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A B S T R A C T

The advances in the field of cancer genomics have enabled researchers and clinicians to identify altered pathways 
and regulatory networks that differentiate subtypes manifesting as differential phenotypes of lung neuroendo
crine neoplasms (NENs). The clinical heterogeneity observed among lung NEN subtypes reflects underlying 
biological distinctions, including differential mutation patterns, epigenetic changes and immune microenvi
ronment activities. Although in many cases only a handful of underlying genes are used to differentiate patients, 
broader gene signatures might result in finer separation and help identify patients with differential survival. Lung 
NENs are vastly underrepresented in pan-cancer studies, resulting in lacking options to explore datasets. To this 
end, we developed a freely available website (https://survsig.hcemm.eu/) which allows users to upload potential 
genes of interest, perform patient clustering, compare survival and explore gene expression signature of lung 
NENs. Leveraging these biological differences enhances the accuracy of gene expression-based prognostic clas
sifiers like SurvSig.

1. Introduction

Lung neuroendocrine neoplasms (NENs) account for approximately 
20–25 % of all lung cancers and exhibit a wide range of clinical be
haviors, from indolent to highly aggressive forms [1]. Lung NENs are 
classified into lung neuroendocrine tumors (NETs), representing mainly 
the well differentiated carcinoids (CARCI), and the poorly differentiated 
lung neuroendocrine carcinomas, encompassing large cell neuroendo
crine carcinoma (LCNEC) and small cell lung cancer (SCLC) [2]. Carci
noids can be further separated to low-grade typical carcinoids and 
intermediate-grade atypical carcinoids, having relatively better prog
nosis compared to NECs. In contrast LCNEC and SCLC are high-grade 
and poorly differentiated tumors associated with aggressive behavior, 
rapid progression, and poor survival outcomes.

The molecular pathogenesis of lung NENs is complex and varies 

across the different subtypes, typically lacking common oncogenic 
driver mutations found in non-small cell lung cancer (NSCLC), such as 
KRAS and EGFR in lung adenocarcinomas [3]. Carcinoid tumors present 
with lower mutational burdens, often harboring somatic mutations in 
chromatin remodeling genes, such as MEN1 and ATRX [4,5]. On the 
other hand, SCLC and LCNEC are characterized by high mutational 
burdens and frequent alterations in key tumor suppressor genes, such as 
the TP53 gene. In addition, RB1 gene mutations can be found in most 
SCLC tumors, and approximately half of LCNEC tumors. In case of 
LCNEC tumors with no RB1 mutations are often enriched with STK11 
and KEAP1 gene mutations, potentially reflecting distinct subgroups [6, 
7].

Recent advances have focused on stratifying lung NENs based on 
transcriptional profiles, resulting in the classification of patients into 
distinct molecular subtypes. Carcinoid tumors have been divided into 
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three major molecular subtypes [5,8]: “cluster A1” is defined by DLL3 
and ASCL1 expression, “cluster A2” manifests with SLIT/ROBO pathway 
downregulation, and “cluster B” is comprised mainly of atypical carci
noids and tumors with MEN1 mutations which display poorer outcomes 
[5]. A fourth emerging subtype, known as supra-carcinoids, has also 
been identified and shows molecular similarities to high-grade tumors 
[5]. LCNEC tumors have also been subdivided into two primary cate
gories: type I, which are highly neuroendocrine and enriched for STK11 
and KEAP1 mutations, and type II, which exhibit less neuroendocrine 
features, including enrichment of RB1 mutations and upregulation of the 
NOTCH pathway [7]. SCLC, meanwhile, can be categorized into mo
lecular subtypes based on the expression of lineage-specific transcription 
factors ASCL1, NEUROD1, POU2F3, and YAP1 [9]. Taken together, these 
analyses highlight that lung NENs comprise diverse subtypes exhibiting 
distinct biological behaviors beyond traditional morphological classifi
cations. Consequently, identifying novel patient subgroups, potentially 

independent of established molecular clusters, may lead to improved 
prognostication, refined therapeutic strategies, and ultimately better 
clinical outcomes.

As genome-wide profiling gains popularity, the identification of 
transcriptional signatures associated with various conditions and 
cellular states has become increasingly common. These signatures have 
proven useful for identifying patient subtypes and stratifying cell lines, 
demonstrating that complex gene expression patterns can provide more 
precise classification of patient groups than single-gene analyses 
[10–14]. By integrating multi-omics data, these have led to identifica
tion of dysregulated pathways, such as p53 and ATM in neuroendocrine 
neoplasms, related to miRNA-mediated regulation with the potential for 
use as prognostic markers [15]. Furthermore, these signatures can have 
therapeutic implications, where a notable example is the identification 
of the inflamed subtype in SCLC, which has significantly better response 
to different treatments, including immunotherapy [12,16,17].

