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ABSTRACT17

Predicting the binding affinity of ligands to protein pockets is key in the drug design pipeline. The flexibility of ligand-pocket
motifs arises from a range of attractive and repulsive electronic interactions during binding. Accurately accounting for all
interactions requires robust quantum-mechanical (QM) benchmarks, which are scarce for ligand-pocket systems. Additionally,
disagreement between “gold standard” Coupled Cluster (CC) and Quantum Monte Carlo (QMC) methods casts doubt on many
benchmarks for larger non-covalent systems. We introduce the “QUantum Interacting Dimer” (QUID) benchmark framework
containing 170 non-covalent (non-)equilibrium systems modeling chemically and structurally diverse ligand-pocket motifs.
Symmetry-adapted perturbation theory shows that QUID broadly covers non-covalent binding motifs and energetic contributions.
Robust binding energies are obtained using complementary CC and QMC methods, achieving agreement of 0.5 kcal/mol. The
benchmark data analysis reveals that several dispersion-inclusive density functional approximations provide accurate energy
predictions, though their atomic van der Waals forces differ in magnitude and orientation. Contrarily, semiempirical methods
and empirical force fields require improvements in capturing non-covalent interactions (NCIs) for out-of-equilibrium geometries.
The wide span of NCIs, highly accurate interaction energies, and analysis of molecular properties take QUID beyond the “gold
standard” for QM benchmarks of ligand-protein systems.

18

Accurate computational modeling of physicochemical phenomena in protein-ligand systems is vital for accelerating the19

early stages of the drug development pipeline1–4. Reliable and “clean room” experimental measurements of the binding affinity20

can be costly due to multiple factors, e.g. dissolved electrolytes, solvent concentration, and target protein misfolding5, which21

makes robust computational methods crucial for improving efficiency and gaining detailed mechanistic understanding into22

the ligand-protein systems6. Understanding and consequently controlling non-covalent interactions (NCIs) in a targeted way23

can aid the compound design process to achieve optimal target selection7. Hence, an in-depth description of NCIs – dominant24

interactions determining structural configuration and ligand-pocket binding mechanism – is indispensable for binding affinity25

simulations. Accurate calculations are indeed critically important as even errors of 1 kcal/mol can lead to erroneous conclusions26

about relative binding affinities8.27

Molecular mechanics (MM) force fields (FF), along with docking and free-energy methods, have been widely used due28

to their affordable computational cost for estimating structural and thermodynamical properties of complex (bio)molecular29

systems9, 10. Despite significant progress in the development of accurate and polarizable MMFFs11, 12, most of them treat30

ubiquitous non-covalent polarization and dispersion interactions using effective pairwise approximations, often resulting in31

inaccuracies or lack of transferability between different chemical subspaces, both being prerequisites for accurate novel drug32

predictions13, 14. Meanwhile, a broad range of quantum-mechanical (QM) methods have become available with different trade-33

offs between accuracy and size spanning from the less expensive but more approximate semiempirical (SE)15, 16 approaches,34

passing through the density functional theory (DFT)17–25 ones to the “gold standard” Coupled Cluster (CC)26 and Quantum35



Monte Carlo (QMC)27–29 methods. However, achieving a sufficiently reliable and reproducible QM description of NCIs remains36

computationally prohibitive for realistic ligand-pocket systems, preventing further development of accurate and efficient37

free-energy simulation methods as well as enhanced mechanistic models for ligand-protein design.38

Aiming to close this gap and improve our understanding of ligand-pocket binding, here we develop the “Quantum Interacting39

Dimer” (QUID) benchmarking framework. At this first stage, QUID contains 170 chemically diverse large molecular dimers40

(42 equilibrium and 128 non-equilibrium) of up to 64 atoms, including the H, N, C, O, F, P, S, and Cl chemical elements,41

encompassing most atom types of interest for drug discovery purposes. The selection of ligand-pocket motifs is accomplished42

through exhaustive exploration of different binding sites of nine large flexible chain-like drug molecules from the Aquamarine43

dataset30 systematically probed with a small monomer, once with benzene (C6H6) and once with imidazole (C3H4N2). Eight44

non-equilibrium conformations are also generated per each for a selection of 16 equilibrium dimers, sampling along the45

non-covalent bond dissociation direction. Given the structural and chemical diversity of the resulting conformations, a single46

dimer can exhibit multiple types of steric effects and NCIs simultaneously, including, but not limited to, polarization, π–π47

stacking, hydrogen and halogen bonds.48

The design process of QUID was inspired by several landmark QM datasets. Most of them are focused on DFT-based49

physicochemical properties of single molecules up to a few hundred atoms30–34. Only a limited number investigate NCIs, via50

the interaction energies (Eint), in molecular systems at the benchmark ab initio level of CCSD(T)/CBS. Among them, one51

can find the well-established S2235, 36 and S66(x8)37, 38 datasets; L7 with a few specific larger systems39, as well as the newer52

NENCI40, DES370K41, and SAPT10K42 ones with improved chemical diversity. Specifically for modeling ligand-pocket53

interactions, a recent dataset Splinter43 has been developed – in it two distinct small molecules represent common fragments in54

proteins and small-molecule ligands. While Splinter features charged monomers and good chemical diversity, its compounds55

are all of similar size, up to ≈40 atoms, thus offering limited venue for reproducing size-dependent NCIs or geometric56

arrangements typical of ligands in a pocket. Furthermore, large QM datasets of energies and atomic forces have been generated57

for non-covalent systems by combining structural data from MMFF-based simulations with DFT methods44–47 to develop more58

robust machine-learned FFs for (bio)molecular simulations.59

Our QUID framework aims to redefine the state-of-the-art in benchmarking NCIs in complex molecular systems. First, we60

define a “platinum standard” for ligand-pocket interaction energies (not to be confused with the platinum standard as used61

in the quantum chemistry community). It is obtained by establishing a tight agreement between two completely different62

“gold standard” methods for solving the Schrödinger equation: LNO-CCSD(T) and FN-DMC, thereby largely reducing the63

uncertainty in highest-level QM calculations. Second, the analysis of interaction components allows us to describe a wide range64

of NCIs of relevance to ligand-protein systems. Third, a comprehensive analysis of approximate empirical, semiempirical,65

and first-principles calculations allows us to pinpoint improvements required in each of these methodologies to move towards66

trustworthy free-energy simulation methods. We suggest that only a comprehensive combination of such benchmark analyses67

enables an unbiased understanding of NCIs in realistic molecular complexes as illustrated in this work for model ligand-pocket68

systems.69

Results70

Quantum-mechanical exploration of binding interactions. Modeling the NCIs of a ligand in a protein pocket is essential71

for determining the structural arrangements of natural enzyme substrates and drug candidates. This is why the QUID model72

systems, which represent the most frequent ligand-pocket interaction types, were created to investigate the impact of adequately73

describing NCIs on binding features and the influence of structural binding conformations on electronic properties. Each74

QUID dimer comprises a large monomer as a host and a small monomer representing a ligand motif. To achieve a proxy75

model representation of the interactions on the pocket-ligand surface, the large monomers are chosen from chemically diverse76

drug-like molecules of ∼50 atoms, with flexible chain-like geometry allowing for folding and multiple accessible binding77

sites (aromatic rings) (see Fig. 1). In doing so, nine molecules (including C, N, O, H, F, P, S, and Cl atoms) that met our78

criteria were extracted from the Aquamarine dataset30. Two small monomers were selected to represent the ligand interactions:79

benzene, the quintessential aromatic compound present in the phenylalanine side-chain, and imidazole, present in histidine, a80

more reactive and also a commonly used drug motif50. The resulting complexes represent the three most frequent interaction81

types appearing on the pocket-ligand surface, that is aliphatic-aromatic, H-bonding, and π-stacking, which are found in more82

than 100,000 interactions within PDB structures51. The QUID dimers are comprised of monomers interacting in one or more83

of the aforementioned ways, with many presenting non-covalent effects of mixed character, e.g. combining π-stacking and84

H-bonding. In each initial dimer conformation, the aromatic ring of the small monomer was aligned with that of the binding site85

at a distance of 3.55±0.05 Å (similar to S66 dimers37), and the dimer was then optimized at the PBE0+MBD level of theory.86

Post-optimization, we obtained 42 QUID equilibrium dimers that were split into three categories based on the structural87

shape of the corresponding large monomer: ‘Linear’, in which the original chain-like geometry is mainly retained; ‘Semi-88

