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A photoinduced electrocyclization followed by aerobic oxidation of 1,2-dithienylarene derivatives is described as
a greener alternative to direct aryl-aryl couplings. The formation of the naphthodithiophene type products was
monitored by UV-vis spectroscopy. Naphthodithiophenes with different structural features and electronic
characters were accessed. Oxidative cyclization using the combination of BF3-Et,O and DDQ was a comple-
mentary approach to confirm the formation of the desired products. The method was also applicable to 2,3-

dithienylbiphenylene having a backbone with antiaromatic character.

1. Introduction

Mallory-type reactions have been successfully used to convert dia-
rylethene derivatives into multiring systems through a photochemical
cyclization/oxidation (or elimination) sequence [1,2]. These steps have
been extended by other (photo-)rearrangements and bond cleavages
leading to a great diversity of highly functionalized (hetero)cyclic con-
jugated molecules that are relevant in medicinal or materials chemistry
[3]. While the Mallory reaction has been described to a range of
thiophene-containing diarylethene and terarylene derivatives [3], it has
been explored much less among dithienylbenzenes. Dithienylbenzene
1-0 has been shown to undergo photochemical ring-closing through a
6m-electrocyclization reaction (Fig. 1) [4]. The stable aromatic product
naphtho[2,1-b:3,4-b’]dithiophene (1-0x) that formed upon aerobic
oxidation of the ring-closed structure 1-c¢ provided evidence for the
photoreaction. Generally, however, 1-ox type naphthodithiophenes
have been prepared mainly through Scholl-type oxidative cyclizations
[5-11] while the photochemical approach remained rarely reported
[12]. The likely reason is that previously dithienylbenzene derivatives
have been considered to be “resistant” to photocyclization due to their
pronounced aromaticity [13] compared to the mostly studied dithie-
nylheteroarenes. Notably, other photochemical transformations of
thiophene derivatives leading to thienyl-(hetero)arenes have been re-
ported [14-17]. Importantly, applying the Mallory conditions to the
transformation of thienyl-substituted benzenoid aromatics could be a

greener alternative to access polycyclic heteroaryl structures that are
widely studied as optoelectronic materials [18-23]. In this report we
explore the photoinduced electrocyclization/aerobic oxidation
sequence of some dithienylarene derivatives to demonstrate the acces-
sibility of polycyclic heteroarenes through this approach.

2. Results and discussion

In the following we first describe the results of the photochemical
irradiation of different dithienylarenes under aerobic conditions fol-
lowed by UV-vis spectroscopy. The products are also accessed through
the Scholl-reaction [24], which corroborated the formation of the
polycyclic aromatic structures (Fig. 2). Next, complementary to aro-
matic dithienylbenzenes, the application of the biphenylene backbone
with antiaromatic character is described.

First, we explored the behavior of dithienylbenzene derivative 1-o,
and regioisomeric bis(benzothienyl)benzene derivatives 2-o0 and 3-o,
which were accessible through a twofold Suzuki-Miyaura coupling be-
tween 1,2-diiodobenzene and different thienylboronic acids (for syn-
thetic details, see Supporting Information). These compounds were
expected to work as one-way molecular switches that upon UV-
irradiation under aerobic conditions can be converted to their ring-
closed oxidized derivatives 1-0x, 2-ox and 3-ox, respectively (Fig. 2).
The initial step of this conversion is a light-induced 67-electrocyclization
that leads to the closed-isomer, which is followed by aerobic oxidation.
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Fig. 1. Transformation of dithienylbenzene 1-0 to 1-ox through a photoinduced electrocyclization/aerobic oxidation sequence.
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Fig. 2. Strategies to access the aryl-fused closed-oxidized isomer.
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Fig. 3. (a) Conversion of 1-o to 1-0x by photochemical and chemical pathways; (b) changes in the UV-vis spectrum of 1-o by time upon irradiation with 254 nm light

