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Abstract

Recent advances in local electron correlation approaches enable the relatively rou-

tine access to CCSD(T) [that is coupled cluster (CC) with single, double, and per-

turbative triple excitations] computations for molecules of a hundred or more atoms.

Here, approaching their complete basis set (CBS) limit becomes more challenging due

to extensive basis set superposition errors, often necessitating the use of large atomic

orbital (AO) basis sets with diffuse functions. Here, we study a potential remedy in

the form of non-atom-centered or floating orbitals (FOs). FOs are still rarely employed

even for small molecules due to the practical complication of defining their position,

number, exponents, etc. The most frequently used FO method thus simply places a
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single FO center with a large number of FOs toward the middle of non-covalent dimers,

however, a single FO center for larger complexes can soon become insufficient. A recent

alternative uses a grid of FO centers around the monomers with a single s function per

center, which is currently only applicable for H, C, N, and O atoms.

Here, we build on the above advantages and mitigated some drawbacks of previous

FO approaches by using a layer of FO centers and 4–9 FOs/center for each monomer.

Thus, a double layer of FOs are placed between the interacting subsystems. When

extending the double-ζ AO basis with this double layer of FOs, the quality of con-

ventional augmented double-ζ or conventional triple-ζ AO bases can be reached or

surpassed with less orbitals, leading to few tenths of a kcal/mol basis set errors for

medium-sized dimers. This good performance extends to larger molecules (showed

here up to 72 atoms), as efficient local natural orbital (LNO) CCSD(T) computations

with only double-ζ AO and 4 FOs/center FO bases matches our LNO-CCSD(T)/CBS

reference within ca. 0.1 kcal/mol. These developments introduce FO methods to the

accurate modeling of large molecular complexes without limitations to atom types by

further accelerating efficient correlation calculations, like LNO-CCSD(T).

1 Introduction

Non-covalent interactions play a major role across chemical sciences, such as in catalytic,

surface, supramolecular, or biochemistry. For example, they can govern the mechanism,

stereochemistry, or yield of chemical reactions, e.g., via affecting the structure and stability

of transition state complexes. However, while the non-covalent interaction contributions are

orders of magnitude smaller than covalent bond energies,1–7 their cumulative effect can be

substantial, especially in extended systems.8–13 Hence, their accurate modeling is challenging

task necessitating advanced quantum chemistry tools. For example, the wave function based

electron correlation treatment could be reliable if combined with high-quality atomic orbital

(AO) basis sets to approach their complete basis set (CBS) limit. Especially, the coupled
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cluster (CC) model14–16 with single and double excitations (CCSD)17 as well as contributions

from triple excitations18–20 can provide systematically improvable results. Here, we employ

the CCSD model with perturbative triple excitations [CCSD(T)],20 which is often referred

to as gold standard in quantum chemistry.

While the CCSD(T) model was repeatedly shown to deliver chemical accuracy (i.e., <

1 kcal/mol errors),8,10,15 its steep scaling limits its applicability range conventionally to ca.

20–25 atoms even with efficient parallel implementations.21–28 However, recent advances

relying on, e.g., natural orbital (NO) based approximations29–31 and their combination with

local correlation approaches32–43 extended the limits of reliable CCSD(T) computations to

40–5044,45 and even to 100s of atoms.43,46–48 In this work, we will employ our local natural

orbital (LNO) method,43,48–53 which enabled so far some of the most advanced CCSD(T)

computations for complex intermolecular interactions. Namely, with our LNO-CCSD(T)

method we reported tightly converged augmented quintuple-ζ computations for complicated

supramolecular complexes of up to 132 atoms,54 surface binding on ionic crystals matching

the quality and uncertainty of experiments,55 CBS limit interaction energies for ion-ligand

complexes,56 and quadruple-ζ level protein-ligand interaction energies up to 1023 protein

atoms.43,48

Hence, especially for such larger molecules, the slow convergence of the correlation energy

towards the CBS limit also poses challenges. Considering interactions, one can note that the

traditional AO basis sets are usually optimized for atoms, and thus can be expected to be

less effective for the intermolecular region. Hence, routinely, at least triple- or quadruple-

ζ AO basis sets are required, often augmented with diffuse functions for well-converged

interaction energies. This can often lead to oversaturation on the atomic positions and

undersaturation in the interacting region. Although some basis families offer an extensive

hierarchy of systematically improving sets, increasing the number of AOs this way can rapidly

lead to linear-dependency issues for large molecules. While explicit electron correlation

methods can accelerate the basis set convergence also for CC computations,57–63 they are
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most helpful to model the electron-electron cusp and may still require extensive diffuse basis

sets for accurate non-covalent interactions.64

In this study, we systematically benchmark and propose novel methods specifically de-

signed to accelerate the basis set convergence of non-covalent interactions by using orbitals

residing not only on the atomic positions. Depending on their specific purpose, such (mostly

Gaussian orbital based) approaches were referred to in the literature as non-atom-centered,

midbond, off-center, or floating orbital (FO) basis methods. For example, Tao and co-

workers added a single midbond orbital center to the middle of the non-covalent bonds

between helium and other noble gas containing non-covalent dimers.65–69 Extending this

midbond concept, Mester and Kállay added ellipsoidal Gaussian type orbitals to the center

of covalent bonds.70 In this way, placing a midbond function halfway between two covalently

bonded atoms can play the role of polarization functions, while placing midbond functions to

the space between two non-covalently interacting monomers contribute to the description of

intermolecular interactions. To highlight their property of not being centered on the atomic

positions or the middle of bonds in all cases, we will give preference to the floating orbital

denomination.

Despite their advantages, such FO basis functions are still rarely used in practice, as they

have numerous additional parameters to be defined compared to the case of AO basis sets.

Namely, their position, number, exponent, and angular momenta has to be determined,

which in general requires a difficult, non-linear optimization procedure. The complicated

task of treating these as variational parameters was taken on so far only by Császár and

Tasi for a few prototypical atomic and molecular systems of 1-3 atoms.71 On top of that, the

non-atom-centered basis parameters also probably depend on the quality of the AO basis set

and the type of the intermolecular interactions.

Because of these complications, the relatively simple, single midbond orbital approach

is applied in almost all FO-based studies.65–69,72–75 Due to the use of only one FO center, a

relatively large FO basis is employed, that often contains at least 3 sets of s and p, 2 sets of d,

4



and 1 set of f basis functions (briefly 3s3p2d1f or 3321). Using this setup, Tao and co-workers

carried out MP4 calculations and concluded that a smaller AO and FO basis set (than the

pure AO basis set) is sufficient to reach the same accuracy in the interaction energies. This

simple FO center definition was also adapted by Szalewicz and co-workers to study different,

biologically relevant non-covalent complexes (S22 test set).73 They calculated interaction

energies in a composite MP2 and CCSD(T) scheme, and added the FO basis to reduce the

AO basis set needed for CCSD(T) calculations. Patkowski and co-workers combined this

single FO center approach with explicitly correlated wave function methods.74,76–78

Recently, Høyvik and co-workers investigated various non-covalent interaction types, such

as H-bonds, dispersion, and mixed interactions for smaller (up to 6 atoms in the A24 set) and

medium sized (up to 36 atoms in the S66 set) complexes.75 They pointed out the need for

high angular momentum FOs when using a single midbond center. Compared to the above

studies, Høyvik and co-workers also studied the effect of adding a second FO center for

the medium-sized complexes, which resulted in slight improvement of the interaction energy

accuracy. Along the line of including more FO centers, Neogrády and co-workers employed

an FO center grid surrounding the entire surface of the monomers.79,80 Their approach places

a single s type basis function on each grid point, whose parameters are optimized so far only

for H, C, N, and O atoms.

In this study, we first systematically compare the performance of the single midbond

and the FO center grid type methods for various non-covalent interactions of medium sized

complexes up to 36 atoms, including H-bonds, ionic H-bonds, dispersion and mixed inter-

actions.81,82 We also present a novel FO approach building on some of the advantageous

and overcoming some of the unfavorable properties of previous FO approaches. Namely,

we use more than one FO center strategically placed in a double layer formation between

the monomers to cover the region of non-covalent interaction. Moreover, we found optimal

compromises between the single s type and a large 3s3p2d1f bases by using a 1s1p or 1s1p1d

FO basis on each FO center of the double layer. In general, this double layer FO basis can
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improve cc-pVDZ interaction energies to the quality of aug-cc-pVDZ or cc-pVTZ with ca.

