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H-1111 Budapest, Hungary,

§HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111

Budapest, Hungary
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Abstract

Decades of advancements and thousands of successful applications contributed to

the reliability of density functional theory (DFT) methods. Especially in main group

chemistry, DFT predictions tend to be increasingly more reliable. In this study we

deeply analyze unexpected (ca. 8–13 kcal/mol) DFT disagreements obtained for a few
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organic reactions using only widely adopted, modern, hybrid and higher rung DFT

methods. To understand the underlying causes, here, we move beyond conventional

statistics-based benchmarks by combining recent advances in DFT error decomposi-

tion with affordable gold-standard references. This approach helps to characterize

and disentangle multiple functional and density-based error types and enables us to

find functional(s) suitable for broad mechanistic studies in all studied examples. The

proposed tools are cost-efficient, readily accessible, and easy to integrate into routine

thermochemistry workflows. While the focus is on main group reactions, the approach

is applicable also for transition metal, bio-, and surface chemistry to assist more pre-

dictive reactivity modeling.

1 Introduction

Computational modeling of chemical reactivity and catalysis with quantum chemical1–6 and

recently also with data-driven and machine-learning methods7–10 is well established and suc-

cessfully exploited, very often in synergy with synthetic developments. The current capabili-

ties of these computational tools, with DFT having a central role, are well documented.10–19

These recent reviews suggest a shift in the main challenge of predictive modeling from the

electronic structure problem to other important aspects associated with the effects of finite

temperature and environment, as well as competing reaction pathways and conformational

complexity.10–19

Regarding the electronic structure problem, density functional approximations often per-

form well and their potential shortcomings are also increasingly more understood. Current

warnings about difficulties for DFT focus on the clearly identified issues (multi-reference char-

acter, transition-metal and open-shell species, etc.).17,20,21 When these issues are avoided,

especially for homogeneous (catalytic) reactions in main group chemistry, the consensus ex-

pects reliable DFT performance.11–13,16,20,22,23 Unlike this general trend and our own experi-

ence, here, we study unexpected DFT inconsistencies obtained for the synthetically relevant
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and representative organic reactions in Figure 1.24–26 A spread of 8–13 kcal/mol remains

even if we look at only advanced, hybrid and higher rung functionals, take out the largest

negative and positive errors from a priori reasonable DFT models, and focus on some of the

most popular functionals (e.g., see colored markers for ωB97X-D, B3LYP-D3, M06-2X on

Figure 1).

Figure 1: Range of DFT uncertainties at least at the hybrid DFT level in three organic
reactions (detailed below in Section “Results and Discussion”). The plotted stabilities were
obtained with advanced and widely adopted functionals (listed in Table S2 of the SI). For
clarity, the energies are represented with empty dots and only 3 very popular methods
(B3LYP-D3, M06-2X and ωB97X-D, respectively) are highlighted with colored markers.

The aim of this study is to understand the underlying causes of these discrepancies,

thereby aiding future DFT development and the selection of reliable DFT approximations

in practice for such unclear situations. In general, indispensable assistance is given to DFT

model selection by statistical analysis in broad benchmark studies27–30 and reviews of best

practices.15,20,23,31 These works usually echo the advice to assess multiple DFT models until

reaching a consensus. Our study addresses the rather underexplored situation when a deeper

understanding is required as one cannot follow the strategy based on the agreement among
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the most trusted DFT models (Figure 1) or to limited benchmark data.

Besides experimental references, wave function based benchmarks, such as the coupled

cluster (CC) model with single and double and perturbative triple excitations [CCSD(T)],32

are increasingly employed. CCSD(T) is considered a “gold standard” method because its

chemical accuracy (ca. 1 kcal/mol uncertainty) has been repeatedly corroborated33 when

remaining within its applicability domain.34 Current local correlation methods enable, al-

beit at an order of magnitude higher cost than hybrid DFT, relatively routine access to

such CCSD(T) energies, as reviewed recently in Ref. 35. However, structure optimization,

thermochemical corrections, spectroscopic properties, etc. are far from available at the local

CCSD(T) level, and thus computational studies will require reliable DFT methods for a long

time. Moreover, even when some CCSD(T) (or experimental) references are available, it can

still be challenging to choose a suitable DFT method, as also illustrated in the examples pre-

sented here or for a multi-step organic cycloaddition reaction.36 As Truhlar, Frisch, Adamo

and co-workers have most recently highlighted,36 for complicated DFT error patterns, “it

would be of great interest to understand why some functionals are more accurate than oth-

ers”, but current considerations still “do not enable one to see which functionals will have

acceptable accuracy for a given complex mechanism”.

This current conclusion36 is also in line with our aim here for a more systematic approach

to better understand DFT uncertainties, especially due to multiple sources of errors, and to

assist in reliable model selection for practical, complicated reactions. To that end, we adapt

and combine advanced DFT analysis and CCSD(T) methods, which recently became ready

for widespread use. Namely, we

(1) exploit local correlation based CCSD(T) energies37–39 with well-converged approxima-

tions and robust uncertainty estimates,35

(2) combine this with recent DFT error decomposition and density error estimation meth-

ods,40,41 and

(3) go beyond the current benchmark approaches often focusing only on the statistical anal-
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ysis of DFT energy errors by separating and characterizing the sources of DFT errors from

reactants, through barriers and intermediates to products.

The benefit is that the combination of (1)-(3) [or when sufficient already (1) and (2)] enables

the informed choice of DFT methods for better reasons, e.g., by using models specifically

designed to mitigate the identified types of DFT errors.

