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ABSTRACT: A new approach is proposed to assess the reliability
of the truncated wave function methods by estimating the
deviation from the full configuration interaction (FCI) wave
function. While typical multireference diagnostics compare some
derived property of the solution with the ideal picture of a single
determinant, we try to answer a more practical question: how far is
the solution from the exact one. Using the density matrix
renormalization group (DMRG) method to provide an approx-
imate FCI solution for the self-consistently determined relevant
active space, we compare the low-level CI expansions and one-
body reduced density matrixes to determine the distance of the two
solutions (d̃Φ, d̃γ). We demonstrate the applicability of the
approach for the CCSD method by benchmarking on the W4−
17 data set, as well as on transition-metal-containing species. We also show that the presented moderate-cost, purely wave function-
based metric is truly unique in the sense that it does not correlate with any popular multireference measures. We also explored the
usage of CCSD natural orbitals (d̃γ,NO) and its effect on the active space size and the metric. The proposed diagnostic can also be
applied to other wave function approximations, and it has the potential to provide a quality measure for post-Hartree−Fock
procedures in general.

1. INTRODUCTION
In computational quantum chemistry, correlation effects are
often distinguished into dynamic and static correlations
according to their character.1 The latter one, also known as
nondynamic correlation, can be further divided to Type A or
left−right strong correlation and Type B or angular strong
correlation.2,3 Type A correlation occurs when there is an
absolute near-degeneracy, for example, bond stretching, while
Type B refers to relative near-degeneracy when the gap is small
compared to the orbital energies.
When dynamic correlation dominates, the routinely applied

single reference (SR) quantum chemical methods, such as
density functional theory (DFT) or the gold standard coupled
cluster singles, doubles, and perturbative triples (CCSD(T)),
work well. However, they often do not provide accurate results
for molecules with a significant nondynamic correlation.4,5

Therefore, measuring or at least estimating the degree of
correlation is a crucial point in choosing the appropriate
methodology. From the practical point of view in computa-
tional chemistry, it is also required that the cost of such a
measurement should be comparable to that of a single
reference calculation.6

To address this issue, numerous multireference (MR)
diagnostics appeared in the literature7−9 that attempt to

predict the validity of the single-reference approach by
analyzing the SR results themselves. Only two of them are
based on CI coefficients (ci): C02

10,11 is the weight of the
leading determinant, usually from a CASSCF or CASCI
calculation, while MR12 uses the second and fourth power of ci
coefficients to determine the deviation from the single
determinant wave function.
Specifically, for CC methods, the most straightforward

metrics were the maximum of t1 singles and t2 doubles
amplitudes, which were available in the early versions of ACES
quantum chemical program suite.13,14 The well-known T1

15

and D1
16−18 are based on the Euclidean and the Frobenius

norm of t1 singles organized into the appropriate vector and
matrix, respectively. Double excitation amplitudes can be used
in a similar manner to obtain T2

19 and D2
20 for closed-shell

systems. Most recently, the S diagnostic was proposed, which
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also uses Lagrange multipliers in addition to the cluster
amplitudes.21

Another class of metrics is based on occupation numbers,
usually of natural orbitals, which can be obtained by various
methods. The simplest example uses the occupation number of
HOMO and LUMO,8,22,23 which can be combined in one
number,M.22 Coe and Paterson (based on Löwdin) defined Θ,
which indicates how far the wave function is from the single-
determinant solution of Hartree−Fock.19,24 Ramos-Cordoba et
al. derived Ind and Id nondynamic and dynamic correlation
indices based on the two-particle cumulant matrix.25,26

Kesharwani and co-workers defined an intensive quantity, rnd,
as a ratio of nondynamic and total correlation indices, Ind/(Ind
+ Id). Grimme and Hansen

27,28 proposed a function called
fractional occupation number weighted density (FOD) to
visualize static or nondynamic correlation in the molecule. Its
spatial integration produces a single number that can be used
as an MR diagnostic metric. The fractional occupational
numbers are determined with finite-temperature DFT in this
approach. Bartlett et al.29 defined several new metrics for CC
based on natural orbital occupation numbers, determined from
1-body RDM, but these definitions can also be used with any
occupation number. The external electron number (EEN)
shows how many electrons are in the virtual orbitals; its

counterpart, the variance relative to the ideal single
determinant case, V̂, is based on the occupation numbers of
occupied orbitals and scaled with the number of orbitals. NON
is the largest occupation number on unoccupied natural
orbitals, which is also closely related to the LUMO occupation
number. They also constructed a multireference index (MRI),
transforming the occupation numbers to a single number
ranging from −1 to 1, where MRI around −1 suggests MR
character, while around +1 SR character is expected.
Following the work of Legeza and Soĺyom on single orbital

entropies30 and their sum providing total correlation31

Boguslawski and co-workers used these concepts to study
multireference nature of strongly correlated molecules.32 Later,
Stein and Reiher used total correlation to define Zs(1)
diagnostic which scales so that the maximal entanglement
refers to 1 while no entanglement refers to the value 0.33

The next group of metrics can be called energy-based
multireference diagnostics. These use some ratio of total
atomization energies. %TAE(T)34,35 measures the effect of
perturbative triples on total atomization energy. B1

36 uses the
energy difference of BLYP37,38 and B1LYP39 and scales with
the number of bonds. Aλ

8 takes the difference between the
pure and its hybrid DFT version and is scaled with λ, which is
a percent of the HF-exchange of the hybrid functional.

Table 1. List of MR Diagnostics Studied in This Work

name type definitiona this workb ref

C02 CI coefficient square of coefficient of leading determinant CCSD, DMRG 10, 11
MR CI coefficient | | | |c ci i i

2 4 CCSD, DMRG 12

max|t1| CC amplitudes maximum of t1 amplitudes CCSD 13
max|t2| CC amplitudes maximum of t2 amplitudes CCSD 13
T1 CC amplitudes || ||t n/F1 corr CCSD 15

T2 CC amplitudes || ||t n/F2 corr CCSD 19

D1 CC amplitudes ||T1||2 CCSD 16−18
D2 CC amplitudes max(||T2o||2, ||T2v||2), where ×To o

2
ov2

and ×Tv o v v
2

2 CCSD 20

nHOMO occupation numbers occupation number of HOMO CCSD, DMRG, FT-DFT 8, 22, 23
nLUMO occupation numbers occupation number of LUMO CCSD, DMRG, FT-DFT 8, 22, 23
M occupation numbers + + | |( )n n n2 1j

N
j

1
2 HOMO LUMO

SOMO CCSD, DMRG, FT-DFT 22

Ind occupation numbers n n(1 )i i i
1
2 ,

CCSD, DMRG, FT-DFT 25, 26

rnd occupation numbers

[ ]

n n

n n

(1 )

