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Abstract

Childhood obesity is a crucial contributor to adult obesity, diabetes and cardiovas-
cular disease and since its prevalence is rising sharply, it poses a serious public 
health challenge today. Recent findings suggest that breastfeeding reduces the like-
lihood of developing obesity in childhood, and some human milk components have 
been identified as important factors in shaping body composition and metabolism 
during early development. Human milk not only provides metabolic fuels, but also 
delivers unique signals that stimulate the differential utilization of nutrients and 
control energy expenditure. This Review provides an overview on our current un-
derstanding of the effects of human milk signals on energy expenditure, which 
may protect from adiposity in childhood.

Az anyatej szerepe az újszülöttkori energiafelhasználás 
szabályozásában és az elhízás elleni védelemben

A gyermekkori elhízás jelentősen megnöveli a felnőttkorban kialakuló elhízás és 
az ezzel összefüggő cukorbetegség, valamint szív- és érrendszeri megbetegedések 
kockázatát. Mivel a gyermekkori elhízás előfordulási aránya rohamosan növekszik 
világszerte, napjaink egyik egészségügyi kihívásává vált a folyamat megfékezése és 
visszafordítása. Az utóbbi évek kutatásai az anyatejes táplálás jelentőségére hívják 
fel a figyelmet, mivel egyes megfigyelések szerint az anyatejjel táplált újszülöttek 
körében csökken a gyermekkori elhízás kialakulásának esélye. Az anyatej ugyanis 
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nemcsak tápanyagokkal látja el az újszülöttet, hanem olyan molekulákat is tartal-
maz, melyek jelátvivő szerepet töltenek be az anya és a gyermeke között, és meg-
határozzák a tápanyagok hasznosulását az újszülött szervezetében. Többek között 
az anyatej egyes molekulái serkentik a zsírszövet és az izomzat energiatermelő fo-
lyamatait, ezáltal csökkentik a depózsír kialakulását. Ebben az összefoglaló közle-
ményben azokat a legújabban feltárt molekuláris mechanizmusokat tekintjük át, 
melyek nélkülözhetetlenek az egészséges testösszetétel kialakulásához és képesek 
lehetnek csökkenteni a gyermekkori elhízás kockázatát.

Childhood obesity rates have risen sharply in the 
last 30 years and efforts to understand its causes 
and curb its progression have had limited success.1 

Approximately one-third of children worldwide current-
ly have some degree of overweight and nearly 11% of chil-
dren aged 5–9 years and 7% of adolescents aged 10–19 
years experienced obesity in 2022.2 Moreover, ~50% of 
children with obesity and 80% of adolescents with severe 
obesity will carry their obesity through to adulthood.1,3 
Body mass index (BMI) and BMI trajectories that reflect 
the rate of growth during childhood, can predict BMI in 
adulthood.1,3 The latest trends in childhood BMI trajec-
tories indicate that nearly 57% of young individuals will 

become obese in adulthood.1 Childhood obesity not only 
increases the likelihood of lifelong overweight or obesi-
ty, but also doubles the risk of diabetes, hypertension and 
cardiovascular disease.1 Pediatric obesity is thus a crucial 
contributor to adult obesity and metabolic diseases and 
poses a serious public health challenge (Figure 1, 2).

There are two critical periods during infancy and ear-
ly childhood that determine body adiposity and impact 
BMI trajectories (Figure 3): the first occurs during the 
first year of life, characterized by an infancy peak of BMI, 
and the second is the so-called adiposity rebound at ~5.5 
years of age.3 Rapid weight gain within the first year of 
life increases the likelihood of early adiposity rebound, 
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Figure 1. Health risks of pediatric obesity
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leading to overweight or obesity in adulthood.4,5 It is es-
timated that developing obesity at 2 years of age is asso-
ciated with a 74.9% probability of developing obesity at 
35 years of age.5 This contrasts with non-obese children 
for whom the risk of experiencing obesity in adulthood 
decreases with age.5