This idea builds on one of the major DFT development approaches, that is to recognize

general DFT limitations and then to design models overcoming them.42–44 An outstanding

recent success along these lines is the development of dispersion corrections.45–48 Another

extensively researched but not yet as well resolved general issue is connected to errors in the

DFT densities, often due to the self-interaction error (SIE).40,44,49,50 The textbook examples

for SIE are one electron systems, where (for fully polarized systems) the Hartree–Fock (HF)

model is exact. SIE emerges when the Coulomb and exchange components of DFT methods

do not cancel completely, leading to a non-physical interaction of the electron with itself.51

Promising methods have been under development to overcame one-electron SIE52–55 and

more general many-electron SIE and delocalization error.44,50,56

The resulting overly delocalized densities can affect a wide range of applications, including

bond dissociation and torsion barriers, σ-hole interactions, radical and ionic complexes,

etc.40,44,49,50 Consequently, the accuracy of DFT densities and SIE are still in the center

of intense scientific discussions.40,57–60 For example, the idea of replacing the potentially

SIE-prone self-consistent DFT density with its SIE-free HF counterpart, that is HF-DFT,

is an early concept61–63 which was systematically revisited by Burke and co-workers.40,41

The proposal to use HF-DFT when the density error can be expected to be severe offers

a successful remedy for a wide range of SIE-prone systems listed above.40,41,64 However,

HF-DFT was shown to sometimes benefit from compensation of errors or be outperformed

by some hybrid or higher rung functionals in general purpose test sets.59,60,65

Nevertheless, the HF-DFT line of studies by Burke et al. also introduced a key concept

of decomposing the total DFT error to functional and density-driven error components66
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and a practical density sensitivity measure to estimate the latter67 (as detailed in Section

2). Here, we show that these tools are useful by themselves, however, so far very little

was known about their behavior for chemical reactions of synthetic relevance. For example,

regarding the performance of HF-DFT and density sensitivity on processes along a reaction

coordinate, only simple systems, such as H+
2 , NaCl, and FCl· · ·NH3 dimer dissociation were

investigated.40,41 Somewhat more is known about density sensitivity measures for transition

states (TS) of, e.g., small molecule reactions, like H· + H2/HF or CH3Cl + F−.40,41,68

Thus, to transfer these tools from the domain of textbook systems to routine applica-

tions, our study also provides better understanding on how the functional and density error

components behave for more complicated, practical reactions. All methods employed here

affordably fit into existing reaction mechanism exploration protocols and are sufficiently

simple and (openly) accessible in multiple quantum chemistry packages.69–71 This makes the

suggested tools readily and widely applicable. We demonstrate this on the practical reac-

tions of Figure 1 with current synthetic relevance in main group chemistry. Namely, C-C

and C-O bond as well as ring formation reactions via halocyclization,24 methylation,25 and

Michael addition26 are analyzed in detail.

All of these investigated systems exhibit at least two different kind of DFT issues in a

single reaction, highlighting the benefits of the proposed advancements, i.e., the ability to

disentangle and understand the potentially confusing (like in Figure 1) interplay of multiple

causes. While at the moment it is unclear how rare are such modeling uncertainties in

organic chemistry, caution is advised due to the relatively broad occurrence of the chemical

motifs that are found to cause them. In such cases, the suggested computational approach

enables a deeper understanding and thus more predictive DFT choices for better reasons.
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2 Methodology

2.1 Accurate CCSD(T) references

The DFT uncertainties will be measured against well-converged CCSD(T) reference elec-

tronic energies using the efficient local natural orbital (LNO)35,37–39,72 method of the Mrcc

program package.69,73,74 Relying on systematically improvable series of basis sets and local ap-

proximation settings, as well as on corresponding extrapolation toward the complete basis set

(CBS) and the local approximation free (LAF) limits, gold standard CCSD(T)/CBS results

can be approached within chemical accuracy (1 kcal/mol).35 Moreover, the remaining local

and basis set errors in the LNO-CCSD(T) references with respect to exact CCSD(T)/CBS

can be characterized using robust error estimates.35 The combination of CBS and LAF ex-

trapolations with LNO-CCSD(T) takes advantage of tightly converged LNO and quadruple-

ζ basis set levels, which are broadly accessible within ca. half a day on 16 cores, even

for the largest system studied here (B-ts). If converged properly, other local correlation

methods could also be used to get the same reference energies.35,75–77 Further technicalities

are presented in Section S1 of the Supporting Information (SI). The SI reports details of

the LNO-CCSD(T) reference computations, careful LNO-CCSD(T) convergence studies and

error estimates including CBS extrapolations up to diffuse quintuple-ζ bases, LAF extrapo-

lations from up to very Tight LNO settings and canonical CCSD(T) benchmarks.35,78 These

tests show 0.1–0.3 kcal/mol local and basis set uncertainties, which is clearly suitable to

assess DFT methods in the present study.

2.2 DFT error analysis: density component

In principle, the total DFT error with respect to the exact electronic energy can be decom-

posed into density-driven (∆Edens) and functional (∆Efunc) error components:66

∆E = EDFT[ρDFT]− E[ρ] = ∆Edens + ∆Efunc . (1)
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Here, the density-driven error in the energy of a density functional approximation (EDFT) is

the energy difference obtained with its self-consistent density (ρDFT) and the exact density

(ρ):

∆Edens = EDFT[ρDFT]− EDFT[ρ] . (2)

Then, the remaining functional error is the difference between the exact energy of the exact

functional (E) and the energy of the approximate functional, both evaluated on the exact

density:

∆Efunc = EDFT[ρ]− E[ρ] . (3)

Since the exact electronic energy, density, and density functional are not accessible we employ

practical approximations. Namely, ∆E is obtained against the LNO-CCSD(T) reference and

we estimate ∆Edens using the density sensitivity measure employed by Burke et. al:67

SDFT = EDFT[ρLDA]− EDFT[ρHF] . (4)

Here, SDFT is the difference of the approximate DFT energy obtained with two densities: the

local density approximation (LDA) density, which is one of the most sensitive to SIE, and

the Hartree–Fock (HF) density, which is free from SIE by definition. Thus, SDFT basically

measures how sensitive the selected functional is to the SIE in the density (and thus not

related to the functional component of the SIE79,80). When SDFT is large, one expects that

the self-consistent density of the corresponding functional can cause sizable energy errors. In

turn, a small SDFT measure indicates the insensitivity of the functional to SIE in the density.

In a slight deviation from the density sensitivity definition of Ref. 67, where the absolute

value of Eq. (4) is used, we find here that the signed density sensitivities are simpler to

interpret and more informative for our purposes.
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We note here, that for DH functionals used in practice, the density is optimized with a

(hybrid) functional different from the functional used for the energy evaluation, which then

depends on also the KS orbitals and orbital energies. Thus, the analysis of density sensitivity

is not sufficient to explore the error sources for DH methods,81 and we do not present density

sensitivity measures for them. Nevertheless, one can expect that modern DH methods are

not as sensitive to SIE as their HFx content is usually above 50%.