Folded’, in which parts of the large monomer are bent while other sections remain linear, and ‘Folded’, in which the big89
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Figure 1. Schematic representation of the generation of the QUantum Interacting Dimer (QUID) dataset. In panel
a, the molecules forming a QUID structure modeling a protein pocket and those modeling are presented at the top and right
side of a protein-ligand complex48 visualized with ChimeraX49. Each dimer is composed of one of nine big monomers con-
taining multiple potential binding sites and a small monomer binding to one of them. The resultant dimer arrangement is
optimized at Density Functional Theory (DFT) level (PBE0+MBD). The resulting conformer geometries are shown in panel
b, categorized as Linear, Semi-Folded, and Folded. For 16 equilibrium dimers, eight non-equilibrium conformations are
designed along the dissociation of the non-covalent bond as illustrated by an example. q is a multiplicative dimensionless
factor in the range of 0.9 to 2, which denotes the ratio of the inter-monomer distance to that of the equilibrium dimer. In
panel c, a graphic summary of the QUID dataset with its chemical composition and some available QM (quantum mechani-
cal) molecular properties are shown.

monomer encapsulates the smaller one. Thus, a variety of pockets with different packing densities is modeled by the QUID90

dimers, e.g. the folded F1I3 mimicking a more crowded binding pocket52, or the linear L2B1 representing a toy model of a91

more open surface pocket53. This classification is shown in terms of the radius of gyration and chemical diversity in Fig. S1 of92

the Supplementary Information (SI). As a result, a wide range of interaction energies Eint between the monomers is produced,93

ranging from -24.3 to -5.5 kcal/mol at PBE0+MBD level, with imidazole usually resulting in stronger non-covalent bonds (see94

Fig. S2 of the SI). The prediction of the Eint values will be investigated in “Assessing the performance of DFT, semiempirical,95

and empirical methods” section with diverse computational methods.96

Next, a representative selection of 16 dimers is used to construct non-equilibrium conformations along the dissociation97

pathway of the non-covalent bond (along π-π or H-bond vector), modeling snapshots of a ligand binding to a pocket. These98

conformations were generated at eight distances, characterized by a multiplicative dimensionless factor q, defined as the ratio of99

the inter-monomer distance to that of the equilibrium dimer. The chosen values of q are 0.90, 0.95, 1.00, 1.05, 1.10, 1.25, 1.50,100

1.75, and 2.00, where q = 1.00 denotes the equilibrium dimer. The structure of these non-equilibrium dimers was also optimized101

at PBE0+MBD level with the heavy atoms of the small monomer and the respective binding site kept frozen. The resulting102

systems demonstrate the varied Eint spectrum for different pocket types via the structure categories in equilibrium and along103

the dissociation paths (see Fig. S2 of the SI). The generation protocol for the 42 equilibrium and 128 (16x8) non-equilibrium104

dimers is schematically outlined in Fig. 1 and detailed in the “Methods” section. These model systems represent a significant105

step forward in accurately investigating ligand-pocket interactions, characterized by robustly optimized molecular dimers that106

exhibit chemical diversity, larger size, and complex binding conformations.107

Analysis of non-covalent interaction components. A detailed characterization of the physical interactions in ligand-pocket108

systems is needed to both aid understanding and ensuring diversity in the coverage of interactions. To that end, a decomposition109
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Figure 2. Symmetry-Adapted Perturbation Theory (SAPT) energy decomposition analysis. a The Exchange, Induc-
tion, Dispersion, and Electrostatic contributions to the interaction energies Eint of all 42 equilibrium QUantum Interacting
Dimers (QUID) are depicted for the results obtained with SAPT level sSAPT0/jaDZ54. The dimer names on the x axis can
be read as the bracket first half followed by the tick label, e.g. F1 followed by B1 for the F1B1 dimer first on the x axis. b
Scatter plot of the Dispersion and Electrostatics contributions compared to the total interaction energies is shown for all 42
equilibrium QUID dimers.

of Eint of QUID systems with SAPT analysis was performed, specifically with the sSAPT0 version due to its good balance110

between accuracy and computational cost54, which is a slightly modified recipe that involves a rescaling of E(20)
exch−disp and111

E(20)
exch−ind terms based on an empirically adjusted proportion between E(10)

exch and E(10)
exch(S

2). The sSAPT0 Eint predictions for112

the equilibrium dimers were found qualitatively consistent with those computed at the LNO-CCSD(T) level (MAE of 0.85113

kcal/mol). The largest discrepancies are found for dimers with imidazole as the small monomer and with both π–π stacking114

and H-bonding contributions to the non-covalent interaction. The most pronounced discrepancy occurs for the folded F1I1115

dimer, with a value of 1.97 kcal/mol. Case-by-case results for all equilibrium QUID dimers are shown in Fig. S3 of the SI.116

The SAPT analysis provides insight into the energy components of the NCIs, namely induction, dispersion, electrostatic, and117

exchange contributions, which elucidate the balance of intermolecular interactions. This measure of dispersion and electrostatic118

components has been used before to gain insight into specific protein-ligand interactions42, 55 and will provide a solid basis for119

interpreting the different predictions of Eint from different QM methods.120

The variety in the spread of the sSAPT0 components for the QUID equilibrium dimers is shown in a stacked histogram121

in Fig. 2a. This showcases the diversity as a result of the different chemical environments and NCI types (see the associated122

NCI-plots56 in Fig. S4 of the SI). Notably, the dispersion and electrostatic terms are strongly represented, while the induction123

contribution is the smallest, about 15-20% of the total value of Eint. This indicates a supplemental role of the polarization124

effects on one monomer as a result of permanent dipoles of the other, with the imidazole-based dimers consistently having125

larger induction components compared to their benzene counterparts when settled in the same environment. For 9 dimers,126

electrostatics are the dominant term (see Fig. S5 in SI), being particularly strong for the SF1I2 dimer. Such strong electrostatics127

are rare in the QUID systems as seen in Fig. 2b, where single outliers are seen for electrostatic contributions higher than128

-14 kcal/mol, while there is a skew towards smaller values in the range -8.0 to -4.0 kcal/mol. All 9 electrostatic-dominant cases129

involve imidazole as the small monomer. This is consistent with the presence of the two N atoms and their lone pair orbitals,130

capable of forming H-bonds and dipole-dipole interactions. For SF1I2, also a sulphonyl group is found near the binding site131

(see Fig. S4 in SI), and the amino H atom in imidazole is interacting with the SO2 functional group, possibly forming an132

H-bond, in addition to the second H-bond between the imidazole and an amino group in the large monomer. Dispersion is the133

dominant component for the other 33 equilibrium dimers, as expected given the choice of binding sites (pre-optimization) on134

accessible aromatic rings arranged for π–π stacking. The spreads of the electrostatic and dispersion components are contrasted135
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Figure 3. Towards “platinum standard” in Eint by benchmarking “gold standard” methods LNO-CCSD(T) and
FN-DMC. a Comparison of the interaction energies (Eint) computed using Fixed-Node Diffusion Monte Carlo, FN-DMC
(0.015 or 0.025 time step) and Local Natural Orbitals - Coupled Cluster with Singles, Doubles, and perturbative triplets,
LNO-CCSD(T) (extrapolated to Complete Basis Set (CBS) and Local Approximation-Free (LAF) limit) for the 42 equilib-
rium QUantum Interacting Dimer (QUID) dataset. For FN-DMC, error bars represent estimated one-σ statistical error for
4× 108 configurations. For LNO-CCSD(T), the error bars correspond to the estimated uncertainty from the best CBS and
LAF extrapolations. Three cases are highlighted: L3I1 for which the methods are in perfect agreement, F2B1 for which the
methods agree within their uncertainty estimates, and SF3I3 as the one case for which they are in slight disagreement. The
NCI plots illustrating the non-covalent interactions in those molecular dimers are also shown56. b Scatter plot of the absolute
differences in the prediction of the interaction energies between LNO-CCSD(T) and FN-DMC, ∆Eint, versus the log of the
ratio between the electrostatic (Elst) and dispersion (Disp) Symmetry Adapted Perturbation Theory (SAPT) components
from sSAPT0 54. The equilibrium QUID dimers are divided into three subsets: yellow (no H-bond in non-covalent interac-
tion) and black (H-bond in non-covalent interaction) symbols indicate cases where the Eint predictions agree within their
uncertainty estimates. Pink symbols denote dimers for which the predictions do not agree within uncertainty estimates, all of
these feature an H-bond between the monomers.
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against the Eint spread in Fig. 2. Eint ranges from -8 to -20 kcal/mol, clearly larger than π–π stacked or single H-bonds in small136

dimers, which usually contribute between -2 to -8 kcal/mol to the interaction energy37. Furthermore, the dispersion component137

around -10 kcal/mol is larger than that obtained in a benzene dimer around -5 kcal/mol57. Some dimers can also depict mixed138

