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A B S T R A C T

A photoinduced electrocyclization followed by aerobic oxidation of 1,2-dithienylarene derivatives is described as 
a greener alternative to direct aryl-aryl couplings. The formation of the naphthodithiophene type products was 
monitored by UV–vis spectroscopy. Naphthodithiophenes with different structural features and electronic 
characters were accessed. Oxidative cyclization using the combination of BF3⋅Et2O and DDQ was a comple
mentary approach to confirm the formation of the desired products. The method was also applicable to 2,3- 
dithienylbiphenylene having a backbone with antiaromatic character.

1. Introduction

Mallory-type reactions have been successfully used to convert dia
rylethene derivatives into multiring systems through a photochemical 
cyclization/oxidation (or elimination) sequence [1,2]. These steps have 
been extended by other (photo-)rearrangements and bond cleavages 
leading to a great diversity of highly functionalized (hetero)cyclic con
jugated molecules that are relevant in medicinal or materials chemistry 
[3]. While the Mallory reaction has been described to a range of 
thiophene-containing diarylethene and terarylene derivatives [3], it has 
been explored much less among dithienylbenzenes. Dithienylbenzene 
1-o has been shown to undergo photochemical ring-closing through a 
6π-electrocyclization reaction (Fig. 1) [4]. The stable aromatic product 
naphtho[2,1-b:3,4-b’]dithiophene (1-ox) that formed upon aerobic 
oxidation of the ring-closed structure 1-c provided evidence for the 
photoreaction. Generally, however, 1-ox type naphthodithiophenes 
have been prepared mainly through Scholl-type oxidative cyclizations 
[5–11] while the photochemical approach remained rarely reported 
[12]. The likely reason is that previously dithienylbenzene derivatives 
have been considered to be “resistant” to photocyclization due to their 
pronounced aromaticity [13] compared to the mostly studied dithie
nylheteroarenes. Notably, other photochemical transformations of 
thiophene derivatives leading to thienyl-(hetero)arenes have been re
ported [14–17]. Importantly, applying the Mallory conditions to the 
transformation of thienyl-substituted benzenoid aromatics could be a 

greener alternative to access polycyclic heteroaryl structures that are 
widely studied as optoelectronic materials [18–23]. In this report we 
explore the photoinduced electrocyclization/aerobic oxidation 
sequence of some dithienylarene derivatives to demonstrate the acces
sibility of polycyclic heteroarenes through this approach.

2. Results and discussion

In the following we first describe the results of the photochemical 
irradiation of different dithienylarenes under aerobic conditions fol
lowed by UV–vis spectroscopy. The products are also accessed through 
the Scholl-reaction [24], which corroborated the formation of the 
polycyclic aromatic structures (Fig. 2). Next, complementary to aro
matic dithienylbenzenes, the application of the biphenylene backbone 
with antiaromatic character is described.

First, we explored the behavior of dithienylbenzene derivative 1-o, 
and regioisomeric bis(benzothienyl)benzene derivatives 2-o and 3-o, 
which were accessible through a twofold Suzuki-Miyaura coupling be
tween 1,2-diiodobenzene and different thienylboronic acids (for syn
thetic details, see Supporting Information). These compounds were 
expected to work as one-way molecular switches that upon UV- 
irradiation under aerobic conditions can be converted to their ring- 
closed oxidized derivatives 1-ox, 2-ox and 3-ox, respectively (Fig. 2). 
The initial step of this conversion is a light-induced 6π-electrocyclization 
that leads to the closed-isomer, which is followed by aerobic oxidation. 
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Fig. 1. Transformation of dithienylbenzene 1-o to 1-ox through a photoinduced electrocyclization/aerobic oxidation sequence.

Fig. 2. Strategies to access the aryl-fused closed-oxidized isomer.

Fig. 3. (a) Conversion of 1-o to 1-ox by photochemical and chemical pathways; (b) changes in the UV–vis spectrum of 1-o by time upon irradiation with 254 nm light 
in CH3CN under aerobic conditions; (c) X-ray crystallographic structure of 1-ox (ORTEP style representation is drawn at the 50 % probability level). (*Yield is based 
on 1H NMR spectroscopy.)

