefined patient groups, such as clinical character-
istics or annotations.

To illustrate this feature, we extracted the top 500 most variable
genes in the mixed Rousseaux based on standard deviation (Fig. 3A,
Table S4) including six lung cancer histologies (SCLC, LCNEC, CARCI,
SQC (Squamous cell carcinoma), ADC (Adenocarcinoma) and BAS
(Basaloid) histologies). Cluster analysis and heatmap representation of
patients highlighted four distinct groups with distinct behaviors, defined
by UMAP dimensionality reduction and dynamicTreeCut clustering
(Fig. 3B). The S1 cluster comprised SQC and BAS (a rare subtype of SQC)
tumors, while the S2 cluster predominantly included ADC tumors. Most
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SCLC and LCNEC tumors clustered together in the S3 group, indepen-
dent of NE status, whereas nearly all carcinoid tumors were grouped in
the S4 cluster (Fig. 3C).

The gene clusters active in lung NEN tumors (G2) were highly
enriched for neuronal and secretory pathways (Fig. S3A, gene ontology
results can be found in Table S5). This gene cluster was highly expressed
in all three lung NEN histologies (SCLC, LCNEC and CARCI). In contrast,
the G4 gene cluster was more inactive in carcinoid tumors compared to
high-grade lung NENs, enriched for replication related pathways
(Fig. S3B, Table S5). This differential activity was reinforced by
comparing normalized enrichment scores among the lung NEN datasets
(Fig. 3D and Fig. S3C), where the G2 cluster was more active in carcinoid
tumors, followed by SCLC tumors and finally LCNEC tumors. In contrast
the G4 cluster was more active in SCLC and LCNEC tumors compared to
the low-grade carcinoids.

2.3. Molecular and prognostic signatures in carcinoid tumors
Carcinoid tumors can be categorized to typical (TC) and atypical

(AQ) cases, that have recently been further classified into 4 molecular
subtypes (termed Al, A2, B and supra-carcinoids) using distinct gene
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expression signatures [5]. The three gene signatures (Al vs A2, A1 vs B
and A2 vs B signatures [5]) yielded reproducible results using the
original Alcala cohort, highlighting the transcriptional differences
among the molecular subtypes (Fig. S4A), also seen in the carcinoid
tumors from the Rousseaux cohort (Fig. S4B).

Using SurvSig, we constructed a single gene signature that can
differentiate the molecular histologies, without the need of multiple
gene lists for classification. For this, we identified 1k genes that describe
the four molecular subtypes using an artificial neural network (MLP
model from SciKit-learn package in python) implemented on SurvSig
(Table S6). Patient clustering using the newly defined genes by PCA
dimensionality reduction (with whitening enabled) and dynam-
icTreeCut algorithm (set to complete linkage method) separated the
Alcala carcinoid tumors completely based on the predefined molecular
subtypes (Fig. 4A). The Al tumors were enriched for neuronal pathways
(G3 genes), the A2 tumors were enriched for metal ion stress response
(G1 genes) and wound healing pathways (G2 genes), the B tumors were
enriched with synaptic pathways (G5 genes) and wound healing (G2
genes), while the supra-carcinoids were enriched for protein kinase and
serine endopeptidase pathways (G4 genes) (gene ontology can be found
in Fig. S4C and Table S7). Using the gene signature, we were able to
annotate the molecular clusters of the carcinoid tumors from the Rous-
seaux cohort (microarray-based expression quantification) as well,
which yielded very similar expression heatmaps despite difference in
expression quantification technologies (Fig. 4B).

To better differentiate gene expression patterns among the TC and
AC subtypes, we performed a grid search using nearest centroids clas-
sifier (see Methods section), which identified 358 genes that are differ-
entially enriched in TC and AC carcinoids from the Alcala cohort
(Table S8). Cluster analysis of the gene signature identified three groups
of genes, of which two had marked differential activity between the two
subtypes (Fig. 4C). The G1 gene set was more active in typical carcinoids
and were enriched for GTP pathways, while the gene set enriched in
atypical carcinoids were enriched for spindle and mitotic pathways
(Fig. S5A). Importantly, we observed similar separation in the inde-
pendent carcinoid samples from the Rousseaux mixed cohort, high-
lighting the reproducibility of the gene set (Fig. 4D).