2.3 DFT error analysis: functional component

The remaining, functional error can be characterized via the above approximations for ∆E

and ∆Edens utilizing ∆Efunc = ∆E − ∆Edens [from Eq. (1)]. The practical benefit is clear

as other tools to assess the quality of the functional, such as the Kohn–Sham inversion,

are yet not affordable due to, e.g., the cost of wave function based densities.59,82,83 While

investigating ∆Efunc this way could often be sufficient, if needed, we can go further and

analyze some of its components originating from the approximate exchange and correlation

functionals. Regarding the importance of the dispersion component,45–48 one can look at

the size of the dispersion correction (see Table S2 of the SI). These, as well as, second-

order (MP2) and CCSD(T) correlation energy contributions inform us about the size and

complexity (e.g., in terms of perturbation order) of the electron correlation effects. Then,

these measures indicate the level of difficulty faced by the correlation functional for a specific

chemical process. To analyze the system-specific effect in the exchange component, we can

systematically vary the portion of exact HF exchange in the functional.

While the indicators collected in the previous paragraph are relatively simply accessible, it

is also insightful to first inspect trends along the rungs of Jacob’s ladder.84 Here, we employ

24 functionals covering the top four rungs of Jacob’s ladder, including some of the most

popular and accurate functionals of each rung and multiple categories with no, moderate,

and a high number of empirical parameters (see Section S1 and Table S2). Here, we will focus

on hybrid (H) functionals and higher rungs, including HF exchange (HFx), as their use can
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be considered standard in reaction mechanistic studies. Generalized gradient approximation

(GGA) and meta-GGA (mGGA) functionals are nowadays employed mostly for molecular

dynamics, condensed phase calculations, or structure optimization of very large molecules.

Including briefly (m)GGAs as well is informative for us, e.g., for the purpose of making the

error sources related to the density more apparent. Due to the importance of SIE in the

present study and with the expectation of smaller SIE with increasing HFx content, we divide

the hybrids into two groups with lower and higher than, say, 40% HFx content. Analogously,

range-separated hybrids (RSHs) are assigned to a separate category, as they usually include

a very high amount of (or in some cases even 100%) long-range HFx. Finally, functionals

from the double-hybrid (DH) rung are also included providing, in general, the most accurate

energetics on the highest rung. However, despite accelerated DH approaches,85,86 the cost of

DH gradients and Hessians is still too high for larger molecules. Thus, we focus on finding

(RS)H methods with reasonable accuracy over cost performance, which can be recommended

for routine use in reaction mechanism modeling.

2.4 Tracking the components along the reaction coordinate

If multiple sources of error are found significant, we move beyond evaluating functional

performance only at stationary points, which may obscure the potentially complex interplay

of errors. Since different error types can vary throughout the reaction, sometimes canceling

or amplifying one another, we extend the analysis along the reaction coordinate (RC). This

helps to disentangle the error types, as there are regions along the RC where certain error

sources become negligible, enabling us to isolate and identify the dominant ones. Then,

starting from the point(s) where there is only one clearly identified error type, we can track

the changes along the RC to structures where the error pattern is more involved. Specifically,

we examine how the DFT errors and density sensitivities vary along the RC using the

same structures for all methods (as detailed in Section S1 of the SI). In this study, besides

the popular M06-2X-D3, ωB97X-D, and B3LYP-D3 functionals, we analyze more closely a
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an additional (here best performing) RSH (CAM-B3LYP-D4) along the RC. Further DFT

computational details are presented in Section S1 of the SI.87

3 Results and Discussion

3.1 Demonstration of the methodology: a simple nucleophilic sub-

stitution

We briefly demonstrate the methodology for a relatively straightforward example of an SN2

model reaction, namely for the concerted nucleophilic substitution occurring in the attack

of CH3Cl by Cl– (Scheme 1).

Scheme 1: Reaction A: nucleophilic substitution. The chlorine of methyl-chloride is ex-
changed with a free chloride-ion in a concerted nucleophilic substitution. For the analysis
along the reaction coordinate (see Figure S9), the difference between the bond order of the
formed and cleaved C-Cl bonds (denoted as 1 and 2) is chosen as reaction coordinate.

The underestimation of the barrier height of this reaction by DFT is well-known88–90

and it was attributed to SIE and over-delocalization due to the 3c/4e nature of the TS.91

Accordingly, hybrid and higher rung methods show errors in the range of -9.5 to 1.6 kcal/mol

for the barrier height of A-ts (Figure S7 and Table S3). Especially for hybrids with lower

HFx content [and pure (m)GGAs], both the sign and size of the density sensitivities correlate

well with the energy errors (Figure S8), verifying that SDFT is a suitable measure of the

density-driven error for our purposes. The negative sign of the error is also consistent with

the expectation of over-delocalization, and thus overstabilization of the TS compared to the

reactant state. As expected, hybrids with a large amount of HF exchange, RSHs, and DHs
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perform better in the [−5, 1.6] kcal/mol error interval. For a more detailed analysis, see

Section S2.1 of the SI.

3.2 Self-interaction and dispersion errors: halocyclization

In the first, synthetically widely applied halocyclization reaction92–95 an intramolecular

nucleophilic addition is induced by the electrophilic addition of a halogen to the double

bond, yielding halogenated cyclic compounds. Here, we follow one of the rare experimental-

computational mechanistic studies,24 and investigate chlorolactonization of phenyl-pentenoic

acid (B-reac) catalyzed by a quinuclidine (qui) base. The inspected anti addition pathway

involves a concerted chlorenium transfer, ring closure, and base-assisted substrate depro-

tonation (see Scheme 2), with a halogen bond formed already in precomplex B-prec also

playing a role in the selectivity.

Scheme 2: Reaction B: halocyclization.24 First the substrate B-reac, the N-chlorohydantoin
halogen source hyd and quinuclidine catalyst qui form a ternary complex (B-prec). Then,
the ring closure, the halogen transfer and the deprotonation proceeds through one concerted
transition state (B-ts). The average bond order of the forming C-Cl and C-O bonds (denoted
by 3 and 4) is chosen as the reaction coordinate.