in CH3CN under aerobic conditions; (c¢) X-ray crystallographic structure of 1-ox (ORTEP style representation is drawn at the 50 % probability level). (*Yield is based
on 'H NMR spectroscopy.)
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Fig. 4. (a) Conversion of 2-o to 2-0x by photochemical and chemical pathways; (b) changes in the UV-vis spectrum of 2-o by time upon irradiation with 254 nm light
in CH3CN under aerobic conditions; (c) UV-vis spectrum of 2-ox (CH3CN, rt). (*Yield is based on 1H NMR spectroscopy.)
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Fig. 5. (a) Conversion of 3-0 to 3-0x by photochemical and chemical pathways; (b) changes in the UV-vis spectrum of 3-o by time upon irradiation with 254 nm light

in CH3CN under aerobic conditions; (¢) UV-vis spectrum of 3-ox (CH3CN, rt).

Alternatively, the ring-closed oxidized species could be accessed by a
Scholl-type intramolecular oxidative coupling of the open isomers. For
this, we used the combination of BF3-Ety0 and DDQ, which was found to
be an efficient method [24].

Compound 1-o0 has been described previously as a photochemical
one-way switch that under aerobic conditions forms compound 1-ox
(Fig. 3a) [4]. The irreversible changes in its UV-vis spectrum upon
irradiation with 254 nm light indicated the formation of the stable ar-
omatic product (Fig. 3b). Using the BF3-EtoO/DDQ system 1-o could be
converted to 1-ox in good yield (Fig. 3a). Single crystals of 1-ox suitable
for X-ray crystallographic measurement could be obtained from a hex-
ane solution upon slow evaporation of the solvent. Crystallographic
analysis revealed that the polycyclic product is a planar structure
(Fig. 3¢).

Both the photochemical and the chemical approach were successful
in the conversion of 2-0 to 2-ox (Fig. 4a) and of regioisomeric 3-o to 3-
ox (Fig. 5a). Upon irradiation of 2-o0 with 254 nm light major changes
that appeared in its spectrum included a decrease in intensity at 230 nm
and an increase both at around 260 nm and in the region of 310-370 nm
(Fig. 4b).

Compared to 2-o, somewhat different changes occurred in the
spectrum of 3-o upon irradiation (254 nm). In this case, a decrease in
absorption intensity was observed at 230 nm as well; however, a slight
decrease in the region of 270-320 nm occurred, while the increment
above 330 nm was smaller compared to that of compound 2-o (Fig. 5b).
These changes in the absorptions could be explained by the different

and the helical structure of 3-0x [9] could also play a role. Comparison
of the UV-vis spectra of the photogenerated 2-ox and 3-ox products with
the spectra of the isolated compounds from the Scholl-type approach
(Figs. 4c and 5c, respectively) showed good agreement. Notably, the
chemical transformation of 3-o yielded 3-ox in only moderate yield (42
%) compared to that obtained in the synthesis of 2-0x (96 %).

We also attempted the preparative scale photochemical trans-
formation of 1-0, 2-0 and 3-o to their respective closed-oxidized iso-
mers. Compound 2-0 was chosen as benchmark for the optimization of
the reaction conditions, due to the low solubility of product 2-ox in
common organic solvents. We expected that its precipitation would limit
the absorbance of the already formed product under continuous irradi-
ation, thus improving the efficiency of the reaction. Furthermore, the
workup of the reaction would only consist of a simple filtration. While at
the low concentration of the UV-vis experiment the 254 nm irradiation
led to the desired transformation, the larger scale experiment deemed
more challenging. Using a 13 W 254 nm light-source (LightTech
GHO0436T51/4, 48 W; Arc Length 360 mm, 13 W for the 254 nm light)
[25], irradiation of a solution of 2-0 (100 mg in acetonitrile) in a quartz
reactor in the presence of bubbling air, rapid transformation of the
starting material along with the rapid degradation of 2-ox were
observed (for further details see Supporting Information). The results
could be improved by using a 312 nm light-source and acetonitrile/H,0
(4 : 1) as solvent that facilitated the precipitation of the product 2-ox. In
this way a yield of 10 % could be obtained as determined by 'H NMR
spectroscopy (for further details on quantitative 'H NMR measurements,

conjugation modes of the two isomers, while the planarity of 2-ox [6] see Supporting Information). This approach (312 nm light,
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Fig. 6. (a) UV-Vis absorption spectra of compound 4-o in different solvents; (b) changes in the UV-vis spectrum of 4-o by time upon irradiation with 365 nm light in

