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ABSTRACT

The maternal-effect mutation ichabod (ich) results in ventralized zebrafish embryos due to impaired induction of the dorsal canonical Wnt-signaling pathway. While
previous studies linked the phenotype to reduced ctnnb2 transcript levels, the causative mutation remained unidentified. Using long-read sequencing, we discovered
that the ich phenotype stems from the insertion of a non-autonomous CMC-Enhancer/Suppressor-mutator (CMC-EnSpm) transposon in the 3'UTR of the gene.
Through reporter assays, we demonstrate that while wild type ctnnb2 mRNAs exhibit remarkably high stability throughout the early stages of development, the
insertion of the transposon dramatically reduces transcript stability. Genome-wide mapping of the CMC-EnSpm transposons across multiple zebrafish strains also
indicated ongoing transposition activity in the zebrafish genome. Our findings not only resolve the molecular basis of the ich mutation but also highlight the
continuing mutagenic potential of endogenous transposons and reveal unexpected aspects of maternal transcript regulation during early zebrafish development.

1. Introduction

In sexually reproducing species, new life is initiated by the fusion of
parental gametes, albeit the zygote is anything but a blank slate after
fertilization. Oocytes are loaded with maternal factors, mRNAs and
proteins, which drive the developmental processes during the earliest
stages of embryogenesis, until transcription from the embryo’s own
genome is turned on. The length of this stage and the timing of the so
called maternal-zygotic-transition (MZT), which effectively terminates
this early stage of development, is highly species-dependent [1,2]. In
those species where several cell cycles elapse before MZT, usually the
oocytes are already highly patterned themselves. Consequently, the
maternal factors will not only coordinate early cell divisions but will also
have a significant role in the initial patterning of the embryonic axes
[3,4].

The importance of maternal genes was established during the initial
dissection of the early metazoan development using forward genetics in
fruit flies (Drosophila melanogaster) (reviewed in [5,6]. Subsequent ge-
netic screens in zebrafish (Danio rerio), recently complemented by
“crispant” screens, have also identified numerous important maternal
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effect genes [7-10]. Some maternal mutants, such as ich [11] or tokkaebi
(tkk) [12,13] were also uncovered independently of forward
mutagenesis.

The mapping and characterization of these maternal mutants (in
parallel with other experiments) revealed the intricate relationship be-
tween the maternal factors asymmetrically segregated along the animal-
vegetal axis and the dorsal-specific activation of the canonical Wnt/
B-catenin signaling pathway, which occurs in early blastula stages
[4,14]. Fertilization of the zebrafish egg is followed by a cortical rota-
tion, which will move the vegetally located dorsal determinant (likely
wnt8a mRNA) to the future dorsal side of the developing embryo
[15-17]. This relocation is essential for the timely activation of the ca-
nonical Wnt pathway and the nuclear localization of p-catenin [15,18].

The maternal-effect ich mutation results in ventralized embryos, due
to impaired induction of dorsal canonical Wnt-signaling, resulting from
reduced transcription levels of ctnnb2, encoding zebrafish p-catenin-2
(Ctnnb2) [19]. This property makes it particularly well suited to study
early dorsal patterning events in development [20-26]. Of note, the
mutation can be completely rescued by the injection of ctnnb2 mRNA,
ctnnbl mRNA or Xenopus f-catenin mRNA as well [11].
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While genetic mapping of the ich allele suggested that the mutation
resides in the proximity to ctnnb2, no mutation was found in the coding
sequence (CDS) of the gene in ich homozygotes. Furthermore, the telo-
meric location of the ctnnb2 locus frustrated previous attempts to posi-
tionally clone the mutation [19].

Ever since their discovery in the middle of the 20th century [27],
transposable elements (TEs) have been recognized as potent biological
mutagens capable of disrupting the normal function of genes in a variety
of organisms [28]. Indeed, some historically relevant phenotypes, such
as the wrinkled peas of Mendel [29] or the melanized forms of the
peppered moths which appeared during the Industrial Revolution in
19th century Britain [30] were the result of transposon insertions. The
mobility of these “jumping genes” have also made them a prime tool for
transgenic technologies in multiple model species, including zebrafish
[31-35].

v
H
A : .
.s

BBA - Gene Regulatory Mechanisms 1868 (2025) 195104

Vertebrate genomes carry varying levels of TEs, and in some species
such as zebrafish and humans over half of the genome can consist of such
sequences [36,37]. DNA transposons as type II TEs are in general
enriched within the zebrafish genome and CMC EnSpm transposons
constitute one of the largest family amongst them [36-39].