While the reaction energies are reliable (being mostly consistent within a 1-2 kcal/mol

window in Table S4), the B-ts barrier heights are analyzed more closely. In Figure 2 we

arranged according to Jacob’s ladder the density sensitivities and DFT deviations, the latter
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Figure 2: Barrier of the halocyclization reaction (B-ts in Scheme 2 with respect to separated
reactants): signed error with respect to LNO-CCSD(T) (blue, left bars) and SDFT density
sensitivity (red, right bars) of functionals. Results are plotted with bars corresponding
to each functional category and white dots represent the individual results. Transparent
colors for (m)GGAs indicate to focus more on the higher rungs. The categorization of the
functionals is introduced in Table S2 and the results are collected for each functional in
Figure S11 and Table S4.

ranging from −11 kcal/mol to 7.7 kcal/mol for rungs of hybrids and above.

Considering the hybrids with a low amount of exact exchange [and the (m)GGAs], B-ts

and A-ts show similar trends, i.e., the negative errors correlate with the density sensitivities

(cf. Figures 2 and S8). The density sensitivities increase notably in B-ts compared to B-prec

due to the 3c/4e character of the N· · ·Cl· · ·C bond in the TS, which is also an analogy with

the SN2 model reaction. To our knowledge, these similarities in the electronic structure of

the barrier and the corresponding sensitivity to SIE between nucleophilic substitutions (as in

A-ts) and such electrophilic additions (here, halofunctionalizations) have not been pointed

out in the literature.

In accordance with these trends, the hybrids with a larger amount of HFx and the RSHs

show moderate negative density sensitivity and less correlation between the energy errors

and SDFT and perform better. The positive signed errors appear to be due to the (too) high

portion of exact HFx in some of these functionals, which we show by varying their HFx

13



content for this specific TS (as detailed in Section S2.2 and Figure S12 of the SI).

Regarding dispersion corrections, we consider that their use is (should be) the general

practice, so we make only a brief note in the main text. Considering only the energies,

GGA methods exhibit smaller errors in the barrier height without the dispersion correction

(e.g., BP86-D4: −16.3 kcal/mol, BP86: 1.4 kcal/mol, see all data in Table S5). However,

inspecting the dispersion and density sensitivity components separately, for (m)GGAs, the

lack of the stabilizing dispersion interaction is compensated by overstabilization due to the

over-delocalized density (which is explained in Section S2.2.2 of the SI and consistent with

similar findings in the literature96–98). While experts would notice these trends, we echo the

advice that such compensation of opposite sign effects should not be relied upon. As the

need for dispersion corrections is clear, one still needs to decide on the employed model.45–48

Due to their dominant role and broad availability in computation chemistry, we employ and

compare D3,99 D4100 and VV10101 models in Section S2.2.2 of the SI. While in our cases,

the dispersion models are comparable and turn out to be not among the main sources of

error, in general, one should be aware of recently found shortcomings and improvements,

especially useful for exploration of reaction paths.102,103

Regarding the importance of the dispersion component,45–48 one can look at the size of

the dispersion correction (see Table S2 of the SI).

Inspecting the DFT errors and the density sensitivities along the RC in the middle and

right panels of Figure 3, we find that they vary mostly analogously to the case of the SN2

model reaction A (Figure S9). One difference is that the density sensitivity values do not

tend to zero around the reactant/product complexes (two sides of Figure 3) due to the

SIE characteristic of the halogen bonds.104 Going from the reactant complex toward B-ts,

especially for the B3LYP-D4 (orange) curve (and amplified further by BLYP-D4 in Figure

S15), we find a concerted increase in the DFT errors and density sensitivities corroborating

that density-based SIE is the dominant error. For the methods with higher HFx content

(M06-2X-D3 and the RSHs in Figure 3), the self-consistent density is probably considerably
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better than the ones used for evaluating SDFT. Accordingly, their somewhat positive errors

along the RC suggest that not only density but also a small amount of functional error could

be responsible for their uncertainties.

Figure 3: Halocyclization reaction B. left: Electronic energies computed with various meth-
ods along the reaction coordinate (RC). The RC is defined as the average Mayer Bond
Order105 (BO) of the forming bonds (3 and 4 in Scheme 2). The reactant state (CV ≈ 0)
corresponds to B-prec and the energies are provided with respect to the separated reactants.
middle: Signed errors of functionals with respect to LNO-CCSD(T)/CBS results along the
RC. right: Density sensitivities of functionals along the RC. For the BLYP-D4 curves, see
Figure S15.

To inspect this more closely, we analyze the correlation energy contributions to the sta-

bilization energies along the RC (Figure S16). The CCSD(T) correlation energy contribu-

tion is much more significant than in the nucleophilic substitution, ranging from −30 to

−40 kcal/mol. Moreover, MP2 overestimates the correlation energy contributions by 5–10

kcal/mol, pointing to the significance of higher than second-order correlation. Reproduc-

ing such non-trivial electron correlation effects could be challenging even with the advanced

functionals, which provides an explanation also for the notable errors even at the DH level

(Figure 2 and Table S4).

3.3 Multiple types of SIE: methylation

Methylations are widely applied transformations in organic and medicinal chemistry,106–108

which are often performed using electrophilic methyl sources. The examined reaction is
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the electrophilic attack of an enolate (C-en) by iodomethane (MeI) (Scheme 3). This

diastereoselective methylation has recently been used as a key step in the total synthesis of

stemoamides109 and the related computational analysis provided a simple stereoselectivity

model.25

Scheme 3: Reaction C: methylation.25 Enolate derived from a trans-fused γ-butyrolactone
C-en is methylated by iodomethane. The difference of the bond orders of the forming C-C
and breaking C-I bonds is chosen as the reaction coordinate.

The errors in the barrier height of C-ts (Figure S17) and their correlation to the density

sensitivities (Figure S18) again points to SIE as the main source of error. However, despite

these similarities at first sight, a closer inspection reveals differences. First, the barrier

height errors are somewhat lower (−6.5 to +3.8 kcal/mol at the hybrid and above rungs)

than in reactions A-B. Second, unlike in reactions A-B, notable errors also occur not only

for the barrier but also in the reaction energy (Figure 4). Third, the reaction energy errors

and density sensitivities of Figure 4 are of opposite (positive) sign compared to the barriers

of A-B, especially for low HFx hybrids (and GGA functionals, see Figure S18) Then, for

range-separated hybrids, the density sensitivity becomes close to zero with mostly negative

reaction energy errors. In turn, double hybrids generally have positive errors.