Fig. 4. (a) Conversion of 2-o to 2-ox by photochemical and chemical pathways; (b) changes in the UV–vis spectrum of 2-o by time upon irradiation with 254 nm light 
in CH3CN under aerobic conditions; (c) UV–vis spectrum of 2-ox (CH3CN, rt). (*Yield is based on 1H NMR spectroscopy.)
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Alternatively, the ring-closed oxidized species could be accessed by a 
Scholl-type intramolecular oxidative coupling of the open isomers. For 
this, we used the combination of BF3⋅Et2O and DDQ, which was found to 
be an efficient method [24].

Compound 1-o has been described previously as a photochemical 
one-way switch that under aerobic conditions forms compound 1-ox 
(Fig. 3a) [4]. The irreversible changes in its UV–vis spectrum upon 
irradiation with 254 nm light indicated the formation of the stable ar
omatic product (Fig. 3b). Using the BF3⋅Et2O/DDQ system 1-o could be 
converted to 1-ox in good yield (Fig. 3a). Single crystals of 1-ox suitable 
for X-ray crystallographic measurement could be obtained from a hex
ane solution upon slow evaporation of the solvent. Crystallographic 
analysis revealed that the polycyclic product is a planar structure 
(Fig. 3c).

Both the photochemical and the chemical approach were successful 
in the conversion of 2-o to 2-ox (Fig. 4a) and of regioisomeric 3-o to 3- 
ox (Fig. 5a). Upon irradiation of 2-o with 254 nm light major changes 
that appeared in its spectrum included a decrease in intensity at 230 nm 
and an increase both at around 260 nm and in the region of 310–370 nm 
(Fig. 4b).

Compared to 2-o, somewhat different changes occurred in the 
spectrum of 3-o upon irradiation (254 nm). In this case, a decrease in 
absorption intensity was observed at 230 nm as well; however, a slight 
decrease in the region of 270–320 nm occurred, while the increment 
above 330 nm was smaller compared to that of compound 2-o (Fig. 5b). 
These changes in the absorptions could be explained by the different 
conjugation modes of the two isomers, while the planarity of 2-ox [6] 

and the helical structure of 3-ox [9] could also play a role. Comparison 
of the UV–vis spectra of the photogenerated 2-ox and 3-ox products with 
the spectra of the isolated compounds from the Scholl-type approach 
(Figs. 4c and 5c, respectively) showed good agreement. Notably, the 
chemical transformation of 3-o yielded 3-ox in only moderate yield (42 
%) compared to that obtained in the synthesis of 2-ox (96 %).

We also attempted the preparative scale photochemical trans
formation of 1-o, 2-o and 3-o to their respective closed-oxidized iso
mers. Compound 2-o was chosen as benchmark for the optimization of 
the reaction conditions, due to the low solubility of product 2-ox in 
common organic solvents. We expected that its precipitation would limit 
the absorbance of the already formed product under continuous irradi
ation, thus improving the efficiency of the reaction. Furthermore, the 
workup of the reaction would only consist of a simple filtration. While at 
the low concentration of the UV–vis experiment the 254 nm irradiation 
led to the desired transformation, the larger scale experiment deemed 
more challenging. Using a 13 W 254 nm light-source (LightTech 
GH0436T5l/4, 48 W; Arc Length 360 mm, 13 W for the 254 nm light) 
[25], irradiation of a solution of 2-o (100 mg in acetonitrile) in a quartz 
reactor in the presence of bubbling air, rapid transformation of the 
starting material along with the rapid degradation of 2-ox were 
observed (for further details see Supporting Information). The results 
could be improved by using a 312 nm light-source and acetonitrile/H2O 
(4 : 1) as solvent that facilitated the precipitation of the product 2-ox. In 
this way a yield of 10 % could be obtained as determined by 1H NMR 
spectroscopy (for further details on quantitative 1H NMR measurements, 
see Supporting Information). This approach (312 nm light, 

Fig. 5. (a) Conversion of 3-o to 3-ox by photochemical and chemical pathways; (b) changes in the UV–vis spectrum of 3-o by time upon irradiation with 254 nm light 
in CH3CN under aerobic conditions; (c) UV–vis spectrum of 3-ox (CH3CN, rt).