NCI character, e.g. both an H-bond and π - π stacking in F1I3, or both sandwich π - π stacking and T-shaped interaction of139

aromatic groups simultaneously in F1I1. Therefore, we can conclude that the ligand binding is enhanced due to the collective140

interactions with the pocket with SAPT characterizing the specifics of those interactions and also revealing the complexity of141

the physical interactions of the QUID systems.142

Benchmarking the quantum-mechanical benchmarks towards “platinum standard”. Reliable models for pocket-ligand143

systems rest on robust methods performing consistently and accurately in such systems. A prerequisite towards understanding144

and estimating the performance of current methods is the existence of reliable data, which can be challenging when results145

in literature obtained at “gold standard” level of computation have been found to disagree58, 59, and comprehensive and146

computationally expensive studies are needed to explore sources of the discrepancy60. Hence, to establish a thoroughly147

dependable reference for the interaction of ligands with a protein pocket, Eint for the QUID proxy systems has been obtained148

and compared for the two gold standard methods LNO-CCSD(T)61–64 and Fixed-Node Diffusion Monte Carlo (FN-DMC)27–29
149

to produce a “platinum standard”. Within our methodology, both approaches were employed with particular care to achieve150

convergence, see the “Methods” section for more details. The results were compared for the equilibrium set of QUID dimers151

and found in agreement within the uncertainty estimates of the two reference quantum methods in 31 of the 42 cases (i.e.152

74%) as seen in Fig. 3. The MAE between the two methods is 0.47 kcal/mol compared to 0.38 kcal/mol mean absolute153

value of the uncertainty estimate for both FN-DMC and LNO-CCSD(T), respectively. The benchmark ab initio methods154

are in good agreement for the QUID systems, a result previously found unattainable for larger non-covalent systems with155

dispersion-dominated interactions, e.g. in the L7 dataset58, 65. In QUID, let us take as an example one case (SF3I3) out of the156

studied ones, where the LNO-CCSD(T) prediction with its uncertainty estimate lies outside one-sigma agreement with the157

FN-DMC result but remains within two sigmas. This still means statistical consistency considering 68% and 95% assigned to158

one and two sigma intervals, respectively.159

Analysis of the discrepancy patterns between FN-DMC and LNO-CCSD(T) was performed by assessing the character of160

the non-covalent bonding from sSAPT0/jaDZ. The results were found to be consistent with a recent study performed on the S66161

dimers dataset59 - in both cases the results indicate that the dominant electrostatic component of the interaction energy correlates162

with the disagreements between the gold benchmark methods. Details are given in Fig. 3b, presenting a plot of the difference in163

the interaction energy predictions versus a log of the ratio of the electrostatic and dispersion sSAPT0 components. For the164

QUID systems, all the cases of disagreement involve a H-bond between the monomers, although some dimers with H-bonds in165

the interaction with higher dispersion contribution were found to be in agreement. These results are in line with the 0.9 kcal/mol166

deviation found by Shi et al.59 for the acetic acid dimer. From this perspective, the QUID systems differ from the supramolecular167

complexes with extended π–π interactions, where some considerable disagreements between CCSD(T) and FN-DMC were168

uncovered.58 As noted in Ref. 58 and recent studies,59, 66–68 the FN approximation, time-step discretization, pseudopotential,169

post-CCSD(T) terms, basis set extrapolation used in CCSD(T), and other high-order effects could be notable for extended π–π170

interactions. However, beyond CCSD(T) corrections are deemed to be very small for our purposes in H-bonded dimers.66, 68
171

Hence, based on these studies and our comparison between “gold standard” methods, we take LNO-CCSD(T) as a practical172

and reliable reference for Eint of ligand-pocket NCIs in the complex QUID dimers. LNO-CCSD(T) results were subsequently173

obtained for all 42 equilibrium dimers and the full dissociation curves of a representative selection of 6 dimers (details in174

“Methods” section).175

Assessing the performance of DFT, semiempirical, and empirical methods. Given the “platinum standard” Eint reference,176

we next conduct a comprehensive and reliable examination of its prediction and reliability obtained from different approximate177

computational methods for capturing NCIs in QUID equilibrium systems. This is done with the goal of identifying approximate178

methods that can be used in eventually building a trustworthy pipeline for calculating binding affinities.179

With the aim of providing a systematic investigation of QM and MM approximations, we include a wide selection of180

methods. First, we study a variety of DFT functionals (e.g., global, range-separated, and double hybrids) with dispersion181

interactions selected from previous benchmark studies78, 79, namely PBE0+MBD, PBE0+D4, ωB97X-V, ωB97X-D3, ωB97M-182

V, PBE+MBD, PBE0+XDM, PBE-QIDH-D3, CAM-B3LYP-XDM, B3LYP-D3, M06-2X, PBE0+MBD-NL, and PBE0+TS.183

Second, among the SE methods we study the third-order Density Functional Tight Binding DFTB3+MBD15 and GFN2-xTB16.184

From the available empirical classical FFs, we included GAFF2 (computed with AMBER)11 and CHARMM-CGenFF12
185

(computed with OpenMM)80. The results are presented in Table S1 of the SI and as a spread of Eint predictions obtained with186

these methods with respect to the LNO-CCSD(T) reference values, ∆Eint, shown in Fig. 4a. They are presented in ascending187

order of MAE, whose values can be found in the first column of Fig. 4b (full results in Fig. S7 of the SI). The performance must188

be analyzed in the context of the intrinsic uncertainty estimate of the LNO-CCSD(T) method on the QUID dataset (mean value189

0.39 kcal/mol). From this perspective, PBE0+MBD, ωB97X-V, and PBE0+D4 are within the uncertainty of LNO-CCSD(T),190
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Figure 4. Comparison of interaction energy predictions using high level and approximate methods. Specifically,
Density Functional Theory (DFT), semiempirical, and empirical methods are compared to Local Natural Orbitals - Cou-
pled Cluster with Singles, Doubles, and perturbative triplets (LNO-CCSD(T)61–64) and to each other. a Distributions of
interaction energy Eint predictions w.r.t. LNO-CCSD(T), ∆Eint, showed via box plots, for a selection of computational
methods - DFT methods: PBE017+Many-Body Dispersion (MBD)18, 19, ωB97X-V69, PBE017+D423, 24, PBE70+MBD18, 19,
ωB97X21+D371, 72, PBE017+ eXchange-hole Dipole Moment (XDM)73, PBE-QIDH74+D371, 72, PBE017+MBD-NL20,
B3LYP75, 76+D371, 72, PBE017+TS25; semiempirical methods: DFTB315+MBD18, 19, GFN2-xTB77; and classical force fields:
AMBER-GAFF211 and CHARMM-CGenFF12. The negative ∆Eint values signify underbinding, while the positive ones
overbinding. Each boxplot shows the median of the error distribution with a vertical median, a box covering the interquartile
range from the 25th to the 75th percentile is shown in colour, with whiskers spanning horizontally 1.5 times the interquartile
range and data points outside that range plotted individually as outliers. b A heatmap of mean absolute error (MAE) values
of predicted Eint w.r.t LNO-CCSD(T) for the 42 QUID equilibrium dimers in the first column, and the MAE of all methods
w.r.t each other in subsequent columns. The computational methods to predict Eint were the same methods as in panel a.
*For the LNO-CCSD(T) method, the value shown with asterisk is the mean absolute of the uncertainty estimates for Eint.

although a case-by-case analysis reveals deviations beyond the uncertainty of the benchmark data.191

Overall, it is reassuring that all recent DFT approximations yield rather accurate results. Even if some of them underestimate192

(PBE0+XDM, M06-2X, PBE0+MBD-NL, PBE-QIDH-D3) or overestimate (B3LYP-D3, PBE0+TS) the reference interaction193

energies on average, the spread of deviations is rather narrow for all DFT methods (with B3LYP-D3 being the only exception194

in the def2-QZVPPD basis set). On the other hand, both empirical and semiempirical methods show a tendency to underbind,195

producing larger spreads and exhibiting large outliers. The most prominent outliers are found for the methods CHARMM-196

CGenFF and DFTB3+MBD, with errors ranging from -12.5 kcal/mol to -5 kcal/mol (details in Fig. S6 of the SI) and197

-7.5 kcal/mol to -4.5 kcal/mol, correspondingly. Examining the DFTB3+MBD outliers–SF1I2, SF3I1, and SF3I3 dimers–reveals198

that for SF1I2 the strongest interactions are driven by electrostatics, including contributions from a sulfonyl group at the199
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binding site, while the SF3Ix dimers exhibit reactive thiazole groups. It is noticeable that the error distributions of GFN2-xTB200

