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Abstract 13 

In obesity, adipose tissue macrophages (ATMs) are abundant immune cells in the adipose 14 

tissue and are known as inducers of metabolic inflammation that may lead to insulin resistance 15 

and immune disorders associated with obesity. However, much less is known about the 16 

ontogeny and physiological functions of ATMs in the lean adipose tissue. ATMs are present at 17 

birth and actively participate in the synthesis of mediators which induce lipolysis, 18 

mitobiogenesis and thermogenesis in adipocytes. Later in life ATMs limit the thermogenic 19 

competence of the adipocytes and favor lipid storage. ATMs respond to lipid overload of 20 

adipocytes in obesity with a sequence of pro-inflammatory events, including inflammasome 21 

activation and pryoptosis, as well as stimulation of nuclear factor kappa B and interferon 22 

response elements that evoke an uncontrolled inflammation. ATMs are life-long constituents 23 

of the adipose tissue, and hence signals that control ATM development and ATM-adipocyte 24 

interactions determine adipose tissue health. 25 

 26 

 27 

Key words: obesity – adipose tissue – inflammation – macrophage  28 



3 

 

Brief history of adipose tissue macrophages 29 

 30 

Adipose tissue macrophages (ATMs) are resident innate immune cells of the adipose tissue, 31 

that become abundant with the progression of obesity (Boutens and Stienstra 2016; Epelman 32 

et al. 2014; Glass and Olefsky 2012; Lee and Lee 2014; Li et al. 2013; Osborn and Olefsky 33 

2012; Qiu et al. 2014; Röszer 2020d; Röszer 2022; Xu et al. 2003) (Fig. 1A). The presence of 34 

ATMs – termed as “fixed histiocytes” – in the adipose tissue is mentioned in a histology book 35 

from 1914 (Kopsch 1914), and a comparative histology textbook from the 1950s also mentions 36 

the existence of phagocytic immune cells in the amphibian adipose tissue (Ábrahám 1952). 37 

Accumulation of ATMs was first described in obese adipose tissue of mice in the 1960s 38 

(Hausberger 1966) and later ATMs were defined as phagocytosing myeloid cells that express 39 

CD11c and F4/80 antigen in mouse, and CD68 and IBA1 (ionized calcium binding adaptor 40 

molecule 1) in human, and various monocyte-macrophage proteins in other mammals (Röszer 41 

2020d). Since adipose tissue is a specialized connective tissue, and since connective tissues 42 

harbor various immune cells, including macrophages, ATMs were considered as patrolling 43 

immune cells in the fat depots. Thus, initially ATMs were not assigned to a dedicated 44 

physiological function beyond immune surveillance. However, the central role of adipose 45 

tissue inflammation in metabolic syndrome and the clustering of obesity-associated immune 46 

pathologies become evident in the 2000s (Lumeng et al. 2007; Lumeng et al. 2008; Weisberg 47 

et al. 2003; Xu et al. 2003),  that instigated a growing interest in understanding immune 48 

component of obesity.  49 

The health impact of adipose tissue inflammation in obesity led to the rediscovery of 50 

ATMs in obese human adipose tissue in the early 2000s, catalyzing the rapid development of 51 

an ATM-centered paradigm of obesity-associated pathologies (Lumeng et al. 2007; Weisberg 52 

et al. 2003; Xu et al. 2003). ATMs are however appear in the lean adipose tissue as well, and 53 
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are constituents of the adipose tissue stroma in amphibia, rodents, ruminants, carnivora, 54 

primates and human (Akter et al. 2012; Ampem et al. 2016; Waqas et al. 2017b; Yu et al. 2019). 55 

ATMs secrete cytokines, lipid mediators, hormones and are sources of reactive oxygen species. 56 

Local and systemic effects of these ATM-derived biomolecules determine adipocyte 57 

functioning and systemic metabolism.  58 

 

Figure 1. Obese adipose tissue in mouse. Adipose tissue macrophages (ATMs) are labeled 

with an antibody against the mouse macrophage marker F4/80 antigen. ATMs form crown 

like structures (indicated with arrows) around adipocytes (ac). (B) Apoptotic fat cells (ac) 

and macrophages (mp) in vitro. Such as in the adipose tissue, macrophages form clusters 

around the apoptotic fat cell and clear their remnants and lipid molecules. (C) Transmission 

electron microscopy of a mouse ATM, engulfing a large lipid droplet. nc: nucleus, lp: lipid 

droplet. For better visibility the lipid droplet is labeled with pseudo-color. Text and images 

are reprinted from (Röszer 2020d). 