1.5–2 times less basis functions. Going toward larger systems of high practical relevance,

the proposed double layer method is more generally applicable as it does not have atom

type limitation and it overcomes the problem of diminishing FO contributions occurring

with a single FO center. Moreover, the number of FOs only increases with the size of the

interacting surface, which is much more favorable than the scaling of, e.g., adding diffuse

AOs to all atoms. We also demonstrate the applicability of the double layer FO method in

combination with our LNO-CCSD(T) method to reach larger systems. We show that the

CBS limit LNO-CCSD(T)-level interaction energy of the parallelly displaced coronene dimer

(72 atoms) can be approached to within ca. 0.1 kcal/mol by adding the proposed FO basis

to double- or triple-ζ AO basis sets.

The paper is written as follows: in Sect. 2, we summarize each of the previously applied

FO approaches in detail (Sect. 2.1-2.2), as well as introduce our novel FO method (Sect.

2.3-2.5). In Sect. 3, we introduce the technical details of the computations. In Sect. 4, we

present an in-depth analysis for a few complicated systems (e.g., uracil dimer, Sect. 4.1),

benchmark statistics for medium sized dimers (Sect. 4.2), and a large-scale application (Sect.

4.3).

2 Methodology

The floating orbital basis sets have the following parameters to determine: number and

spatial coordinates of FO centers, angular momenta, and exponents. These parameters of

the FOs could also depend on the underlying AO basis. While the AO basis optimization is

already a complicated, non-linear process, it still has less degrees of freedom. The reason is

that common Gaussian basis sets are mostly atom-centered and developed for each element

independently (although one can note some exceptions aiming at smaller AO basis sets

that were found promising for DFT interactions83–85). In contrast, the number and center
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position of the FOs are also unknown parameter. Additionally, due to their role in modeling

non-covalent interactions, the independent, elementwise optimization of the FO basis set

parameters does not seem to be an ideal strategy. All in all, the global optimization of all

FO parameters, including their position, AO basis-, and molecular interaction dependence

is a very challenging task, which probably contributed to the limited use of FO methods

in computational chemistry. However, as shown in previous studies, it is not necessary to

address all of the above complexities at once to define useful FO methods.65,79

First, we discuss and analyze the properties of the existing FO methods in more detail.

To that end, in Table 1 a brief summary is given on the existing FO methods65,79 compared to

our novel approach, with more details collected in Sect. 2.1 - 2.5. In the most often employed

approach of Tao and co-workers (detailed in Sect. 2.1), a single FO center is placed between

the two interacting monomers (Fig. 1a).65 In the early versions, the midpoint of the monomer

center of masses was selected as FO center. Later, Szalewicz and co-workers improved the

definition of this single FO center position, which we review in Sect. 2.1 and will refer to

here as weighted geometric center (WGC). The most commonly applied basis placed on that

center consists of 3 sets of s, 3 sets of p, 2 sets of d, and 1-1 sets of f and g functions, which

will be referred to as 3s3p2d1f1g or shortly 33211, collecting 38 basis functions altogether.86

The WGC and related single FO center methods were employed so far for relatively

small monomers,65–69 most recently going up to 18 atoms.75 This is partly explained by the

previous computational limitations of CCSD(T), and thus, efforts were not yet devoted to

test or extend WGC-like approaches to larger molecules. However, we anticipate that FOs on

a single FO center could only cover relatively small monomers (ca. 10–20 atoms) sufficiently

well, while the efficacy of a single FO center could decrease with increasing monomer size.

Moreover, the small monomers appearing in WGC-like applications also had a relatively

simple structure and shape compared to the complexity emerging with increasing system

size. While a small monomer having a flat or relatively spherical shape has a surface simple

enough for satisfactory WGC definition, the proper placement of a single (or small number
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of) FO center(s) is more challenging for trimers, tetramers, etc., and for more complicated

dimers, such as host-guest complexes. For example, if the host surrounds the guest molecule,

the WGC definition could place the FO center somewhere within the space of the guest

molecule, while the complicated shape of the surface where the host and guest interact could

prevent the identification of key position(s) for the placement a single (few) FO center(s).

An alternative, second approach for the FO center definition was introduced by Neogrády

and co-workers,79 overcoming the use of only a single FO center. They placed a grid of FO

centers on the surface of the interacting monomers. While they did not introduce a name

for their approach, in this comparative study, we will refer to it as monomer surface grid

(msG) method (detailed in Sect. 2.2). This FO center definition based on monomer surfaces

is expected to be more general than WGC, as it is applicable to complexes with a wide

range of size, shape, and monomer number. As they employed a relatively dense grid (with

somewhat smaller grid edge length than covalent bond lengths), the number of FO centers

in the msG method is approximately 3-7 times larger than the number of atoms in the dimer

(Fig. 1b). The FO basis of the msG method was defined using a single s type function

(1s) per msG FO center. Using this setup, they optimized the msG model parameters

determining the FO positions and exponents for representative molecular dimers containing

H, C, N and O atoms.79 Therefore, currently the msG parameters are defined only for these

four elements, and in the corresponding limited chemical space.

Table 1: Summary of floating orbital basis method parameters from literature studies as well as for method
introduced in this work.

Floating orbital (FO)
basis method

weighted geometric
center (WGC)65,87

monomer surface
grid (msG)79

double layer (DL)

FO basis 3s3p2d1f1g 1s 1s1p(1d)

Number of FO centers 1 ∼3-7x system size
∼ interacting
surface size

Number of FOs/center 38 1 4 (9)
Position of FOs WGC of dimer grid around monomers interacting region

Exponents from ref. 65 optimized in ref. 79 adapted from ref. 65

Applicability
dimers of

small monomers
only H,C,N,O atoms

no atom type or
size restriction
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In this study, we introduce a third approach, which will be referred to as double layer (DL)

method (Fig. 1e). The goal of the DL method is to extend the applicability range of previous

FO methods and improve their performance. To that end, we identify the beneficial features

of the WGC and msG methods, generalize and combine them with novel ideas (Table 1). In

brief (details in Sect. 2.5), we place a layer of FO centers on the surface of each non-covalently

interacting monomers only on the surface side facing the other monomer. The number of DL

FO centers significantly extends the single center of WGC, but it is considerably smaller than

the number of msG FO centers (cf. Fig. 1b and 1e), because we focus on the intermonomer

region that plays an important role in the non-covalent interaction. The DL FO centers are

placed so that almost all atoms on the surface have a dedicated FO center. Regarding the

FO basis placed on each FO center, we appreciate the larger than 1s basis sets used in the

WGC method, and the larger number and more strategically positioned FO centers of the

msG approach. In the DL method, we combine these directions by using less FO centers

(than in msG) with more FOs per center, including 1s1p and 1s1p1d contributions with

exponents taken from the WGC method.65 The resulting basis definition of the DL method

do not require optimization and thus can be employed for more general complexes without

restrictions to the elements constituting the monomers.

To better explain these aspects, next, the three investigated methods (and some variants

of them) are introduced in detail in Sect. 2.1-2.5.

2.1 Weighted geometric center (WGC) method

The FO method of Tao and co-workers, which is used most often in practice defines the center

of a single FO halfway between the center of mass of each subsystem.65–69 This approach

was first proposed for the study of noble gas containing dimers and then was extended

to monomers of up to 3-4 atoms. Turning to more complicated cases with monomers of

markedly different size, such as the helium-cyanoacetylene dimer, Szalewicz and co-workers

found that the FO center definition of Tao et al. could lead to a midpoint placed closer
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to one of the monomers.87 When this occurs, the FOs on the single FO center are more

beneficial to the description of that closer (larger) monomer. To overcome this asymmetry,

Szalewicz and co-workers proposed an improved FO center placement, where the position

[rWGC in Eq. (1)] is the r−6 weighted average of the midpoints of intermonomer atom pairs:

rWGC =

∑
a∈A

∑
b∈B

wab
ra+rb

2∑
a∈A

∑
b∈B

wab

; wab = |ra − rb|−6. (1)

Here, the wab weight is the inverse sixth power of the atom-atom distances of monomers A and

B, while ra and rb are the spatial coordinates of atoms from subsystem A and subsystem B,

respectively. To reference this definition, we will call this method here as weighted geometric

center (WGC) approach.