(a SE method) and AMBER-GAFF2 (an empirical FF) are quite similar, although GFN2-xTB has a slightly lower average201

deviation from LNO-CCSD(T). Since GFN2-xTB was partially fitted to CCSD(T) data while AMBER-GAFF was not, this is202

not surprising.203

For AMBER-GAFF2, dimers with high electrostatic contributions result in larger errors (see Fig. S5 of the SI) pointing to a204

limitation of fixed partial charges. Contrarily, for GFN2-xTB, the higher errors appear to be associated with the local chemical205

environment. For example, the presence of P (in all 2Ix dimers), S (in all SF3Ix dimers) or Cl atoms (in both Folded F1I1, F1I3206

and Linear structures L1I2, L2I2) as well as H-bonds (in L3I3) affects the bonding of imidazole ligands, presenting greater207

challenges for the method.208

To evaluate the level and areas of agreement between methods, we have also computed the MAE values for Eint of QUID209

equilibrium dimers relative to each other (see Fig. 4b and Fig. S6 of the SI). The functionals ωB97X-D3 and ωB97X-V210

show excellent agreement with each other (MAE = 0.25 kcal/mol) despite the distinct incorporation of dispersion terms, D3211

and non-local correlation VV10, in ωB97X-D3 and ωB97X-V, respectively21, 69. This indicates that the critical similarity212

between ωB97X-V and ωB97X-D3, which sets them apart from the Minnesota functional M06-2X or PBE0+MBD, is the213

range-separation treatment of the DFT functional81. Particularly important for QUID systems appears to be the long-range214

handling of the electron-electron interactions, as the short-range ones differ for the GGA and meta-GGA functionals81. In215

the same vein, we consider the related PBE0+MBD and PBE0+MBD-NL methods (MAE of 0.47 kcal/mol) - we notice that216

the MBD-NL method increases the deviation compared to MBD in almost all cases except for the dimer with two S atoms217

and imidazole ligand, SF3I1-3 (see Fig. S6 of the SI). We note that the MBD-NL functional was designed to achieve broad218

applicability to inorganic solids and molecular systems, while the original MBD (or MBD@rsSCS) method was developed for219

molecular systems. Interestingly, while the PBE0+MBD and the PBE+MBD functionals produce comparable results, with220

MAEs of 0.33 kcal/mol and 0.44 kcal/mol respectively, the double-hybrid PBE-QIDH-D3 functional, based on the same PBE221

method, achieves an MAE of 0.59 kcal/mol (2.63 kcal/mol without the D3 correction). This may be a result of the shortcomings222

found in MP2 contributions for large flexible π-π dispersion-dominated molecular systems82 and the role of van der Waals223

parameterizations for double hybrid functionals83.224

Let us now investigate more in-depth the performance of the three best performing methods PBE0+MBD, ωB97X-V,225

and PBE0+D4, all of which obtain Eint within the LNO-CCSD(T) uncertainty estimate (0.39 kcal/mol) at 0.33 kcal/mol,226

0.35 kcal/mol, and 0.37 kcal/mol, respectively. As the chemical environment and energetic balance in the NCIs proved to227

be a more distinguishing factor for the method than the structure types, we focus on a consideration of dispersion versus228

electrostatics contributions to Eint. Overall, the MAE value of the 14 electrostatics-dominated dimers for PBE0+MBD is229

0.26 kcal/mol, notably better than the PBE0+D4 results with an MAE of 0.56 kcal/mol. On the other hand, for the 28 dispersion-230

dominated dimers, PBE0+D4 yields 0.27 kcal/mol, while PBE0+MBD obtains a close MAE of 0.35 kcal/mol. This suggests231

that systems with stronger electrostatic interactions pose a greater challenge for the D4 dispersion correction. This could232

stem from the different underlying mechanisms of the two approaches for modeling long-range correlation effects18, 19, 24, 84, 85.233

ωB97X-V achieves correspondingly 0.25 kcal/mol, outperforming for the electrostatics-dominated dimers but has higher MAE234

of 0.40 kcal/mol for the dispersion-dominated ones.235

In summary, empirical and semiempirical methods have demonstrated variable performance for ligand-pocket model236

systems in QUID, yielding a MAE of about 1 kcal/mol or higher and exhibiting a tendency to underbind. In contrast, among237

the many DFT methods examined, PBE0+MBD, ωB97X-V, and PBE0+D4 proved most effective in capturing the complex QM238

effects contributing to Eint calculations, while PBE0+XDM also showed excellent performance as a pairwise dispersion method.239

These findings enhance our understanding of the applicability and limitations of the various investigated computational methods.240

However, the choice of method for simulating a ligand binding to a protein pocket should also account for non-equilibrium241

conformations.242

Non-covalent bond dissociation pathways: non-equilibrium dimers. A key factor in modeling the dynamics of ligand-243

pocket systems is the capability of a physical model to investigate systems out of equilibrium accurately. To that end, we244

have considered six representative dissociation curves (i.e. F2B1, F2I1, L2B3, L2I3, SF2B2, and SF2I2) and conducted an245

in-depth analysis of the performance of selected computational methods: PBE0+MBD, PBE0+D4, PBE0+XDM, GFN2-xTB,246

DFTB3+MBD, and AMBER-GAFF2. The choice of DFT functional was based on the long-range effects in the elongated247

non-covalent bond regime as seen in Table S2 of the SI and allowed for direct comparison within the same functional PBE0.248

In Fig. 5a, we present the averaged results (over six dimers) for the ’Delta metric’ ∆ that measures the agreement between249

the dissociation curves of a given computational method and the LNO-CCSD(T) reference (see Fig. S8 of the SI). Indeed,250

it is evident that SE and classical FF methods, which are the tools of choice for biomolecular modeling, perform notably251

worse than DFT methods. The ∆ values per dimer are listed in Table S3 of the SI, with the best performing equilibrium252

methods PBE0+MBD and PBE0+D4 achieving smaller ∆ values. These findings are confirmed by analyzing the average253

error of Eint w.r.t. LNO-CCSD(T) at each q, see Fig. 5b (corresponding six individual plots are available in Fig. S9-S14 of254
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Figure 5. Interaction energy and molecular polarizability along non-covalent bond dissociations. a The delta metric
(∆, see formula on the plot) results are shown for four Density Functional Theory methods: PBE017 including Many-Body
Dispersion (MBD)18, 19, D423, 24, and eXchange-hole Dipole Moment (XDM)73, ωB97X-V69,; two semiempirical methods:
DFTB315+MBD18, 19, GFN2-xTB77; and a classical force field method: AMBER-GAFF211. b Average of the absolute
difference of predicted interaction energy with the Local Natural Orbitals - Coupled Cluster with Singles, Doubles, and
perturbative triplets (LNO-CCSD(T)) reference along the dissociation of the non-covalent bond of a selection of dimers. The
average is calculated at each multiplicative distance factor q (ranging from 0.9 to 2.0), defined as the ratio between the bond
length and the equilibrium non-covalent bond length for the corresponding dimer. The average is shown for six selected
molecular dimers: F2B1, F2I1, SF2B2, SF2I2, L2B3, and L2I3, using the same methods and corresponding color highlights
as in panel a. c Average of the difference in the molecular polarizability of the dimer and the sum of isotropic polarizabilities
of its corresponding monomers at each distance factor q. The results are shown as an average (points) with a standard error
(background) over all 128 non-equilibrium dimers in the QUantum Interacting Dimer (QUID) dataset, split by structural type
in Linear, Semi-Folded, and Folded.

the SI). Notably, the performance of each method shows a strong dependence on the intermolecular distance. To elucidate255

the results, the dissociation curve profiles for all methods are presented individually in Fig. S9-S14 of the SI. Interestingly,256

unlike DFT methods, AMBER-GAFF2 either underestimates or overestimates Eint, depending on the dimer configuration. The257

discrepancies are more pronounced in configurations where dispersion components dominate the NCI, and for those dimers258

particularly at distances with factor q < 1.0, where dispersion interactions are stronger. On the other hand, both SE methods259

predominantly underestimate Eint and fail to accurately capture the position of the minimum on the dissociation curve or its260

overall shape. This behavior changes only for GFN2-xTB at q < 1.0, where it overestimates Eint in most cases. Hence, to assess261

the efficiency of the methods in different interaction regimes, two ranges have been defined: ’compressed’ for q ≤ 1.0 and262

’elongated’ for q > 1.0.263

Concerning DFT methods, the best performance across the dissociation curves is consistently displayed by PBE0+MBD264

(underestimation) and PBE0+D4 (overestimation), with errors remaining within the uncertainty estimates of LNO-CCSD(T).265