(1 )

i i i

i i i

1
2 ,

1
4 ,

1/2

CCSD, DMRG, FT-DFT 41

Θ occupation numbers n1
n i i
1

,
2 CCSD, DMRG, FT-DFT 19, 24

NFOD occupation numbers +n n1i
N

i j
N

j
occ virt CCSD, DMRG, FT-DFT 27, 28

EEN occupation numbers ni
N

i
virt CCSD, DMRG, FT-DFT 29

V̂ occupation numbers n n( )n i
N

i i
N

i
1 2occ occ CCSD, DMRG, FT-DFT 29

MRI occupation numbers = + IMRI tanh(4.016 log( )) CCSD, DMRG, FT-DFT 29

= ×I nexp( 1500 (0.5 ) )i i
6

NON occupation numbers largest occupation number on unoccupied natural orbitals CCSD, DMRG, FT-DFT 29
Zs(1) orbital entropy s (1)

N i
N

i
1
ln 4

CCSD, DMRG 33

%TAE(T) energy × [ ] [ ]
[ ]100 TAE CCSD(T) TAE CCSD

TAE CCSD
CCSD(T) 34, 35

B1 energy [ ] [ ]
n

TAE BLYP TAE B1LYP

bonds
BLYP, B1LYP 36

Aλ energy [ ] [ ]
[ ]

C100 TAE XC TAE X
TAE XC

PBE, PBE0 8

aN (Nocc, Nvirt, NSOMO): number of orbitals (occupied, virtual, single occupied), n(corr): number of (correlated) electrons, ni (niσ nHOMO, nLUMO):
occupational number (spinorbitals, HOMO, LUMO) ci: CI coefficient, t1, t2: single/double excitation CC amplitudes, TAE: total atomization
energy. bCalculations used in this work to determine the metric.
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Recently, Martin and his co-workers proposed %TAEX,
40

which measures for a given HF density the difference of the
DFT and HF exchange energies. The various multireference
diagnostics used in this work are summarized in Table 1.
Even though numerous diagnostics exist, their accuracy in

predicting which system should not be handled with single
reference methods is often questionable. Usually, they do not
even correlate with each other.6,8,40 This leads to arbitrary rules
where multiple diagnostics are used, such as species with 3d
transition metals are considered multireference if T1 > 0.05, D1
> 0.15, and %TAE[(T)] > 10%.7

All of the aforementioned metrics try to determine the
degree of multireference character by taking the ideal single
reference wave function and measuring the deviation from it.
However, the real question is how far the solution of a given
method is from the exact full CI wave function.
In this work, we propose a new family of metrics, d̃, which

represents the quality of the wave function by measuring its
deviation from the reference obtained by high-level theory. d̃Φ
uses CI-coefficients up to double excitations, while d̃γ uses the
1-body reduced density matrix, and d̃γ,NO uses also the natural
orbital transformation to reduce the size of the active space
used. First, we present the formulation of the new metrics.
Then, we show the validity of the introduced approximations.
After that, we compare the performance of d̃-s to other popular
multireference diagnostics on the W4−17 data set, and also, a
grouping of existing metrics is presented. The performance is
also demonstrated on transition metal species, which are
particularly difficult cases for standard single reference
methods.

2. THEORY
In this section, we present how the new metrics are formulated.
First, we discuss the reference used and then which property
will be used as a basis of comparison. After that we discuss the
orbital selection procedure and then present the definition of
the final metric.
2.1. Reference. Testing the quality of approximate

quantum chemical methods, such as coupled cluster theory,
against the exact reference provided by FCI is possible up to
only 20 orbitals due to its computational demand.42 To
overcome this limitation, in this paper, we applied the density
matrix renormalization group (DMRG) approach43 as a robust
quasi-FCI solver with polynomial scaling. The reference for all
the investigated quantities was derived from the high-precision
DMRG wave function whose accuracy was controlled by the
truncation error.44 For a practical review of the DMRG
method, see refs 45−53.
2.2. Basis of Comparison. There are numerous ways to

compare wave functions. The easiest way would be to use
energy or some other property. However, in this case, we
would lose most of the information that is contained in the
wave function. If the wave function is expressed in MO-based
Slater-determinants, then one can use the CI-coefficients (ci) as
a basis of comparison. Due to the exponential formulation of
CC wave functions, studied in our work in detail, contributions
for all higher excited determinants are present even for CC
truncated to single and double (SD) excitations. The
expression of the full ci is, however, numerically infeasible for
the systems of our interest, as it would be as large as the FCI
wave function, therefore it should also be truncated. Addi-
tionally, due to the internal normalization of the CC wave
function, we can not determine the error caused by this

truncation, unless we evaluate all coefficients. Consequently,
the comparison based on the CI coefficients will be restricted
up to double excitations by projecting the wave functions to
this subspace and then normalizing them,

| = |
|| | ||

P
P 2 (1)

where |Ψ⟩ is the wave function expressed as the linear
combination of all possible configurations. In the following,
|Φ⟩ will denote the wave function projected on the basis of the
reference determinant and the corresponding single and
double excited configurations and then normalized, P̂ projects
to the subspace of single and double excitations, and || ||2
stands for the usual norm of the wave function.
Reduced density matrices provide an alternative way to

represent the quantum state. The one-particle reduced density
matrix (1-RDM, γ) contains partial, compressed information
about the wave function, and will also be used as an alternative
basis of comparison. As CC is not a variational method,
different formulations exist for the density matrices. In this
work we used unrelaxed RDMs, i.e., response RDMs without
orbital relaxaton effects.
As a distance metric, we will use the Euclidean norm of the

differences of the normalized vector made of c coefficients (Ψ),
or their projection cSD up to doubles excitation (Φ), or the
Hilbert−Schmidt norm of the differences of 1-body RDM
matrices (γ). The distance from the reference wave function or
RDM is denoted by d, while the basis of comparison is
represented in the lower index.