The motivation behind the r−6 weights in Eq. (1) is the analogous decay of dispersion

interactions between two atoms on different monomers. Consequently, larger weights are

assigned to more strongly interacting atom pairs, that are closer to each other. Therefore,

the definition of Eq. (1) does not favor the larger monomer and incorporates information

about the monomer surfaces and their atoms. For example, in Fig. 1a, the WGC of the

uracil dimer is located in the position with the smallest intermolecular distances, slightly

shifted from the midpoint between the centers of the six-membered rings.

Originally, Tao and co-workers employed 3s, 3p, 2d, and 1f (shortly 3s3p2d1f or 3321)

basis functions on the single FO center. The exponents of these FOs were determined in ref.

65. This 3321 FO basis was later extended with a g function by Christiansen et al. when

investigating the benzene-argon dimer (resulting in 3s3p2d1f1g or shortly 33211 FO basis).86

Due to the excellent performance of the 33211 FO basis, recently it was adapted by Høyvik

and co-workers.75 They found that for smaller systems (below 6-atom monomers) the results

obtained via the single FO center is more convincing than for larger systems (below 18-atom

monomers) in combination with double-ζ AO basis sets. Thus, Høyvik and co-workers also
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added a second FO center manually for the larger monomers, based on chemical intuition,

which lead to moderate improvements over the results with a single FO center. These limited

set of results for medium-sized dimers suggest that the use of a single (or two) FO center(s)

could not be sufficient when studying even larger molecular complexes.

(a)

(b)
(c)

(d) (e)

Figure 1: Position of floating orbitals (represented by the orange spheres) for the uracil dimer (24 atoms)
of the S66 test set with various FO methods: weighted geometric center (a), monomer surface grid (b),
interacting region grid (c), single layer (d), and double layer (e). Number of FO centers for these five

methods are 1, 172, 78, 12, and 24, respectively.

2.2 Monomer surface grid (msG) of floating orbital centers

The approach of Neogrády and co-workers defines a grid of FO centers placed onto the surface

of each monomer (monomer surface grid, msG method).79,80 The FO centers are determined

in three steps for each subsystem summarized briefly as:

1. the subsystem surface is defined as the union of spheres around each atom of the

subsystem with a radius of rmsG.
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2. a uniform grid of points (with grid edge length emsG) is projected onto the subsys-

tem surface separately from the three directions defined by the principal axes of the

subsystem

3. revision/removal of grid points that are too close to each other to avoid linear depen-

dency in the combined AO and FO basis set:

(a) removal of one of the intramonomer grid points from those that are too close to

each other

(b) offset of intermonomer grid point pairs that are close to each other

For example, the msG FO center list generated this way for the uracil dimer is presented in

Fig. 1b.

The parameters of the msG approach (rmsG, emsG, and the exponent of the s type FO) were

optimized in ref. 79 for the H, C, N, and O atom types. The msG parameters were optimized

for the interaction energies of representative systems from the S22 test set: stacked and

hydrogen-bonded uracil dimer, stacked benzene-indole complex with both equilibrium and

partly dissociated geometries. To simplify the optimization procedure, only two parameter

sets were determined, one set for hydrogen and another set for non-hydrogen (C, N and O)

atoms. However, as the FO parameters are available only for these four atom types, the

current applicability of msG method is limited to the corresponding chemical space. While

the FO center positions are not as simple to obtain as for the WGC approach, both the

WGC and msG FO center coordinates translate and rotate with the molecular orientation,

providing independence from the choice of the coordinate system.

As the optimum of emsG grid edge length turned out to be smaller than 1 Å for the four

atom types, usually multiple FO centers are assigned to each atom on the monomer surface.

Therefore, the number of centers are 3-7 times larger than the number of atoms in the dimer.

The combination of this msG FO basis with AO bases not including diffuse AOs provided

similar performance for the studied interactions as the same AO basis without FOs, but
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augmented with diffuse functions both in terms of numerical performance and basis set size

(that is, e.g., cc-pVDZ+msG vs aug-cc-pVDZ).79,80

2.3 Interacting region: space between the monomers

Considering the msG FO centers, e.g., in Fig. 1b, not every FO center is expected to be

equally important for the interaction energy: those FO centers that are placed between

the interacting monomers could be more important than the others, outside of the space

between the monomers. To investigate this assumption further, let us identify those atoms

of the surface of each subsystem that could be more important for the interaction. This

interacting surface atom list will be used in Sect. 2.4 to place FO centers located only

between the monomers.

As the majority of the non-covalent interaction components is expected to originate from

the atoms and electrons residing on the surface of the interacting monomers, we focus on the

space between the monomers, simply referred to as interacting region here. We determine

the atom list of the interacting surface as follows (Fig. 2):

1. measure the minimum distance (MD) between two monomers

2. MD is multiplied by a scaling factor (SF > 1). This scaled minimum distance controls

the spatial extent of the interacting region.

3. intermonomer atom pairs with a distance lower than SF ·MD are selected to constitute

the interacting surface.

For example, for a smaller (S) and a larger (L) fragment let si and lj label the ith and

jth atom of S and L, respectively. Then, with dij being the distance between the si–lj atom

pair, this atom pair is added to the interacting surface if dij < SF ·MD.
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7
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9

10
Single layer FO center

Double layer FO center

(a)

minimum distance = 
2.24 Å

interacting region = 
3.81 Å

 

(b)

Figure 2: Illustration of the interacting surface atom list definition, as well as the positions of floating
orbital centers for the single layer (pink dots) and the double layer (green dots) methods for the

water−methyl-amine H-bonded complex (a), and for the benzene−benzoate ionic H-bonded complex (b).

This approach is illustrated in Fig. 2 on the examples of the water−methyl-amine hydro-

gen bonded complex (Fig. 2a) as well as on the benzene−benzoate ionic hydrogen bonded

complex (Fig. 2b). For the sake of brevity, we only give a detailed description of the interact-

ing surface definition for the smaller, water−methyl-amine dimer. Here, MD = 1.96 Å, which

is the distance between hydrogen atom (number 3) of water and nitrogen atom (number 4)

of methyl-amine. Then, the spatial extent of the interacting region, SF ·MD = 1.70 · 1.96 Å

becomes 3.33 Å, where SF = 1.70 was determined based on the inspection of the retained

interacting surface atom list for the S66 with multiple SF choices. To the first water atom

(oxygen, number 1) atoms 4, 5, and 6 of methyl-amine are closer than SF ·MD, thus first,

atoms 1, 4, 5, and 6 are added to the interacting surface. Then, for atom 3 of water, atoms

7, 8, and 10 of methyl-amine are added, while none of the methyl-amine atoms are closer to

atom 2 of water than SF ·MD.

2.4 Interacting region grid (irG) of floating orbital centers

Utilizing the interacting surface atom list of Sect. 2.3, we propose to restrict the FO center

list of msG to an interacting region between the subsystems. To that end, we identify

the msG centers that are sufficiently close to the atoms of the interacting surface in the

subsystems as follows:
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1. We select the subsystem with the smaller number of atoms on the interacting surface.

For the ith atom on the interacting surface subset of this subsystem, we find its closest

intersubsystem atom pair, with distance dij. Then, we use these average of the dij

distances to define the average distance between the interacting surface parts on the

two subsystems (D).

2. if a msG FO center is closer to any interacting surface atom than D, then we add this

FO center to the interacting region grid (shortly irG).

For example, for the uracil dimer, D = 3.24 Å, the number of FO centers in the irG is 78

(Fig. 1c), which is less than the number of msG FO centers in Fig. 1b by 94 centers or

55%. While the irG method considerably reduces the number of FO centers to about 3-times

the number of dimer atoms, the irG centers are still closely packed. This FO center density

might be necessary if only a single s type FO is placed on each irG center. Thus, in Sect.

2.5, we also investigate if less FO centers are sufficient in combination with somewhat more

FOs/center.