The MAE values for Eint in the ’compressed’ and ’elongated’ regimes obtained using all methods are provided in Table S2266

of the SI. As expected from previous results, PBE0+D4, ωB97X-V, ωB97X-D3, PBE0+D4, and PBE0+MBD yield the best267

results in the ’compressed’ regime, while PBE0+MBD, PBE+MBD, PBE0+XDM, PBE0+D4, ωB97M-V, and ωB97X-V268

perform best in the ’elongated’ regime, indicating the consistently good performance of the PBE0 and ωB97X functionals.269
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The SF2B2 and SF2I2 dimers proved to be the most challenging among those examined, likely due to the interaction of a270

5-membered oxadiazole ring (C2N2O) via π–π stacking with the small monomer. The presence of two N and one O atoms in271

the aromatic ring contributes to an increase in the dipole moment and polarizability of the monomer, thereby enhancing both272

electrostatic and dispersion interactions. Interestingly, F2B1 and F2I1 are the easiest dimers to predict among the examined273

methods, as the molecular environment contributing to NCI is located within a few Å of the molecule.274

While the analysis of the dissociation curves has confirmed the performance of the methods for computing Eint (vide275

supra), it has also revealed that the accuracy of SE methods and classical FF strongly depends on the distance range and the276

dimer configuration. This is a critical result, as both approaches are widely used to investigate intermolecular interactions in277

biomolecular simulations, raising questions about the reliability of the results obtained in molecular dynamics simulations278

carried out with empirical methods.279

Quantum-mechanical property space of QUID systems. To enhance our understanding of the effects of dimer config-280

uration and intermolecular distances on the properties of pocket-ligand systems, several global and local physicochemical281

properties, in addition to Eint, were computed for all equilibrium and non-equilibrium QUID dimers at PBE0+MBD level of282

theory (see “Methods” section for more details). A full list of properties, similar to those in the Aquamarine30 dataset of large283

monomers, is provided in Table S5 of the SI. Further, quantities describing the Hirshfeld partitioning, i.e. Hirshfeld volumes,284

ratios, charges, (scalar) dipole moments provides information for the electron response of an atom-in-molecule environment.285

Overall the molecular properties can also be useful as ML descriptors86. Here, we first focus on the molecular polarizability, α ,286

as an additional measure of the NCIs.287

To that end, analogous to Eint, the difference in α between each dimer and the sum of its corresponding large and small288

monomers, ∆α , was calculated for all 128 non-equilibrium conformations. The average ∆α values for each structure type as a289

function of the distance factor q are plotted in Fig. 5c). Overall, the three structure types exhibit an almost linear behavior,290

with slight deviations near the equilibrium distance for the Linear and Semi-Folded structures. According to a recent concept291

of chemical bonding based on α , proposed by D. Hait and M. Head-Gordon87, this linear behavior suggests no significant292

modification in the covalent bond arrangements along the dissociation curve. The variation can thus be attributed to the293

self-consistent screening effect between the monomers. Indeed, in both Linear and Semi-Folded structures, the small monomer294

affects fewer atoms of the large monomer. In contrast, in Folded structures, the small monomer remains within 5 Å of a295

significant number of atoms of the large monomer, substantially influencing the electrostatics and dispersion in the pocket site,296

resulting in a steeper curve. Moreover, no correlation between α with Eint and µ emerges from the exploration QUID dimers297

(see Fig. S15 of the SI). On the one hand, this could suggest flexibility for rational ligand design as observed for small molecules298

of up to 7 heavy atoms86. At this stage, we can ascertain the interplay between electrostatic and dispersion interactions in a299

structurally and chemically complex local environment in the QUID pocket-ligand proxies requires exact QM models beyond300

the capture of a single key global property in the high-dimensional chemical compound space.301

Another relevant property for understanding NCIs in QUID dimers is the atomic forces, which are widely used to302

parameterize MLFFs for (bio)molecular systems. Indeed, the molecular conformational sampling at a given temperature303

strongly depends on the accuracy of the chosen computational method in adequately describing the forces acting on the atoms304

in the molecule. Accordingly, we have analyzed the atomic force distributions using a selection of DFT methods: the best305

performing ones PBE0+MBD and PBE0+D4, and the well-performing pairwise PBE0+XDM method. Since these methods306

share the DFT functional and our primary interest lies in NCIs, the focus will be on the vdW components of the atomic forces.307

We take the MBD method as the reference for comparison because geometry optimizations have been carried out with the308

PBE0+MBD level of theory. In addition, MBD is the only method that includes non-local screening effects in the polarizability,309

which were shown to be important in Fig. 5c).310

The differences in the vdW atomic forces are examined in terms of their magnitude and direction, treated as two distinct yet311

interrelated driving factors in MD simulations. The results are presented in Fig. 6a as a radial plot illustrating the difference in312

forces of D4 and XDM with respect to MBD. In this plot, the angular part represents the arccosine between the dot product of313

two force vectors, while the radius is the difference in force magnitudes, scaled by the MBD force. This analysis focuses on314

the differences observed per atom type, with the results for N, O, Cl, and S atoms shown in Fig. 6a (see other atom types in315

Fig. S16 of the SI).316

The overall force analysis is provided by the plot in Fig. 6b, which shows that MBD yields the smallest forces on average.317

The vdW force magnitudes are generally not much higher than 1 kcal/mol/Å; this is expected given that equilibrium geometries318

are involved. Higher vdW forces would be expected for non-equilibrium geometries. Further, largest discrepancies in force319

magnitude were found in D4 compared to XDM. This is corroborated by the distribution of the atomic force magnitudes for all320

atoms. The most significant outliers in force magnitude discrepancies are associated with D4 and Fig. 6a demonstrates that321

those outliers of up to 3-4 times the magnitude of the MBD force are found on C atoms in descending order for L2I3, L2B3,322

L3I1, and L3I2 (Fig. S16 of the SI). The FFAST software88 allows for visualization of the discrepancies between the vdW323

atomic forces to confirm that the C atoms were found at the binding site, an example of such a visualization can be seen in324
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Figure 6. Atomic van der Waals (vdW) force differences between Many-Body Dispersion (MBD)18, 19, D423, 24, and
eXchange-hole Dipole Moment (XDM) methods73. a A polar plot, where the radius is the difference in magnitude of the
vdW forces (given as a percentage) and the angle is the arccosine between the dot product of the force vectors. Four such
polar plots depict the distributions of the forces acting on all the N, O, Cl, and S atoms, respectively, in all 42 equilibrium
QUantum Interacting Dimer (QUID) structures. b Overall distribution of the magnitudes of the atomic vdW forces on all
atoms for all 42 equilibrium QUID dimers using the MBD, D4, and XDM methods. c An example of the deviation in atomic
van der Waals (vdW) forces between different methods is visualized for the SF2I2 dimer (produced by the FFAST soft-
ware88). The range is represented by colors varying from purple to yellow in a viridis color bar.

Fig. 6c) depicting SF2I2. The difference in force magnitudes is visible not only on the atoms of the binding site as expected but325

also in proximity to it showing the differing impact of the ligand interactions in the different methods. For the SF2I2, there is a326

notable difference between the comparisons of XDM and D4 w.r.t. MBD (the MBD depiction is available in Fig. S17 of the SI).327

This also holds true in general for the vdW forces on the Cl atoms in the QUID dimers. As seen on Fig. 6a XDM is in328

better agreement with MBD than D4 for Cl atoms, and the same is true for the other halogen element F, as well as the few P329

atoms (Fig. S16 of the SI). Hence, the presence of more electronegative atoms can hint at a systematic difference between the330

different vdW atomic forces. In that vein, a particular outlier is seen for the S element, with a 113% gap between the magnitude331

of the MBD and D4 forces for the SF1I1 dimer, in the sulfonyl group of the binding site of the imidazole ligand (Fig. S4).332

Interestingly, there is a split in the vdW force directions between ‘heavier’ atoms in the QUID dimers, i.e. O, F, Cl, S, and P and333

the ’lighter’ ones i.e. H, C, and N. The ’lighter’ atoms represented more in organic molecules demonstrate a larger spread of334

angle difference between the forces up to 120◦-180◦. By construction, for the pairwise D4 and XDM methods, the vdW force is335

a simple vector sum where all force vectors are aligned along the vector connecting pairs of atoms. In contrast, many-body336

effects that are treated to infinite order in MBD can thus substantially alter the force directions, and this difference is much337

more pronounced than for force magnitudes. This could have a visible effect on MD trajectories, although these implications338

remain to be assessed in a future study.339

The observed difference in force directions has potential repercussions for MLFF methods, where molecular data is routinely340

optimized at one level of theory, method or functional or dispersion correction, and computed at a different one to serve as341

input or reference for energies and forces. Unfortunately, while for Eint we have highly accurate LNO-CCSD(T) reference data342

and even the ability to achieve a “platinum standard” confidence by comparing with FN-DMC, obtaining forces at benchmark343

ab initio level is prohibitively expensive. Current research in developing gradients for LNO-CCSD(T)89 and FN-DMC90 could344

facilitate a reference benchmark for the vdW forces in the future and provide a clearer picture for the accuracy of the DFT345

methods for MD of ligands binding to a pocket.346
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Discussion347