As expected, the patient cluster that was enriched for typical
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carcinoid signatures had significantly better survival, than the patient
cluster enriched for atypical signatures, using the default UMAP
dimensionality reduction and clustering patients to two groups using k-
means (excluding samples that were included from another study with
no clinical information with the “LC exclusion” toggle, and turning off Z-
scoring of data). This trend was visible using both the Alcala cohort, and
carcinoid tumors from the Rousseaux cohort (Fig. 4E-F). We also tested
whether gene set enrichment quantified by ssGSEA (Single Sample Gene
Set Enrichment Analysis) of the two gene signatures (G1 and G2) could
be used as surrogate markers to predict survival. The analysis reinforced
the observation that patients displaying higher activity of the typical
carcinoids G1 genes had significantly better outcomes in both datasets
(Fig. 4G-H). In contrast, patients with signature enrichment of the G2
genes, enriched in atypical carcinoids, had significantly worse outcomes
(Fig. S5B). The significance was retained even when correcting the p-
value for multiple testing from the automatic cutoff selection of all
ssGSEA based survival analyses (Fig. S5C).

3. Discussion

In this study, we compiled a comprehensive collection of publicly
available gene expression data from over 600 lung neuroendocrine
neoplasms (NENs), encompassing carcinoids, large cell neuroendocrine
carcinoma (LCNEC), and small cell lung cancer (SCLC). By integrating
this data into an interactive online platform called SurvSig, we enabled
the analysis of gene expression signatures using various machine
learning approaches. Our findings demonstrate that complex transcrip-
tional patterns can effectively classify lung NEN subtypes and are
associated with distinct clinical outcomes, particularly in differentiating
typical and atypical carcinoid tumors.

The application of transcriptional profiling allowed us to classify
tumors based on established molecular signatures, such as the Rudin
classification for SCLC and the NE50 gene signature for neuroendocrine
differentiation. We observed that carcinoid tumors exhibit diverse mo-
lecular subtypes with distinct gene expression patterns, which correlate
with patient survival. Specifically, we identified gene clusters that
differentiate typical carcinoids, associated with favorable prognosis,
from atypical carcinoids, which have poorer outcomes. These gene
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signatures were consistent across independent cohorts, highlighting
their robustness and potential utility in clinical settings.

Lung NENs have distinct pathogenic mechanisms related to their
development, resulting in a heterogeneous group with distinct patho-
genetic profiles across their subtypes. A recognized premalignant con-
dition, diffuse idiopathic pulmonary neuroendocrine cell hyperplasia
(DIPNECH), has been implicated in the early development of typical and
atypical carcinoids, particularly among non-smoker females. Environ-
mental factors, most notably nicotine and hypoxia related to smoking,
contribute significantly to the pathogenesis of high-grade tumors.
Notably, the mutational burden is substantially higher in SCLC than in
carcinoids, reflecting their more aggressive behavior and accumulation
of genetic alterations over time. Although smoking is a major risk factor
for NECs, its role in carcinoid development remains unclear, suggesting
distinct etiologies within the lung NEN spectrum [25].

Our work builds upon previous studies that have attempted to
stratify lung NENs using molecular characteristics. By leveraging ma-
chine learning algorithms within SurvSig, we were able to refine these
classifications and identify novel gene signatures that may serve as
prognostic biomarkers. The ability to reproduce these findings across
multiple datasets underscores the importance of integrating large-scale
genomic data to enhance our understanding of tumor biology and
improve patient stratification. Using SurvSig, we were able to construct
gene signatures that stratify patients into molecular clusters using a
single list. Importantly, many identified genes have been recently vali-
dated to be discriminators of these clusters using protein expression
through immunohistochemistry [26,27]. Notable examples are enrich-
ment of OTP in Al and A2 carcinoids, ASCL1 in A1, HNF1A in A2 and B
clusters and ANGPTL3 in B clusters (Fig. 4A, Table S6).