Using a long-read genomic sequencing approach, here we show that
the ich phenotype results from the insertion of an EnSpm-type trans-
poson into the 3’'UTR of the ctnnb2 gene, which causes the degradation
of an otherwise very stable maternal transcript.
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Fig. 1. Long-read sequencing identifies an EnSpm transposon in the 3'UTR of ctnnb2 in ich animals. (A) Dotplot representation of different ich contigs that could be
aligned to the “telomere-to-telomere” sequence of the zebrafish chromosome 19. The highlighted (red) contig contains the genomic region of the ctnnb2 gene. (B)
Dotplot comparison of the relevant ich contig and the telomeric portion of chromosome 19 reveals no genomic rearrangement in this region in ich animals. Gene
position schematics are visible along the horizontal axis. (C) Comparison of wild-type and ich-specific ctnnb2 sequences showing the position of the EnSpm-type
transposon insertion. (D) BLAST results of the ich-specific transposon in the FishTEDB [40].



Z. Varga et al.

2. Results

2.1. A transposon insertion can be observed in the 3’'UTR of ctnnb2 in ich
mutants

Earlier positional cloning experiments placed the causative mutation
of ich in close proximity to the ctnnb2 locus, and while no mutations
could be uncovered in the CDS of the gene, maternal levels of ctnnb2
mRNA and Ctnnb2 protein were severely reduced in the embryos of
homozygous females [19].

To determine the exact physical nature of the causative mutation, we
conducted Oxford Nanopore Technologies (ONT) long-read sequencing
on one homozygous ich female. We have assembled the ONT reads into
contigs and aligned the resulting contigs to a newly assembled, “telo-
mere-to-telomere” sequence of chromosome 19 (GCA_033170195.2)
and selected the contig that spanned the ctnnb2 locus (Fig. 1A,B). The
alignment of this 2.27 Mbp long contig to the reference genome
sequence showed no sign of structural variation, thus proceeded to a
manual annotation of the ctnnb2 locus. This annotation revealed the
presence of a 2469 bp long insertion in the last exon of the gene, within
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the 3’UTR region (Fig. 1C).

A closer examination of this insertion revealed that it is a hybrid
sequence between two previously recognized, non-autonomous CMC-
EnSpm type transposons: EnSpm-N49 DR and EnSpm-N49B DR
(Fig. 1D) [40]. This hybrid transposon has a 15 bp long terminal
inverted repeat (TIR) identical to the one described for EnSpm-N49B_DR
(CACTCAAAAAAATGA) and creates a CA target site duplication.

With allele-specific primers, we were able to confirm that in all ich
homozygous females both ctnnb2 alleles carried this insertion (Supple-
mentary Fig. 1).

2.2. ctnnb2 transcripts show high stability during early development

Previous work has already highlighted that while the ich mutation
causes a reduction in the level of ctnnb2 transcripts, the phenotype itself
can be rescued not only by the injection of ctnnb2 mRNA, but also ctnnb1
mRNA can rescue the phenotype [19]. Zebrafish Ctnnb1 and Ctnnb2 are
highly similar proteins, with slight differences detected only in the C-
terminal region (Supplementary Fig. 2A,B). The transcripts of the two
orthologs also show high similarity within their coding regions and
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Fig. 2. High stability of maternal ctnnb2 transcripts is disrupted by 3’UTR transposon insertion. (A) Transcriptome analysis of maternal ctnnbl and ctnnb2 mRNAs
shows a heightened abundance of maternal ctnnb2 transcripts throughout early development (rpm - reads per million bp, ctnnb1 transcripts are shown in beige,
ctnnb2 transcripts in blue). (B) Metabolic labelling suggests active transcription of ctnnb1 after ZGA, but no expression of ctnnb2. (Data for panels A and B are derived
from [41]. (C) Maternal Ctnnb2 protein levels are also very stable during early stages of development as compared to mean protein abundances at these timepoints.
(Data from [43]. (D) Experimental scheme used to test the effect of 3'UTRs on the stability of mRNAs. In vitro transcribed AFP mRNAs with different 3'UTRs are
combined with mCherry transcripts with invariant 3’UTRs and injected into 1-cell stage zebrafish embryos. Fluorescence intensity for both AFP and mCherry is
measured at 24 hpf. (E, F) Typical fluorescence observed in embryos injected with AFP carrying ctnnb2"* or ctnnb2" 3°UTRs, respectively. (Scale bars: 0.5 mm) (G)
Relative fluorescence intensities observed in embryos injected with different 3°UTRs compared to stable and unstable controls (ccnal and tuba8l 3'UTRs, respec-