Since the errors and the density sensitivities correlate in Figure 4, SIE could play a role,

but the usual overstabilization by negative density-based errors is not apparently consistent

with the positive reaction energy errors. An alternative explanation for the underestimated

reaction energy would be an overstabilized reactant state compared to the methylated enolate

C-prod and an iodide-ion (Scheme 3) in the product state. Namely, enhanced electron

delocalization caused by SIE could overstabilize the iodomethane reactant, but cannot be
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Figure 4: Reaction energy of the methylation (C-prod + I– in Scheme 3, with respect
to separated reactants): signed error with respect to LNO-CCSD(T) (left bars, blue) and
density sensitivity (right bars, red) of functionals. See (m)GGA results in Figure S18 and
all data in Figure S17 or Table S6.

present for the infinitely separated iodide-ion.110

Because of this SIE in the reactant, it is helpful to simplify the analysis by removing

this source of error and use the product as reference state (Figure S19). Here, the reaction

energy of the reverse reaction has a negative error of up to 3 kcal/mol with hybrids (and 7

kcal/mol with GGAs) due to the lack of SIE cancellation between the reactant and product

states. Moreover, the error in the reverse barrier height reaches up to −10 kcal/mol with

hybrids (and −14 kcal/mol with (m)GGAs), now matching the size of the SIE in the A-B

barrier heights. Thus, one should consider two different error sources of opposite signs in

reaction C: (measured from the reactant state) a negative SIE source due to the 3c/4e TS

structure and a positive component due to the lack of SIE compensation in the polarizable

iodine species.

For the separation and better understanding of these two sources of errors, let us analyze

them along the RC (for simplicity, first, with respect to the product state in Figure 5 and

S20). The lowest (most negative) density sensitivities are found close to C-ts with all

functionals. The errors show similar behavior to SDFT in the case of B3LYP-D4, which
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hybrid is the most sensitive to SIE. In this case, some density sensitivity remains in the

precomplex, and even in the reactant state (that is the separated reactants, denoted as R

in Figure 5), which translates into negative energy errors. Thus, one finds the first SIE

type already at the reactant state, which is accompanied by the second SIE source moving

toward the TS, and then both tend to diminish at the product state.111 Finally, let us

note that analogous DFT performance is found for the syn methylation here and the anti

pathway (Figure S24). While such excellent error cancellation is not guaranteed in general,

the practically important difference between the syn and anti barrier heights are reliable

(Sect. S2.3.1 of the SI) for stereoselectivity conclusions.

3.4 Complex interplay of functional and density errors: Michael

addition

Enantioselective Michael addition reactions enable valuable, stereoselective C-C and C-X

bond formation.112–115 In Scheme 4, we focus on the addition of the nitrostyrol (ns) to an

enamine species (D-en) forming a 6-membered dihydrooxazine N-oxide (D-oo) intermediate

Figure 5: Reverse of the methylation reaction C. left: Electronic energies along the RC with
respect to the separated products. The RC is defined as the difference between the BOs
of the formed and cleaved bonds (6 and 5 in Scheme 3). middle: Signed DFT errors with
respect to LNO-CCSD(T)/CBS along the RC. right: Density sensitivities along the RC.
R labels the state of infinitely separated reactants. The BLYP-D4 curves are presented in
Figure S20

.

18



(via D-ts1). D-oo is then rearranged (via D-ts2) into a nitro-substituted cyclobutane (D-

cb) intermediate, which was found to play a key role in the stereocontrol of organocatalytic

Michael additions.26

Scheme 4: Reaction D: Michael addition. First, a 6-member ring (dihydrooxoazine-oxide,
D-oo) is formed, which is rearranged into a 4-member ring (cyclobutane-form, D-cb). In
the first step, a C-C and a C-O bond is formed, which are denoted by 7 and 8, respectively.
In the rearrangement, bond 5 is cleaved and another C-C bond (denoted as 9) is formed
instead.

In Figure 6, the energy of the intermediates and transition states are plotted with respect

to the separated D-en and ns obtained with various, at least hybrid rung functionals (bars

and dots) and the LNO-CCSD(T) method (horizontal dashed line). Starting with D-ts1,

the at least hybrid DFT results span a 9 kcal/mol range, analogously to the TSs in reactions

A-C. In contrast, the errors in the D-oo intermediate with high rung functionals are −7.5 to

7.1 kcal/mol (larger positive with low HFx, closer to zero with high HFx and notably negative

with some RSHs). Next, despite the structural similarity of D-ts2 to D-ts1 and D-oo, its

errors between −4.9 and +2.5 kcal/mol for hybrids and above are smaller and better centered

around LNO-CCSD(T). Then, in another turn, the errors at the H/RSH/DH rungs in the D-

cb intermediate are found to be the largest (in the range of [-11.0,8.3] kcal/mol). Note that

the intervals of H/RSH/DH errors for D-oo and D-cb still span 8–10 kcal/mol, even if we
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Figure 6: Energies of stationary points in the Michael addition (Scheme 4, with respect to
separated reactants) with various methods. DFT results are plotted with bars corresponding
to each functional category and dots represent the functionals. The LNO-CCSD(T) energies
are shown with horizontal dashed lines.

take out the positive (popular B3LYP-D4) and negative (SIE resistant RSH LC-ωPBE-D3)

outliers, which are also reasonable choices a priori.

The next step in our workflow is the analysis of the potential correlation between DFT

errors and density sensitivities (Figure 7 for D-oo and Figure S26 for all four species). For

D-ts1 we find analogous DFT error and SDFT correlations as for the TSs of reactions A-C.

Although 3c/4e structural elements do not appear to be present, the partly sp2-like structure

of the carbon pillars in the forming bond 7 may be considered to resemble the case of, e.g.,

C-ts. However, a novel aspect compared to the case of reactions A-C is that the D-oo,

D-ts2 and D-cb errors do not correlate with the density sensitivity.116 Interestingly, the

trends of the SDFT measure for D-ts2 are similar to the case of D-ts1 (Figure S26), but

their correlation with the DFT errors is lost. Moreover, the density sensitivities are quite

small (mostly in the 1-2 kcal/mol range) for D-oo and D-cb (Figure S26 and Table S10).