Fig. 1. Datasets and SurvSig website. A) number of samples from each dataset for the three lung Nen histologies. B) number of patients for each histology of the 
rousseaux cohort. C) summary of the TCGA integrated dataset. D) Kaplan-Meier survival plot of lung histologies in the rousseaux cohort. E) Kaplan-Meier survival 
comparison of SCLC patients from the 5 collected cohorts. F) summary of the SurvSig website.
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Unfortunately, lung NENs are often underrepresented in large-scale 
pan-cancer studies, such as The Cancer Genome Atlas (TCGA), due to 
challenges associated with obtaining sufficient tumor specimens. 
Consequently, the availability of tools for exploring lung NEN data is 
extremely limited, impeding both research advancements and clinical 
interpretations. Our aim was to address these limitations by developing 
an online tool that that enables the interactive exploration of these 
datasets. For this reason, we have compiled publicly accessible gene 
expression data from multiple lung NEN cohorts and developed a freely 
available online website allowing users to upload and interactively 
analyze gene signatures with various machine learning approaches. This 
novel and unique approach will facilitate identifying potential sub
groups in these heterogeneous diseases, discovery potential biomarkers 
and aiding in the interpretation of complex transcriptional data.

2. Results

We collected publicly available gene expression data for over 600 
lung NENs across six datasets, encompassing the three major histological 
subtypes (Fig. 1A). The majority of samples are from small cell lung 
cancer (SCLC, n = 359) [6,18–21], which is the most prevalent NEN 
subtype, followed by carcinoid tumors (n = 139) [4,5,21] and large cell 
neuroendocrine carcinoma (LCNEC, n = 122) [7,21]. Among the data
sets, one cohort includes transcriptional data for non-NEN tumors, 
allowing for cross-histology comparisons (Fig. 1B) [21]. Additionally, 
we incorporated the TCGA (The Cancer Genome Atlas) integrated cohort 
(33 cancer types, >10k samples) [22], enabling the examination of 
transcriptional patterns across other cancer types (Fig. 1C).

Patient survival varies significantly among the main histological 
subtypes of lung NENs, demonstrating a pronounced bimodal distribu
tion. Carcinoid tumors are associated with notably favorable outcomes, 
where median survival was not reached in either the Alcala or Rousseaux 
cohorts. High-grade SCLC and LCNEC display poor survival outcomes, 
with median survivals of approximately 15 and 20 months, respectively 
(Rousseaux cohort, Fig. 1D). Detailed survival analysis of SCLC patients 
expectedly found significantly better prognosis in limited-stage and 
chemo-naive cohorts (George-SCLC, Liu-SCLC and Jiang-SCLC) 
compared to the Lissa and Rousseaux cohorts, where most patients 
received systemic chemotherapies (Fig. 1E). Comparisons between 
LCNEC and carcinoid tumors across the datasets showed no significant 
differences in survival (Fig. S1A-B).

To support data mining and exploration of gene expression signa
tures, we developed the SurvSig website (https://survsig.hcemm.eu/), 
which facilitates clustering-based analysis of complex gene expression 
patterns (Fig. 1F). After uploading a gene signature or gene list (up to 
2000 genes), the website performs dimensionality reduction and clus
tering to group patients based on similar transcriptional profiles. Mul
tiple dimensionality reduction and clustering algorithms are available 
and customizable by the user. The generated clustered expression 
heatmaps allow for survival comparisons among patient clusters, 
revealing potential differences in survival outcomes. Multivariate anal
ysis and patient annotation enrichment can also be compared between 
patient clusters to account for clinical variables. Additionally, uploaded 
genes can be clustered to identify groups with similar expression pat
terns. SurvSig also includes gene set enrichment analysis for both 
uploaded and clustered gene sets to quantify pathway activity, which 
can be used for survival analysis in a single-gene context. The expression 
profiles of single genes and enrichment scores can be compared through 
correlation and violin plots, where samples can be grouped and color 
coded based on annotations and clinical characteristics.

2.1. Neuroendocrine gene signatures

We classified tumors into neuroendocrine (NE) and non- 
neuroendocrine (non-NE) subtypes using the NE50 gene signature 
[23], which includes 25 genes highly expressed in NE tumors and 25 

genes highly expressed in non-NE SCLC tumors (Fig. 2A, Table S1). A 
representative heatmap for the signature in the George-SCLC cohort can 
be seen in Fig. 2B. Approximately 75–80 % of SCLC tumor cases scored 
positively for NE characteristics. Conversely, a substantial proportion of 
LCNEC tumors exhibited stronger non-NE features (50 % in the Geor
ge-LCNEC and 70 % in the Rousseaux-LCNEC cohorts). Carcinoid tumors 
were predominantly highly neuroendocrine, except for a few cases that 
were enriched for non-NE genes, potentially linked to the emerging 
supra-carcinoid subtype (Fig. S2A-B).