The distinct clinical trajectories observed in lung NENs can be
directly attributed to their underlying biological diversity. Typical and
atypical carcinoids often harbor mutations in the MEN1 gene and exhibit
low proliferation rates, which correlate with their generally indolent
clinical behavior. Conversely, high-grade neuroendocrine carcino-
mas—such as SCLC and LCNEC—are characterized by frequent genetic
alterations in TP53 and RBI1, extensive genomic instability, and
aggressive proliferation. Recent literature also highlights the impor-
tance of tumor plasticity, with documented instances of non-small cell
lung cancer (NSCLC) undergoing histological transdifferentiation into
SCLC following targeted therapy resistance [28,29]. Furthermore, a
recent study has demonstrated the ability of carcinoids to differentiate
to high-grade tumors by acquiring amplifications of cell-cycle regulating
genes through chromothripsis [30].

Additionally, the immune microenvironment markedly varies among
subtypes, with carcinoids typically displaying low immune infiltration
and an immunologically ’cold’ phenotype [31,32], whereas SCLC and
LCNEC frequently present a heterogeneous immune contexture,
including immunosuppressive environments that diminish response to
immunotherapeutic strategies [12,32-34]. These biological differences
are critical for interpreting the transcriptomic signatures captured by
SurvSig, underpinning its utility as both a prognostic and biologically
informative tool. Future studies integrating genomic, epigenomic, and
immune profiling could further refine our understanding of these dif-
ferences, potentially improving patient stratification and guiding
subtype-specific treatment approaches.

Our study has several limitations to take into account. SurvSig relies
solely on transcriptional patterns for sample stratification and does not
incorporate genomic features such as mutations or copy number varia-
tions (CNVs) [4-7,35]. These genetic alterations are known to influence
gene expression and can act as confounding factors, as demonstrated in
carcinoid tumors (e.g., MEN1 mutations) and LCNEC. However, previ-
ous studies have also shown that transcriptional signatures associated
with these alterations are detectable in tumors lacking the correspond-
ing mutations, underscoring the role of alternative mechanisms—such
as epigenetic inactivation [24,36]—that can lead to similar phenotypic
outcomes. Additionally, given the reliance on publicly available
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datasets, cohort selection bias remains a potential limitation, particu-
larly in terms of sample diversity and completeness of clinical annota-
tion. Moreover, it is well-established that comparing RNA expression
levels directly with protein abundance has inherent limitations.

While SurvSig was specifically designed and validated for lung
neuroendocrine neoplasms, the underlying methodology is broadly
applicable and could, in principle, be extended to other neuroendocrine
malignancies such as pancreatic neuroendocrine tumors (PanNETSs) [37,
38]. Given the shared neuroendocrine transcriptional programs across
tissue types, such an extension is technically feasible, as previous
research has demonstrated common transcriptional and epigenetic
programs in other neuroendocrine neoplasms [37,39]. However, sys-
tematically evaluating its performance in non-pulmonary neuroendo-
crine cancers requires tumor-specific reference cohorts with
well-annotated survival data, which falls beyond the scope of the cur-
rent study. Future work may explore this direction as suitable datasets
become available.

In summary, the SurvSig platform offers a versatile tool for the
exploration of gene expression signatures in lung NENs. By facilitating
biomarker discovery and enabling the interpretation of complex tran-
scriptional data, SurvSig can aid in the development of personalized
therapeutic strategies. SurvSig has the potential to uncover novel tran-
scriptional signatures and genes, aiding the identification of candidate
markers capable of differentiating lung NET histologies; however, these
findings require further validations in the clinical setting. Continued
development of such tools are essential for translating genomic insights
into actionable clinical interventions, ultimately improving patient
outcomes in lung NENs.

