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= adiposity

= breastfeeding Childhood obesity is a crucial contributor to adult obesity, diabetes and cardiovas-
« childhood obesity cular disease and since its prevalence is rising sharply, it poses a serious public

= metabolism health challenge today. Recent findings suggest that breastfeeding reduces the like-
= obesity lihood of developing obesity in childhood, and some human milk components have

been identified as important factors in shaping body composition and metabolism
during early development. Human milk not only provides metabolic fuels, but also
delivers unique signals that stimulate the differential utilization of nutrients and
control energy expenditure. This Review provides an overview on our current un-
derstanding of the effects of human milk signals on energy expenditure, which
may protect from adiposity in childhood.

Kulcsszavak Az anyatej szerepe az ijsziilottkori energiafelhasznalas

- adipozitas szabalyozasaban és az elhizas elleni védelemben

- anyagcsere

= anyatej A gyermekkori elhizés jelentésen megnoveli a felnéttkorban kialakuld elhizas és
« elhizas az ezzel Gsszefliggd cukorbetegség, valamint sziv- és érrendszeri megbetegedések
» gyermekkori elhizas kockazatat. Mivel a gyermekkori elhizas el6forduldsi aranya rohamosan névekszik

vilagszerte, napjaink egyik egészségiigyi kihivasava valt a folyamat megfékezése és
visszaforditdsa. Az utébbi évek kutatdsai az anyatejes taplalds jelentéségére hivjak
fel a figyelmet, mivel egyes megfigyelések szerint az anyatejjel taplalt Gjsztlottek
koérében csokken a gyermekkori elhizas kialakulasdnak esélye. Az anyatej ugyanis
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hildhood obesity rates have risen sharply in the

last 30 years and efforts to understand its causes

and curb its progression have had limited success.!
Approximately one-third of children worldwide current-
ly have some degree of overweight and nearly 11% of chil-
dren aged 5-9 years and 7% of adolescents aged 10-19
years experienced obesity in 2022.*> Moreover, ~50% of
children with obesity and 80% of adolescents with severe
obesity will carry their obesity through to adulthood."?
Body mass index (BMI) and BMI trajectories that reflect
the rate of growth during childhood, can predict BMI in
adulthood.”® The latest trends in childhood BMI trajec-
tories indicate that nearly 57% of young individuals will
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nemcsak tdpanyagokkal 14tja el az Gjsziilottet, hanem olyan molekulakat is tartal-
maz, melyek jelatvivé szerepet toltenek be az anya és a gyermeke kozott, és meg-
hatdrozzdk a tdpanyagok hasznosuldsat az Gjsziilott szervezetében. Tébbek kozott
az anyatej egyes molekulai serkentik a zsirszévet és az izomzat energiatermel6 fo-
lyamatait, ezaltal csokkentik a depézsir kialakuldsat. Ebben az 6sszefoglalé kozle-
ményben azokat a legtjabban feltdrt molekularis mechanizmusokat tekintjiik 4t,
melyek nélkilozhetetlenek az egészséges testosszetétel kialakuldsdhoz és képesek
lehetnek csokkenteni a gyermekkori elhizas kockazatat.

become obese in adulthood.' Childhood obesity not only
increases the likelihood of lifelong overweight or obesi-
ty, but also doubles the risk of diabetes, hypertension and
cardiovascular disease.' Pediatric obesity is thus a crucial
contributor to adult obesity and metabolic diseases and
poses a serious public health challenge (Figure I, 2).

There are two critical periods during infancy and ear-
ly childhood that determine body adiposity and impact
BMI trajectories (Figure 3): the first occurs during the
first year of life, characterized by an infancy peak of BMI,
and the second is the so-called adiposity rebound at ~5.5
years of age.® Rapid weight gain within the first year of
life increases the likelihood of early adiposity rebound,
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Figure 1. Health risks of pediatric obesity
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Figure 2. Clinical relevance of pediatric obesity — Rapid increase in the global
prevalence of pediatric obesity from the 1970s to the 2020s

leading to overweight or obesity in adulthood.*® It is es-
timated that developing obesity at 2 years of age is asso-
ciated with a 74.9% probability of developing obesity at
35 years of age.® This contrasts with non-obese children
for whom the risk of experiencing obesity in adulthood
decreases with age.’