Next, each patient from all lung NEN datasets was classified using the 
Rudin classification for SCLC tumors [9], which assigns subtypes based 
on the expression of ASCL1 (A), NEUROD1 (N), POU2F3 (P), or YAP1 
(Y). As expected, chemo-naive SCLC cohorts were predominantly 
enriched for ASCL1+ tumors (George-SCLC, Liu and Jiang cohorts), 
whereas the highly treated Lissa cohort had higher prevalence of 
YAP1+ tumors (Fig. 2A). LCNEC tumors presented a significantly 
greater proportion of YAP1+ cases compared to SCLC. The most notable 
difference was seen in carcinoid tumors, where the tumors in the Alcala 
cohort had significantly fewer YAP1 + cases compared to the carcinoid 
tumors in the Rousseaux cohort despite retaining similar NE signature 
characteristics.

While most lung NENs retain distinct neuroendocrine (NE) charac
teristics, a subset exhibits prominent non-NE features, showing molec
ular similarities to non-small cell lung cancers (NSCLC) (Fig. 2C). This 
observation is supported by ssGSEA-based enrichment analyses, which 
demonstrate strong negative correlations between NE and non-NE gene 
expression across all lung tumor histologies (Fig. 2D, with differential 
activity quantified in Fig. S2C). Notably, while ASCL1—a key NE mar
ker—predictably shows positive correlation with NE-specific genes in 
the NE50 gene set, its expression is absent in many carcinoids (Fig. 2E, 
with sample tumor histology indicated by color). Moreover, some 
NSCLC adenocarcinomas (ADC) exhibit high ASCL1 expression while 
maintaining a non-NE phenotype, as observed in both the Rousseaux 
cohort and TCGA datasets (Fig. S2D-E). These findings reinforce the 
notion that although ASCL1 serves as a critical regulator in neuroen
docrine cells, additional factors are necessary to drive full neuroendo
crine differentiation 24.

We subsequently assessed the gene signature employed to classify 
the Type I, Type II, and ‘nan’ (unassigned or unknown) molecular sub
types within the George-LCNEC tumors cohort (clustered data available 
in Table S2) 7. Using two-dimensional UMAP dimensionality reduction 
combined with dynamicTreeCut clustering, we identified four distinct 
patient groups and three primary gene sets (Fig. 2F). This clustering 
analysis delineated the George-LCNEC cohort into four groups that 
correlated with molecular subtypes: S1 was predominantly Type II, S2 
exclusively Type I, S3 a mixture of Type I and II, and S4 exclusively 
‘nan’. The S1 cluster was characterized by POU2F3 + and 
YAP1 + tumors, while clusters S2-S4 were nearly exclusively ASCL1 + . 
This pattern was also reflected in the NE scores, with S1 displaying a 
non-NE profile, S2 and S4 being mainly NE, and the mixed S3 cluster 
showing non-NE characteristics despite elevated ASCL1 expression.

The identified clusters were differentially enriched in three gene sets 
(G1-G3, gene ontoloy in Table S3). G1 was associated with the ‘nan’ 
subtype and enriched in synaptic pathway-related genes, showing 
significantly higher expression of neuroendocrine markers such as 
INSM1 and SYP (Fig. S2E). G2 was linked to the Type I subtype, with 
enrichment in coagulation pathways, while G3 corresponded to the 
Type II subtype, mainly composed of non-NE tumors and enriched for 
the G3 gene cluster, which includes genes related to NFKB and adhesion 
pathways. Notably, we observed similar clustering patterns within 
LCNEC samples from the Rousseaux cohort (Fig. 2G, distribution of 
INSM1 and SYP expression in Fig. 2F), where expression was quantified 
using microarray in comparison the RNA-seq based Alcala cohort, 
underscoring the robust reproducibility of this gene signature in the 
molecular classification of LCNEC tumors.
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2.2. Identifying signatures related to patient annotations

We implemented the option to identify genes of interest through 
various statistical approaches, enabling the detailed exploration of the 
datasets (“Gene Set Finder” tab on SurvSig). This can be achieved either 
by using an entire patient cohort, or a subset of patients, considering 
either the full gene set or a gene list uploaded by the user. Two main 
approaches are implemented: 1) selecting informative genes based on 
expression profiles, such as standard deviation, PCA, SVD and other 
approaches; 2) identifying gene groups with differential expression 
profiles between predefined patient groups, such as clinical character
istics or annotations.