 59 

Adipose tissue macrophages: friend or foe? 60 

 61 

ATMs are mostly known for their metabolically adverse effects that in obesity. Obesity is 62 

associated with a significant increase in ATM number and pro-inflammatory macrophage 63 

activation (Boutens and Stienstra 2016; Lumeng et al. 2007), that is concomitant with the 64 

development of chronic adipose tissue inflammation (Weisberg et al. 2003; Xu et al. 2003). 65 
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Inflammation impairs insulin sensitivity, deteriorates kidney and liver function, eventually, 66 

establishing a bad reputation for ATMs (Boutens and Stienstra 2016). There are several original 67 

articles and reviews, detailing the metabolic harm of ATMs residing in the obese adipose tissue. 68 

Historically, when the abundance of ATMs in the obese adipose tissue was shown, the so-69 

called M1/M2 polarization model was the central paradigm of macrophage biology (Röszer 70 

2020d). In brief, M1, or classical macrophage activation is elicited by lipopolysaccharides 71 

(LPS) and interferon gamma (IFN) in macrophages cultured in vitro. LPS is an activator of 72 

Toll like receptor 4 (TLR4), and IFN acts through its membrane receptor. Eventually, LPS 73 

and IFN stimulation of macrophages leads to the activation of nuclear factor kappa B (NFB) 74 

and interferon regulatory factors (IRFs) controlled pro-inflammatory gene expression. This 75 

increases pro-inflammatory cytokine secretion and nitric oxide (NO) synthesis by 76 

macrophages. In turn, an interleukin-4 (IL-4) or interleukin-10 (IL-10)-induced, so-called M2, 77 

or alternative macrophage activation mitigates pro-inflammatory gene expression and favors 78 

an immune suppressive, pro-resolving or pro-fibrotic macrophage phenotype (Röszer 2020c). 79 

Initial studies indicated that ATMs of the obese adipose tissue express various M1 macrophage-80 

associated cytokines, such as TNF and IL-6, that ignite inflammation and impair insulin 81 

responsiveness (Röszer 2020d). 82 

For about two decades, the mainstream of ATM studies corroborated the concept of a 83 

metabolically harmful M1 activation of ATMs (Boutens and Stienstra 2016; Glass and Olefsky 84 

2012; Lackey and Olefsky 2016; Lumeng et al. 2008; Morinaga et al. 2015; Osborn and 85 

Olefsky 2012; Shapiro et al. 2011). Albeit obese adipose tissue is rich in ATMs that secrete 86 

pro-inflammatory mediators, the transcriptional landscape of ATMs and the in vitro activated 87 

M1 macrophages are distinct (Aron-Wisnewsky et al. 2009; Coats et al. 2017; Li et al. 2019; 88 

Lumeng et al. 2008; Morris et al. 2011; Russo and Lumeng 2018; Shaul et al. 2010), since 89 

ATM activation can be elicited by various pathogen recognition receptors apart from TLR4 90 
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and IFN receptors, that yields a pro-inflammatory macrophage phenotype (Röszer 2020d, a). 91 

Of note, adipocytes also express pro-inflammatory genes and have inflammasome activation 92 

in obesity (Giordano et al. 2013), and adipose tissue inflammation may be mitigated 93 

independently from macrophage activation (Nickl et al. 2021). 94 

Nevertheless, obesity leads to a pro-inflammatory ATM activation and the underlying 95 

mechanism may be associated with a macrophage response to lipid-overloaded adipocytes and 96 

pro-inflammatory signals of other immune cells of the adipose tissue (Lindhorst et al. 2021). 97 

In obesity, adipocyte volume and adipocyte number increase, along with the apoptotic death of 98 

lipid-overloaded adipocytes (Fig. 1A). Weight loss due to caloric restriction and diet rich in 99 

short chain fatty acids reduce pro-inflammatory ATM activation (Eslick et al. 2022; 100 

Kováčiková et al. 2011), plausibly by eliminating the trigger – i.e., lipid overload of adipocytes 101 

– of a pro-inflammatory ATM activation.  102 

ATMs, such as any other tissue resident macrophages, may engulf apoptotic fat cells 103 

and fat cell-derived apoptotic bodies (Fig. 1B). Indeed, ATMs form multinucleated syncytia, 104 

so-called crown-like structures around dying adipocytes in the obese adipose tissue (Amano et 105 

al. 2014; Boutens and Stienstra 2016; Epelman et al. 2014; Fuentes et al. 2010; Glass and 106 