=d CCSD DMRG (2a)

=d CCSD DMRG (2b)

=d CCSD DMRG (2c)

We note that dΨ is only available for small systems, but dΦ
and dγ can be evaluated efficiently for larger systems, too. In
the following, if there is no subscript following d, we refer to
the distance metric in general.
2.3. Active Space Selection. Although DMRG can handle

active spaces close to a hundred orbitals,49,52,54−58 the
accessible number of orbitals is still lower than in CCSD,
therefore the orbital space should be truncated.
A universally applicable black-box active space selection

strategy is challenging to design. However, an automatized
selection protocol based on single orbital entropies30

introduced via the dynamically extended active space
(DEAS) procedure, also utilized in a more general frame-
work,33,59 can offer a reasonable solution. In this procedure, an
initial, low bond dimension DMRG is performed on the full
valence space, and the active space is selected based on single-
orbital entropies with an empirical preset cutoff relative to the
highest observed entropy value.
In this study, we develop an alternative entropy-based

selection. As a first step of the entire workflow, we perform a
standard CCSD (or any other post-HF) calculation, which we
later want to analyze and from which the Φ or γ can be easily
extracted (light blue part of Figure 3). Recall that the single-
orbital entropy30 for orbital i is defined as

=s p p(1) lni ii
(3)
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where piα denotes the probability that orbital i is found in
occupation state α ∈ {0, ↓, ↑, ↓↑} in the many-body wave
function. The piα weights can be determined by summing the
square of the CI coefficients of the corresponding determi-
nants. We note that in practical CC calculations, we estimate
the probabilities by restricting the CI expansion of the wave
function up to double excitations. Alternatively, exact entropies
could also be constructed from relevant entries of the 1- and 2-
body reduced density matrices;60−62 however, this requires
solving the Λ equations besides the CC amplitude equations,
which both have similar costs, while for the calculation of the
energy the solution of the CC amplitude equations are
sufficient.
By sorting the si(1) values in descending order, the orbitals

can be selected according to their chemical relevance, where
orbitals with the highest entropies will form the active space.
However, the question remains how to choose the cutoff of

si(1) between the active and inactive orbitals. Here, instead of
predefining a fixed si(1) value or proportion, such as for
example 10% in the AutoCAS program,33 we apply a different
approach. Based on the sorted si(1) values, we identify various
subsets of orbitals by their importance, where active orbitals
are distinguished from inactive ones by the rate of the change
in the entropy profile. More precisely, orbitals labeled {1, ..., i}
in the descending entropy order define an active space in case
of si−2(1) − si−1(1) < si−1(1) − si(1) (i.e., the entropy
difference between two adjacent orbitals is larger than
previously).
In some way, we try to separate the static and dynamic

correlation. In that sense, we are interested in how well the
static correlation is described by the selected active space and
not in the dynamic correlation mostly captured by the inactive
orbitals. Once the possible active spaces are determined,
starting from the smallest ones, we perform CCSD calculation
for the selected active space, which results are marked by
superscript AS. The obtained CCSD wave function (ΦCCSDAS ) or
RDM (γCCSDAS ) is compared to the corresponding projection of
the full space CCSD wave function (ΦCCSDFS→AS or γCCSDFS→AS). The
corresponding distances are

=d AS
CCSD
AS

CCSD
FS AS (4a)

=d AS
CCSD
AS

CCSD
FS AS

(4b)

Note that the full space ΦCCSD and γCCSD are projected to
the selected subspace, where only those configurations are
kept, in which excitations are allowed for orbitals in the active
space, hence, the “FS → AS” in the upper index. The wave
function and RDM are normalized to give 1 and the correct
electron number, respectively.
By comparing wave functions of the full space CCSD and

the one of the CCSD on active space, dAS measures the error of
active space selection. By definition, dAS equals zero if all
orbitals are active. Hence, the active space can be considered as
converged once dAS falls below a predefined threshold. If dAS is
larger than the desired threshold, we continue with including
the next batch of orbitals in the active space proposed by the
entropy profile until the defined criteria are satisfied. This
selection approach ensures that we select a subspace that
correctly represents the whole space. For small active spaces, it
might happen that first dAS increases (see later), therefore we
apply a conservative approach, and dAS have to be not only
below a threshold, but have to be decreasing (be smaller than

the previous iteration). The whole active space selection is
summarized by the light pink part of Figure 3.
The relation of the various wave functions is summarized in

Figure 1, using BN at CCSD/cc-pVDZ level of theory as an

example. First, we have ΨCCSDFS the full space CCSD wave
function (accessible only for small systems). Though the
number of cluster amplitudes are limited, due to the
exponential ansatz, the CI coefficients are not. The evaluation
of all coefficients is not practical, and it is limited up to double
excitations; higher excitations, represented in blue shade, are
ignored, and the error introduced with this truncation is
unknown. ΦCCSDFS is the wave function with only single and
double excitations, while ΦCCSDFS→AS contains only the excitations
that are in the active space. The error of this truncation is the
yellow shaded area in the figure. Finally, we compare this wave
function to ΦCCSDAS , to get dΦ

AS. We note that in the case of γ,
there is only active space truncation and no exclusion of higher
excitations.
2.4. Forming the Final Metric. Following the active space

selection, a DMRG calculation is performed. This produces a
third wave function, besides the existing active space and full
space CCSD wave functions, which wave function we
represent by its CI coefficients, c, or 1-RDM, γ. To ensure
comparability, both three wave functions are vectors of the
same active space and are normalized to one, and the electron
number in 1-RDM’s is also properly set.
Between the three wave functions, three distances can be

defined, and one of them, dAS, is already defined in eq 4. It is
easy to see that as the size of the active space approaches full
space the wave function of the two CCSD calculation become
more and more similar,

=lim
AS FS

CCSD
AS

CCSD
FS

(5a)

=lim
AS FS CCSD

AS
CCSD
FS

(5b)

and, consequently,

Figure 1. Schematic representation of the different normalized CCSD
wave functions by plotting the corresponding CI coefficients for BN at
the CCSD/cc-pVDZ level of theory and AS represents 14 orbitals.
The blue shaded part represents the part of the wave function that is
discarded by restricting up to double excitations. The yellow shaded
part shows the determinants that are discarded due to the active space
truncation.
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=dlim 0
AS FS

AS
(6a)

=dlim 0
AS FS

AS
(6b)

It is important to note that the active space selection is based
on the orbital entropies, meaning orbitals are included based
on their importance in the wave function. The goal is to
include all orbitals that are important to describe static
correlations, while we aim to discard orbitals that are only
contributing to the so-called dynamic correlation.
The other two are the distances from the DMRG solution,

=d a
CCSD
FS AS

DMRG
AS (7a)

=d a
CCSD
FS AS

DMRG
AS

(7b)

and

=d b
CCSD
AS

DMRG
AS (8a)

=d b
CCSD
AS

DMRG
AS

(8b)

Note again that in eq 7a the full space CCSD wave function
has been projected to the active space and normalized to
ensure comparability. At the full space limit, both of them are
equal to dΦ or dγ value we are interested in

=d CCSD
FS

DMRG
FS (9a)

=d CCSD
FS

DMRG
FS

(9b)

We can not choose from da and db which will be the better
metric; therefore, both will be used. We note, however, that the
triangle inequality holds for the 3 distances, and thus, the
difference of da and db is bounded from above by dAS,

| | <d d da b AS (10a)

| | <d d da b AS
(10b)

The relation of various wave functions, RDMs and d-s
introduces in this section are summarized in Figure 2. Here we
remark, as will be discussed in the following sections, that in
practice the average value of da and db will be used denoted by
d̃.
2.5. Possible Workflows. A general workflow is presented

in Figure 3:
1. Perform CCSD calculation and obtain the basis of
comparison (ΦCCSDFS or γCCSDFS ).