To illustrate this feature, we extracted the top 500 most variable 
genes in the mixed Rousseaux based on standard deviation (Fig. 3A, 
Table S4) including six lung cancer histologies (SCLC, LCNEC, CARCI, 
SQC (Squamous cell carcinoma), ADC (Adenocarcinoma) and BAS 
(Basaloid) histologies). Cluster analysis and heatmap representation of 
patients highlighted four distinct groups with distinct behaviors, defined 
by UMAP dimensionality reduction and dynamicTreeCut clustering 
(Fig. 3B). The S1 cluster comprised SQC and BAS (a rare subtype of SQC) 
tumors, while the S2 cluster predominantly included ADC tumors. Most 

SCLC and LCNEC tumors clustered together in the S3 group, indepen
dent of NE status, whereas nearly all carcinoid tumors were grouped in 
the S4 cluster (Fig. 3C).

The gene clusters active in lung NEN tumors (G2) were highly 
enriched for neuronal and secretory pathways (Fig. S3A, gene ontology 
results can be found in Table S5). This gene cluster was highly expressed 
in all three lung NEN histologies (SCLC, LCNEC and CARCI). In contrast, 
the G4 gene cluster was more inactive in carcinoid tumors compared to 
high-grade lung NENs, enriched for replication related pathways 
(Fig. S3B, Table S5). This differential activity was reinforced by 
comparing normalized enrichment scores among the lung NEN datasets 
(Fig. 3D and Fig. S3C), where the G2 cluster was more active in carcinoid 
tumors, followed by SCLC tumors and finally LCNEC tumors. In contrast 
the G4 cluster was more active in SCLC and LCNEC tumors compared to 
the low-grade carcinoids.

2.3. Molecular and prognostic signatures in carcinoid tumors

Carcinoid tumors can be categorized to typical (TC) and atypical 
(AC) cases, that have recently been further classified into 4 molecular 
subtypes (termed A1, A2, B and supra-carcinoids) using distinct gene 

Fig. 2. Transcriptional patterns defining lung NENs. A) distribution of rudin subtypes (NAPY, top) and NE subtypes (NE50 signature, bottom) of lung NENs. B) 
expression heatmap of the NE50 gene signature using the George-SCLC cohort (RNA-seq). C) expression heatmap of the NE50 gene signature using the rousseaux 
cohort (microarray). D) spearman correlation of NE and non-NE geneset activities defined in the NE50 signature using the rousseaux cohort. E) correlation of ASCL1 
expression and NE geneset activity (from NE50 signature) using the rousseaux cohort. F-G) expression heatmap of genes that defined molecular subtypes [7] using the 
F) George-SCLC cohort (RNA-seq) and G) LCNEC tumors from the rousseaux cohort (microarray).
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expression signatures [5]. The three gene signatures (A1 vs A2, A1 vs B 
and A2 vs B signatures [5]) yielded reproducible results using the 
original Alcala cohort, highlighting the transcriptional differences 
among the molecular subtypes (Fig. S4A), also seen in the carcinoid 
tumors from the Rousseaux cohort (Fig. S4B).

Using SurvSig, we constructed a single gene signature that can 
differentiate the molecular histologies, without the need of multiple 
gene lists for classification. For this, we identified 1k genes that describe 
the four molecular subtypes using an artificial neural network (MLP 
model from SciKit-learn package in python) implemented on SurvSig 
(Table S6). Patient clustering using the newly defined genes by PCA 
dimensionality reduction (with whitening enabled) and dynam
icTreeCut algorithm (set to complete linkage method) separated the 
Alcala carcinoid tumors completely based on the predefined molecular 
subtypes (Fig. 4A). The A1 tumors were enriched for neuronal pathways 
(G3 genes), the A2 tumors were enriched for metal ion stress response 
(G1 genes) and wound healing pathways (G2 genes), the B tumors were 
enriched with synaptic pathways (G5 genes) and wound healing (G2 
genes), while the supra-carcinoids were enriched for protein kinase and 
serine endopeptidase pathways (G4 genes) (gene ontology can be found 
in Fig. S4C and Table S7). Using the gene signature, we were able to 
annotate the molecular clusters of the carcinoid tumors from the Rous
seaux cohort (microarray-based expression quantification) as well, 
which yielded very similar expression heatmaps despite difference in 
expression quantification technologies (Fig. 4B).