Fig. 6. (a) UV–Vis absorption spectra of compound 4-o in different solvents; (b) changes in the UV–vis spectrum of 4-o by time upon irradiation with 365 nm light in 
CH3CN under aerobic conditions; (c) UV–vis spectrum of 4-ox (CH3CN, rt).
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acetonitrile/H2O (4 : 1)) was extended to the transformation of com
pounds 1-o and 3-o. While a yield (based on 1H NMR spectroscopy) of 
about 20 % could be reached for 1-ox, 3-ox was isolated in 15 % yield. 
Notably, the conversion of compound 1-o was relatively low (<25 %) 
after 3 h irradiation (for further details, see Supporting Information).

It is important to note that performing the Mallory oxidation on a 
preparative scale would prove to be a greener alternative to the 
currently employed direct aryl-aryl coupling methods for obtaining the 
ring fused compounds. Not only is the atom economy improved, since no 
other reagents than the precursor are needed, but the workup is also 
significantly more straightforward, potentially only consisting of the 
evaporation of solvents to yield high purity products. Both 2-ox and 3- 
ox have poor solubilities in common organic solvents, therefore classical 
purification steps such as column chromatography or recrystallisation 
could not be carried out. Instead, following the BF3⋅Et2O/DDQ induced 
transformation, we opted for several washing steps with copious 
amounts of different solvents (see the Supporting Information). Ac
cording to the 1H NMR spectra of the pure compounds, this method 
sufficed. Additionally, UV–vis spectroscopy confirmed that all residual 
DDQ/DDQH2 was successfully removed. For device fabrication pur
poses, further purification by sublimation of these compounds could 
prove successful.

Complementary to the synthesis of naphthodithiophenes 1-ox, 2-ox 
and 3-ox that were discussed above, we also studied the formation of 
biphenylene-fused benzodithiophene 4-ox using the Mallory conditions 
(Fig. 6). Notably, the benzene ring of biphenylene in 4-o that contains 
the thiophene substituents exhibits lower aromaticity than benzene 
[26], which facilitates the first, photochemical electrocyclization step 
towards 4-ox [27]. Compound 4-o was accessible through a palladium 
catalyzed twofold Suzuki-Miyaura cross-coupling between 2,3-diiodobi
phenylene and commercially available 3-thienylboronic acid (for syn
thetic details, see Supporting Information). The photochemical 
behaviour of 4-o was investigated by UV–vis spectroscopy. Its absorp
tion spectra displayed an intense absorption band at 270 nm and three 
less intense peaks at 335 nm, 354 nm, and 374 nm. No changes in the 
absorption bands were detected when the spectra were recorded in 
different protic or aprotic solvents.

Next, a sample of compound 4-o was irradiated with 365 nm light 
under air, which yielded new, sharp absorption bands at 290 nm, 300 
nm, 330 nm, 380 nm, and 400 nm irreversibly (Fig. 6). After prolonged 
irradiation the photoproduct was isolated and characterized, which 
supported the formation of 4-ox.

Overall, we have shown the Mallory reaction is a reasonable 
approach to access π-extended naphthodithiophenes with different 
electronic characters from dithienylbenzenes and the method can be 
extended to backbones with antiaromatic character. Nevertheless, for a 
synthetically practical photochemical process further tuning of the ox
idants and conditions will be necessary.

3. Conclusions

In conclusion, we have demonstrated the possibility to use UV-light 
and air as an oxidant to access thiophene-containing polycyclic aromatic 
systems from dithienyl-arene derivatives. The formation of the product 
from dithienylbenzene derivatives was monitored by UV–vis spectros
copy. Preparative-scale photochemical transformation has proved to be 
challenging due to uncontrolled side-reactions. As a complementary 
approach, to support their photochemical formation, the products were 
also prepared using the combination of BF3⋅Et2O and DDQ. Overall, the 
photoinduced electrocyclization/aerobic oxidation sequence could be 
used as a greener alternative of metal-catalyzed approaches, however 
further tuning of reaction conditions is necessary for larger-scale 
synthesis.
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irradiation of sitagliptin in ultrapure water and WWTP effluent: kinetics, 
transformation products and degradation pathway, Chemosphere 288 (2) (2022) 
132393.

[26] R. Ayub, O. El Bakouri, K. Jorner, M. Solà, H. Ottosson, Can Baird’s and Clar’s 
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