2. Perform orbital transformation for better active space
selection (optional).

3. Determine orbital entropies based on c or 1- and 2-
RDM.

4. Select the most influential orbitals.
5. Perform CCSD on selected orbital space and obtain

ΦCCSDAS or γCCSDAS .
6. Check if dAS is below threshold and smaller than the
previous one (dpreviousAS ), if yes, proceed, if not, repeat
from step 4 by including more orbitals until true.

7. Perform orbital transformation for DMRG to aid better
convergence (optional).

8. Perform DMRG and obtain ΦDMRGAS or γDMRGAS .
9. Detemine da and db.

Besides the DMRG accuracy and the dAS threshold, we have
to decide the basis of comparison also if we apply any orbital
transformation. The threshold in dAS controls the accuracy of
the final result, while the size of the active space strongly
influences the cost of the DMRG calculation. Using some kind
of orbital transformation before the orbital selection can
compress correlations and can result in smaller active spaces.
However, we have to ensure the invariance of CCSD solution
under orbital transformations. The transformation before
DMRG, like localization, can lead to better convergence.
Based on the options, we define 3 workflows to apply in this
work:

• Workflow A: Use Φ as a basis of comparison, no orbital
transformation before selection, split-localization before
DMRG. The corresponding result is denoted by dΦ.

• Workflow B: Use γ as a basis of comparison, no orbital
transformation before selection, split-localization before
DMRG. The corresponding result is denoted by dγ.

• Workflow C: Use γ as a basis of comparison, use “split-
natural” orbitals for selection, no additional trans-
formation before DMRG. The corresponding result is
denoted by dγ,NO.

Workflow A is intended to apply when producing RDM-s
would be too expensive. Workflow B is the same as A, but with
γ instead of Φ, because it contains higher excitations from the
wave function. Workflow C utilizes the fact that if the one-
body RDM is at hand, then natural orbitals can be obtained.
To keep the invariance of CCSD, the occupied and virtual
orbitals should be transformed separately, also known as quasi-
natural orbitals.63 We expect that the usage of natural orbitals
compresses the correlation and, consequently, less orbitals are
needed than in workflow B. In this case, we do not use
localized orbitals, because DMRG works well with natural
orbitals too.64,65

Importantly, even though the black-box computation of d
requires two parameters (the dAS threshold and DMRG
truncation error) as input, we emphasize that the choice of
these parameters is rather flexible. That is, if doubts arise about
the reliability of d, for example surprisingly high d value (over
0.5) or significantly higher energy with DMRG than CCSD for
the same active space, more than 0.01 Eh, a more accurate d
can be computed at a larger active space and/or a lower
truncation error.
Finally, we note that in the workflow both CCSD and

DMRG can be substituted to any other method from which CI
coefficients or the RDM can be extracted to estimate the
distance between the wave functions of two methods.

Figure 2. (a) Wave functions truncated to single and double
excitations on the active space and the distances defined between
them. (b) 1RDM-s on the active space and distances defined between
them.
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3. COMPUTATIONAL DETAILS
In this section, we present computational details. Geometries
for the W4−17 data set have been taken from the Supporting
Information of ref 66, for the 3d-MLBE20 data set from ref 67.
Furthermore, nine 3d and nine 4d transition metal species

were studied from the work of Bradley et al.68 using geometries
from refs 69−75. These species will simply be termed 3d-TM9
and 4d-TM9.
As an additional challenge, we collected additional 3d and

4d species from the works of Jiang et al.7 and Wang et al.,76

Figure 3. Flowchart of determination of the d diagnostic for a standard CCSD calculation. The different background coloring refers to the different
steps, i.e., light blue: original CCSD calculation; light red: active space selection; light green: DMRG calculation and final d determination.
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which are claimed to be MR. Additionally, based on the work
of Süß and co-workers77, species have also been added from
the database of Aoto et al.,78 which have at least 2.5 kcal/mol
correction to their bond dissociation energy with icMR-
CCSD(T) compared to CCSD(T), along with the additional
12 systems studied by Süß et al. Geometries were optimized at
B3LYP/cc-pVTZ level of theory, except for species from the
database of Aoto et al.78 This collection of systems will be
labeled as TM-MR. The full list of studied systems can be
found in detail in Table S1.
CCSD79 and CCSD(T)80 calculations were performed using

cc-pVDZ81−83 basis set and frozen core approximation without
density fitting with MRCC.84 A slight modification was made
to obtain the CI coefficients from MRCC. Integrals for the
subsequent DMRG calculation were also produced with
MRCC. For open-shell species, the ROHF formalism was
used.
The occupied and virtual orbitals were localized by

Multiwfn85 applying the Pipek−Mezey localization scheme.86
All DMRG calculations were carried out with the Budapest-

DMRG87 program package via the DBSS formalism,44 by
setting the maximum truncation error, ϵ, to 10−5. The
minimum value for the bond dimension was set to Dmin =
256 and the maximum value was limited by Dmax = 4096. For
large active spaces DMRG orbital ordering was also optimized
by a combination of the Fiedler-vector and genetic algorithm
based protocols88 performing a series of low-cost DMRG
calculations with fixed D = 32, 64, and 128 bond dimension
values.
The various multireference diagnostics were already

discussed in the Introduction; therefore, instead of a detailed
description of each metric used in this work, we summarized
them in Table 1.
Finite-temperature DFT calculations were performed with

the default settings of the ORCA (version 5.0.3.89) program.
All other DFT calculations (BLYP,37,38 B1LYP,39 PBE,90

PBE091) were performed with MRCC.
The whole workflow is controlled by an in-house-developed

Python code. Additional MR diagnostics were also evaluated
by Python scripts processing DMRG and CCSD CI
coefficients and DMRG and CCSD RDMs to obtain
occupation numbers along with FT-DFT fractional occupation
number, CCSD amplitudes, and necessary energies for energy-
based diagnostics.
To better understand the practical relationship between the

metrics, we determined the pairwise correlation coefficients
between different data sets. The commonly used Pearson
correlation (r), which lacks robustness and can reveal only
linear correlations, is not the most suitable statistic to compare
the metrics studied. Correspondingly, in our study Spearman
(ρ) and Kendall rank correlations were used: (τ)

= [ ][ [ ]

[ ] [ ]

R x R ycov( )

R x R y (11)

=
<n n

x x y y2
( 1)

sgn( )sgn( )
i j

i j i j
(12)

where R[x] and R[y] are the ranks of x and y variables, and n is
the number data points. They are more reasonable statistics,92

which uses the ranking of the values and are more robust to
outliers. Kendall correlation separates the various metrics even

better. In short, we will refer to these correlation coefficients as
r, ρ, and τ, respectively.