To better differentiate gene expression patterns among the TC and 
AC subtypes, we performed a grid search using nearest centroids clas
sifier (see Methods section), which identified 358 genes that are differ
entially enriched in TC and AC carcinoids from the Alcala cohort 
(Table S8). Cluster analysis of the gene signature identified three groups 
of genes, of which two had marked differential activity between the two 
subtypes (Fig. 4C). The G1 gene set was more active in typical carcinoids 
and were enriched for GTP pathways, while the gene set enriched in 
atypical carcinoids were enriched for spindle and mitotic pathways 
(Fig. S5A). Importantly, we observed similar separation in the inde
pendent carcinoid samples from the Rousseaux mixed cohort, high
lighting the reproducibility of the gene set (Fig. 4D).

As expected, the patient cluster that was enriched for typical 

carcinoid signatures had significantly better survival, than the patient 
cluster enriched for atypical signatures, using the default UMAP 
dimensionality reduction and clustering patients to two groups using k- 
means (excluding samples that were included from another study with 
no clinical information with the “LC exclusion” toggle, and turning off Z- 
scoring of data). This trend was visible using both the Alcala cohort, and 
carcinoid tumors from the Rousseaux cohort (Fig. 4E-F). We also tested 
whether gene set enrichment quantified by ssGSEA (Single Sample Gene 
Set Enrichment Analysis) of the two gene signatures (G1 and G2) could 
be used as surrogate markers to predict survival. The analysis reinforced 
the observation that patients displaying higher activity of the typical 
carcinoids G1 genes had significantly better outcomes in both datasets 
(Fig. 4G-H). In contrast, patients with signature enrichment of the G2 
genes, enriched in atypical carcinoids, had significantly worse outcomes 
(Fig. S5B). The significance was retained even when correcting the p- 
value for multiple testing from the automatic cutoff selection of all 
ssGSEA based survival analyses (Fig. S5C).

3. Discussion

In this study, we compiled a comprehensive collection of publicly 
available gene expression data from over 600 lung neuroendocrine 
neoplasms (NENs), encompassing carcinoids, large cell neuroendocrine 
carcinoma (LCNEC), and small cell lung cancer (SCLC). By integrating 
this data into an interactive online platform called SurvSig, we enabled 
the analysis of gene expression signatures using various machine 
learning approaches. Our findings demonstrate that complex transcrip
tional patterns can effectively classify lung NEN subtypes and are 
associated with distinct clinical outcomes, particularly in differentiating 
typical and atypical carcinoid tumors.

The application of transcriptional profiling allowed us to classify 
tumors based on established molecular signatures, such as the Rudin 
classification for SCLC and the NE50 gene signature for neuroendocrine 
differentiation. We observed that carcinoid tumors exhibit diverse mo
lecular subtypes with distinct gene expression patterns, which correlate 
with patient survival. Specifically, we identified gene clusters that 
differentiate typical carcinoids, associated with favorable prognosis, 
from atypical carcinoids, which have poorer outcomes. These gene 

Fig. 3. Variable genes across lung tumor histologies. A) expression heatmap of 500 most variable genes identified in the rousseaux cohort. B) UMAP representation 
and clustering of patient samples. C) histology composition of the identified patient clusters. D) normalized enrichment scores of NE specific genesets from multiple 
data sources.
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Fig. 4. Expression patterns of carcinoid tumors. A-b) clustering of 1k genes identified by artificial neural network defining molecular subtypes of carcinoids in the A) 
alcala and B) rousseaux cohorts. C-d) clustering of patients using 358 genes identified by the nearest centroids classifier that differentiate TC and AC carcinoids using 
the C) alcala (RNA-seq based expression) and D) rousseaux (microarray-based expression) cohorts. E) UMAP and clustering of alcala (top) and rousseaux (bottom) 
cohorts. F) Kaplan-Meier survival comparison of patient cohorts from the two carcinoid cohorts. G) ssGSEA activity and cutoffs identified with automatic cutoff 
selection of the G1 gene list enriched in TC. H) Kaplan-Meier survival plots of high and low G1 gene set activities.
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signatures were consistent across independent cohorts, highlighting 
their robustness and potential utility in clinical settings.

Lung NENs have distinct pathogenic mechanisms related to their 
development, resulting in a heterogeneous group with distinct patho
genetic profiles across their subtypes. A recognized premalignant con
dition, diffuse idiopathic pulmonary neuroendocrine cell hyperplasia 
(DIPNECH), has been implicated in the early development of typical and 
atypical carcinoids, particularly among non-smoker females. Environ
mental factors, most notably nicotine and hypoxia related to smoking, 
contribute significantly to the pathogenesis of high-grade tumors. 
Notably, the mutational burden is substantially higher in SCLC than in 
carcinoids, reflecting their more aggressive behavior and accumulation 
of genetic alterations over time. Although smoking is a major risk factor 
for NECs, its role in carcinoid development remains unclear, suggesting 
distinct etiologies within the lung NEN spectrum [25].