To see if multiple error types could explain the trends, we continue with the analysis

along the RC. In the first elementary step, a C-C bond and the C-O bond is formed (bonds

7 and 8 in Scheme 4), so a collective variable (CV) averaging their bond orders was chosen

20



Figure 7: Stability of the D-oo with respect to the separated reactants (Scheme 4): signed
error with respect to LNO-CCSD(T) (left bars, blue) and density sensitivity (right bars, red)
of functionals. See all data in Figure S27 or Table S10.

as RC.117 Along this CV1 until D-ts1, similarly to the other reactions, one finds generally

negative errors with minima close to the TS (Figure 8). Most SDFT curves on the right panel

also show a minimum at (or around) D-ts1. The density sensitivities display another minima

around CV1= 0.6 (green highlight in Figure 8), where the first bond is almost completely

formed and the second bond is halfway formed (BO8 is close to 0.4). Despite the large

negative density sensitivities, the errors are close to zero or rather positive in this green

region. Then, moving toward the intermediate D-oo, the density sensitivities diminish and

the positive errors increase. Combining these observations, especially magnified in the case

of B3LYP-D4 (and BLYP-D4 in S30) one finds a positive error emerging and growing from

CV1= 0.3 to CV1= 0.6, partly canceling the negative density-driven error. Then, SDFT

steeply decreases above CV1= 0.6 toward D-oo, which correlates well with the increase of

the total DFT error. This suggests a positive functional error which is no longer canceled

by the density-based error around D-oo.

For the second elementary step from D-oo through D-ts2, the CV2 of BO9−BO8, that

is the difference between the BOs of the cleaved C-O bond 8 and the forming C-C bond
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Figure 8: First step of the Michael addition. left: Electronic energies along the RC with
respect to the separated reactants. The RC is defined as the average BO of the forming
bonds (7 and 8 in Scheme 4). middle: Signed errors of functionals with respect to LNO-
CCSD(T)/CBS results along the RC. right: Density sensitivities of functionals along the
RC. The structure representative of the green highlighted region is depicted in Figure S28.
For the BLYP-D4 curves, see Figure S30.

Figure 9: Second step of the Michael addition. left: Electronic energies along the RC with
respect to the separated reactants. The RC is defined as the difference between the BOs of
the formed and cleaved bonds (9 and 8 in Scheme 4). middle: Signed errors of functionals
with respect to LNO-CCSD(T)/CBS results along the RC. right: Density sensitivities of
functionals along the RC. The structures representative of the green highlighted regions are
depicted in Figure S29. For the BLYP-D4 curves, see Figure S31.

9 (Scheme 4) is a reasonable RC. The density sensitivities along this CV2 in Figure 9 are

generally negative and are the most negative approximately where these bonds are halfway

formed or cleaved (green regions around CV2= −0.3 and CV2= 0.4). The errors and density

sensitivities around D-cb (right sides of Figure 9 panels) display an analogous picture to
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D-oo (left sides of Figure 9 panels): as the SDFT curves approach zero, the DFT errors

become more positive.

The analysis along the RC revealed that SDFT is most negative where one of the bonds

is about halfway formed or cleaved. These points include one of the transition states (D-

ts1) and the three green regions in Figures 8 and 9. However, in contrast to the previously

discussed reactions, in these points except for D-ts1, the large negative density sensitivities

do not result in negative errors but the errors are close to zero. This suggests a large positive

functional error along the reaction coordinate, that starts to appear around D-ts1, becomes

large from D-oo through D-ts2 to D-cb, and is partly compensated by the negative density

error where the SIE is large.

In light of this, we can inspect closer the most confusing case of D-ts2. Interestingly,

D-ts2 is between the two minima on the SDFT curves of Figure 9, as it has a fully cleaved

C-O (8) bond but a not yet started C-C (9) bond (BO8=0.00, BO9=0.09). Between these

bond breaking and formation steps, the SDFT curves have local maxima around D-ts2, which

affect the DFT error curves around D-ts2. Namely, corresponding little peaks appear also

on the DFT error curves around D-ts2, where the errors originating from functional and

density sources cancel differently than in the neighboring green regions.

Considering the potential source of functional error components (detailed in Figure S33

and its discussion in the SI), the MP2 and post-MP2 components are both sizable but they are

relatively constant with shallow local minima around the bond-breaking/formation halfway

points. Compared to that the size and shape of the HF contribution correlate well with the

functional error starting from D-ts1 and for D-oo and D-cb too, suggesting an imbalance

of the exchange and correlation functional components along this CV interval. All in all,

a positive functional error for the relatively similar D-oo, D-ts2, and D-cb structures in

combination with the uncovered complex density sensitivity behavior along the CV explains

the strange error pattern for all four structures in Figure 6.
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3.5 General procedure to guide functional choice

In this section, we combine the case by case experience above to draw more general conclu-

sions and suggest a practically applicable workflow for DFT model selection. The overall

performance of some of the advanced, popular and best-performing methods is illustrated

in Table 1. Although none of the highlighted methods are ideal for all A-D examples, some

RSH and DH methods (especially the more recent DHs, e.g., revDSD-PBEP86-D4) are re-

liable for multiple reactions and one finds at least one or more suitable functionals for each

reaction.

Table 1: Energy errors with respect to LNO-CCSD(T) [in kcal/mol] for the best performing
functionals in the low HFx, high HFx, RS and D hybrid categories (data for all studied
functionals is in the SI, e.g., in Table S12).

Method A-ts B-ts C-ts D-ts1 D-cb

B3LYP-D4 (20%) -7.7 -5.4 -4.6 -3.7 8.2
M06-2X-D3 (54%) -3.2 4.4 -0.9 -3.5 1.4
ωB97X-D4 -1.3 7.7 3.3 2.4 -2.1
ωB97M-V -3.7 2.2 0.8 -1.5 -1.3
CAM-B3LYP-D4 -4.0 0.7 -0.1 -0.6 2.7
revDSDPBEP86-D4 3.5 1.6 1.2 1.8 1.4

For a broader perspective, we arranged all DFT errors according to Jacob’s ladder in

Table S12. In accord with the expectations, there is a general improvement from GGA

toward DH with some are exceptions. However, for all studied reactions none of the rungs

or categories perform consistently the best. If we consider only the best performers of the

rungs/categories (Table S13), there is clear, systematic improvement toward the higher rungs.