4. RESULTS AND DISCUSSION
In order to keep the focus on the practical application of d, in
this section only the main summary of the validation protocol
is discussed, while details can be found in the SI.
The first approximation is the truncation of the Ψ wave

function up to double excitations (Φ). The comparison of dΨ
and dΦ shows that dΦ holds its descriptive power, although
slightly lower than that of dΨ.
The next approximation is the use of DMRG instead of FCI

as an FCI solver. By varying the truncation error we found that
at least a truncation error of 10−5 is needed for reasonable
results.
The third approximation is the use of a subspace instead of

the whole orbital set. In that sense, we checked the
convergence of dAS, da, and db with respect to the active
space size. In general, larger active space leads to lower dAS, i.e.,
better quality. da and db converge smoothly to the full space d
in most cases, but, it varies species by species which of them is
more useful. However, we noticed that their average, labeled as
d̃, has better convergence than da and db in every case;
therefore, d̃ will be used to estimate d. Another observation is
that the NO-transformation can lead to smaller d-s by
introducing a bias to the CCSD solution. These findings are
valid for both the Φ- and γ-based protocols.
Based on these results, in the following, we will use two

settings, a looser threshold of 0.1 and a tighter threshold of
0.05 for both dΦ

AS and dγ
AS. The corresponding results will be

noted as d̃Φ(0.1), d̃Φ(0.05), d̃γ(0.1), and d̃γ(0.05), where the
number in the paranthesis is the used dAS threshold. An
additional restriction is that the active space selection error
should be lower than with the previous active space candidate
to avoid a selection of active space before a local maximum.
4.1. Comparison of d̃ and MR Diagnostics on the

W4−17 Data Set. Before discussing the various d̃ values, we
take a look at the performance active space selection schemes.
Using the looser 0.1 threshold obviously leads to smaller active
spaces. As d̃γ is usually higher than d̃Φ, to reach the same
threshold on the same set of canonical orbitals, RDM-based
orbital selection leads to larger active spaces, 43% and 37% of
the whole orbital space on average with a threshold of 0.05 for
dγ
AS and dΦ

AS, respectively. However, as we have seen earlier, the
usage of NO-transformation leads to less selected orbitals, 34%
of the whole space on average if the threshold is 0.05. Note
that these statistics are only valid for this data set; with larger
basis sets we expect smaller ratios.
Instead of discussing the determined d̃ values for the W4−

17 data set alone, we will analyze them in relation to other
existing MR diagnostics, which are listed in Table 1.
We think that both MR diagnostics and our d̃ try to give

guidance for the same problem; can we use a single reference
method for a given system to obtain meaningful results? The
difference is that MR diagnostics measure the MR character of
the studied system, which is usually a metric of how different
some property is from a reference, which usually is the ideal
single reference wave function. In contrast, d̃ takes a more
practical approach and estimates the distance from the
(approximate) FCI wave function. In line with their definition
and philosophy, we expect a low correlation between MR
diagnostics and d̃, but it is still worth comparing them since
they deal with the same problem.
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The quantum chemical method based on which we obtained
the given diagnostic is presented in the corresponding
superscript. For C02 and MR we used the DMRG result instead
of performing CASSCF. For metrics based on occupation
numbers, CCSD- and DMRG-based RDMs were utilized to
derive natural occupation numbers. Alternatively, fractional
occupational numbers were also used from finite-temperature
DFT. max|t1|, max|t2|, T1, D1, T2, and D2 are determined from
CCSD/cc-pVDZ calculations, %TAE(T) from CCSD(T)/cc-
pVDZ, B1 from BLYP/cc-pVDZ and B1LYP/cc-pVDZ, and
A25 from PBE and PBE0 with cc-pVDZ, respectively.
The various MR diagnostic values for the MR subset are

presented in Table 2. In cases where the definition allows
multiple quantum chemical methods (e.g., metrics based on
occupation numbers), we chose to show here the ones which
are the closest to the definition in the original papers, while
other versions can be found in the SI. For demonstrative
purposes, we show herein all species where either d̃ values are

in the top 15 or one of the other diagnostics listed have a top 5
value among the species of the W4−17 data set. The threshold
when a species is labeled as a multireference is not always
defined and is sometimes debatable. Although we label the
members of the “MR” subset, as given in the W4−17 paper,66
in Table 2 next to the molecular formula, we do not consider
the W4−17-MR molecules as a specific group in our
discussion. Instead, we rank the molecules of the W4−17
data set based on each investigated diagnostic value and use
the ranking numbers as guidelines. This ranking is shown in
the parentheses in Table 2 and is also visualized by the
coloring.
The different d̃ formulations consistently identify species

with high d̃. The largest discrepancy is found for B2, where
d̃Φ(0.05) gives 0.055, which can be considered a relatively high
value among d̃Φ-s, while d̃γ(0.05) and d̃γ,NO(0.05) produce
0.101 and 0.114, respectively. Other notable differences are
benzene with a relatively small d̃γ (0.013) and C2Cl6 with a

Table 2. d̃ and Other Commonly Used MR Diagnostics for a Selected Subset of W4−17 Dataseta

aIt contains the W4-17-MR subset, marked with “MR”, and additional species which has a d̃ value in the top 15 or other metric which is in the
highest 5 among the species of W4-17. The number in the cells shows the value of the corresponding metric, while in parentheses, the rank of this
value among the species is presented. For better visibility, the rankings are also represented by the cell color, where a deeper red color means a
higher ranking.
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relatively high d̃γ (0.043) compared to d̃Φ values (0.038 and
0.012) and rankings.
In general, the looser and tighter thresholds for active space

produce similar results, but the different formulations differ
considerably. d̃Φ-s are smaller than d̃γ due to the fact that c
coefficients are used up to double excitations. Another thing
that was noticed earlier was that NO-transformation also leads
to smaller d̃ values, even though we expect similar results. A
more detailed statistical analysis will be discussed later.
Considering the rest of the metrics, there are numerous

discrepancies in the studied species. From ClOO to B2 (upper
half of the table) most diagnostics and d̃ have high values, but
max|t2|, T2, EEN, and V̂ disagree with them notably. Regarding
the W4−17 classification, which is based on the %TAE(T)

diagnostics, N2O4, t-HOOO, c-HOOO, NO2, S2O, CS2, and
CN are species with a notable d̃ (higher than 0.05) but are not
part of the MR subset. However, OClO, ClOOCl, ClF3, F2O,
OF, and Cl2O all have d̃ (0.05)-s less than 0.05, although they
are part of the W4−17-MR subset. Hydrides are interesting
cases because d̃ and energy-based metrics show low values, but
T2, D2, nHOMO,M, Ind, rnd, θ, FOD, V̂, and MRI show significant
MR character. For energy-based diagnostics, Cl2O, O2, and F2
seem to be problematic cases.
To better understand the practical relationship between the

metrics, we determined the pairwise correlation coefficients (r,
ρ, and τ). Table 3 shows the Spearman rank correlation matrix,
while the other two (r, τ) can be found in SI.