Olefsky 2012; Lee and Lee 2014; Li et al. 2013; Osborn and Olefsky 2012; Qiu et al. 2014; 107 

Waqas et al. 2017a) (Fig. 1A). Apoptotic cell uptake promotes anti-inflammatory macrophage 108 

activation in most tissues, however, the uptake of apoptotic adipocytes triggers a pro-109 

inflammatory ATM activation (Röszer 2021).  110 

Under physiological conditions adipocyte differentiation is associated with an increase 111 

in the expression of survival factors, rendering the mature adipocytes long-lived cells (Sorisky 112 

et al. 2000). In mouse, lipid-storing “white” adipocytes are more resistant to apoptosis than the 113 

thermogenic “brown” adipocytes (Nisoli et al. 2006). Human abdominal subcutaneous 114 

preadipocytes are more resistant to apoptosis than are omental preadipocytes, and the distinct 115 
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fat depots contain at least two different adipocyte populations based on their resistance to 116 

apoptosis (Tchkonia et al. 2005). Adipocyte apoptosis and necrosis become prevalent under 117 

pathological conditions, such as cytokine-induced or congenital lipodystrophy (Birk and 118 

Rubinstein 2006; Domingo et al. 1999; Vogel et al. 2011), and in obesity. 119 

Hypertrophic adipocytes undergo apoptosis or secondary necrosis in obese adipose 120 

tissue. Adipocyte death may be a response to lipid overload, mitochondrial damage and to 121 

inflammatory cytokines. Lipid overload in hypertrophic adipocytes can lead to the “spillover” 122 

of lipids into the cytosol, leading to so-called lipotoxicity and, ultimately, apoptosis (Prieur et 123 

al. 2010). Failure of fatty acid oxidation and oxidative phosphorylation initiates the 124 

mitochondrial pathway of apoptosis in adipocytes (Qian et al. 2020), and also triggers 125 

inflammatory cell death, termed pyroptosis (Giordano et al. 2013; Qian et al. 2020). Impaired 126 

lipolysis and hypertrophy are hence powerful triggers of adipocyte apoptosis (Osuga et al. 127 

2000). Lipotoxicity also triggers apoptosis of adipose tissue stem cells in aged fat (Guo et al. 128 

2007).  129 

Adipocyte cell death is an inflammation-generating process, and is a prelude to a 130 

sequence of events leading to obesity-associated metabolic diseases (Lindhorst et al. 2021; 131 

Vandanmagsar et al. 2011; West 2009).  It is plausible that the first wave of apoptosis of 132 

adipocytes during the development of obesity is well controlled by the ATMs, and they are 133 

able to maintain an M2-like activation state (Shaul et al. 2010), and remove excess lipids 134 

(Kosteli et al. 2010). However, the prevalence of damage-associated molecules and pro-135 

inflammatory lipid species in the dying adipocytes – that are engulfed by the ATMs – can 136 

switch the function of ATMs towards the release of inflammatory cytokines and reactive 137 

oxygen species, probably due to NFB, interferon regulatory factors (IRFs) and inflammasome 138 

activation. Moreover, the capacity of ATMs to clear apoptotic cells may be exhausted in 139 
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obesity (Luo et al. 2019), and the apoptotic or necrotic cell debris aggravates local 140 

inflammation.  141 

ATMs are not the sole immune cells of the adipose tissue: indeed, there is a complex 142 

adipose tissue immune cell niche, that contains mast cells, innate lymphoid cells, natural killer 143 

cells, T cells and B cells. A pro-inflammatory ATM activation may initiate a cascade of 144 

intercellular signaling events within this immune cell niche, leading to an uncontrolled 145 

inflammation. In turn, immune cells of the adipose tissue release cytokines that further augment 146 

the pro-inflammatory ATM activation. This may result in adipose tissue inflammation 147 

(Boutens and Stienstra 2016; Coats et al. 2017). 148 

It was initially thought that M2 activated (pro-resolving, anti-inflammatory) ATMs 149 

would be beneficial in obesity, by reducing adipose tissue inflammation and increasing insulin 150 

sensitivity (Röszer 2020d). It was also assumed, that the lean adipose tissue was rich in M2 151 