Our work builds upon previous studies that have attempted to 
stratify lung NENs using molecular characteristics. By leveraging ma
chine learning algorithms within SurvSig, we were able to refine these 
classifications and identify novel gene signatures that may serve as 
prognostic biomarkers. The ability to reproduce these findings across 
multiple datasets underscores the importance of integrating large-scale 
genomic data to enhance our understanding of tumor biology and 
improve patient stratification. Using SurvSig, we were able to construct 
gene signatures that stratify patients into molecular clusters using a 
single list. Importantly, many identified genes have been recently vali
dated to be discriminators of these clusters using protein expression 
through immunohistochemistry [26,27]. Notable examples are enrich
ment of OTP in A1 and A2 carcinoids, ASCL1 in A1, HNF1A in A2 and B 
clusters and ANGPTL3 in B clusters (Fig. 4A, Table S6).

The distinct clinical trajectories observed in lung NENs can be 
directly attributed to their underlying biological diversity. Typical and 
atypical carcinoids often harbor mutations in the MEN1 gene and exhibit 
low proliferation rates, which correlate with their generally indolent 
clinical behavior. Conversely, high-grade neuroendocrine carcino
mas—such as SCLC and LCNEC—are characterized by frequent genetic 
alterations in TP53 and RB1, extensive genomic instability, and 
aggressive proliferation. Recent literature also highlights the impor
tance of tumor plasticity, with documented instances of non-small cell 
lung cancer (NSCLC) undergoing histological transdifferentiation into 
SCLC following targeted therapy resistance [28,29]. Furthermore, a 
recent study has demonstrated the ability of carcinoids to differentiate 
to high-grade tumors by acquiring amplifications of cell-cycle regulating 
genes through chromothripsis [30].

Additionally, the immune microenvironment markedly varies among 
subtypes, with carcinoids typically displaying low immune infiltration 
and an immunologically ’cold’ phenotype [31,32], whereas SCLC and 
LCNEC frequently present a heterogeneous immune contexture, 
including immunosuppressive environments that diminish response to 
immunotherapeutic strategies [12,32–34]. These biological differences 
are critical for interpreting the transcriptomic signatures captured by 
SurvSig, underpinning its utility as both a prognostic and biologically 
informative tool. Future studies integrating genomic, epigenomic, and 
immune profiling could further refine our understanding of these dif
ferences, potentially improving patient stratification and guiding 
subtype-specific treatment approaches.

Our study has several limitations to take into account. SurvSig relies 
solely on transcriptional patterns for sample stratification and does not 
incorporate genomic features such as mutations or copy number varia
tions (CNVs) [4–7,35]. These genetic alterations are known to influence 
gene expression and can act as confounding factors, as demonstrated in 
carcinoid tumors (e.g., MEN1 mutations) and LCNEC. However, previ
ous studies have also shown that transcriptional signatures associated 
with these alterations are detectable in tumors lacking the correspond
ing mutations, underscoring the role of alternative mechanisms—such 
as epigenetic inactivation [24,36]—that can lead to similar phenotypic 
outcomes. Additionally, given the reliance on publicly available 

datasets, cohort selection bias remains a potential limitation, particu
larly in terms of sample diversity and completeness of clinical annota
tion. Moreover, it is well-established that comparing RNA expression 
levels directly with protein abundance has inherent limitations.

While SurvSig was specifically designed and validated for lung 
neuroendocrine neoplasms, the underlying methodology is broadly 
applicable and could, in principle, be extended to other neuroendocrine 
malignancies such as pancreatic neuroendocrine tumors (PanNETs) [37, 
38]. Given the shared neuroendocrine transcriptional programs across 
tissue types, such an extension is technically feasible, as previous 
research has demonstrated common transcriptional and epigenetic 
programs in other neuroendocrine neoplasms [37,39]. However, sys
tematically evaluating its performance in non-pulmonary neuroendo
crine cancers requires tumor-specific reference cohorts with 
well-annotated survival data, which falls beyond the scope of the cur
rent study. Future work may explore this direction as suitable datasets 
become available.

In summary, the SurvSig platform offers a versatile tool for the 
exploration of gene expression signatures in lung NENs. By facilitating 
biomarker discovery and enabling the interpretation of complex tran
scriptional data, SurvSig can aid in the development of personalized 
therapeutic strategies. SurvSig has the potential to uncover novel tran
scriptional signatures and genes, aiding the identification of candidate 
markers capable of differentiating lung NET histologies; however, these 
findings require further validations in the clinical setting. Continued 
development of such tools are essential for translating genomic insights 
into actionable clinical interventions, ultimately improving patient 
outcomes in lung NENs.