Table 3. Pairwise Spearman Rank Correlation Matrix of d̃ and Other MR Diagnostics for the W4−17 Dataseta

aThe more intense red hue represents a higher correlation. The left and lower labels show the metrics, while the right and upper labels show the
corresponding groups.
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First, we look at the correlation between the d̃ metrics. The
correlation between the same metrics with different active
space thresholds is close to 1 (r = 0.97−0.98, ρ = 0.97−099, τ
= 0.87−0.94). However, between the three different types of d̃
metrics, there is a lower but still strong correlation. d̃Φ−d̃γ have
r = 0.86−0.91, ρ = 0.80−0.82, τ = 0.63−0.66; d̃Φ−d̃γ,NO have r
= 0.86−0.90, ρ = 0.85−0.87, τ = 0.68−0.70; and d̃γ−d̃γ,NO have
r = 0.92−0.96, ρ = 0.86, τ = 0.69−70.
Based on these statistics, the metrics can be categorized into

a few groups (see Table 4). The different d̃ metrics are in their

own category (group 1) and do not correlate with any other
metrics, which is understandable because they are totally
different from the others and try to answer a different question.
Energy-based descriptors (%TAE(T), B1, A25) have their own
group (group 2). This is not surprising because all of them use
total atomization energies. The metrics derived from single
amplitudes (max|t1|, T1, and D1) are also separated from the
other diagnostics (group 3), which mostly measure orbital
relaxation effects. However, for other multireference diag-
nostics the main distinguishing property is not the formulation
but the source of the data, i.e., occupation number and
entropy-based diagnostics are grouped by if they derived from
CCSD, DMRG, or FT-DFT. Within these groups, the metrics
can be further divided.
Group 4a contains the simple occupation number-based

diagnostics (nHOMO, nLUMO, M, NON), and surprisingly MRI,
which is a complex transformation of them. Also, NON is
basically the spin−orbital version of nLUMO. In group 4b we can
see C02 and MR are closely related, because C02 is the largest
contributor of MR. EEN and NFOD are also defined in a way
that they are identical, only NFOD is half of EEN. Ind also has a
similar form to MR (∑σ,i niσ(1 − niσ) = ∑σ,i niσ − niσ2 ∼ ∑i |ci|2
− |ci|4). θ and V̂ in group 4d also have a similar philosophy by
taking the difference of occupation numbers from the ideal and
scaling with the number of electrons.
Notice that metrics from double amplitudes can also be

sorted in this grouping with other diagnostics derived from
CCSD natural orbital occupations. Looking at the off-diagonal
elements, we can see that the subgroups of group 4 are fairly
correlated for diagnostics derived from DMRG and FT-DFT
(except for MRIFT−TPSS), while in the case of CCSD, the
subgroups are much more separated, especially group 4b. For
DMRG, the reason might be that approaching FCI the
differences between the various MR definitions are getting
smaller. In the case of FT-TPSS data, we can observe that the
default settings produce occupation numbers that do not differ
from the occupation of the reference state, leading to small
separation for SR species and large deviation from other
metrics.

Group 1 has some noticeable correlation only with group 3
(r = 0.53−0.77, ρ = 0.61−0.82 τ = 0.44−0.63), and d̃Φ has
noticable correlation with DMRG-based groups 4a and 4b (r =
0.67−0.84, ρ = 0.56−0.74 τ = 0.40−0.54). These are not that
high; therefore, d̃ cannot be estimated using other existing MR
diagnostics. Another connection can be observed between the
members of the CCSD and the DMRG-based subgroup 4a (r =
0.68−0.95, ρ = 0.73−0.95, τ = 0.55−0.81).
Earlier comparisons found conclusions similar to those we

did. Fogueri et al.8 showed that various Aλ and %TAE
formulations correlate well with each other, and C02 and M
form another group. Duan and co-workers6 studied 15 MR
diagnostics and also concluded that the source of the data for
the diagnostics is an important factor. They could also
distinguish energy-based descriptors from other metrics, such
that T1 and D1 behave similarly, and D2 correlates moderately
well with other occupation-based diagnostics. Most recently,
Martin et al.40 studied the correlation between various MR
diagnostics and derived TAEx. They determined four clusters:
(1) T1, D1, max t1; (2a) rnd, Ind (divided by the number of
electrons, not 2, leading to the same expression as V̂); (2b) M,
D2, max|t2|; (3) energy-based diagnostics. These groupings are
in line with our findings. Xu et al.93 showed a connection
between Ind and C0, and also between D2 and maximum of
niσ(1 − niσ) values, labeled as Indmax. We already grouped the
unscaled Ind and C02 together; however, the size effects are less
prominent in the used data set. In a more recent work94 they
compared several MR diagnostics, and they determined five
groups of correlation measures. From these, the dynamic
natural orbital occupation (NOO)-based correlation measure
I( )D is not a good MR diagnostic, while average NOO-based
n o n d y n am i c c o r r e l a t i o n m e a s u r e s I( nd a n d

= + ×I I I I% /( ) 100)nd nd nd d could correspond to our 4b
group. Maximal nondynamic correlation measures that include
Indmax, nH, nL (maximum and minimum occupancy of occupied
and virtual natural spinorbitals), −log(I) (connected to MRI,
defined in Table 1), M, and D2 are similar to our group 4a. D1
and T1 are in t1-based correlation measures, as in our group 3,
and energy-based correlation measures correspond to our
group 2.
Recently, Stanton and his co-workers presented Density

Asymmetry Diagnostic (DAD),95 which measures the
antisymmetry of the 1-RDM of a CC calculaton. In our used
code packages (MRCC) such a quantity is not accessible, and
only the real symmetrized part of the 1-RDM is returned.
Therefore, we did not determine DAD for the studied species
but compared our numbers on the W4−11 subset that they
used. In this subset, DAD belongs to group 3.
Based on these findings, we can conclude that none of the

existing MR diagnostics provides information similar to that of
any formulation of d̃. However, this is not surprising if we
consider that our new metric measures a different property,
estimating the distance from the exact solution, while the rest
of the MR diagnostics measure the deviation from the ideal
single reference solution. Following this line of thought, we are
not classifying systems as MR or SR based on d̃, but rather
evaluate the suitability of the method used, here CCSD. d̃
increases with the size of the system, and based on the
comparison of alkanes and halogenated alkanes (Table S5.)
found that this scaling is proportional to the number of non-H
or heavy atoms (Nheavy). Using this scaling, if d̃γ is below