For the best functionals at the RSH/DH rungs, there are 2–3 energy differences where the

errors are within or close to as well as still above chemical accuracy. Therefore, at least for

such complicated cases, a more careful analysis is useful going beyond the standard approach

of looking at error statistics against benchmark results.

To make the suggested analysis more practical, we note that probably not all steps are

necessary for most reactions and thus we arranged the steps into a workflow funnel (Figure

10).
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Figure 10: The overview of the suggested computational tools and analysis workflow.

To start, the knowledge of at least some key structures or a preliminary reaction mecha-

nism is needed to quickly test multiple DFT methods against each other. For this consistency

check one can recommend advanced, generally well-performing and somewhat diverse func-

tionals. In practice, it is not necessary to test as many entries as we did here. For example, a

few low and high HFx containing, as well as RS and double hybrids can be assessed selected

from general27–30 or system-specific statistical studies, from Table S2, or even the short list

of Table 1 could suffice (as it is similar to the outcome in Refs. 27–30). As also noted before

in the expert community, a common pitfall at this stage is to test only reaction energies or

intermediates (due to, for example, easier access to experimental data for these). However,

transition states and other mechanistically relevant structures along the (preliminary) reac-

tion coordinate should not be overlooked, e.g., because of their higher sensitivity to DFT

errors (cf. reactions A-C).

If satisfactory consistency is found for a representative set of species, as often the case in

organic chemistry, one can clearly proceed with the mechanistic study. If too large disagree-

ments are obtained, the next step is analysis according to DFT rungs as well as accurate (local

correlation based) CCSD(T)35 reference computations (including checks if single-reference

CC methods are applicable34).
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As CCSD(T) based references become more affordable and popular, here, one should

point out the importance of reaching proper level of convergence both in the basis set and

the local approximations (see Sect. S1 of the SI).35

At this stage, one may be able to identify a satisfactory functional that exhibits suf-

ficiently low errors for all tested structures, especially if there is only one source of DFT

error. Alternatively, continuing the analysis of DFT performance can be valuable under the

following circumstances:

(i) if DFT disagreements exceed the acceptable accuracy target,

(ii) if there are indications of multiple error sources, e.g., suggested by complex error pat-

terns, or

(iii) if one seeks to avoid coincidental error compensations and ensure that the model provides

accurate results for sound reasons across the entire mechanistic study.

A concern related to points (i)–(iii) is that access to all relevant reaction pathways and

structures at this initial phase may be limited, as mechanistic studies often involve a variety

of reactants, catalysts, isomers, conformers, solvents/environments, reaction paths, and so

on. Thus choosing a model that is robust and appropriate according to a larger number of

and more diverse measures increases the likelihood that its strong performance will extend

to a broader chemical space of interest. Toward that end, one can proceed by decomposing

the total DFT error into functional and density components. This step is made simple and

easily accessible here by combining the LNO-CCSD(T) reference and exploring measures for

the dispersion and density sensitivity components.

If the error decomposition yields a clear, dominant source of error at this point, such as in

reaction A, one may conclude the analysis by choosing a functional (group) that is designed

to be more resilient against such errors (e.g., 3 out of 5 RSHs performs well for reaction A).

If multiple significant error sources are found, such as in reactions B-D, we find it useful

to extend this analysis to a broader set of structures, e.g., along (a preliminary) reaction

coordinate via step 2) of the workflow (Figure 10). In our examples, data points are taken
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relatively densely for demonstrative purposes, as 20–30 LNO-CCSD(T) computations per

elementary step were easily affordable. In practice, a half as or even more sparse exploration

along the reaction coordinate should often be sufficient. The key idea is to find structure(s)

along the reaction coordinate, where the behavior of the DFT errors is simpler, ideally with

only one dominant error source. While the dispersion corrections turned out to be suffienct

for our specific reactions, in genaral, caution can be still advised for studies along the RC for

cases similar to problematic ones reported recently.102,103 For the halocyclization and even

more so for the methylation (reactions B and C), this point turned out to be the product

state, where only one of the two types of SIE is dominant. While for the Michael addition

(reaction D) the intermediates are the best option to decouple the functional error from the

complex density sensitivity pattern along the RC.

Next, one can retain a subset of functionals working well for the so-identified structure(s)

with one dominant error source and follow the changes in the different error types from these

point(s). Then, one can use this understanding to explain the potential error amplification

or cancellation occurring at the structures with multiple error sources. The main benefit is

that we can narrow the selection among the best-performer models in terms of energies by

setting aside methods with “false positive” matches, i.e., ones with seemingly good results

due to error cancellation.

For example, we can eliminate one source of error by finding points where, e.g., the density

sensitivity diminishes (as it has a direct measure). By decoupling the error sources, e.g., for

reaction B, we could explain that the compensation of dispersion and density errors is behind

the small (even 0.3–1.4 kcal/mol) error of some (m)GGAs (Table S5). The cancellation

of two SIE types is found to be responsible for the consistently small (0.8–1.0 kcal/mol)

error of all hybrids with high HFx content for reaction C (Table S6). For reaction D, our

approach catches functionals that are good for the intermediates and spot on for D-ts2 (with

0.0–0.3 kcal/mol error, e.g., for TPSSh-D4 or MN15-D3) because of benefiting from error

cancellation (Figure S27).
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The most rigorous selection criteria for the functionals are to be resilient against all

separated sources of errors and to maintain a consistent performance for an extended set

of structures, e.g., along a RC. For example, some but not all RS (e.g., CAM-B3LYP-D4)

and double hybrids were found the least sensitive to the dominant SIE in reactions B and

C, and some high HFx containing hybrids (especially M06-2X-D3) are also among the best

performers for C. However, considering reaction D, the errors of these (e.g., CAM-B3LYP-

D4, M06-2X-D3) functionals vary more along the RC and thus do not remain the best

choices. In turn, the potential energy parallelity of, e.g., ωB97M-V with LNO-CCSD(T) is

outstanding for reaction D (Table S10), while it is relatively good but not the best performer

for reactions A-C. All in all, the proposed workflow led us to at least one reliable functional

for each reaction, enabling one to proceed with a more exhaustive mechanistic study.