ATMs (Rosen and Spiegelman 2014), albeit only a limited number of M2 marker proteins are 152 

expressed by ATMs in the lean state (Röszer 2020d). Moreover, number of M2 ATMs is 153 

limited by their removal by type I innate lymphoid cells (Boulenouar et al. 2017), and the 154 

abundance of M2 ATMs may cause adipose tissue fibrosis and worsen the metabolic 155 

impairment in obesity (Spencer et al. 2010). Fibrosis in the breast adipose tissue may increase 156 

the risk for tumor development and tumor aggressiveness (Kuziel et al. 2023). Pro-fibrotic 157 

ATMs in the perivascular fat layer also aggravate fibrosis in heart failure and increase the 158 

progression of coronary atherosclerosis (Fu et al. 2023). There are various negative feedback 159 

mechanisms (Zheng et al. 2015), including IL-4/STAT6 signaling itself  (Arpa et al. 2009) that 160 

limit the abundance of M2 macrophages in tissues. 161 

Single-cell sequencing data, and the growing body of studies using flow cytometry, 162 

macrophage-specific knockout models show that there are various ATM subsets, which show 163 

varying degree of M1 and M2 traits (Blaszczak et al. 2019; Huang et al. 2016; Li et al. 2019). 164 
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Depending on the state of the obesity, the ATM population may be dominated by M2 ATMs, 165 

a mixture of M1 and M2 ATMs and eventually can be dominated by M1, inflammatory, 166 

“metabolically activated” ATMs (Aron-Wisnewsky et al. 2009; Basinska et al. 2015; Chung et 167 

al. 2014; Coats et al. 2017). There are also depot-specific differences between ATM pools 168 

(Bigornia et al. 2012).  169 

Immune-suppressive (often termed as M2) macrophages support tumor growth (Röszer 170 

2020c), and accordingly, ATMs in the breast adipose tissue expressing M2 macrophage genes 171 

increase tumor progression (Li et al. 2023). Independent of obesity, an increased number of 172 

ATMs of the breast adipose tissue worsens breast cancer prognosis  (Lin et al. 2021).  It is also 173 

postulated, that ATM-derived cytokines, such as IL-6, IL-10, TGF, and mediators such as 174 

VEGF and enzymes such as metalloproteinases may support the development of malignant cell 175 

proliferation (Singh et al. 2022). ATMs thereby have more complex roles in adipose tissue 176 

functioning than inflammation control and interfering with insulin sensitivity. 177 

The simplified concept of antagonistic M1/M2 ATM effects on systemic metabolism is 178 

further challenged by the role of  pro-inflammatory signal mechanisms that are required for 179 

physiological adipose tissue development (Babaei et al. 2018; Sun et al. 2018) (Fig. 2A). ATMs 180 

stimulate thermogenic and fat catabolizing adipocyte activities after birth by releasing IL-6 and 181 

ablation of ATMs in newborn mice leads to the loss of thermogenic fat cells in the subcutaneous 182 

fat depot (Yu et al. 2019). Loss of thermogenic fat is associated with adiposity (Gyurina et al. 183 

2023; Honecker et al. 2022; Sacks and Symonds 2013). Increased adiposity at the first year of 184 

life, and an early adiposity rebound before 5.5 years year of life increase the probability of 185 

obesity as a young adult (Carolan-Olah et al. 2015; Charney et al. 1976; Dietz 1994; Eriksson 186 

et al. 2003; Fall 2006; Geserick et al. 2018; Landgraf et al. 2015; Pietrobelli et al. 2017; 187 

Rolland-Cachera et al. 1984; Siervogel et al. 1991). Importantly, ATMs are already present in 188 

the fat depots after birth (Waqas et al. 2017b; Yu et al. 2019), concomitantly with the 189 
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abundance of thermogenic adipocytes in both mouse and human (Gyurina et al. 2023; Hoang 190 

et al. 2021). It is plausible that ATMs support thermogenic fat development in the early 191 

postnatal life (Fig. 2A). 192 

 193 

 

Figure 2. ATM functions under physiological and pathological conditions 

(A) ATMs promote thermogenesis and lipolysis in the early postnatal development of the 

adipose tissue. (B) In the adult and aging adipose tissue ATMs support energy storage in 

neutral lipids. (C) In obesity the lipid-overloaded adipocytes induce a pro-inflammatory 

ATM activation that may induce adipose tissue inflammation, insulin resistance and obesity-

associated pathologies. As a result, fat accumulation may further increase, initiating a vicious 

cycle. 