The "Quantum Interacting Dimer" (QUID) benchmarking framework was developed here to redefine the state of the art in348

QM-based modeling of ligand-pocket motifs. Currently, QUID contains 170 structurally and chemically diverse large molecular349

dimers (42 equilibrium and 128 non-equilibrium) of up to 64 atoms, including the H, N, C, O, F, P, S, and Cl chemical elements,350

encompassing most atom types of interest for drug discovery purposes. This diversity enables a single dimer to exhibit multiple351

types of steric effects and NCIs simultaneously, including, but not limited to, π–π stacking, hydrogen, and halogen bonds.352

Accordingly, we conducted a series of analyses that provided valuable insights into inter- and intramolecular interactions of353

these model protein-ligand systems from a QM perspective.354

Indeed, the energy decomposition of the interaction energy Eint, as obtained through SAPT analysis, revealed that ligand-355

pocket interactions are predominantly governed by dispersion and electrostatics—types of interactions often inadequately356

represented by MM methods. Moreover, we defined a “platinum standard” of accuracy for Eint of ligand-pocket interactions357

by contrasting the results with the “gold standard” methods such as LNO-CCSD(T) and FN-DMC. Notably, the previously358

reported disagreement between LNO-CCSD(T) and FN-DMC for large non-covalent systems58 was not observed at such scale359

for the QUID dimers, where the disagreements are driven by predominantly electrostatic interactions as in a recent study on360

the S66 dataset59, and the overall discrepancy is small, approximately 0.5 kcal/mol. Those identified dimers can serve as361

model systems for future exhaustive analysis in both QM methods. Thus, our findings demonstrated that among all studied362

MM and QM approaches, DFT methods such as PBE0+MBD, ωB97X-V, and PBE0+D4 achieve excellent agreement with363

the costly LNO-CCSD(T) method in the determination of Eint for equilibrium and non-equilibrium dimers. Additionally, we364

have identified certain limitations in widely used semiempirical (e.g., GFN2-xTB and DFTB3+MBD) and MM methods (e.g.,365

AMBER-GAFF2 and CHARMM-CGenFF) for investigating complex non-covalent motifs, which raises questions about their366

reliability in binding affinity simulations. These intriguing results highlight the relevance of determining the appropriate level367

of theory to accurately characterize protein-ligand systems, particularly in the development of extensive QM datasets utilized in368

physical method benchmarking and ML-based investigations.369

Furthermore, QUID provides access to a diverse set of extensive and intensive (global and local) QM properties beyond370

Eint (at PBE0+MBD level), enabling the electronic characterization of chemical environments within ligand-pocket motifs—a371

limitation of current benchmark frameworks, which primarily focus on structural and energetic features. The structural372

dependence of the polarizability change in dimers as a function of the monomer separation, as well as the lack of correlation373

between global electronic properties and Eint, offers a perspective for understanding the NCIs in protein-ligand systems.374

These insights can rationalize the design of drug-like molecules targeting specific pocket sites with a desired set of QM375

properties86. The observed discrepancies in the van der Waals (vdW) component of the atomic forces using MBD, D4, and376

XDM methods also show the importance of investigating additional properties beyond the traditional Eint in non-covalent377

complexes. An inaccurate description of vdW forces can strongly impact the reaction pathway and the resulting binding pose378

when simulating the interaction of ligands with protein pockets. Hence, QUID has the potential to revolutionize standard379

procedures in approaching the modeling of ligand-pocket interactions in physical and ML-based frameworks by providing380

global and local electronic property data for large molecular dimers and their building blocks, which are critical for a faithful381

incorporation of long-range effects46, 47.382

In summary, the QUID benchmark framework presents a rigorously designed approach for accurately analyzing ligand383

interactions at various protein binding sites, facilitating the development of robust QM datasets for reliable predictions of384

binding affinities and structural conformations. While the insights gained from this work highlight the importance of an385

appropriate QM description for inter- and intramolecular properties of ligand-pocket motifs, we acknowledge that further386

efforts should incorporate more flexible and charged pocket structures, as well as solvation effects30, 91. The sampled chemical387

space should ultimately encompass full pocket-ligand molecular systems, similar to those in MM datasets (e.g. PL-REX92 and388

QR5093), to enhance the reliability of the findings. We expect this work to pave the way for a more informed use and refinement389

of physical and chemical models for simulating ligand-pocket interactions, offering particular value in fine-tuning MLFFs and390

ML-augmented semiempirical models, which are increasingly integrated into screening pipelines for drug discovery.391

Methods392

Generation procedure of QUID systems. A schematic representation of the procedure used to generate the 170 (equilibrium393

and non-equilibrium) QUID dimers is outlined in Fig. 1. Each QUID dimer consists of one of nine chemically diverse large394

monomers (of ∼50 atoms) selected from the Aquamarine dataset of drug-like molecules30, paired with a small monomer, either395

benzene C6H6 or imidazole C3H4N2. Each large monomer features at least 2 sterically accessible aromatic rings, which serve396

as binding sites. The larger monomer initially has chain-like geometry, modeling a protein pocket, while the small molecule397

represents the ligand. The chemical composition of QUID systems reflects this purpose: each conformer contains not only C,398

N, O, and H atoms but also at least one of the elements F, P, S, or Cl for eight out of the nine large monomers. These elements399
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are incorporated into the following functional groups: substituted five- or six-membered aromatic rings, aliphatic heterocycles,400

ketones, ethers, hydroxyls, amines, haloalkanes, and sulfonyl. Moreover, the choice of benzene and imidazole molecules401

enables a comparison of the effects of small aromatic rings and amphoteric compounds (imidazole can be both H-bond donor402

and acceptor), which is a key characteristic for many compounds of biomedical significance such as amino-acid histidine and403

anti-inflammatory drugs50.404

In the initial dimer conformation, prior to structural optimization, benzene and imidazole occupy the same position relative405

to a given binding site, specifically at 3.55±0.05 Å parallel to the site. A similar distance was used in the generation procedure406

of S66x8 dataset38. Here, the aromatic ring of the small monomer was aligned with that of the binding site, ensuring that407

the distance between the corresponding pair of heavy atoms on the two rings remained within a margin of 0.05 Å. Each408

dimer was then optimized using non-empirical hybrid density functional theory (DFT) with many-body dispersion approach409

(range-separated self-consistent screening, MBD@rsSCS), namely PBE0+MBD, in conjunction with tightly-converged numeric410

atom-centered orbitals (“tight settings”), as implemented in the FHI-aims94 software, version 221103. We classify the411

resulting structures into three categories based on their shape: ‘Linear’, where the original chain-like geometry is mainly412

preserved; ‘Semi-Folded’, where parts of the large monomer bend while other sections remain linear; and ‘Folded’, where the413

large monomer encases the smaller ones. Following this classification, the first letter of the dimer names corresponds to the414

structural category: ’F’ for Folded, ’SF’ for Semi-Folded, and ’L’ for Linear. The small monomer is indicated by the letter ’B’415

for benzene or ’I’ for imidazole, while the number that follows indicates the binding site (in QUID dimers as found viable416

post-optimization). The chemical diversity of the equilibrium QUID dimers (represented by the counts of non-H elements)417

is plotted in Fig. S1 of the SI against the radius of gyration, illustrating the spread of the three structural categories. The418

software Avogadro95 (version 1.2.0) and Visual Molecular Dynamics (VMD)96 (version 1.9.4a57-arm64-Rev12) were used for419

visualization of the molecules.420

Furthermore, we acknowledge that modeling ligand-pocket systems would be incomplete without computing non-421

equilibrium dimer conformations, which are crucial for understanding the binding of drugs to protein pockets. To this422

end, we generated eight optimized out-of-equilibrium structures along the reaction pathway of the non-covalent bond for 16423

representative molecular dimers (F2B1, F2I1, F2B2, F2I2, SF2B1, SF2I1, SF2B2, SF2I2, SF2B3, SF2I3, L2B1, L2I1, L2B2,424

L2I2, L2B3, L2I3). These non-equilibrium conformations were constructed with inter-monomer distances ranging from 3.2Å425

to 7.1Å, defined by a dimensionless multiplicative factor q, which represents the ratio of the inter-monomer distance in a given426

conformation to that in its equilibrium state. The chosen values of q are 0.90, 0.95, 1.00, 1.05, 1.10, 1.25, 1.50, 1.75, and427

2.00, as shown in Fig. 1. For the π–π interactions between aromatic rings, the dissociation vector was defined as the distance428

between the plane of the aromatic ring on the large monomer and the center of mass of the small monomer. In the case of429