2.5 Single and double layer of floating orbital centers

To find a more compact FO center list, let us recognize that in the irG approach, there are

practically two, densely packed FO grids placed near the interacting region part on the two

subsystems. Building on this, we propose two options directly placing a single and a double

layer (SL and DL) of FO centers into the interacting region. The centers of the SL (DL)

method are determined so that we assign roughly one (one pair of) FO center(s) to one

intersubsystem atom pair as follows:

1. for the subsystem with the smaller number of atoms on the interacting surface we go

through its surface atoms and find the closest intersubsystem atom pair for each. The

pairing is made to be a bijection, starting with the smallest intersubsystem distance

(minimum distance, MD in Fig. 2).
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2. the SL (DL) FO centers are placed to the midpoints (trisection points) of the inter-

subsystem atom pairs of step 1 (see Fig. 2).

SL (DL) definition is illustrated in detail in Fig. 2 on the water−methyl-amine H-bonded

dimer. The first atom pair (atoms 3 and 4) corresponds to the MD. Due to the bijective

construction, each atom can be utilized only once, thus atoms 1 and 6 define the second

atom pair. As the smaller interacting surface (corresponding to the water molecule) consists

of only 2 atoms, only two (four) SL (DL) FO centers are constructed in this example.

The choice of not using a surface atom more than once for SL/DL definition is useful to

avoid close lying FO centers and to construct a relatively even distribution of FO centers.

For the SL (DL) methods, there is roughly one FO center for each surface atom pair (surface

atom), which is considerably less than for the irG approach. Hence, we can consider to place

more than a single s type function on the SL/DL FO centers, while the total number of FOs

remains similar to irG or even less than with the msG method. A potential benefit of SL

over DL is the somewhat less additional FOs, although compared to the size of the AO basis

set, both the SL and DL FO numbers are relatively small. On the other hand, we prefer DL

over SL, especially when the dimer distance is longer (e.g., for larger monomers in Sect. 4.3

or for monomers of more irregular shape) or the monomers are, e.g., somewhat dissociated,

as SL would place the FOs to a larger distance from the monomers in such cases.

In our numerical analysis, we assess FO bases of increasing size: 1s, 1s1p, 1s1p1d, 2s2p1d.

We introduce the shorthand notation of method/FO basis, e.g., DL/1s1p for these combi-

nations. For the sake of comparability with the WGC method, the exponents of these FOs

were taken from ref. 65. Where there are more exponents to the same angular momentum in

the 3s3p2d1f1g basis of ref. 86, the most diffuse exponents were retained. For example, when

constructing the 1s1p1d FO basis building on 3s3p2d, the 0.1 exponent (in atomic unit) was

retained from the s exponent list of 0.9, 0.3, and 0.1.
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3 Computational details

Density fitting (DF) based conventional CCSD(T),28 local MP2,49,50 and local natural or-

bital (LNO) based43,48,51–53 local CCSD(T) computations have been performed using the

2023 version of the Mrcc quantum chemistry program suite.88,89 Pople type 6-31+G(2d)83

and Dunning type correlation consistent basis sets90,91 with and without diffuse functions

[(aug-)cc-pVXZ, X = D, T], as well as heavy augmented basis sets (haug-cc-pVXZ, X = D, T)

were employed which are abbreviated as [(h)aug]XZ in the figures of the manuscript and the

Supporting Information (SI).

DF approximation was utilized for every computation with the corresponding DF auxil-

iary bases for the HF92 and correlation energy93 calculations, that is, (aug-)cc-pVXZ-RI-JK

and (aug-)cc-pVXZ-RI were employed with the (aug-)cc-pVXZ AO basis set. Szalewicz

and co-workers adapted the 3s3p2d1f FO basis from the work of Tao et al. and proposed

the 5s5p5d4f3g DF auxiliary basis.94 Later, Christiansen and co-workers introduced the

3s3p2f1f1g FO basis,86 but they did not define a DF auxiliary basis corresponding to their

3s3p2d1f1g FO basis. Therefore, we extended the 5s5p5d4f3g basis with 3 set of h func-

tions in this work, which resulted in a 5s5p5d4f3g3h auxiliary basis. Moreover, DF auxiliary

bases 2s1p-RI, 3s2p1d-RI, and 4s3p2d1f-RI were constructed to fit the 1s, 1s1p, and 1s1p1d

(2s2p1d) FO bases, respectively. The same FO DF auxiliary basis was employed for both

the HF and the correlation energy calculations. The exponents of these FO auxiliary bases

are also available in the SI.

For the complete basis set (CBS) extrapolation of the HF energies, the two-point formula

suggested by Karton and Martin is used with the recommended parameters.95,96 Conven-

tional and LNO based correlation energies were extrapolated with the formula of Helgaker

and co-workers97 with exponent of 2.46 (2.51) for the (aug-)cc-pV(D,T)Z extrapolation and

exponent of 3 for the (aug-)cc-pV(T,Q)Z extrapolation.

The structures of the S66 compilation were taken from the original work of Řezáč, Ri-

ley, and Hobza,81 while the 21 selected ionic H-bonded dimer structures were taken from
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the IHB100 test set compiled by Řezáč.82 The calculations were performed on equilibrium

dimer structures for both the S66 and the IHB100 test set. The names of the selected

21 ionic H-bonded dimers are listed in the SI. We utilized MP2-F12/aug-cc-pV(T,Q)Z-F12

and MP2/aug-cc-pV(Q,5)Z interaction energies as CBS references for the S66 and IHB100

DF-MP2 interaction energies, respectively.82,98

To characterize the performance of the different FO methods, the mean absolute error

(MAE), the root mean square deviation (RMSD), and the maximum absolute error (MAX)

were calculated. The timing measurements are performed with a single 64-core AMD EPYC

7763 processor.

4 Results and discussion

The accuracy assessment and comparison of the previous and here introduced FO methods

depend on a large variety of aspects. Besides the noted FO parameters (number and position

of FO centers, and basis set parameters, like exponents), such a benchmark work should

consider the AO basis combined with the FO method types, the level of electron correlation

treatment, as well as representative molecule and non-covalent interaction types. Here, we

consider the following:

1. FO methods: weighted geometric center (WGC), monomer surface grid (msG), inter-

acting region grid (irG), single layer (SL) and double layer (DL)

2. FO basis sets: 1s, 1s1p, 1s1p1d, 2s2p1d, 3s3p2d1f1g

3. AO basis sets: 6-31+G(2d), (h)aug-cc-pVXZ and cc-pVXZ, X = D, T

4. wave function methods: MP2, CCSD(T)

5. non-covalent interaction types: hydrogen bond, dispersion, mixed, ionic hydrogen bond

The number of variables to be considered is too large to explore and discuss here all possible

combinations. Therefore, first we show in detail three of the most complicated dimers of the
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S66 test set,81 that is the uracil dimer (π – π stacking), the uracil base pair, as well as the

benzene-peptide dimer to illustrate the more important trends, and to decrease the number

of setting combinations to be assessed (Sect. 4.1). Then, a comprehensive statistical analysis

is presented for the more practical setting combinations on the S66 test set as well as on 21

ionic hydrogen bonded complexes selected from the IHB100 test set82 (Sect. 4.2). Finally, a

large-scale practical application is presented in Sect. 4.3.

4.1 Numerical performance of FO methods: uracil dimer

We start the analysis with the dispersion dominated (π – π stacking) uracil dimer from the

S66 test set, as this system exhibits the largest, more than 5 kcal/mol basis set incompleteness

error (BSIE) in the interaction energy with the cc-pVDZ basis set. Moreover, we carried

out similar studies on the uracil base pair, and the benzene-peptide dimer, which results are

available in the SI (Fig. S1 and S2). Additionally, we found that the basis set errors are

analogous for MP2 and CCSD(T). Here, the CCSD(T) results are presented (e.g., in Fig. 3

for the π – π stacking uracil dimer), while the analogous MP2 results are available in the SI

(Fig. S2). We also combined the FO methods with the 6-31+G(2d) AO basis set,83–85 which

results are available in Table S1 in the SI.

The improvement of the BSIE for various FO methods with respect to the CBS limit

reference [that is CP corrected CCSD(T)/aug’-cc-pV(T,Q)Z] is demonstrated in Fig. 3, in

combination with the cc-pVDZ (left panel), and the cc-pVTZ AO basis sets (right panel).