 194 

Ontogeny of adipose tissue macrophages 195 

 196 

Origin of ATMs is still poorly understood, despite an uncontrolled expansion of the ATM pool 197 

worsens obesity-associated diseases. In the visceral and subcutaneous adipose tissues – that are 198 

relevant in obesity – the number of ATMs may increase as a result of monocyte infiltration and 199 

local proliferation of ATMs (Amano et al. 2014; Haase et al. 2014; Waqas et al. 2017b). 200 

Hypertrophic adipocytes release chemotactic and pro-inflammatory signals, that stimulate bone 201 

marrow monocyte development and attract monocytes to the obese fat depots, eventually 202 

increasing the monocyte-derived ATM pool (Lumeng et al. 2007; Nagareddy et al. 2014). The 203 



11 

 

first wave of ATMs however develops from hematopoietic cells of the yolk sac – and probably 204 

of the fetal liver – and fetal ATMs persist in the newborn (Waqas et al. 2017b). ATMs retain 205 

the ability of self-replenishment and proliferate in response to interleukin-6 (IL-6) and 206 

neuropeptide FF (NPFF) (Röszer 2018, 2020b; Waqas et al. 2017a; Waqas et al. 2017b). NPFF 207 

is an appetite regulating hormone, that is released from the endocrine pancreas and from the 208 

hypothalamus (Waqas et al. 2017a). Later in infancy, the fetal ATMs are accompanied – and 209 

plausibly gradually replaced  – by monocyte-derived ATMs (reviewed in (Röszer 2020b)). 210 

Interestingly, the interscapular brown adipose tissue, the largest thermogenic fat depot in 211 

rodents, is scarce in macrophages (Alcalá et al. 2017; Waqas et al. 2017b). ATMs of the breast 212 

may derive from circulating monocytes, or resident macrophages of the gland stroma (Linde et 213 

al. 2018). Origin of ATMs in the perivascular fat depots is still to be elucidated (Röszer 2020b). 214 

 215 

Physiological functions of ATMs 216 

 217 

In contrast to the abundance of studies on the metabolic harms caused by pro-inflammatory 218 

ATMs of the obese adipose tissue, only a small fraction of the ATM-related literature deals 219 

with ATM functions in the lean adipose tissue. In brief, ATMs appear to control the changes 220 

physiological functions of the developing adipose tissue. After birth, when the adipose tissue 221 

depots have an active lipolysis and thermogenesis, ATMs promote thermogenic “brown” or 222 

“beige” adipocyte development (Hoang et al. 2022; Yu et al. 2019) (Fig. 2A). 223 

In adulthood and with aging, when fat storage becomes more relevant that 224 

thermogenesis and lipolysis, ATMs antagonize lipolysis and inhibit cold-induced 225 

thermogenesis (Camell et al. 2017; Pirzgalska et al. 2017) (Fig. 2B). It is generally assumed, 226 

that the lean fat contains anti-inflammatory ATMs, that express some markers of the M2 227 

macrophages, such as arginase-1 and CD206. However, ATM-derived pro-inflammatory 228 
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signals are necessary for adipose tissue development, since a transient inflammatory signaling 229 

is essential for physiological adipogenesis (Chung et al. 2017).  230 

It has been shown that elimination of ATMs with clodronate liposome uptake shifts 231 

subcutaneous adipose tissue development towards a fat storing state in newborn mice, 232 

suggesting that ATMs support the maintenance of the lean state (Yu et al. 2019). 233 

Mechanistically, ATMs synthesize platelet activating factor (PAF) that stimulates IL-6 release, 234 

that eventually activates the transcription of genes required for mitochondrial biogenesis and 235 

thermogenesis in neighboring adipocytes (Yu et al. 2019). This process is termed as adaptive 236 

thermogenesis, or adipocyte browning: a process that allows dissipation of energy stored in fat 237 

in form of heat. Albeit cold exposure increases the number of M2-activated ATMs (Hui et al. 238 

2015), these ATMs do not affect adaptive thermogenesis (Fischer et al. 2017). In the aging 239 

adipose tissue, that stores fat rather metabolizing it, ATMs and macrophages in the sympathetic 240 

ganglia eliminate noradrenaline, a key signal of lipolysis and thermogenesis  (Camell et al. 241 

2017; Pirzgalska et al. 2017).  242 

Safe disposal of apoptotic cells is another M2 function for ATMs, and obesity-inducing 243 

substances may also impair this function (Röszer 2017).The long life span of adipocytes 244 

however does not keep ATMs busy with this task. ATMs also release neuropeptide Y (Singer 245 

et al. 2013), and IGF-1 (Chang et al. 2016), suggesting an endocrine function for ATMs. 246 