The World Health Organization recommends that in-
fants should be exclusively breastfed for the first 6 
months of their life, with continued human milk feeding 
up to 2 years, while also being introduced to complemen-
tary foods.6 However, breastfeeding may be insufficient 

due to the failure of lactation on the part of the moth-
er, or to shortening of the breastfeeding period. There is 
a potential link between inadequate human milk feeding 
and the progressive escalation of childhood obesity, lead-
ing to a higher prevalence of overweight and obesity in 
adulthood.7,8,9,10 There is evidence that human milk feed-
ing protects against overweight and obesity in early child-
hood.11,12 Moreover, there is an increased diabetes risk in 
infants who never received human milk.12,13

Several molecules specific to human milk have been 
discovered recently that promote the differential use of 
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Figure 2. Clinical relevance of pediatric obesity – Rapid increase in the global 
prevalence of pediatric obesity from the 1970s to the 2020s
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metabolic fuels and protect from adiposity.14,15 Many of 
these constituents are absent or present in low amounts in 
infant formula, which is mostly a highly processed deriv-
ative of cow’s milk or soy milk. These findings have paved 
the way for the novel concept of a mother-to-child signal-
ing axis that conveys maternal cues to regulate the metab-
olism of offspring through human milk components.7,8,9,10

From a clinical perspective, the metabolic effects of 
breastfeeding have implications for the life quality of 
children. This review updates our knowledge on the met-
abolic benefits of human milk, and the mechanisms link-
ing breastfeeding to energy utilization.

HUMAN MILK COMPONENTS INCREASE 
THERMOGENIC FAT DEVELOPMENT

Because the relative body surface of a newborn is orders 
of magnitude greater than that of an adult, and because 
extrauterine life begins with an adaptation to a hypother-
mic environment, it is vital that metabolic fuels are rap-
idly broken down in uncoupled mitochondrial respiration 
to generate heat.16 Animal studies have demonstrated that 
suckling increases thermogenesis in the adipose tissue, 
ultimately increasing energy expenditure.9,15,17

One of the best characterized mechanisms that ac-
counts for this effect is the presence of alkylglycerols 
(AKGs) in human milk. AKGs belong to a unique ether lip-
id family, and promote macrophage-dependent thermo-
genic adipocyte development in mice9 (Figure 4). Early-life 
supplementation with AKGs in mice reduces fat mass by 
increasing mitochondrial thermogenesis and fat oxida-
tion,9 replicating the effects of prolonged breastfeeding 
observed in rats.15 The level of milk AKGs is species-spe-
cific, and they are absent in cattle milk.9,18 Accordingly, 
formula-fed infants do not experience the benefits of hu-
man milk AKGs.9,18 Indeed, infants who are not adequate-
ly breastfed lose thermogenic fat prematurely, an effect 
phenocopied by AKG-free artificial rearing in mice.9,19

The effect of AKGs is dependent on adipose tissue mac-
rophages (ATMs), which colonize adipose tissue early in 
life in both mice and humans.9 ATMs metabolize AKGs 
into platelet-activating factor (PAF), which is used to pro-
duce nuclear receptor ligands and interleukin-6 (IL-6).9 

(Figure 4). Adipose tissue in young mice exhibits elevat-
ed PAF-mediated signaling, and impaired PAF signaling 
in mice lacking the PAF receptor causes early-onset obe-
sity.9,20 Paracrine IL-6 signaling stimulates the expression 
of thermogenic genes and induces mitobiogenesis and the 
burning of fat as heat in mouse and human adipocytes.9,21

Another mechanism that explains the beneficial effect 
of breastfeeding on thermogenesis is the hepatic produc-
tion of the hormone fibroblast growth factor 21 (FGF21) 
induced by prolonged suckling in rats.15 Milk-derived fat-
ty acids increase the production of FGF21, which is ulti-
mately shuttled by specialized ependymal cells, so-called 
tanycytes, into the lateral hypothalamic area where they 
stimulate the expression of D2 dopaminergic receptors 
(Figure 4). This results in increased sympathetic nerve 
stimulation,22 which triggers mitochondrial uncoupling 
and thermogenesis in adipocytes.15 FGF21 also activates 
fatty acid oxidation in liver, skeletal muscle, and heart, in 
addition to its effects on the regulation of food preference 
in mice.15,23 At pharmacologic doses in mice, FGF21 trig-
gers weight loss and improves glucose control.24