H-bonds, dissociation was measured between the proton acceptor and donor atoms. All the non-equilibrium geometries were430

also optimized at PBE0+MBD level with “tight” settings using FHI-Aims (version 221103). Unlike the equilibrium dimers,431

the heavy atoms of the binding site and small monomer were kept frozen in their respective positions during optimization. An432

example of the dissociation geometries for one of the non-equilibrium dimers is shown in Fig. 1.433

Property calculation. The interaction energies Eint of QUID dimers were calculated using the supramolecular approach,434

Eint = Edimer − (ELmonomer +ESmonomer). (1)

Counterpoise corrections were applied to PBE0+MBD, PBE-QIDH-D3, and CCSD(T) single-point calculations. The basis set435

superposition error was negligibly small (under 1.5%) for DFT and ca. 4% on the average for CCSD(T) when extrapolated to436

the complete basis set (CBS) limit (see results in Fig. S18 of the SI). To investigate the level of agreement among QM methods437

for calculating Eint of QUID dimers, we have considered a selection of well-performing hybrid, double hybrid, range-separated438

hybrids DFT functionals, including M06-2X22, ωB97X-D321, ωB97M-V97 ωB97X-V69, PBE+MBD70, PBE-QIDH-D371, 72, 74,439

B3LYP-D371, 72, 75, 76, CAM-B3LYP-XDM98 and BH&HLYP-XDM99. Additionally, the PBE0 functional was combined with440

multiple two-body or many-body corrections: MBD18, 19 (range-separated self-consistent screening (MBD@rsSCS) approach),441

MBD-NL20 (Non-Local), XDM73 (eXchange Dipole Moment), TS (Tkatchenko-Scheffler)-vdW25, D423, 24, ωB97X-D321,442

ωB97M-V97. These calculations were performed using either the FHI-Aims (version 221103 )software100 with “tight”443

settings, the Psi4 software101, 102 (version 1.9.1) with the quadruple-zeta def2-QZVPPD basis set or the QChem software103
444

(version 6.1) with the quadruple-zeta def2-QZVPPD basis set except in the CAM-B3LYP and BH&HLYP cases using the XDM445

dispersion, where the aug-cc-pVTZ basis set was used in accordance with previous studies79 and the available parametrization446

from literature104. The PBE-QIDH-D3 implementation made use of the counterpoise correction as needed for the double447

hybrid functional method using MP2 correlation in the calculation74. All DFT calculations on Gaussian basis set employed448

the resolution of identity RI technique to accelerate the calculation of electron repulsion integrals. Notably, for the XDM449

method, a specific parametrization for the PBE0 functional was applied and then computed using FHI-aims software on450

“tight” settings (a1=0.4710 and a2=2.3857)105. SAPT energy decomposition calculations were carried out at the sSAPT0/jaDZ451

level54 employing the Psi4 software101 (version 1.9.1). At the semiempirical level, Eint was calculated via single-point452
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calculations using Density Functional Tight Binding15 DFTB3+MBD with DFTB+ software106 (version 23.1) and GFN2-xTB453

with the xTB software77 (version 6.7.0).454

Regarding MM methods, the results for AMBER11 were obtained using Openbabel107 for molecular format conversion.455

The parametrization with AmberTools (version 23.6) and GAFF211 required manual assignment and adjustment of bonds for456

more complex cases, such as ring interactions, as well as modification of the self-consistent loop limits for the F2I1 dimer. The457

CHARMM-CGenFF12 calculations were conducted using OpenMM80 (version 8.1.2) following a CGenFF2108 parametrization.458

For these calculations, manual inclusion of the dihedral angles for the flexible side chains, such as the ’C-C-N’ type, was459

necessary. An example is the L4B1 dimer, which was assumed to exhibit relatively low flexibility due to the nature of its bonds460

and chemical environment. A list of the Eint storage details is available in Table S4 of the SI.461

Additionally, the optimized structures of equilibrium and non-equilibrium QUID dimers were also utilized for more462

accurate QM single-point calculations using PBE0+MBD level of theory to compute other physicochemical properties (as463

detailed in Table S5 of the SI). For these calculations, we have used the FHI-aims code100 together with “tight” settings464

for basis functions and integration grids. Energies were converged to 10−6 eV and the accuracy of the forces was set to465

10−4 eV/Å. The convergence criteria used during self-consistent field (SCF) optimizations were 10−3 eV for the sum of466

eigenvalues and 10−6 electrons/Å3 for the charge density. The MBD energies and MBD atomic forces were here computed467

using the range-separated self-consistent screening (rsSCS) approach19, while the atomic C6 coefficients, isotropic atomic468

polarizabilities, molecular C6 coefficients and molecular polarizabilities (both isotropic and tensor) were obtained via the SCS469

approach18. Here, we have also computed van der Waals forces using D4 and XDM methods. Hirshfeld ratios correspond to470

the Hirshfeld volumes divided by the free atom volumes. The TS dispersion energy refers to the pairwise Tkatchenko-Scheffler471

(TS) dispersion energy in conjunction with the PBE0 functional25. The vdW radii were also obtained using the SCS approach472

via RvdW =
(
αSCS/αTS

)1/3 RTS
vdW, where αTS and RTS

vdW are the atomic polarizability and vdW radius computed according to473

the TS scheme, respectively. Atomization energies were obtained by subtracting the atomic PBE0 energies from the PBE0 total474

energy of each molecular conformation.475

LNO-CCSD(T) reference interaction energies. The large CCSD(T) computations well beyond the limits of conven-476

tional implementations were performed with the highly optimized local natural orbital (LNO) CCSD(T)61–64 method in the477

MRCC109, 110 (version 2024) quantum chemistry suite. First, a detailed basis set and LNO approximation convergence study is478

performed to determine the most efficient LNO and basis set settings that provide high accuracy for the interactions relevant479

to QUID. To that end, the interaction energies were tested for three representative dimers, namely SF2I2 (Fig. 7), F2B1, and480

L2B3 (Fig. S19 of the SI), at 1×, 0.9×, and 2.0× equilibrium distances. Here, we used the systematically improving series481

of aug-cc-pV(X+d)Z basis sets with X = D, T and Q111 as well as Normal (N), Tight (T), and very Tight (vT) LNO482

thresholds. The convergence toward the complete basis set (CBS) limit was accelerated for the HF112 and correlation113
483

energies via CBS extrapolation [CBS(X ,X +1)]. To accelerate the convergence toward conventional CCSD(T), that is the local484

approximation free (LAF) limit, the LAF extrapolations63, 64 N–T employs the Normal and Tight and the T–vT use the485

Tight and very Tight LNO settings.486

Our best estimate of CCSD(T)/CBS for the above nine dimers is given by a composite (Ē) scheme benefiting from CBS(T,Q)487

and LAF T–vT extrapolations as well as counterpoise corrections114:488

ECBS
CCSD(T) ≈ ĒCBS(T,Q)

T−vT LNO−CCSD(T) ≈ ECBS(D,T)
T−vT LNO−CCSD(T)−ECBS(D,T)

Tight LNO−CCSD(T)+ECBS(T,Q)
Tight LNO−CCSD(T) (2)

Moreover, an uncertainty estimate can be assigned to the LNO approximation as the difference between the usually monotoni-489

cally converging steps, that is, ±0.5|EXZ
veryTight −EXZ

Tight)| for T-vT.490

Inspecting all nine cases (Fig. 7 and Fig. S19), we find fast convergence with the LNO settings reaching ca. ±0.1 kcal/mol491

uncertainties at the T-vT LAF extrapolated level. Importantly, the N–T LAF extrapolated results are very close to the T–vT492

extrapolated ones, thus the most costly very Tight settings can be spared when targeting the entire dataset. Regarding the493

basis set convergence, for all nine dimers, we find a good agreement between the counterpoise corrected and uncorrected494

results by reaching the CBS(T,Q) level. An additional indication of excellent convergence is the close match between495

counterpoise corrected aug-cc-pV(Q+d)Z as well as CBS(D,T) results, also suggesting that the most expensive aug-cc-496

pV(Q+d)Z computations are not needed for the entire dataset. Furthermore, the difference of the best-converged basis set497

levels, e.g., between counterpoise corrected CBS(D,T) and CBS(T,Q), can be used as an uncertainty estimate for the basis set498

convergence. Then, our conservative formula for the total uncertainty estimate w.r.t. CCSD(T)/CBS adds together the above499

LNO and basis set uncertainty estimates, which indicates about ±0.2 kcal/mol uncertainty at the ĒCBS(T,Q)
T−vT LNO−CCSD(T) level [Eq.500