4. Material and methods
4.1. Data collection

Processed gene expression and survival data were collected from
multiple publicly available neuroendocrine lung tumor cohorts. For
small cell lung cancer (SCLC), data were sourced from George-SCLC [6]
through cBioPortal [40], Lissa-SCLC [18], Jiang-SCLC [19], and
Liu-SCLC [20], covering both treatment-naive and metastatic cases.
Large cell neuroendocrine carcinoma (LCNEC) data were obtained from
George-LCNEC [7]. Pulmonary carcinoid tumor data were derived from
Fernandez-CARCI [4] and Alcala-CARCI [5]. The Cancer Genome Atlas
(TCGA) integrated cohort was also included [22], covering 33 different
cancer types for comparative analysis, selecting earlier sample time
points for duplicate entries. The Rousseaux mixed lung tumor cohort
[21] was also included, where expression was profiled using micro-
arrays. Raw cel expression files were obtained from GEO, imported with
the read.affybatch function from the affy package [41], followed by
normalization with the rma function. Gene expression scores were ob-
tained with the jscores function from the JetSet package [42]. Gene
names across all cohorts were standardized to HUGO symbols through
an automated mapping process to correct outdated or non-standard gene
names. Unmapped genes were excluded, and duplicates were removed
by retaining the cases with highest mean expression. Datasets where
expression was summarized in normalized read counts were
log2-transformed to stabilize variance. For all cohorts except TCGA,
NAPY [9], neuroendocrine (NE) [23], and epithelial-mesenchymal
transition (EMT) scores [43] were calculated to assess tumor charac-
teristics. These scoring methods were applied uniformly across the co-
horts, ensuring consistent analysis across datasets. Cohorts are
represented as individual sets on the SurvSig website, which can be
selected under the “Select a Dataset” drop-down menu.

4.2. SurvSig website implementation

Python and R were used for data analysis and visualization. A web
application developed using Python and Streamlit (1.39) was deployed
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on a Linux Debian (6.1.38) server, with integration of R for additional
statistical analysis. Python (3.12) and R (4.3.3) were used for consistent
analysis. A brief example about using SurvSig can be found on the
landing page, as well as under the “Help” tab, where several short
introduction videos can be found related to the different functionalities.

4.3. Dimensionality reduction and clustering

Dimensionality reduction methods included Uniform Manifold
Approximation and Projection (UMAP), t-distributed Stochastic
Neighbor Embedding (t-SNE), Principal Component Analysis (PCA), and
Multidimensional Scaling (MDS). UMAP [44] was implemented using
umap-learn (0.5.6), while t-SNE [45], PCA, and MDS were applied using
scikit-learn (1.5.1 and 1.5.2). Non-negative Matrix Factorization (NMF),
implemented with scikit-learn and bignmf (1.0.5) [46], was also per-
formed for clustering purposes. PHATE, used for nonlinear dimension-
ality reduction, was implemented with phate (1.011) [47]. On the
SurvSig website, we implemented several advanced settings that users
can modify for each method. In case of UMAP, users can modify minimal
distance, number of neighbors and distance metric. For t-SNE, users can
modify perplexity, number of iterations, distance metric and embedding
method. In PCA analysis users can modify tolerance, whitening and SVD
solver. In MDS, users can select number of iterations, epsilon value and
use of metric MDS. In case of NMF analysis, in the standard NMF, users
can select iterations, tolerance, method of initialization, beta loss,
numeric solver and randomization of order of coordinates, while in the
NMF clustering option, users can select number of iterations, number of
trials and Lamb’s value. In the PHATE method, users can select number
of neighbors and principal components. In the correlation option, users
can select Spearman or Pearson correlations.

For clustering, several methods were employed, including K-means,
Gaussian Mixture Models (GMM) [48], Agglomerative Clustering,
Self-Organizing Maps (SOM) [49], and Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) [50], using
scikit-learn and MiniSom. On the SurvSig website, users can also modify
advanced parameters for the clustering methods. In case of k-means,
apart from number of clusters, users can modify the initialization
method, relative tolerance, max iterations and k-means algorithm.
During Gaussian Mixture Models, users can select initialization method,
covariance type, convergence threshold and non-negative regulariza-
tion. In agglomerative clustering, users can select the linkage method. In
DynamicTreeCut, users can select the linkage methods, distance metric
and minimum cluster size. In HDBSCAN, users can select the alpha
value, metric method, minimum number of samples, epsilon values and
cluster selection method. In the OPTICS approach, users can select the
minimum number of samples, distance metric, initialization method and
epsilon value. Together, these options enable users to modify and refine
both the dimensionality reductions and clustering approaches.

Correlations between gene expression profiles were calculated using
Spearman or Pearson methods, implemented via pandas (versions 2.2.2
and 2.2.3).