Other, less characterized human milk metabolites that 
stimulate adipocyte thermogenesis in animal studies in-
clude prostaglandin E2, succinate and β-aminoisobutyr-
ic.25,26,27 Moreover, the beneficial effect of milk on the 
development of the intestinal microbiota in mice sup-
ports adipose tissue thermogenesis,17 and germ-free mice 
have impaired thermogenic fat development.28 The un-
derlying mechanism however remains undefined.

Inducing the thermogenic potential of storage fat de-
pots is considered as a therapeutic strategy to boost en-
ergy expenditure in obesity.29 However, the impact of 
thermogenic fat is greater in rodents than in humans, and 
the development and anatomical distribution of ther-
mogenic fat depots vary greatly among species.29 The 
newborn mouse has thermogenic adipocytes in the inter-
scapular brown fat depot and the inguinal subcutaneous 
fat, with the latter gradually disappearing after weaning 
to be replaced by storage fat.9,17 Human infants and chil-
dren have thermogenic adipocytes scattered through-
out the subcutaneous fat depots.9,30,31 The premature loss 
of thermogenic adipocytes is associated with obesity in 
young mice, rats, and humans, and both AKGs and FGF21 
protect from obesity in the post-weaning periods in mice 
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and rats, respectively.9,15,21,30 These findings suggest that 
the early life protection of thermogenic adipocytes by hu-
man milk-derived signals might prevent obesity later in 
early childhood.

IMPACT OF HUMAN MILK COMPONENTS ON 
MITOCHONDRIAL FATTY ACID OXIDATION

Birth marks a rapid shift from a intrauterine metabolism 
based on carbohydrates to one based mainly on human 

milk lipids, accompanied by an increase in fat catabo-
lism.16 Animal studies show that milk-derived signals may 
support skeletal muscle, hepatic and cardiac β-oxidation 
of fatty acids14,15,32 (Figure 5), and newborn mice fed phos-
pholipids of human milk fat globules are protected from 
diet-induced obesity in later life.33,34 The underlying mo-
lecular mechanism is largely unknown but includes an 
increase in the hepatic carnitine pool and stimulation 
of β-oxidation, the Krebs cycle and mitochondrial an-
tioxidative functions.33,34 The lipid metabolite 12,13-dihy-
droxy-9Z-octadecenoic acid (2,13-diHOME) (also known 
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Figure 4. Mechanisms allowing human milk signals to stimulate energy expenditure

Schematic illustration of human milk-derived molecules, their target cells, and the mechanisms known from animal studies 
and in vitro analysis of human cells. Histology images showing tanycytes surrounding the third ventricle (immunostaining 

against vimentin, courtesy of Maria Dreher and prof. dr. Annika Herwig, Ulm University, Germany).



296296296296
Tamás Röszer

Összefoglaló közlemény� Diabetologia Hungarica | XXXII. évfolyam 4. szám

as isoleukotoxin) is a circulating lipokine released by 
brown adipocytes in response to exercise and cold expo-
sure in mice, and is also present in human milk.14 It may 
increase fatty acid uptake by skeletal muscles, counter-
acting fat storage in adipocytes. A greater abundance of 
12,13-diHOME in human milk at 1-month postpartum is 
associated with lower subcutaneous fat mass in infants 

and with a reduced gain in body mass in the first six 
months of infancy.14 Thus, 12,13-diHOME and its related 
metabolites appear to protect against adiposity (Figure 5).