4. Material and methods

4.1. Data collection

Processed gene expression and survival data were collected from 
multiple publicly available neuroendocrine lung tumor cohorts. For 
small cell lung cancer (SCLC), data were sourced from George-SCLC [6]
through cBioPortal [40], Lissa-SCLC [18], Jiang-SCLC [19], and 
Liu-SCLC [20], covering both treatment-naive and metastatic cases. 
Large cell neuroendocrine carcinoma (LCNEC) data were obtained from 
George-LCNEC [7]. Pulmonary carcinoid tumor data were derived from 
Fernandez-CARCI [4] and Alcala-CARCI [5]. The Cancer Genome Atlas 
(TCGA) integrated cohort was also included [22], covering 33 different 
cancer types for comparative analysis, selecting earlier sample time 
points for duplicate entries. The Rousseaux mixed lung tumor cohort 
[21] was also included, where expression was profiled using micro
arrays. Raw cel expression files were obtained from GEO, imported with 
the read.affybatch function from the affy package [41], followed by 
normalization with the rma function. Gene expression scores were ob
tained with the jscores function from the JetSet package [42]. Gene 
names across all cohorts were standardized to HUGO symbols through 
an automated mapping process to correct outdated or non-standard gene 
names. Unmapped genes were excluded, and duplicates were removed 
by retaining the cases with highest mean expression. Datasets where 
expression was summarized in normalized read counts were 
log2-transformed to stabilize variance. For all cohorts except TCGA, 
NAPY [9], neuroendocrine (NE) [23], and epithelial-mesenchymal 
transition (EMT) scores [43] were calculated to assess tumor charac
teristics. These scoring methods were applied uniformly across the co
horts, ensuring consistent analysis across datasets. Cohorts are 
represented as individual sets on the SurvSig website, which can be 
selected under the “Select a Dataset” drop-down menu.

4.2. SurvSig website implementation

Python and R were used for data analysis and visualization. A web 
application developed using Python and Streamlit (1.39) was deployed 
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on a Linux Debian (6.1.38) server, with integration of R for additional 
statistical analysis. Python (3.12) and R (4.3.3) were used for consistent 
analysis. A brief example about using SurvSig can be found on the 
landing page, as well as under the “Help” tab, where several short 
introduction videos can be found related to the different functionalities.

4.3. Dimensionality reduction and clustering

Dimensionality reduction methods included Uniform Manifold 
Approximation and Projection (UMAP), t-distributed Stochastic 
Neighbor Embedding (t-SNE), Principal Component Analysis (PCA), and 
Multidimensional Scaling (MDS). UMAP [44] was implemented using 
umap-learn (0.5.6), while t-SNE [45], PCA, and MDS were applied using 
scikit-learn (1.5.1 and 1.5.2). Non-negative Matrix Factorization (NMF), 
implemented with scikit-learn and bignmf (1.0.5) [46], was also per
formed for clustering purposes. PHATE, used for nonlinear dimension
ality reduction, was implemented with phate (1.011) [47]. On the 
SurvSig website, we implemented several advanced settings that users 
can modify for each method. In case of UMAP, users can modify minimal 
distance, number of neighbors and distance metric. For t-SNE, users can 
modify perplexity, number of iterations, distance metric and embedding 
method. In PCA analysis users can modify tolerance, whitening and SVD 
solver. In MDS, users can select number of iterations, epsilon value and 
use of metric MDS. In case of NMF analysis, in the standard NMF, users 
can select iterations, tolerance, method of initialization, beta loss, 
numeric solver and randomization of order of coordinates, while in the 
NMF clustering option, users can select number of iterations, number of 
trials and Lamb’s value. In the PHATE method, users can select number 
of neighbors and principal components. In the correlation option, users 
can select Spearman or Pearson correlations.

For clustering, several methods were employed, including K-means, 
Gaussian Mixture Models (GMM) [48], Agglomerative Clustering, 
Self-Organizing Maps (SOM) [49], and Hierarchical Density-Based 
Spatial Clustering of Applications with Noise (HDBSCAN) [50], using 
scikit-learn and MiniSom. On the SurvSig website, users can also modify 
advanced parameters for the clustering methods. In case of k-means, 
apart from number of clusters, users can modify the initialization 
method, relative tolerance, max iterations and k-means algorithm. 
During Gaussian Mixture Models, users can select initialization method, 
covariance type, convergence threshold and non-negative regulariza
tion. In agglomerative clustering, users can select the linkage method. In 
DynamicTreeCut, users can select the linkage methods, distance metric 
and minimum cluster size. In HDBSCAN, users can select the alpha 
value, metric method, minimum number of samples, epsilon values and 
cluster selection method. In the OPTICS approach, users can select the 
minimum number of samples, distance metric, initialization method and 
epsilon value. Together, these options enable users to modify and refine 
both the dimensionality reductions and clustering approaches.