The World Health Organization recommends that in-
fants should be exclusively breastfed for the first 6
months of their life, with continued human milk feeding
up to 2 years, while also being introduced to complemen-
tary foods.® However, breastfeeding may be insufficient

due to the failure of lactation on the part of the moth-
er, or to shortening of the breastfeeding period. There is
a potential link between inadequate human milk feeding
and the progressive escalation of childhood obesity, lead-
ing to a higher prevalence of overweight and obesity in
adulthood.”®*'° There is evidence that human milk feed-
ing protects against overweight and obesity in early child-
hood.’? Moreover, there is an increased diabetes risk in
infants who never received human milk.*>**

Several molecules specific to human milk have been
discovered recently that promote the differential use of

29 infancy peak
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Figure 3. Body mass index trajectory of infants and children, indicating critical periods that determine adiposity
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metabolic fuels and protect from adiposity."'* Many of
these constituents are absent or present in low amounts in
infant formula, which is mostly a highly processed deriv-
ative of cow’s milk or soy milk. These findings have paved
the way for the novel concept of a mother-to-child signal-
ing axis that conveys maternal cues to regulate the metab-
olism of offspring through human milk components.”*>*

From a clinical perspective, the metabolic effects of
breastfeeding have implications for the life quality of
children. This review updates our knowledge on the met-
abolic benefits of human milk, and the mechanisms link-
ing breastfeeding to energy utilization.

HUMAN MILK COMPONENTS INCREASE
THERMOGENIC FAT DEVELOPMENT

Because the relative body surface of a newborn is orders
of magnitude greater than that of an adult, and because
extrauterine life begins with an adaptation to a hypother-
mic environment, it is vital that metabolic fuels are rap-
idly broken down in uncoupled mitochondrial respiration
to generate heat.'® Animal studies have demonstrated that
suckling increases thermogenesis in the adipose tissue,
ultimately increasing energy expenditure.”**"

One of the best characterized mechanisms that ac-
counts for this effect is the presence of alkylglycerols
(AKGs) in human milk. AKGs belong to a unique ether lip-
id family, and promote macrophage-dependent thermo-
genic adipocyte development in mice® (Figure 4). Early-life
supplementation with AKGs in mice reduces fat mass by
increasing mitochondrial thermogenesis and fat oxida-
tion,” replicating the effects of prolonged breastfeeding
observed in rats.'® The level of milk AKGs is species-spe-
cific, and they are absent in cattle milk.”"® Accordingly,
formula-fed infants do not experience the benefits of hu-
man milk AKGs.”*® Indeed, infants who are not adequate-
ly breastfed lose thermogenic fat prematurely, an effect
phenocopied by AKG-free artificial rearing in mice.>"

The effect of AKGs is dependent on adipose tissue mac-
rophages (ATMs), which colonize adipose tissue early in
life in both mice and humans.” ATMs metabolize AKGs
into platelet-activating factor (PAF), which is used to pro-
duce nuclear receptor ligands and interleukin-6 (IL-6).°

Osszefoglald kozlemény
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(Figure 4). Adipose tissue in young mice exhibits elevat-
ed PAF-mediated signaling, and impaired PAF signaling
in mice lacking the PAF receptor causes early-onset obe-
sity.>* Paracrine IL-6 signaling stimulates the expression
of thermogenic genes and induces mitobiogenesis and the
burning of fat as heat in mouse and human adipocytes.>**