tively). (Pairwise p values were calculated with the Kruskal-Wallis test.)
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5’UTRs (83.11 % identity). Sequence comparisons, however, show that
the 3'UTR of the two genes is highly divergent, with no similarities to be
found (Supplementary Fig. 2C). As both paralogs are also transcribed
during oogenesis (Supplementary Fig. 3D), the difference in the 3'UTRs
suggested that one plausible explanation for the inability of endogenous
ctnnb1 to rescue ich would be a difference in the stability of ctnnbl and
ctnnb2 maternal transcripts.

Until recently, the lack of adequate labelling and detection methods
prevented scientists from understanding how maternal and zygotic gene
products change during the MZT in developing embryos. Newly avail-
able datasets that rely on metabolic labeling to differentiate between
maternal and zygotic transcripts and assess maternal protein stability
[41-43], however, gave us new opportunities to compare the expression
of ctnnb1 and ctnnb2 at high resolution during the early development of
wild-type embryos.

Interestingly, we observed that ctnnb2 transcripts are about three
times as abundant as ctnnb1 ones both pre- and post-MZT in wild-type
embryos (Fig. 2A), even though no zygotic transcription can be detec-
ted from ctnnb2 (Fig. 2B). Similarly, Ctnnb2 levels also seem constant
during these early stages of development (Fig. 2C), which also include
the 256-cell stage (2.5 hpf), the earliest timepoint when nuclear p-cat-
enin can be detected in the dorsal side of the zebrafish blastula [44,45].
Of note, while protein profiling datasets did not report Ctnnb1 stability
[43], earlier observations using a pan-p-catenin antibody showed that
maternal Ctnnb1 is present in both wild-type and ich embryos [19,46].

2.3. Transposon insertion in the 3’'UTR disrupts the stability of ctnnb2
transcripts

To test if the insertion of the hybrid EnSpm transposon in the 3’'UTR
destabilizes the ctnnb2 we utilized a previously described reporter assay
[47]. We co-injected in vitro synthesized AFP mRNAs with varying
3'UTRs and mCherry with non-variant 3'UTRs in wild type embryos and
estimated the ratio of AFP and mCherry intensity in these embryos at 24
h post fertilization (hpf) (Fig. 2D).

We measured intensities for constructs carrying either the wild-type
or the ich-specific ctnnb2 3’UTRs and compared them to the well-
established stable and unstable 3’UTRs of ccnal and tuba8l, respec-
tively [47]. These results show that while the stability of wild type
ctnnb2 3’UTR is comparable to that of the extremely stable ccnal 3'UTR,
the insertion of the EnSpm transposon resulted in a dramatic reduction
in the stability of the transcript, making it similar to that observed for
tuba8l.

The 3’UTR of the wild-type ctnnb2 gene is relatively long and carries
a number of secondary structural motifs (Supplementary Fig. 3A), that
could either stabilize the transcript by themselves, or could serve as
platforms for interaction with RNA-binding proteins (RBPs) that regu-
late the stability of the mRNA [48]. To reveal if the insertion of the
transposon could introduce any destabilizing sequence motifs in the
3'UTR, we took advantage of a random forest model to compare the
predicted stabilities of the different ctnnb2 3’'UTR sequences with the
ctnnbl 3’UTR [49]. Interestingly, this analysis did not reveal any
destabilizing motifs within the transposon itself, therefore the observed
decrease in transcript stability is most likely not due to the potential
destabilizing effects of particular sequences within the transposon itself
(Supplementary Fig. 3B).