CH;3CN under aerobic conditions; (¢) UV-vis spectrum of 4-ox (CH5CN, rt).
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acetonitrile/H>0 (4 : 1)) was extended to the transformation of com-
pounds 1-0 and 3-o. While a yield (based on 'H NMR spectroscopy) of
about 20 % could be reached for 1-0x, 3-0x was isolated in 15 % yield.
Notably, the conversion of compound 1-0 was relatively low (<25 %)
after 3 h irradiation (for further details, see Supporting Information).

It is important to note that performing the Mallory oxidation on a
preparative scale would prove to be a greener alternative to the
currently employed direct aryl-aryl coupling methods for obtaining the
ring fused compounds. Not only is the atom economy improved, since no
other reagents than the precursor are needed, but the workup is also
significantly more straightforward, potentially only consisting of the
evaporation of solvents to yield high purity products. Both 2-ox and 3-
ox have poor solubilities in common organic solvents, therefore classical
purification steps such as column chromatography or recrystallisation
could not be carried out. Instead, following the BF3-Eto,0/DDQ induced
transformation, we opted for several washing steps with copious
amounts of different solvents (see the Supporting Information). Ac-
cording to the 'H NMR spectra of the pure compounds, this method
sufficed. Additionally, UV-vis spectroscopy confirmed that all residual
DDQ/DDQH; was successfully removed. For device fabrication pur-
poses, further purification by sublimation of these compounds could
prove successful.

Complementary to the synthesis of naphthodithiophenes 1-o0x, 2-o0x
and 3-ox that were discussed above, we also studied the formation of
biphenylene-fused benzodithiophene 4-ox using the Mallory conditions
(Fig. 6). Notably, the benzene ring of biphenylene in 4-o that contains
the thiophene substituents exhibits lower aromaticity than benzene
[26], which facilitates the first, photochemical electrocyclization step
towards 4-ox [27]. Compound 4-o0 was accessible through a palladium
catalyzed twofold Suzuki-Miyaura cross-coupling between 2,3-diiodobi-
phenylene and commercially available 3-thienylboronic acid (for syn-
thetic details, see Supporting Information). The photochemical
behaviour of 4-0 was investigated by UV-vis spectroscopy. Its absorp-
tion spectra displayed an intense absorption band at 270 nm and three
less intense peaks at 335 nm, 354 nm, and 374 nm. No changes in the
absorption bands were detected when the spectra were recorded in
different protic or aprotic solvents.

Next, a sample of compound 4-o0 was irradiated with 365 nm light
under air, which yielded new, sharp absorption bands at 290 nm, 300
nm, 330 nm, 380 nm, and 400 nm irreversibly (Fig. 6). After prolonged
irradiation the photoproduct was isolated and characterized, which
supported the formation of 4-ox.

Overall, we have shown the Mallory reaction is a reasonable
approach to access m-extended naphthodithiophenes with different
electronic characters from dithienylbenzenes and the method can be
extended to backbones with antiaromatic character. Nevertheless, for a
synthetically practical photochemical process further tuning of the ox-
idants and conditions will be necessary.

3. Conclusions

In conclusion, we have demonstrated the possibility to use UV-light
and air as an oxidant to access thiophene-containing polycyclic aromatic
systems from dithienyl-arene derivatives. The formation of the product
from dithienylbenzene derivatives was monitored by UV-vis spectros-
copy. Preparative-scale photochemical transformation has proved to be
challenging due to uncontrolled side-reactions. As a complementary
approach, to support their photochemical formation, the products were
also prepared using the combination of BF3-Et,O and DDQ. Overall, the
photoinduced electrocyclization/aerobic oxidation sequence could be
used as a greener alternative of metal-catalyzed approaches, however
further tuning of reaction conditions is necessary for larger-scale
synthesis.
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