Here, we show on the x axis the total number of AO and FO basis functions relative to

the size of cc-pVDZ. Apparently, the rate of improvement due to the increasing number of

additional FO functions is similar for cc-pVDZ, cc-pVTZ, and 6-31+G(2d). Therefore, we

will mainly focus on the results with the cc-pVDZ AO basis.

Starting with the most conventional WGC/3s3p2d1f1g FO method, the error of inter-

action energy decreases by 40% for the dispersion dominated uracil dimer (green square in

Fig. 3) and decreases by 50 and 60% for the uracil base pair and benzene-peptide dimer,
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Figure 3: DF-CCSD(T)/cc-pVXZ (+FO) (X = D, T) correlation energy contribution error of CP corrected
interaction energies as a function of the combined AO and FO basis set size for the π–π stacked uracil

dimer of the S66. Reference: CP corrected DF-CCSD(T)/haug-cc-pV(T,Q)Z.98

respectively (green squares in Fig. S1a and S1b) compared to the pure cc-pVDZ results.

The monomer surface grid method already achieves haug-cc-pVDZ accuracy for all the three

investigated dimers (c.f. msG vs haugDZ in Fig. 3 and S1) in line with the results of ref.

79. Moreover, the cc-pVDZ + msG results outperform those with the cc-pVTZ AO basis

set, using 1.3–1.4 times less basis functions for all three cases, but the improvement gained

via the msG method is somewhat more pronounced for the π–π stacked uracil dimer and

for the benzene-peptide dimer, than for the uracil base pair. Compared to the msG results,

retaining only the FOs in the interacting region, the irG approach leads to negligible loss of

accuracy with about half of the basis functions, for all three systems.

Turning to the analysis of the single layer (SL) and the double layer (DL) FO methods

(dark blue and orange curves in Fig. 3, S1, and S2 respectively), the effect of systematically

adding higher angular momentum functions in the interacting region can also be studied. The

convergence trend towards the CBS limit is analogous for all three dimers, when comparing
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the SL and the DL FO methods, therefore, we will mainly discuss the DL results. Starting

with the π–π stacked uracil dimer, its interaction energy error with the pure AO basis

decreases by only 20% when DL/1s is employed. By adding DL/1s1p to cc-pVDZ, the

accuracy of cc-pVTZ, while with DL/1s1p1d even the accuracy of haug-cc-pVTZ is reached

with only 61% and 56% of the basis functions, respectively. The interaction energy error

decreases even further with DL/2s2p1d method, however, the majority of the improvement

occurs already with 1s1p and 1s1p1d. This implies that the further extension of the FO

basis might not lead to notable improvements, at least in combination with double- and

triple-ζ AO basis sets. Finally, comparing the FO methods to each other, DL/1s1p and irG

considerably outperform WGC by providing haug-cc-pVDZ quality with less orbitals than

in haug-cc-pVDZ. The msG moderately, while DL/1s1p1d significantly improves that, the

latter outperforms even cc-pVTZ + WGC, and matching haug-cc-pVTZ and cc-pVTZ +

msG with significantly smaller number of basis functions altogether.

Inspecting the results of the uracil base pair, the improvement gained via the SL and DL

method is less significant with respect to the pure cc-pVDZ AO basis set than for the π–π

stacked uracil dimer. For example, to reach the accuracy of the pure cc-pVTZ or haug-cc-

pVDZ AO basis set, at least the cc-pVDZ + DL/1s1p1d FO basis is necessary, while none

of the here introduced FO basis added to cc-pVDZ seems to approach the quality of the

pure haug-cc-pVTZ. The dependence of the SL and DL results on the interaction types can

be attributed to the different sizes of the interacting surface atom lists. Namely, the near

parallel placement of the monomers in the π – π stacking uracil dimer results half of the

dimer atoms (12 atoms in this case) in the interacting surface atom list. Compared to that,

for the uracil base pair, only the two H-bond donor and two acceptor atoms are added to

the interacting surface atom list, which brings less FOs to the interacting region altogether,

thus improving BSIEs to a smaller extent.
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4.2 Statistical analysis on non-covalent dimer test sets

We continue with a statistical analysis on the representative S66 set, separated into its

conventional H-bonding, dispersion, and mixed (polar-, dispersion, etc.) interaction subsets.

We found it important to extend the benchmark set with stronger interactions and shorter

intermolecular distances to make sure that FO centers are not too close to each other in such

cases. To that end, we selected 21 representative ionic H-bonded complexes from the IHB100

test set, referred to as IHB100/21.82 Due to the similarity of the basis set convergence of the

MP2 and CCSD(T) interaction energies for the uracil dimer (c.f. Fig. 3 and S2), we expect

that an MP2-based statistical analysis on S66 and IHB100/21 will also be representative for

the case of CCSD(T). Therefore, to enable the assessment of a large number of AO and FO

combinations, we continue with an MP2-based error analysis.

First, we investigate the performance of the DL method in Fig. 4 with respect to increas-

ing FO basis size. Here, we present the distribution of interaction energy errors for the DL

FO method added to the cc-pVDZ (Fig. 4a), cc-pVTZ (Fig. 4b), and aug-cc-pVDZ (Fig.

S3c of the SI) conventional AO basis sets, respectively. (The analogous single layer results

are collected in Fig. S3a-S3b of the SI.) Similarly to the case of the uracil dimer (Sect.

4.1), the convergence towards the CBS limit when adding more FOs is analogous with the

cc-pVDZ, cc-pVTZ, and also with the aug-cc-pVDZ AO basis sets for each interaction type,

therefore, we will discuss in detail only the case of cc-pVDZ (Fig. 4a).

For the hydrogen bonded dimers of S66 (bottom panels of Fig. 4), two peaks are found on

the error distribution curves, around 2 and 4 kcal/mol. The second peak at 4 kcal/mol can

be attributed to overcorrections caused by the Counterpoise correction for double H-bonded

systems of S66: uracil base pair, acetic acid dimer, acetamide dimer, acetic acid-uracil

dimer, as well as acetamide-uracil dimer. This overcorrection has been pointed out for H-

bonded systems of S66 previously.98 The size of the BSIE with cc-pVDZ is decreased by the

additional FOs, diffuse functions, and the increased AO basis set (c.f. aug-cc-pVDZ in Fig.

4a, and cc-pVTZ or aug-cc-pVTZ in Fig. 4b), however, this second peak remains also with
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Figure 4: Relative probability of interaction energy errors with the double layer FO method and 1s, 1s1p,
1s1p1d, and 2s2p1d FO bases separated to four subsets. (The analogous single layer FO results are plotted

in Fig. S3 of the SI.) Level of theory: DF-MP2/(aug-)cc-pVXZ, with X = D in a, and X = T in b. The
total number of basis functions relative to the size of cc-pVDZ is collected in parentheses besides the basis

set labels.

the largest basis set employed here (aug-cc-pVTZ).

Extending the pure cc-pVXZ AO basis (dark red dashed curves in Fig. 4) with diffuse

functions (light red dashed curves in Fig. 4) as well as with FO basis of increasing size (solid

curves in Fig. 4) affects non-covalent bond types differently: the H-bonded dimers in S66

and IHB100/21 form one, and the dispersion dominated and mixed systems of S66 form

a second set. Comparing the AO basis and the DL/1s performance (dark red dashed and

green curves of Fig. 4), we again find a marginal improvement, which is somewhat more

pronounced for the dispersion/mixed subsets. Adding the DL/1s1p FOs (blue curves) to

23



cc-pVDZ (cc-pVTZ) already brings the peaks of the error distributions to around 1 (around

0.5) kcal/mol, with somewhat larger errors remaining for the H-bonded cc-pVDZ + DL/1s1p

cases. These numerical results can also be studied in Table 2 and in Table S2 of the SI, where

mean absolute error (MAE) values are collected for the four molecular subsets, as well as for

the various AO and FO settings separately. A second step of significant improvement comes

from adding the d functions of DL/1s1p1d (orange curves). Here, one finds 0.91 (1.41) and

0.48 (0.63) kcal/mol MAEs with cc-pVDZ + DL/1s1p1d and cc-pVTZ + DL/1s1p1d settings,

respectively for H-bonds (ionic H-bonds) in the top of Table 2 (bottom of Table S2 of the

SI). Similarly significant improvement is observed for dispersion (mixed) interactions, where

0.26 (0.41), as well as 0.17 (0.31) kcal/mol MAEs characterize the numerical performances of

the cc-pVDZ + DL/1s1p1d and cc-pVTZ + DL/1s1p1d, respectively, as seen in the bottom

of Table 2 (top of Table S2 of the SI). The cc-pVDZ + FO results outperform the pure

cc-pVTZ errors for most dimers already with DL/1s1p, and for the ionic H-bonds with

DL/1s1p1d. Moreover, the cc-pVDZ + DL/1s1p1d basis delivers comparable performance

to aug-cc-pVDZ for the H-bonded subsets and outperforms aug-cc-pVDZ AO basis for the

dispersion/mixed subsets with a somewhat smaller basis set in average. Compared to that,

again, the improvement brought by DL/2s2p1d (purple curves in Fig. 4) is systematic, but

relatively small.