(2)].501

On the basis of the above analysis, a more affordable composite energy expression can be recommended:502

ĒCBS(D,T)
N−T LNO−CCSD(T) ≈ EDZ

N−T LNO−CCSD(T)−EDZ
Normal LNO−CCSD(T)+ECBS(D,T)

Normal LNO−CCSD(T), (3)
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which will be used to compute reference Eint values for QUID dimers. In accordance with the above analysis of the nine503

convergence plots, the more efficient ĒCBS(D,T)
N−T LNO−CCSD(T) results are in excellent agreement with the tightly converged504

ĒCBS(T,Q)
T−vT LNO−CCSD(T) ones, their difference is mostly below 0.1 kcal/mol, and only up to 0.2–0.3 kcal/mol for the worst505

cases of L2B3 (equilibrium) and SF2I2 (0.9× equilibrium). The corresponding uncertainty estimate for ĒCBS(D,T)
N−T LNO−CCSD(T) is506

the sum of 0.5|EDZ
Tight −EDZ

Normal| and 0.33|ECBS(D,T)
Normal −ETZ

Normal|, resulting on the average about ± 0.4 kcal/mol, in agreement507

with the observations for the nine dimers where ĒCBS(T,Q)
T−vT LNO−CCSD(T) is available.508

The benefit of ĒCBS(D,T)
N−T LNO−CCSD(T) over ĒCBS(T,Q)

T−vT LNO−CCSD(T) is about an order of magnitude computer time and 4-fold509

memory demand reduction. Namely, the three kinds of LNO-CCSD(T) interaction energy computations needed for Eq. (3) can510

be completed in ca. 30–70 hours for each dimer on 16 cores and at most 20 GB memory, making it ideal for high-throughput511

computations even on clusters with short wall-time limits. For the sake of completeness, the frozen-core approximation and512

conventional auxiliary basis sets115, 116 were employed for all LNO-CCSD(T) interaction energies.513

FN-DMC Interaction energy calculation. We performed Fixed-Node Diffusion Monte Carlo (FN-DMC) calculations27–29
514

for QUID dimers corroborating the LNO-CCSD(T) Eint with another accurate QM method. Our FN-DMC wave function ansatz515

was built using a single Slater determinant in addition to a Jastrow factor with one-body, two-body, and 3/4-body terms to516

account for cusps conditions at the nuclei, fermionic pair correlations, and product of pair correlations at the field of the nuclei,517

respectively. See references117, 118 for further details about the electronic wave function ansatz. The molecular orbitals of the518

Slater determinant were taken from a previous DFT calculation employing ORCA code119 (version 5.0.4) with the Local-density519

approximation (LDA) exchange-correlation functional, a cc-pVTZ basis set for all atoms, and the ccECP pseudopotential120.520

All variational parameters of the Jastrow factor were variationally optimized at the Variational Monte Carlo (VMC)521

level with the stochastic reconfiguration optimization method121, while molecular orbital coefficients, basis set contraction522

coefficients, and exponents were kept fixed from the initial DFT calculation. The optimized VMC wave functions were taken as523

guiding functions in the FN-DMC calculation, in which we also employed the ccECP pseudopotentials to approximate core524

electrons for each atom, integrated with the determinant localization approximation (DLA)122. Consequently, the FN-DMC525

calculations were computed at two time-steps of 0.050 and 0.025 (a.u.), using 12800 walkers divided into 300 blocks, each526

100 steps long, for a total of 4×108 sampled configurations. FN-DMC statistical error bars represent one-σ standard error of527

the mean estimated using binning technique (reblocking) to avoid autocorrelation. For some systems, it was required to run528

an additional third calculation with a time-step of 0.015 a.u. to get statistical agreement within 1-σ in the observed binding529

energies. In Fig. 7 we displayed the time-step convergence against the CCSD(T) reference values. Both VMC wave function530

optimization and FN-DMC calculations were performed with the QMeCha code117, 118, 123 (version Dec22, 2024, commit531

b296fc0).532
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a b

Figure 7. Mutual agreement for interaction energies from benchmark ab initio methods LNO-CCSD(T) and FN-
DMC. a Local Natural Orbitals - Coupled Cluster with Singles, Doubles, and perturbative triplets (LNO-CCSD(T)) inter-
action energy Eint convergence analysis with respect to the LNO thresholds (x axis) and aug-cc-pV(X+d)Z (aXZ) basis set
choices with (CP) and without (noCP) CounterPoise corrections for the SF2I2 dimer at equilibrium distance, including the
best estimate interaction energy corresponding to Eq. (2); the horizontal line indicates the Fixed-Node Diffusion Monte
Carlo (FN-DMC) interaction energy (0.025 δτ) with its statistical error in a box. For FN-DMC, error bars represent esti-
mated one-σ statistical error for 4× 108 configurations. For LNO-CCSD(T), the error bars correspond to the estimated
uncertainty in the different extrapolations to the Complete Basis Set (CBS) and Local Approximation-Free (LAF) limits.
b FN-DMC time-step convergence plots for a selection of 13 dimers. The reference LNO-CCSD(T) values are added for
comparison, represented as horizontal lines with their uncertainty estimates shown as boxes.
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1. Lingė, D. et al. PLBD: protein–ligand binding database of thermodynamic and kinetic intrinsic parameters. Database567

2023, baad040 (2023).568

2. Ryde, U. & Söderhjelm, P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem. Rev.569

116, 5520–5566 (2016).570

3. Mucs, D. & Bryce, R. A. The application of quantum mechanics in structure-based drug design. Expert. Opin. on Drug571

Discov. 8, 263–276 (2013).572

4. Sohraby, F. & Nunes-Alves, A. Advances in computational methods for ligand binding kinetics. Trends Biochem. Sci. 48,573

437–449 (2023).574

5. Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and evaluate binding affinities. Elife 9,575

e57264 (2020).576

6. Ryde, U. & Soderhjelm, P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem. Rev.577

116, 5520–5566 (2016).578

7. Davis, H. J. & Phipps, R. J. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity579

in catalytic reactions. Chem. Sci. 8, 864–877 (2017).580

8. Ross, G. A. et al. The maximal and current accuracy of rigorous protein-ligand binding free energy calculations. Commun.581

Chem. 6, 222 (2023).582

9. Abel, R. A critical review of validation, blind testing, and real-world use of alchemical protein-ligand binding free energy583

calculations. Curr. Top. Medicinal Chem. 17, 2577–2585 (2017).584

10. Chodera, J. D. et al. Alchemical free energy methods for drug discovery: progress and challenges. Curr. Opin. Struct.585

Biol. 21, 150–160 (2011).586

11. Case, D. et al. AMBER 2016 (2016).587

12. Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the588

CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).589

13. Dauber-Osguthorpe, P. & Hagler, A. T. Biomolecular force fields: where have we been, where are we now, where do we590

need to go and how do we get there? J. Comput. Mol. Des. 33, 133–203 (2019).591

14. Stöhr, M. & Tkatchenko, A. Quantum mechanics of proteins in explicit water: The role of plasmon-like solute-solvent592

interactions. Sci. Adv. 5, eaax0024 (2019).593

15. Gaus, M., Cui, Q. & Elstner, M. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method594

(SCC-DFTB). J. Chem. Theory Comput. 7, 931–948 (2011).595

17/22



16. Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding596

quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory597

Comput. 15, 1652–1671 (2019).598

17. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J.599

Chem. Phys. 110, 6158–6170 (1999).600

18. Tkatchenko, A., DiStasio Jr, R. A., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals601

interactions. Phys. Rev. Lett. 108, 236402 (2012).602

19. Ambrosetti, A., Reilly, A. M., DiStasio, R. A. & Tkatchenko, A. Long-range correlation energy calculated from coupled603

atomic response functions. J. Chem. Phys. 140, 18A508 (2014).604

20. Hermann, J. & Tkatchenko, A. Density functional model for van der Waals interactions: Unifying many-body atomic605

approaches with nonlocal functionals. Phys. Rev. Lett. 124, 146401 (2020).606

21. Lin, Y.-S., Li, G.-D., Mao, S.-P. & Chai, J.-D. Long-range corrected hybrid density functionals with improved dispersion607

corrections. J. Chem. Theory Comput. 9, 263–272 (2013).608

22. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics,609

noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four610

M06-class functionals and 12 other functionals. Theor. Chem. Accounts 120, 215–241 (2008).611

23. Caldeweyher, E., Bannwarth, C. & Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 147,612

034112 (2017).613

24. Caldeweyher, E. et al. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys.614

150, 154122 (2019).615

25. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and616

free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).617

26. Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291 (2007).618

27. Foulkes, W. M. C., Mitas, L., Rajagopal, R. J. N. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod.619

Phys 73, 33–83 (2001).620
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