The calculations in all steps of this workflow can be carried out routinely with both

openly (for academics) and commercially accessible programs69–71,77,118 (see sample input

files in Section S4 of the SI). The computational cost of the LNO-CCSD(T) reference energies

is similar to that of the structure optimization and harmonic frequencies with a hybrid DFT

and required here at most 25 GB memory. Thus, hundreds of LNO-CCSD(T) computations

were easily possible utilizing at most half a day each on 8–16 cores, even for the largest

species in this study. As reviewed in detail in Ref. 35, well converged LNO-CCSD(T)/CBS

references can be obtained nowadays with relatively simply accessible resources for 100–200

atoms, while up to 1000-atom computations were also reported,39 well beyond the size of

what is needed for DFT benchmarking. The density sensitivity calculations cost just as

much as a single point hybrid DFT energy evaluation and are even more broadly accessible.

4 Conclusion

Our study was initiated by unforeseen DFT uncertainties (cf. Figure 1) in our computational

research exploring the thermochemistry and kinetics of organic reactions and their mecha-
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nisms. With the aim to find predictive functionals for these studies, we developed an ap-

proach enables the separation, identification, and thus a more detailed understanding of the

underlying causes. To that end, we combined well-converged (LNO-based local) CCSD(T)

references35 and the decomposition of the corresponding DFT deviations into terms approxi-

mating functional (dispersion, correlation, exchange, etc.) and density-driven components.40

If multiple issues were detected, we followed the trends along the reaction coordinate, which

helped to characterize different error types and disentangle their potentially complicated

interplay. For example, we successfully distinguished three kinds of self-interaction-driven

density errors of different origins from other (functional) sources.

Even when we focused on advanced, hybrid and higher rung functionals, took out other-

wise reasonable outliers and considered some of the most popular functionals, 8-13 kcal/mol

DFT disagreement remained in these case studies. Such large DFT uncertainties go against

current majority expectations about the performance of modern functionals on organic re-

actions. However, one can also point out that rare cases may be down-weighted in statistics

on large data sets, DFT benchmarks are concentrated on molecules below 25-atoms27–30 and

valuable studies on more practical reactions are scarce.119–123 The proposed method offers to

go beyond broad statistics based expectations by enabling a systematic understanding of the

system specific sources of DFT uncertainties. The so uncovered, clearly targetable examples

in main group chemistry and the detailed error characterization should also motivate and

contribute to the future advancement of DFT models addressing the underlying causes.

Moreover, bringing the above analysis tools from the domain of simple, textbook systems

to real-life catalytic reactions already revealed some lessons beyond the scope of the studied

reactions. For example, refining the current expectation, larger self-interaction error (SIE)

based issues in the density occurred close to bond-breaking and forming regions. These

SIE-sensitive regions often but not always coincide with transition state (TS) structures,

relevant e.g., for reaction D or more generally also for barrierless processes. In addition to

the common case of SIE in nucleophilic substitution TSs, we could also understand their
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analogy with the seemingly unrelated electrophilic attack of unsaturated bonds (reactions B

and C). The reported investigations are also connected to potential modeling pitfalls that are

noted before in the literature but still worth reiterating. Namely, higher uncertainties can

occur not only for TSs, but e.g., for intermediates and other relevant structures. Moreover,

multiple factors can mislead the DFT model selection, such as focusing only on equilibrium

structures (due to simpler access to experimental data) or where multiple DFT error types

could cancel and not including the more complicated ones.

If motivated to look at them, expert practitioners would notice the signs prompting our

study (disagreement of broadly trusted functionals with each other and/or benchmarks, large

dispersion correction, maybe even sensitivity in the density via deviations between GGAs

and hybrids, etc.). The advancement here are approaches for the next steps to understand

and mitigate these issues. A significant benefit is the ability to explain counterintuitive DFT

results in real-life, complex processes emerging from multiple error sources that can amplify

or cancel differently along the reaction coordinate. The model selected on the basis of the

gained understanding then can be expected to perform better for the entire computational

study also outside of the limited number of initially tested structures. The proposed tools

are ready for practical use as they are simple, (openly) accessible in multiple codes,69–71 and

fast enough to fit into routine, DFT-based thermochemistry protocols.

While the four reaction types examined here (nucleophilic substitution, halocyclization,24

methylation,25 and Michael addition26) have broad synthetic relevance by themselves, the

underlying issues originate in motifs frequently occurring across chemistry. These include

molecular interactions and bond transformations around polarizable (an)ionic and π-systems,

σ-hole interactions, and three-center four-electron (TS) structures. Our focus here was main

group chemistry, but the proposed tools are readily applicable in other fields,35 such as

(single reference) transition metal, surface, or biochemistry. For all investigated reactions, it

was possible to characterize multiple sources of errors, understand their interplay and find

at least one (a few) suitable functional countering the causes. Thus, such robust model
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selection approaches should help to make these ever more automated computations more

predictive.
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(26) Földes, T.; Madarász, Á.; Révész, Á.; Dobi, Z.; Varga, S.; Hamza, A.; Nagy, P. R.;
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of developments in the MRCC program system. J. Phys. Chem. A 2025, 129, 2086.

(70) Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip.

Rev.: Comput. Mol. Sci. 2018, 8, e1327.

(71) Smith, D. G. A.; Burns, L. A.; Simmonett, A. C.; Parrish, R. M.; Schieber, M. C.;

Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; James, A. M.;

40



Lehtola, S.; Misiewicz, J. P.; Scheurer, M.; Shaw, R. A.; Schriber, J. B.; Xie, Y.;

Glick, Z. L.; Sirianni, D. A.; O’Brien, J. S.; Waldrop, J. M.; Kumar, A.; Hohen-

stein, E. G.; Pritchard, B. P.; Brooks, B. R.; Schaefer, I., Henry F.; Sokolov, A. Y.;

Patkowski, K.; DePrince, I., A. Eugene; Bozkaya, U.; King, R. A.; Evangelista, F. A.;

Turney, J. M.; Crawford, T. D.; Sherrill, C. D. PSI4 1.4: Open-source software for

high-throughput quantum chemistry. J. Chem. Phys. 2020, 152, 184108.
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