Inspecting the number of FOs added to the dimers of H-bonded subsets, and to the other

two S66 subsets provides an additional layer of understanding to their somewhat different

behavior. Namely, the interacting surface for the H-bonded dimers often consists of the H-

bond donor and acceptor atoms (often resulting in 2 atoms for single and 4 atoms for double

H-bonds interacting surfaces). Thus, the corresponding FO basis of 1s and 1s1p contain not

much more than 2-8 FOs. Compared to that, the 5 FOs per center extension brought by

the d set of 1s1p1d is significant. In contrast, the dispersion/mixed interacting surfaces are

larger, which yields more FO centers. Moreover, the dispersion interactions are significantly

weaker, which often means smaller absolute BSIE. The contribution of the above factors
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provides additional explanation to why we observe faster convergence towards the CBS limit

reference with increasing FO size for the dispersive/mixed subsets than for the H-bonded

dimers.

As the DL method (especially with the 1s1p and the 1s1p1d basis) is the more accurate

protocol compared to the SL in Fig. S4 of the SI, the numerical performance of DL/1s1p and

DL/1s1p1d will be investigated in Fig. 5 more thoroughly, while we set aside the 1s, 2s2p1d,

and larger FO basis set options. In Fig. 5, we compare the performance of different AO

basis sets (cc-pVXZ and aug-cc-pVXZ; X = D, T in Fig. 5a) with that of the FO methods

extending the cc-pVDZ (Fig. 5c), aug-cc-pVDZ (Fig. 5b), and cc-pVTZ (Fig. 5d) AO basis

sets for the same four non-covalent interaction subsets. Let us briefly consider first only the

pure AO basis sets. For the H-bonded systems (top and bottom panels of Fig. 5a), the

interaction energies improve more if the cardinal number is increased (from X = D to X =

T, c.f. blue and green curves), while for the dispersion/mixed subsets (two middle panels)

the interaction energies improve more by adding diffuse functions (c.f. blue and red curves).

Turning to the analysis of the WGC method (dark red curve) for H-bonded subsets,

it has comparable numerical performance to irG, msG, and DL/1s1p1d methods (orange,

purple, and blue dashed curves, respectively) for both the cc-pVDZ (Fig. 5c) and the cc-

pVTZ cases (Fig. 5d). Moreover, combining these FO methods with the cc-pVDZ AO

basis set, the accuracy of cc-pVTZ can be reached. Compared to that, the aug-cc-pVDZ +

WGC/33211 combination (Fig. 5b) slightly outperforms the other methods, probably due to

the small size (up to 24 atoms) of the studied H-bonded dimers. In contrast to the case of the

H-bonded subsets, we found a notably smaller improvement of the interaction energy errors

with cc-pVDZ + WGC/33221 for dispersion/mixed systems, as those subsets contain larger

monomers and larger interacting surfaces. For comparison, the switching from cc-pVDZ

AO basis set to aug-cc-pVDZ and cc-pVTZ (without FOs) for these dispersion (mixed)

interactions already reduces the MAEs from 2.45 (1.83) kcal/mol to 0.60 (0.61) and 0.89

(0.70) kcal/mol, respectively (see Tables 2 and S2). Thus, the MAE of 1.08 (0.64) kcal/mol
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Figure 5: Relative probability of interaction energy errors at DF-MP2/(aug-)cc-pVXZ, X=D, T level of
theory using pure AO basis sets (a) and various FO bases added to cc-pVDZ (DZ, c), aug-cc-pVDZ

(augDZ, b), and cc-pVTZ (TZ, d). The total number of basis functions relative to the size of cc-pVDZ is
collected in parentheses besides the basis set labels.

for cc-pVDZ + WGC/33211 is outperformed by pure aug-cc-pVDZ and cc-pVTZ, but adding

the WGC to aug-cc-pVDZ or cc-pVTZ still almost halves their MAEs (Table 2 and S2).

Considering the performance of the irG and msG methods in Fig. 5c-5d (orange and pur-

ple curves), the maxima of their error distribution curves are already within ca. 0.2 kcal/mol

of each other with cc-pVDZ AO basis. This is achieved with 1.5 times less basis functions

in the irG approach than the msG for each molecular subset. This difference in their local

maxima is decreasing further with larger AO basis sets. These results again suggest that

the most significant improvement can be achieved via adding FO centers to the interacting
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region first. We can also observe that the irG and msG performances are closer to each

other for dispersion/mixed interactions, than for H-bonds, which also can be explained by

the larger spatial extent of the interacting region. Since the interacting surface atom lists are

more extended for dispersion/mixed systems, more FO centers are retained for these than

for H-bonded dimers. Therefore, the BSIE values of the dispersive and mixed subsets with

the irG method can become smaller.

Investigating the double layer method for dispersion/mixed interactions, the results with

cc-pVDZ + DL/1s1p (dashed green curves in Fig. 5) are comparable to those with the

irG and msG methods, since sufficient number of FO centers are added to the interacting

region. This trend remains for the case of aug-cc-pVDZ and cc-pVTZ as well. Regarding the

H-bonded systems with the smaller number of atoms on the interacting surfaces, DL/1s1p

FOs bring smaller improvement, which trend is the most notable for cc-pVDZ and decreases

with larger AO basis sets (aug-cc-pVDZ or cc-pVTZ). The next step of improvement comes

from adding d type FOs. Namely, cc-pVDZ + DL/1s1p1d (dashed blue curves in Fig. 5)

approaches the accuracy of aug-cc-pVTZ with 2.5 times less basis functions on the average

for dispersion/mixed interactions. Moreover, it is as good as or often notably outperforms

msG and irG for all studied AO basis sets. Furthermore, the DL/1s1p1d approach provides

comparable results to irG and msG methods for the H-bonding subsets.

As we can observe in Fig. 5c-5d (and also in Fig. S5a-S5f of the SI), the error distribution

curves for different FO methods overlap with each other more often as we extend the AO

basis set size. The corresponding MAE values show the same, monotonic decrease (c.f. DZ,

augDZ, TZ, and augTZ columns of Table 2). Since the smaller aug-cc-pVTZ errors are not

visible well at this scale, we present their MAE and MAX values in bar charts (Fig. 6).

As these error measures are very close to each other with and without the additional FOs,

here the efficiency of FO methods with larger, e.g., aug-cc-pVTZ AO basis set appears to

decrease. Namely, the improvements for all four investigated non-covalent interaction types

and all FO methods is below ca. 0.1 kcal/mol with respect to the pure aug-cc-pVTZ results.
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Figure 6: DF-MP2/aug-cc-pVTZ correlation energy contribution error of CP corrected interaction energies
for the studied FO methods.

Here, the diffuse AOs in aug-cc-pVTZ probably span a similar space as the relatively low

angular momentum orbitals in the FO basis, and thus the already small errors with respect

to the CBS reference do not decrease considerably. Since the errors are already at the few

tenths of a kcal/mol range, studying the effect of higher angular momentum FOs is set aside

for future work.