Another mechanism that explains the beneficial effect
of breastfeeding on thermogenesis is the hepatic produc-
tion of the hormone fibroblast growth factor 21 (FGF21)
induced by prolonged suckling in rats.'* Milk-derived fat-
ty acids increase the production of FGF21, which is ulti-
mately shuttled by specialized ependymal cells, so-called
tanycytes, into the lateral hypothalamic area where they
stimulate the expression of D2 dopaminergic receptors
(Figure 4). This results in increased sympathetic nerve
stimulation,® which triggers mitochondrial uncoupling
and thermogenesis in adipocytes.'® FGF21 also activates
fatty acid oxidation in liver, skeletal muscle, and heart, in
addition to its effects on the regulation of food preference
in mice.'®*® At pharmacologic doses in mice, FGF21 trig-
gers weight loss and improves glucose control.?*

Other, less characterized human milk metabolites that
stimulate adipocyte thermogenesis in animal studies in-
clude prostaglandin E2, succinate and B-aminoisobutyr-
ic.22%2” Moreover, the beneficial effect of milk on the
development of the intestinal microbiota in mice sup-
ports adipose tissue thermogenesis,"” and germ-free mice
have impaired thermogenic fat development.?® The un-
derlying mechanism however remains undefined.

Inducing the thermogenic potential of storage fat de-
pots is considered as a therapeutic strategy to boost en-
ergy expenditure in obesity.”> However, the impact of
thermogenic fat is greater in rodents than in humans, and
the development and anatomical distribution of ther-
mogenic fat depots vary greatly among species.” The
newborn mouse has thermogenic adipocytes in the inter-
scapular brown fat depot and the inguinal subcutaneous
fat, with the latter gradually disappearing after weaning
to be replaced by storage fat.”” Human infants and chil-
dren have thermogenic adipocytes scattered through-
out the subcutaneous fat depots.>*>*" The premature loss
of thermogenic adipocytes is associated with obesity in
young mice, rats, and humans, and both AKGs and FGF21
protect from obesity in the post-weaning periods in mice
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ATMs: adipose tissue macrophages; AzPAF: azelaoyl-platelet activating factor; B-ADR: beta-adrenergic receptor; D2R: dopamine 2 receptor expressing neurons in the
lateral hypothalamus; PPARY: peroxisome proliferator-activated receptor gamma; STAT3: signal transducer and activator of transcription 3

Figure 4. Mechanisms allowing human milk signals to stimulate energy expenditure

Schematic illustration of human milk-derived molecules, their target cells, and the mechanisms known from animal studies
and in vitro analysis of human cells. Histology images showing tanycytes surrounding the third ventricle (immunostaining
against vimentin, courtesy of Maria Dreher and prof. dr. Annika Herwig, Ulm University, Germany).

and rats, respectively.”****° These findings suggest that
the early life protection of thermogenic adipocytes by hu-
man milk-derived signals might prevent obesity later in
early childhood.

IMPACT OF HUMAN MILK COMPONENTS ON
MITOCHONDRIAL FATTY ACID OXIDATION

Birth marks a rapid shift from a intrauterine metabolism
based on carbohydrates to one based mainly on human

milk lipids, accompanied by an increase in fat catabo-
lism.** Animal studies show that milk-derived signals may
support skeletal muscle, hepatic and cardiac p-oxidation
of fatty acids"'*** (Figure 5), and newborn mice fed phos-
pholipids of human milk fat globules are protected from
diet-induced obesity in later life.**** The underlying mo-
lecular mechanism is largely unknown but includes an
increase in the hepatic carnitine pool and stimulation
of B-oxidation, the Krebs cycle and mitochondrial an-
tioxidative functions.**** The lipid metabolite 12,13-dihy-
droxy-9Z-octadecenoic acid (2,13-diHOME) (also known
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Figure 5. Human milk-derived signal mechanisms that stimulate fatty acid catabolism

Schematic illustrations of the mechanisms that mediate human milk effects on mitochondrial fatty acid
oxidation and respiration. Transmission electron microscopy shows cellular targets of human milk-derived
signals: cell membrane and mitochondria of muscles, and mitochondria of adipocytes.

and with a reduced gain in body mass in the first six

as isoleukotoxin) is a circulating lipokine released by
months of infancy.* Thus, 12,13-diHOME and its related

brown adipocytes in response to exercise and cold expo-

sure in mice, and is also present in human milk.* It may
increase fatty acid uptake by skeletal muscles, counter-
acting fat storage in adipocytes. A greater abundance of
12,13-diHOME in human milk at 1-month postpartum is
associated with lower subcutaneous fat mass in infants

Osszefoglald kozlemény

metabolites appear to protect against adiposity (Figure 5).