× N0.03536 heavy , we consider that the used method is

Table 4. Groupings of MR Diagnostics Based on Pearson,
Spearman, and Kendall τ Correlations of Each Metrics
Result on the Species of the W4−17 Dataset

1 2 3 4a 4b 4c 4d

d̃Φ %TAE(T) max|t1| max|t2| C02 Zs(1) T2
d̃γ B1 T1 D2 MR rnd θ
d̃γ,NO A25 D1 nHOMO Ind V̂

nLUMO NFOD
M EEN
NON
MRI
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highly reliable, while if d̃ is over × N0.07071 heavy , then the
used method is not reliable, based on the numerical results of
the W4−17 data set. Between the two thresholds, the used
method is moderately reliable. The respective thresholds for d̃Φ
are × N0.03 heavy and × N0.06 heavy . We note that these
thresholds are arbitrary, as most of them do not have strict
criteria because we do not have another reference on which we
can decide the thresholds. Based on these limits according to
d̃γ(0.05), the calculations of BN, S4, C2, ClOO, B2, and O3 are
problematic, and FO2, S3, ClNO, t-HOOO, S2O, FOOF, CN,
and NO2 are moderately difficult for CCSD.
We also note here the differences between the different d̃-s.

Generally d̃Φ-s are smaller than d̃γ, but both have the predictive
power to estimate the difference from the FCI. d̃γ,NO should
lead to a similar value as d̃γ, but with fewer selected orbitals;
however, in some cases, NO-transformation introduces a bias
to the original CCSD solution, leading to a more similar
DMRG solution and smaller d̃γ,NO.
We close this section by emphasizing that the d̃ diagnostic

values are clearly attached to the studied calculation. To
highlight this important feature, we determined the same
d̃(0.05) metrics but with CCSD/cc-pVTZ and CCSDT/cc-
pVDZ calculation for systems which have d̃γ(0.05) over 0.075
(Table 5) to see the effect of the basis set and method. As
expected, really similar values have been obtained with the
larger cc-pVTZ basis set, as with the smaller cc-pVDZ. As for
the method, it is clear that eventhough CCSD might be
inappropriate in some cases, higher-level methods, like
CCSDT, have no problem with the species in question. This
is demonstrated by the low (<0.05) values of d̃(0.05) for all
species and formulations, except S4 which have a d̃γ(0.05) =
0.059 with CCSDT, which is still significantly lower than 0.218
for CCSD. This finding also proves the applicability of high-
accuracy thermochemical models like Wn, HEAT, cccA, etc.
for the W4−17 data set.
4.2. Application of the d̃ Metric to Transition Metal

Species. The multireference character among the transition
metal species is much more common due to the several low-
lying states. In these cases, choosing a reliably accurate, yet
numerically affordable, approach can be more problematic. For
main group species, the single reference methods usually give
correct results; even sub-kJ/mol accuracy is achievable.
However, the usage of multireference methods is more

complicated, and there is no gold standard such as CCSD(T)
for single reference systems yet.
In such challenging situations, the usage of d̃ metrics can be

even more helpful to decide if a single reference method is
applicable to a transition metal species in question. We
demonstrate the concept by applying the d̃ metric for the
3dMLBE data set67 and for species studied with s-ccCA
recently68 labeled as 3d-TM9 and 4d-TM9 for 3d and 4d
transition metal species, respectively. For comparison, results
based on the d̃ analysis are presented in Figure 4. The 3d-
MLBE20 data set is divided into two subsets where 7 species
are considered as single reference and 13 species are
considered MR. In case of the 3d-MLBE20-SR subset d̃-s are
fairly low, mostly below 0.05, only CuCl and ZnS show
moderately high values, d̃γ(0.05) is 0.066 and 0.059,
respectively.
From the 3d-MLBE20-MR subset, VH, VCl, CrH, FeH,

CoCl, and CuH all have d̃(0.05)-s below the corresponding
threshold, showing that CCSD is adequate for studying these
systems, although it is in the MR subset. TiCl and CoH have
exceptionally high d̃γ(0.05) values (0.427 and 0.305), but in
the case of TiCl d̃γ,NO(0.05) it completely disagrees (0.045).
This is the most spectacular case where the NO-transformation
causes such a deviation. VO, CrO, and ZnO also have relatively
high d̃-s, mostly over 0.1.
Looking at 3d-TM9 and 4d-TM9, in ref 68, the multi-

reference character was classified according to the criteria of T1
> 0.05/0.045, D1 > 0.15/0.12, and %TAE(T) > 10%/10% for
3d and 4d species, respectively. Based on this metric, seven 3d
species (ScB, ScC, ScS, TiB, VB, VC, and VS) and zero 4d
species are considered to have multireference character.
However, every d̃ is greater than 0.05, suggesting that at
most only moderately adequate to use CCSD for them. 3d-
TM9 species are especially challenging; there are only two
species with d̃γ(0.05) below 0.1, ScB (0.076) and ScC (0.099).
4d-TM9 species are mostly between 0.05 and 0.10, although
clasified as a single reference, NbC even shows a d̃Φ(0.05) of
0.148.
As an additional challenge, we determined d̃Φ(0.10) and

d̃γ(0.10) values for species labeled as TM-MR, selected from
refs 7, 76, and 77, which are claimed to be MR systems. Based
on the size-dependent thresholds determined in the previous
section, FeCN, YC2, and RuC have low d̃(0.1) values,
suggesting that CCSD is adequate for them. For ScO, TiB,

Table 5. d̃ Values for Species of W4−17 with d̃γ(0.05) over 0.075 for the CCSD/cc-pVDZ Calculations

CCSD/cc-pVDZ CCSD/cc-pVTZ CCSDT/cc-pVDZ

species d̃Φ(0.05) d̃γ(0.05) d̃γ,NO(0.05) d̃Φ(0.05) d̃γ(0.05) d̃γ,NO(0.05) d̃Φ(0.05) d̃γ(0.05) d̃γ,NO(0.05)