4.4. Gene set enrichment, survival and pathway enrichment analysis

Gene set enrichment analysis was conducted using single-sample
GSEA (ssGSEA) with the ssgsea function of gseapy (1.1.3) [51] using
default settings. Since datasets were log-normalized, normalization was
set to “None” during analyses seen in the figures. We have implemented
advanced settings for ssGSEA calculation, which includes the option to
select normalization, correlation method and weights. Pathway
enrichment analysis was performed using clusterProfiler (4.6.2) [52]
with gene annotations from org.Hs.eg.db (3.16.0) and results visualized
using enrichplot (1.18.4). On the SurvSig website, users can select the
enrichment method of clusterProfiler: enrichGO (where BP, MF CC or all
sub-ontologies can be selected), or enrichKEGG. In addition, we imple-
mented additional options, such as p-value and Q-value selection,
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selection of p-value correction, selecting the maximum number of genes
and pathways to be plotted and ordering of gene lists on plots.

Survival analysis used the survival R package (3.7-0) for Kaplan-
Meier estimations and Cox proportional hazards models, with addi-
tional visualization provided by survminer, such as multivariate analysis
(0.4.9). On the SurvSig website, the multivariate option for clustered
heatmaps can be found on a separate tab (“Multivariate & Chi [2]),
while for survival analysis using ssGSEA values or single-genes, multi-
variate analysis is performed automatically. In each case, we imple-
mented options to modify the analysis, which includes selection of
clinical features and annotations to include in the analysis, and what
should be the reference category.

In case of single-gene and ssGSEA score-based survival analysis, we
implemented several options to stratify patients to “high” and “low”
groups: 1) “Median” value; 2) “Percentage decomposition”: percentile
based separation, where user can set a manual percentage value; 3)
“Percentage decomposition (lower and upper limit)”: users can specify
two percentages, where the “low” group consists of patients under the
lower threshold, and “high” group consists of patients above the higher
threshold; 4) “Automatic™ in this case, SurvSig scans by default all
cutoffs in a 1 % step between 10 % and 90 % interval of patients,
returning the percentage where the survival analysis resulted in the
lowest p-value. To control for multiple testing, in these cases an addi-
tional plot and table appears summarizing the calculated p-values and
adjusted (FDR) p-values. Both the interval range, and step size can be
adjusted by the users. 5) “Expression values cutoff”: users can also select
what expression value to use to separate the patients.

Heatmaps were generated using ComplexHeatmap (2.14.0) [53] to
visualize gene expression and enrichment data. On the SurvSig website,
users can choose to visualize (and cluster) data based on Z-scoring, or
simply the normalized (log transformed in case of RNA-seq) expression
data. We implemented several options to customize the heatmaps, such
as specifying the color palett (and percentile thresholds), displaying
dendograms of rows and columns and selecting annotations of samples
together with their colors.

4.5. Statistical analyses

Comparisons and statistical analyses were calculated using SurvSig.
Comparisons between groups (such as boxplots) were calculated using
the mannwhitneyu() function of SciPy in python. Spearman correlations
between genes (and ssGSEA enrichment scores) are calculated using the
spearmanr function from SciPy, with implemented options to calculate
Pearson correlation using the pearsonr function of SciPy.

For statistical analysis, false discovery rate (FDR) adjustments, chi-
square tests, and Z-score calculations were performed using statsmo-
dels (0.14.4), while median, standard deviation, and variance were
calculated using numpy. Correlations between clinical and gene
expression data were calculated using pandas. Interactive visualizations
were generated using Plotly (5.23.0).

4.6. Gene set finder

The Gene Set Finder identifies significant genes using machine
learning and statistical methods. Dimensionality reduction techniques,
such as PCA, ICA, FA, and NMF, are applied to reduce complexity while
retaining relevant structure. These methods, implemented via scikit-
learn, were supplemented with standard deviation to rank genes by
variability. For clinically integrated analysis, classifiers such as Artificial
Neural Networks (ANN) and Categorical Naive Bayes were used to
identify genes associated with clinical features. Kruskal-Wallis tests,
corrected for multiple testing using FDR, were used to detect associa-
tions between genes and clinical characteristics.
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