Several other human milk metabolites are neces-
sary for the transport of fatty acids into mitochondria 
for β-oxidation, including carnitine, sphingomyelins, 
palmitic-acid-9-hydroxy-stearic-acid (9-PAHSA) and 
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Schematic illustrations of the mechanisms that mediate human milk effects on mitochondrial fatty acid 
oxidation and respiration. Transmission electron microscopy shows cellular targets of human milk-derived 

signals: cell membrane and mitochondria of muscles, and mitochondria of adipocytes.
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kynurenic.33,35,36 Human milk is rich in polyunsaturated 
fatty acids (PUFAs), in particular ω-3 fatty acids and their 
metabolites, with a peak level in early lactation.37 Several 
PUFAs and their metabolites increase the transcription of 
fatty acid catabolism-related genes in mice38,39 (Figure 5). 
A recent study suggests that cardiac fatty acid catabolism 
in mice is triggered by a milk-derived ω-6 PUFA;32 how-
ever, ω-6 PUFAs appear to promote adiposity and fatty 
liver in human infants and children.40 Indeed, the levels 
of ω-6 PUFAs in human milk are higher in mothers with 
overweight and obesity than in normal-weight mothers.40 
Overall, it is still unclear whether human milk-derived 
PUFAs increase fat catabolism in human newborns.

Finally, there is the possibility of early life program-
ming of fat catabolism by human milk-derived micro 
RNAs (miRNAs). Because premature delivery is associat-
ed with a unique change in the miRNA profile of human 
milk,41 and the greater intestinal permeability in preterm 
infants may allow for the improved absorption of miR-
NAs,42 it has been postulated that human milk miRNAs 
may have a metabolically relevant role in preterm infants. 
Premature delivery reduces the human milk level of 
miRNAs that target uncoupling protein 3 (UCP3), leptin 
(LEP) and tumor necrosis factor alpha (TNF) and increas-
es those miRNAs that target beta-adrenergic receptor 3 
(ADRB3) and glucocorticoid receptor (NR3C1). As human 
fat depots – including thermogenic fat depots – develop 
in the last trimester of pregnancy,43 premature infants 
have a reduced abundance of subcutaneous fat layers, 
making them vulnerable to hypothermia. It is believed 
that the unique miRNA signature in preterm human milk 
facilitates the development of fat depots in preterm in-
fants, enabling them to attain the same growth trajectory 
as their full-term counterparts.41 Conversely, human milk 
miRNAs may protect thermogenic fat depots and impede 
fat storage in full-term infants.41

SUMMARY AND PERSPECTIVES

Human milk provides signals that shape metabolism in 
the infancy phase of human growth and reduces risk 
for obesity. At the cellular level, human milk-derived 
signals bolster lipid catabolism, thermogenesis and 

mitochondrial biogenesis in adipocytes and muscle cells, 
which increases energy expenditure.

However, some substantial knowledge gaps in our 
understanding of the underlying mechanisms remain, 
which will require further examination. For instance, the 
effects of human milk components on the liver, on adi-
pocyte proliferation and apoptosis, and on skeletal mus-
cle protein synthesis remain blind spots. Moreover, most 
studies have been undertaken in murine models, raising 
the question about their translation to humans. There are 
also practical obstacles and ethical implications to study-
ing the long-term effects of human milk components on 
body composition and metabolic health in human popu-
lations.44 The unique composition of human milk differs 
significantly between individuals and is dynamic over 
time and cannot be replicated by infant formula. Mater-
nal health, diet, lifestyle, and drug use, can all potential-
ly affect human milk composition, hence may influence 
the effectiveness of breastfeeding. Infant formula feeding 
may also lead to caloric excess and promote adipose tis-
sue expansion, overshadowing a protective effect of par-
tial breastfeeding.45

Human milk is a rich source and a complex biological 
matrix of metabolic regulators that interact and function 
collectively in the breastfed infant. A quote attributed to 
the philosopher and culinary writer Anthelme Brillat-
Savarin (1755–1826), states that “the future of a society 
depends on its nutritional habits”.46 Indeed, early nutri-
tional exposure through breastfeeding has a major and 
lasting impact on the health of our society.
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