B2 0.055 0.101 0.114 0.053 0.121 0.125 0.013 0.023 0.033
BN 0.101 0.175 0.164 0.106 0.195 0.170 0.025 0.028 0.029
C2 0.094 0.130 0.100 0.096 0.165 0.149 0.021 0.026 0.026
ClNO 0.066 0.079 0.055 0.065 0.072 0.057 0.028 0.027 0.031
ClOO 0.117 0.141 0.125 0.111 0.140 0.130 0.027 0.026 0.022
FO2 0.085 0.104 0.081 0.084 0.103 0.091 0.028 0.028 0.025
FOOF 0.061 0.083 0.071 0.067 0.095 0.066 0.029 0.036 0.029
N2O4 0.071 0.079 0.062 0.071 0.081a 0.062 0.034 0.038 0.047
O3 0.079 0.123 0.082 0.082 0.138 0.083 0.026 0.031 0.028
S2O 0.055 0.075 0.052 0.062 0.064 0.049 0.026 0.032 0.026
S3 0.064 0.086 0.050 0.075 0.105 0.049 0.022 0.036 0.027
S4 0.128 0.218 0.151 0.122b 0.221a 0.158 0.032 0.059 0.059
t-HOOO 0.070 0.077 0.072 0.071 0.076 0.070 0.022 0.028 0.026

ad̃γ(0.07).
bd̃Φ(0.07).
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TiN, CuCl2, YN, ZrO2, NbO2, MoO3, TcF3, TcF4, RuBr3,
RhC, and AgCl2, both d̃ variants are between their respective
thresholds, meaning that one should be careful using CCSD.
Some systems have differing d̃Φ(0.10) and d̃γ(0.10) values,
placing them on different sides of the higher threshold. These
species are CrS, Cr2, MnO, FeO, NiH, NiF, Mo2, MoO2, RuO,
RuS, and PtO. The rest of the species are problematic for
CCSD, especially TiH, V2, CrO3, CrO2Cl, Fe2, CoS, CoGe,
CoSi, NiSi, NiGe, NiO2, W2, and IrO for which one of the
d̃(0.01)-s values is over 0.2.
Note that, in line with the previous findings,96−98 our results

show that even if a system is regarded as multireference by

some criteria, it may be handled with single reference CC to
provide reliable data.
Regarding the composition of active spaces, we found high

variance. For simpler systems, the occupied d and a few virtual
d orbitals with low principal numbers of a given TM and some
occupied and virtual s and p orbitals from the ligand is enough
based on convergence, but the proper description of more
correlated systems asks for orbitals with even higher principal
numbers (4d, 5d, etc.) both for the TM and non-TM atoms.
Before concluding this section, we want to highlight another

application of the framework presented in this paper. With
DMRG the different excited states can be easily determined,
which is useful especially in the case of transition metal species

Figure 4. d̃ values for the TM species studied in this work. Horizontal red and blue lines represent the lower and upper thresholds for the d̃Φ and d̃γ
values, respectively.
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to determine the correct ground state which can be
problematic to find. Usually within this framework, such
problems are highlighted with extremely high d̃ values, over 1.
In such cases, asking for more eigenvalues from the DMRG
calculation and looking at the most dominant determinants can
help identify the correct ground state. In this work, we found
that the ground state of FeH is not 4Δ, but 6Δ, of CoCl not
3Φ, but 5Δ, YC is not 4Π, but 4Σ, and YC2 is not 2B2, but 2A1.
Note that this is only true for cc-pVDZ basis set; it is possible
that the order of these closely lying states are changing with
increased basis sets. However, such cases require a more
careful approach and study of the possible occupations.

5. CONCLUSION
In this work, we present a new strategy to determine the
quality of post-HF wave functions. Instead of trying to measure
the deviation from the ideal single reference picture, as many
multireference diagnostics do, we measure the difference from
an approximate FCI solution. Here, we focus on the CCSD to
demonstrate the applicability of the workflow. To this end, a
subset of orbitals is chosen based on the CCSD solution, and a
DMRG calculation is performed on them. Then the wave
functions up to double excitations, Φ or 1-body RDM-s, γ, are
compared from DMRG and CCSD to give a single metric
labeled as d̃Φ and d̃γ.
We also introduced an orbital selection procedure that

ensures that the selected subspace correctly represents the
entire space. During this procedure, the orbitals are ranked by
their relative importance derived from the CCSD solution, and
on the selected subspace, another CCSD is performed, and the
Φ-s or γ-s are compared to the original CCSD solution. The
subspace is increased until the two CCSD solutions are similar
enough. This method enables us to tune the accuracy of the d̃.
The usage of natural orbitals from the CCSD before orbital
selection was also tested, assuming it helps to select smaller
subspaces.
Three different workflows were tested on the W4−17 data

set and compared with other popular multireference
diagnostics. The three flavors of d̃ correlate well with each
other (d̃Φ, d̃γ, and d̃γ,NO). d̃Φ is usually smaller than d̃γ;
therefore, with the same active space selection threshold, γ-
based selections are somewhat larger. However, NO-trans-
formation produces smaller active spaces, but also introduces a
bias to the CCSD solution that leads to smaller d̃γ,NO than d̃γ.
None of the metrics were found to correlate well with d̃-s.

MR diagnostics were also grouped by their performance and
found that the source of the data is as important as the
formulation of the MR diagnostic itself. The following groups
were determined, which are in line with previous findings:
group 2: %TAE(T), B1, A25 ; group 3: max|t1|, T1, D1; group
4a: nHOMO, nLUMO, M, MRI, NON, max|t2|, D2; group 4b: C02,
MR, Ind, NFOD, EEN; group 4c: Zs(1), rnd; group 4d: θ, V̂ T2.
The proposed approach was also tested on transition metal

species. VH, VCl, CrH, FeH, CoCl, and CuH have d̃-s below
0.05 with CCSD, showing that it is an adequate method to use
on them, despite being in the MR subset. All 3d-TM9 and 4d-
TM9 species have d̃γ(0.05)-s over 0.05 highlighting, which
means these are at least moderately challenging. Additionally,
3d species are above 0.1, with the exception of ScB; therefore,
CCSD is not recommended to study them. For a selection of
MR transition metal species, we found that the calculation of
FeCN, YC2, and RuC are not problematic, and ScO, TiB, TiN,

CuCl2, YN, ZrO2, NbO2, MoO3, TcF3, TcF4, RuBr3, RhC, and
AgCl2 are only moderately difficult for CCSD.
With regard to FeH, CoCl, YC, and YC2 molecules, we

predicted ground states different from those of the literature
findings; nevertheless, these results are inconclusive because of
the potential basis set sensitivity of the problems. However,
our results demonstrate that the proposed procedure is also
capable of finding the correct ground state, which is not always
straightforward in transition-metal chemistry.
Based on the results, we find that in the case where d̃γ (d̃Φ) is

below × N0.03536 heavy ×( )N0.03 heavy , the method used

i s a d e q u a t e , w h i l e f o r > ×d N0.07071 heavy

> ×( )d N0.06 heavy the used method is not reliable and

other approaches are suggested to study the system in
question. In the intermediate region of d̃, one should be
cautious with the derived results. It must be noted that these
limits are not strict, just recommendations based on the results
in this work.
The approach presented here can be applied to test the

quality of any wave function method where CI coefficients or
RDMs can be extracted and a proper active space can be
selected. In the matter of high-level reference methods, DMRG
can be substituted for any reference-free method that is
capable of providing an approximate FCI solution for large
enough active spaces. This way the approach has the potential
to become a quality assurance tool for wave function based
methods.
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