Several other human milk metabolites are neces-
sary for the transport of fatty acids into mitochondria
for B-oxidation, including carnitine, sphingomyelins,
palmitic-acid-9-hydroxy-stearic-acid (9-PAHSA) and
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kynurenic.***>* Human milk is rich in polyunsaturated
fatty acids (PUFAs), in particular w-3 fatty acids and their
metabolites, with a peak level in early lactation.*” Several
PUFAs and their metabolites increase the transcription of
fatty acid catabolism-related genes in mice®** (Figure 5).
A recent study suggests that cardiac fatty acid catabolism
in mice is triggered by a milk-derived w-6 PUFA;** how-
ever, w-6 PUFAs appear to promote adiposity and fatty
liver in human infants and children.*® Indeed, the levels
of w-6 PUFAs in human milk are higher in mothers with
overweight and obesity than in normal-weight mothers.*°
Overall, it is still unclear whether human milk-derived
PUFAs increase fat catabolism in human newborns.

Finally, there is the possibility of early life program-
ming of fat catabolism by human milk-derived micro
RNAs (miRNAs). Because premature delivery is associat-
ed with a unique change in the miRNA profile of human
milk,* and the greater intestinal permeability in preterm
infants may allow for the improved absorption of miR-
NAs,* it has been postulated that human milk miRNAs
may have a metabolically relevant role in preterm infants.
Premature delivery reduces the human milk level of
miRNAs that target uncoupling protein 3 (UCP3), leptin
(LEP) and tumor necrosis factor alpha (TNF) and increas-
es those miRNAs that target beta-adrenergic receptor 3
(ADRB3) and glucocorticoid receptor (NR3C1). As human
fat depots - including thermogenic fat depots - develop
in the last trimester of pregnancy,*® premature infants
have a reduced abundance of subcutaneous fat layers,
making them vulnerable to hypothermia. It is believed
that the unique miRNA signature in preterm human milk
facilitates the development of fat depots in preterm in-
fants, enabling them to attain the same growth trajectory
as their full-term counterparts.” Conversely, human milk
miRNAs may protect thermogenic fat depots and impede
fat storage in full-term infants.*

| SUMMARY AND PERSPECTIVES

Human milk provides signals that shape metabolism in
the infancy phase of human growth and reduces risk
for obesity. At the cellular level, human milk-derived
signals bolster lipid catabolism, thermogenesis and

2024. november

mitochondrial biogenesis in adipocytes and muscle cells,
which increases energy expenditure.

However, some substantial knowledge gaps in our
understanding of the underlying mechanisms remain,
which will require further examination. For instance, the
effects of human milk components on the liver, on adi-
pocyte proliferation and apoptosis, and on skeletal mus-
cle protein synthesis remain blind spots. Moreover, most
studies have been undertaken in murine models, raising
the question about their translation to humans. There are
also practical obstacles and ethical implications to study-
ing the long-term effects of human milk components on
body composition and metabolic health in human popu-
lations.** The unique composition of human milk differs
significantly between individuals and is dynamic over
time and cannot be replicated by infant formula. Mater-
nal health, diet, lifestyle, and drug use, can all potential-
ly affect human milk composition, hence may influence
the effectiveness of breastfeeding. Infant formula feeding
may also lead to caloric excess and promote adipose tis-
sue expansion, overshadowing a protective effect of par-
tial breastfeeding.*

Human milk is a rich source and a complex biological
matrix of metabolic regulators that interact and function
collectively in the breastfed infant. A quote attributed to
the philosopher and culinary writer Anthelme Brillat-
Savarin (1755-1826), states that “the future of a society
depends on its nutritional habits”.*® Indeed, early nutri-
tional exposure through breastfeeding has a major and
lasting impact on the health of our society.
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