However, that idea has not been corroborated by recent research. For instance, an initial finding 247 

on noradrenaline production of ATMs has been disproved by a more recent study (Fischer et 248 

al. 2017).  249 

Albeit emphasis was given to the impact of ATM activation, and M1 macrophages were 250 

tagged as “metabolically harmful” and their M2 counterparts as “metabolically beneficial”, it 251 

is plausible that the metabolic effect of ATMs depends on specific enzymes they possess (e.g., 252 
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enzymatic synthesis of PAF from dietary lipids and enzymatic degradation of noradrenaline), 253 

and signals (e.g., hormones) they release, rather to their activation state. 254 

Expression of M1 and M2 markers are regulated by a wide range of signals such as 255 

hormones, lipid metabolites, fatty acids, cytokines, and microbial products (Röszer 2020a). 256 

Physiologically it appears that the effect of macrophage activating signals is antagonized by 257 

counter-regulatory mechanism. For instance, LPS released by the gut microbiota to the blood 258 

stream induce the expression of some M1 marker genes in ATMs under physiological 259 

conditions (Caesar et al. 2012). In turn, Lactobacilli may migrate into the adipose tissue, and 260 

mitigate a pro-inflammatory ATM activation (Huang et al. 2017). Moreover, ATMs and 261 

regulatory T cells produce IL-10 in the lean adipose tissue, which is a possible endogenous 262 

signal for suppressing an immune response in ATMs against gut microbiota (Liu and 263 

Nikolajczyk 2019; Russo and Lumeng 2018).  264 

 265 

Blind spots in ATM biology 266 

 267 

There are several unexplored aspects of ATM biology, especially in the therapeutic or 268 

diagnostic use of ATMs. Increased ATM number and inflammatory hyperactivation of ATMs 269 

are core traits that make ATMs potentially harmful for the systemic metabolism (Fig. 2C). 270 

Having pharmacological intervention for a targeted reduction of ATM number is however a 271 

yet to be achieved goal. It is known that bariatric surgery, regular exercise, and a diet rich in 272 

polyunsaturated fatty acids reduce ATM number and induce profound changes in the immune 273 

cell composition of the adipose tissue (Frikke-Schmidt et al. 2017).  Weight loss due to caloric 274 

restriction induces a transient increase in ATM number in mice, that is followed by a steady 275 

reduction in ATM number (Kosteli et al. 2010). It appears that lipolysis and the eventual release 276 

of free fatty acids are the signals for the transient accumulation of ATMs (Kosteli et al. 2010). 277 
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The underlying mechanisms, such as the cell cycle regulation and life span of tissue 278 

macrophages are still incompletely understood. Moreover, we lack ATM-specific markers, that 279 

would allow a targeted elimination of the ATMs or a cell-specific drug delivery to ATMs.  280 

Histopathology evaluation of adipose tissue specimens obtained with needle biopsy or 281 

removed during elective surgery may be used for the assessment of adipocyte size and number, 282 

adipocyte apoptosis, thermogenic and lipogenic potential of the adipocyte, number and 283 

activation state of ATMs may provide an accurate prognosis in obesity (Gyurina et al. 2023; 284 

Kováčiková et al. 2011). Adipose tissue-based personalized histopathology is however still not 285 

in use in clinical settings.  As of technical limitations to study ATMs, it is worth to mention 286 

that we lack immortalized ATM cell lines, and methods for a lineage specific ablation of 287 

ATMs. Moreover, proper discrimination of monocytes, mast cells and ATMs is challenging 288 

due to the overlap of their marker proteins (Röszer 2020e). How ATMs respond to obesogenic 289 

signals of the environment (Ampem et al. 2019), or to viruses that can profoundly affect 290 

adipose tissue functioning (e.g., thermogenesis and lipolysis) (Atkinson 2007) are still largely 291 

unexplored aspects of ATM biology. And lastly, despite the enormous functional and 292 

developmental differences between the distinct fat depots of the human body (Cohen and 293 

Kajimura 2021), we lack an insight into depot-specific ATM functions. It is also plausible that 294 

ATMs have functions that are dependent on the developmental stage of the adipose tissue, thus 295 

ATMs may have distinct effects after birth, in adulthood and during aging (Röszer 2022).   296 
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