Correlations between gene expression profiles were calculated using 
Spearman or Pearson methods, implemented via pandas (versions 2.2.2 
and 2.2.3).

4.4. Gene set enrichment, survival and pathway enrichment analysis

Gene set enrichment analysis was conducted using single-sample 
GSEA (ssGSEA) with the ssgsea function of gseapy (1.1.3) [51] using 
default settings. Since datasets were log-normalized, normalization was 
set to “None” during analyses seen in the figures. We have implemented 
advanced settings for ssGSEA calculation, which includes the option to 
select normalization, correlation method and weights. Pathway 
enrichment analysis was performed using clusterProfiler (4.6.2) [52]
with gene annotations from org.Hs.eg.db (3.16.0) and results visualized 
using enrichplot (1.18.4). On the SurvSig website, users can select the 
enrichment method of clusterProfiler: enrichGO (where BP, MF CC or all 
sub-ontologies can be selected), or enrichKEGG. In addition, we imple
mented additional options, such as p-value and Q-value selection, 

selection of p-value correction, selecting the maximum number of genes 
and pathways to be plotted and ordering of gene lists on plots.

Survival analysis used the survival R package (3.7–0) for Kaplan- 
Meier estimations and Cox proportional hazards models, with addi
tional visualization provided by survminer, such as multivariate analysis 
(0.4.9). On the SurvSig website, the multivariate option for clustered 
heatmaps can be found on a separate tab (“Multivariate & Chi [2]), 
while for survival analysis using ssGSEA values or single-genes, multi
variate analysis is performed automatically. In each case, we imple
mented options to modify the analysis, which includes selection of 
clinical features and annotations to include in the analysis, and what 
should be the reference category.

In case of single-gene and ssGSEA score-based survival analysis, we 
implemented several options to stratify patients to “high” and “low” 
groups: 1) “Median” value; 2) “Percentage decomposition”: percentile 
based separation, where user can set a manual percentage value; 3) 
“Percentage decomposition (lower and upper limit)”: users can specify 
two percentages, where the “low” group consists of patients under the 
lower threshold, and “high” group consists of patients above the higher 
threshold; 4) “Automatic”: in this case, SurvSig scans by default all 
cutoffs in a 1 % step between 10 % and 90 % interval of patients, 
returning the percentage where the survival analysis resulted in the 
lowest p-value. To control for multiple testing, in these cases an addi
tional plot and table appears summarizing the calculated p-values and 
adjusted (FDR) p-values. Both the interval range, and step size can be 
adjusted by the users. 5) “Expression values cutoff”: users can also select 
what expression value to use to separate the patients.

Heatmaps were generated using ComplexHeatmap (2.14.0) [53] to 
visualize gene expression and enrichment data. On the SurvSig website, 
users can choose to visualize (and cluster) data based on Z-scoring, or 
simply the normalized (log transformed in case of RNA-seq) expression 
data. We implemented several options to customize the heatmaps, such 
as specifying the color palett (and percentile thresholds), displaying 
dendograms of rows and columns and selecting annotations of samples 
together with their colors.

4.5. Statistical analyses

Comparisons and statistical analyses were calculated using SurvSig. 
Comparisons between groups (such as boxplots) were calculated using 
the mannwhitneyu() function of SciPy in python. Spearman correlations 
between genes (and ssGSEA enrichment scores) are calculated using the 
spearmanr function from SciPy, with implemented options to calculate 
Pearson correlation using the pearsonr function of SciPy.

For statistical analysis, false discovery rate (FDR) adjustments, chi- 
square tests, and Z-score calculations were performed using statsmo
dels (0.14.4), while median, standard deviation, and variance were 
calculated using numpy. Correlations between clinical and gene 
expression data were calculated using pandas. Interactive visualizations 
were generated using Plotly (5.23.0).

4.6. Gene set finder

The Gene Set Finder identifies significant genes using machine 
learning and statistical methods. Dimensionality reduction techniques, 
such as PCA, ICA, FA, and NMF, are applied to reduce complexity while 
retaining relevant structure. These methods, implemented via scikit- 
learn, were supplemented with standard deviation to rank genes by 
variability. For clinically integrated analysis, classifiers such as Artificial 
Neural Networks (ANN) and Categorical Naive Bayes were used to 
identify genes associated with clinical features. Kruskal-Wallis tests, 
corrected for multiple testing using FDR, were used to detect associa
tions between genes and clinical characteristics.
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