We look more closely at the MAEs of the H-bonded and dispersion dimers of the S66

in Table 2, while the analogous mixed and ionic H-bonded subset results are available in

Table S2 of the SI. The MAEs also show that adding FOs to AO basis sets without diffuse

AOs provides diffuse basis set quality results, especially with the msG, irG, and DL/1s1p1d

FO methods. For example, cc-pVDZ + FO methods match pure aug-cc-pVDZ and cc-pVTZ

results (c.f. columns DZ–TZ of Table 2). Similarly, cc-pVTZ + FO results are comparable to

the quality of aug-cc-pVTZ. These observations hold for WGC/33211 only for the H-bonded

and for DL/1s1p only for the dispersion/mixed cases.
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Table 2: Mean absolute basis set errors [kcal/mol] for the H-bonded (top) and dispersion dominated
(bottom) subsets of S66. Level of theory: DF-MP2/(aug-)cc-pVXZ; X = D, T.

DZ augDZ TZ augTZ (D,T)Z aug(D,T)Z
H-bonds of S66

AO basis 2.18 0.95 0.88 0.38 0.12 0.06
WGC/33211 0.92 0.52 0.46 0.29 0.19 0.16

SL/1s1p 1.79 0.90 0.74 0.37 0.13 0.08
SL/1s1p1d 1.35 0.75 0.59 0.35 0.15 0.13
DL/1s1p 1.68 0.87 0.71 0.37 0.14 0.08

DL/1s1p1d 0.91 0.69 0.48 0.34 0.23 0.15
irG/1s 1.18 0.70 0.56 0.34 0.18 0.14

msG/1s 0.92 0.64 0.47 0.33 0.21 0.15
dispersion interactions of S66

AO basis 2.45 0.60 0.89 0.20 0.10 0.03
WGC/33211 1.08 0.33 0.44 0.14 0.07 0.03

SL/1s1p 1.02 0.45 0.45 0.18 0.12 0.03
SL/1s1p1d 0.52 0.28 0.25 0.14 0.10 0.06
DL/1s1p 0.73 0.40 0.36 0.17 0.14 0.04

DL/1s1p1d 0.26 0.18 0.17 0.12 0.11 0.08
irG/1s 0.71 0.36 0.33 0.15 0.10 0.04

msG/1s 0.55 0.30 0.27 0.14 0.11 0.05

We also carried out CBS extrapolations for AO basis sets with and without diffuse func-

tions (last two columns of Table 2 and Fig. 7). Partly because dispersion/mixed interac-

tions are weaker than H-bonds in the studied cases, the corresponding cc-pV(D,T)Z [aug-cc-

pV(D,T)Z] interaction energies are better converged for dispersion/mixed subsets than for

H-bonds. Namely, in Fig. 7, the MAEs for dispersion/mixed interaction energies are within

0.15 [0.10] kcal/mol, while for H-bonds, they are within 0.25 [0.20] kcal/mol, respectively.

The extrapolated interaction energies improved only moderately or not at all using the pre-

sented FO methods with respect to the pure AO basis extrapolations (either in terms of

MAX or MAE values).

Regarding the CBS extrapolations at the cc-pV(D,T)Z level, let us recall that the con-

ventional inverse cubic extrapolation formula turned out to be less effective for smaller AO

basis sets due to the slow correlation energy convergence towards the CBS limit at this basis

set size.97 Therefore, empirical optimization of the extrapolation exponent γ = 3 was recom-
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Figure 7: cc-pV(D,T)Z [(D,T)Z, a] and aug-cc-pV(D,T)Z [aug(D,T)Z, b] correlation energy contribution
error of CP corrected interaction energies utilizing extrapolation exponent γ = 2.46 (2.51) for the

(aug-)cc-pV(D,T)Z extrapolation.

mended, which resulted in γ = 2.46 for cc-pV(D,T)Z and γ = 2.51 for aug-cc-pV(D,T)Z.97

In Fig. 8, we investigate if these empirical exponents still remain valid with the FO methods

by scanning the interaction energy errors as a function of the extrapolation exponents in the

range of [1.6,3.0]. Inspecting these exponent scans for the cc-pV(D,T)Z (Fig. 8a) and aug-

cc-pV(D,T)Z (Fig. 8b) cases, the minima of the interaction energy error curves change only

slightly. Namely, the results fall into a roughly 0.1 kcal/mol wide range with exponents from

1.8 to 2.8 for both the cc-pV(D,T)Z and the aug-cc-pV(D,T)Z. This suggests that retaining

the previously recommended exponents results in negligible loss of accuracy and we do not

need to reoptimize CBS extrapolation expressions for each new FO method.
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Figure 8: CBS extrapolation exponent scans for the cc-pV(D,T)Z [(D,T)Z, a] and aug-cc-pV(D,T)Z
[aug(D,T)Z, b] extrapolation with various FO methods. Vertical lines at 2.46 and 2.51 on the x axis

represent the previously recommended cc-pV(D,T)Z and aug-cc-pV(D,T)Z extrapolation exponents.97

4.3 Large-scale application of the FO methods

In the previous sections, we focused on medium sized molecular dimers (up to 36 atoms)

to assess previous and here proposed FO methods. However, one goal of the here intro-

duced FO methods is the applicability to large molecules of practical interest. Therefore, we

investigated the interaction energy convergence of the parallelly displaced coronene dimer

(72 atoms, Fig. 9), as this system requires diffuse, at least triple- or quadruple-ζ quality

atom-centered basis sets and Counterpoise corrections for well-converged interaction ener-

gies according to our comparisons to aug-cc-pV(Q,5)Z level computations.54 However, while

feasible with our LNO-CCSD(T) implementation, already the aug-cc-pVQZ computations

are quite demanding for large molecules.

We generated the FO center lists of various FO methods (see, e.g., the irG and DL FO

centers in Fig. 9a-9b) to investigate their effect on the basis set convergence of the coronene

dimer interaction energy. To that end, LNO-CCSD(T)/cc-pVXZ (X = D, T) interaction

energies with Tight LNO thresholds (Fig. 10 and Table 3) were compared to our aug-cc-

pV(Q,5)Z CBS reference computations from ref. 54.
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(a)
(b)

Figure 9: Position of the interacting region grid (irG, a) and the double layer (DL, b) FO centers for the
parallelly displaced coronene dimer (represented by the orange spheres). Number of FO centers are 191

and 72, respectively.
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Figure 10: Absolute interaction energy errors of the LNO-CCSD(T)/(aug-)cc-pVXZ (X = D, T) for the CP
corrected correlation energy contributions in a logarithmic scale. Test system: parallelly displaced coronene

dimer. Reference: CP corrected LNO-CCSD(T)/aug-cc-pV(Q,5)Z.54

Inspecting Fig. 10, we find the pure AO basis and WGC results similar (c.f. red and

green curves). The reason is that compared to the extended size of the coronene dimer, the

effect of a single FO center even with 38 extra functions is not notable. Hence, the time of

the computation, as well as the number of the basis functions do not change considerably
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as well, when adding the WGC FOs to either cc-pVDZ or cc-pVTZ (see the corresponding

columns of Table 3 for the numerical results). With the irG method (orange in Fig. 10), the

errors of the interaction energy improve by almost one order of magnitude with respect to

the pure cc-pVDZ AO basis results. It requires only 1.2 times increase in the total AO and

FO basis set size (relative to cc-pVDZ) and ca. twice as long computation time. This finding

also holds for the SL/1s1p FO method (blue in Fig. 10) with not notably less basis functions

with respect to irG/1s. Both the SL/1s1p and the irG/1s numerical performances are similar

to the pure aug-cc-pVDZ basis (yellow in Fig. 10), but the number of basis functions used

for the aug-cc-pVDZ is ca. 1.5 times larger than that of the SL/1s1p or irG/1s FO methods.

The performance of the cc-pVDZ + DL/1s1p FO method (purple in Fig. 10) is better than

that of irG/1s and SL/1s1p, as even 0.1 kcal/mol accuracy is surpassed, which is 2 orders

of magnitude improvement in the interaction energy relative to the pure cc-pVDZ error.

Considering the 0.1 kcal/mol error of cc-pVTZ + DL/1s1p and cc-pV(D,T)Z CBS results,

the excellent cc-pVDZ + DL/1s1p performance should be interpreted as partly fortunations.

While cc-pVTZ + DL/1s1p considerably outperforms cc-pVTZ + irG/1s and cc-pVTZ +

SL/1s1p, their CBS extrapolated results are all great, showing ca. 0.1 kcal/mol remaining

BSIE. Moreover, cc-pVTZ + DL/1s1p is highly competitive with the pure aug-cc-pVTZ AO

basis set, as both exhibit only 0.1 kcal/mol absolute BSIE, but the aug-cc-pVTZ basis set

contains almost 1.4 times more basis functions. Due to the planar and parallel structure of

the coronene dimer (Fig. 9), all dimer atoms were added to the interacting surface atom

list. Thus, with the DL method, 72 FO centers were positioned in the interacting region and

thus 1 set of s and p FOs are assigned to each atoms. We note that further increasing the

FO basis to 1s1p1d resulted in near linear dependency of the basis set, which originates from

the planar structure of the monomers and the highly ordered alignment of the corresponding

AOs and FOs. Therefore, we did not perform further investigations with DL/1s1p1d on the

coronene dimer, while it could still be a useful approach for large, but not as symmetric

molecular dimers.
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Turning to the analysis of the msG method (see Table 3), its numerical performance is

similar to that of DL/1s1p both in terms of accuracy and computation time as it contains

only 134 more FOs than DL/1s1p. Furthermore, we can also observe that the improvement

is larger going from the pure cc-pVXZ basis set to cc-pVXZ + irG/1s than from cc-pVXZ

+ irG/1s to cc-pVXZ + msG/1s. This finding also corroborates that the FO centers outside

of the interacting region bring less significant improvement to the interaction energies, than

the 45% of the msG FOs kept in the interacting region when constructing irG. All in all,

the performance of DL/1s1p and msG/1s with both cc-pVDZ and cc-pVTZ (as well as of

irG/1s with cc-pVTZ) are remarkable, being in the tenths of a kcal/mol BSIE range. Since

we cannot generalize far from these promising results obtained for one challenging system,

the broader investigation of large non-covalent dimers is needed and planned in the future.

We note that Tight LNO thresholds were selected for the coronene dimer investigations

to suppress the local approximation error to or below the range of BSIE. Therefore, due

to the increased number of operations induced by the Tight LNO threshold, as well as the

complicated long-range π − π interactions in the coronene dimer, the calculations are more

time consuming than the average for 50–100 atom molecules.48 Compared to that, LNO-

CCSD(T)/cc-pVDZ (cc-pVTZ) calculations with Normal LNO settings, without FOs took

13.3 (37.2) hours, while DL/1s1p with the same theoretical level and LNO threshold took

24.0 (57.6) hours on the dimer, both with only 8 CPU cores.
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Table 3: LNO-CCSD(T)/(aug-)cc-pVXZ (X = D, T) interaction energy errors of the parallelly displaced
coronene dimer with respect to the CP corrected LNO-CCSD(T)/aug-cc-pV(Q,5)Z CBS reference.54 Local
correlation threshold: Tight. The cc-pVDZ (cc-pVTZ) calculations were executed on 24 (32) CPU cores,

the aug-cc-pVDZ (aug-cc-pVTZ) calculation was executed on 32 (40) CPU cores.

AO basis
FO method

(num. of centers)
(Rel.) num. of

AOs + FOs
Int. energy

error [kcal/mol]
Runtime (dimer) [h]

cc-pVDZ

– (0) 792 (1.0) 9.89 45.7
WGC/33211 (1) 830 (1.1) 7.84 54.4

SL/1s1p (36) 908 (1.2) 1.62 81.9
irG/1s (191) 983 (1.2) 1.35 90.9
DL/1s1p (72) 1080 (1.4) 0.02 126.4
msG/1s (422) 1214 (1.5) 0.08 125.6

cc-pVTZ

– (0) 1776 (2.2) 2.78 145.4
WGC/33211 (1) 1814 (2.3) 2.28 165.0

SL/1s1p (36) 1892 (2.4) 0.69 188.8
irG/1s (191) 1967 (2.5) 0.56 172.0
DL/1s1p (72) 2064 (2.6) 0.10 209.4
msG/1s (422) 2198 (2.8) 0.05 209.0

cc-pV(D,T)Z

– (0) – -1.37 –
WGC/33211 (1) – -0.97 –

SL/1s1p (36) – 0.15 –
irG/1s (191) – 0.10 –
DL/1s1p (72) – 0.14 –
msG/1s (422) – 0.03 –

aug-cc-pVDZ – (0) 1320 (1.7) 0.86 82.6
aug-cc-pVTZ – (0) 2760 (3.5) -0.10 206.1

aug-cc-pV(D,T)Z – (0) – -0.64 –

5 Conclusions and outlook

In this study, we systematically compared previous non-atom-centered or floating orbital

(FO) basis approaches65,79 with here proposed novel FO methods for medium-sized (H-bond,

ionic H-bond, dispersion, and mixed) molecular complexes,81,82 as well as on a large-scale

application (coronene dimer). The so far almost exclusively employed approach uses a single

FO center in the space between the two interacting monomers combined with a relatively

large basis (up to 38 FOs) placed on that center.65 While even a single FO center can decrease

the double-ζ AO basis set errors by 50-60%, e.g., for dispersion dominated dimers of ca. 20–
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30 atoms, the analogous improvement for more extended molecules is much smaller (e.g.,

ca. 20% for the coronene dimer). Overcoming some of the limitations of using a single FO

center, a recent alternative method places a grid of FO centers and a single s type function

per grid point onto the surface of the monomers.79

Here, we first showed that there is no need for completely surrounding the monomers with

FOs, their use can be limited to the space between the non-covalently interacting monomers.

This resulted in the use of up to 1.5 times less AO and FO basis functions altogether compared

to the FO grid method completely surrounding the monomers with negligible loss of accuracy.

Furthermore, we introduced a novel FO method which strategically adds one-one layer of

FO centers onto the surface of each monomer facing the other monomer, thereby adding ca.

one FO center to each atom that play a key role in the interaction. With this more compact

FO center list, we could employ more than a single s function on this double layer of FO

centers. Moreover, this new double layer approach is considerably more general regarding

some limitations of the previous methods. For example, it performs much better for large

molecules than the single FO center and does not have the limitation of the previous FO

center grid method being optimized only for H, C, N, and O atoms.79

Our statistical analysis showed that the most beneficial choice is to use a set of s and

p functions (1s1p) or an additional set of d functions (1s1p1d) per FO center in the new

double layer FO method. For example, for smaller, H-bonded systems, cc-pVDZ with the

1s1p1d FO basis could outperform (reach) the accuracy of the pure cc-pVTZ (aug-cc-pVDZ)

AO basis with 1.6 (1.1) times less (AO and FO) basis functions. For the more dispersion

dominated complexes with larger interacting surfaces, even the accuracy of the pure aug-

cc-pVTZ is approached (with 2.1 times less orbitals), while cc-pVDZ with even the smaller

1s1p FO basis had pleasing performance.

Therefore, the proposed FO method can successfully replace diffuse AOs or decrease the

cardinal number of the AO basis, both of which are particularly helpful for large molecules

to ease the computational cost and frequent near-linear dependency issues. Additionally,

36



number of FOs added to the interacting surface scales much more favorably with system size

than adding, e.g., diffuse AO onto all atoms. As presented for the complicated interactions

in the coronene dimer, the combination of FO methods with efficient asymptotically linear-

scaling local correlation methods, such as our local natural orbital LNO-CCSD(T)43,48,52

can make large-scale interaction energy computations accurate and routinely accessible. In

particular for the coronene dimer, adding an FO extension of ca. 40% of the size of cc-

pVDZ with our novel FO method could decrease the 10 (3) kcal/mol basis set error of the

cc-pVDZ (cc-pVTZ) interaction energies to ca. 0.1 kcal/mol compared to the expensive

LNO-CCSD(T)/aug-cc-pV(Q,5)Z CBS extrapolated reference.54

Considering that our LNO-CCSD(T) method was applicable to compute protein-ligand

interaction energies using more than a 1000 atoms and a quadruple-ζ AO basis set,43,48 the

presented FO method development can notably extend the scope of accurate and routinely

accessible non-covalent interaction computations. For example, LNO-CCSD(T) with triple-ζ

AO and the proposed FO basis should be routinely applicable for few hundred atoms with a

single CPU and few 10 GBs of memory, covering a wide range of supramolecular, catalyst-

substrate, drug-protein active site, solute-solvent, surface adsorption, etc. interactions, which

will be further demonstrated also in our forthcoming studies.
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