Active transposons are often the target of piRNA-driven destruction
during zebrafish germ-cell development and embryogenesis [50-53],
which offers another possibility for the premature degradation of
maternal ctnnb2 mRNAs. To test if this could be a feasible explanation
for ich embryos, first we looked at the temporal dynamics of EnSpm-
N49/N49B transcription. The reanalysis of previously published trans-
poson expression datasets [54] shows that these particular transposons
become active around the time of the zygotic genome activation (ZGA)
but become downregulated shortly after. The decrease in the levels of
EnSpm-N49/N49B transcripts around shield stage is concomitant with
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an increase in the amount of piRNAs [53], suggesting a Piwi-dependent
silencing mechanism, which, therefore, could provide a possible expla-
nation for the degradation of the ich-specific ctnnb2 transcript as well.

2.4. Active EnSpm-type elements in the zebrafish genome

Our mapping results revealed the recent disruption of the ctnnb2
3’UTR in ich animals due to the transposition of a hybrid EnSpm-N49/
N49B-type transposon. As this suggested that the transposon is still
active, we decided to map the location of EnSpm-N49, EnSpm-N49B and
EnSpm-N49/49B transposons in the zebrafish reference genome and
compare it to other, recently sequenced wild-type strains.

Our results suggest that of the three transposons the hybrid one ap-
pears to be the most active, as we were able to detect 72 copies in the
GRCz11 reference genome, whereas only 7 copies of EnSpm-N49 and 16
copies of EnSpm-N49B were detected using an 80 % sequence similarity
threshold (Fig. 3A, Supplementary Fig. 4A). Our analysis also shows
higher sequence similarity for EnSpm-N49/N49B copies than for the
other transposons, suggesting that this particular transposon is evolu-
tionarily novel (Supplementary Fig. 4A). The genomic distribution of all
three transposons is relatively similar, with most copies found in distal
intergenic or intronic regions (Supplementary Fig. 4B—D).

To compare the positions of the investigated transposons between
different wild-type strains, we also determined the location of the
transposons in AB, Cooch Behar (CB), Nadia (NA) and T5D strains
[55,56]. Our results confirm that the hybrid EnSpm-N49/N49B appears
to be the most active of the three transposons (Supplementary Fig. 4E-
H), and also reveal that all three transposons are actively transposing in
the zebrafish genome as they show divergent distributions in the
different isolates (Fig. 3B,C).

3. Discussion

The mobility and hence the mutagenic potential of mobile genetic
elements has been obvious since their discovery in maize [27] and it is
now recognized as a general feature all organisms [28]. The molecular
characterization and in-depth understanding of the transposition pro-
cess has also made it possible to use such “selfish genetic elements” in
biotechnology and numerous transgenesis methodologies have been
developed that exploit the mobility of these sequences essentially in all
model organisms [31-34]. Thanks to the related expansion of the ge-
netic toolbox over the years numerous zebrafish mutant lines have been
identified resulting from retroviral- or transposon-based mutagenesis
screens [57-59].

Besides exogenous mobile elements, however, endogenous ones can
also have mutagenic effects. Indeed, over the past decades several
zebrafish mutant alleles known to be caused by spontaneous insertion of
endogenous transposons have been also identified [13,60]. The sudden
expansion of type II DNA transposons, in general, and CMC EnSpm
transposons, in particular, in the zebrafish genome has expanded the
repertoire of putative biological mutagens in this species [36-39]. While
the mechanistic details of these transposon invasions have not been
revealed, previous studies from other organisms suggest that type II
transposons can multiply by moving during DNA replication and/or
exploiting host repair mechanisms that inadvertently restore them at
excision sites while they integrate elsewhere [61].

As shown by our results characterizing the ich allele, at least some of
the CMC Spm transposons are still active (Fig. 3, Supplementary Fig. 4)
and exert a mutagenic influence. The EnSpm-N49/N49B is a non-
autonomous transposon, which requires the transposase activity of an
autonomous element for its mobilization. A recent analysis of the
zebrafish pangenome has highlighted a large, autonomous CMC EnSpm
element with an intact transposase and multiple copies in the genome,
which has an almost identical terminal inverted repeat (CACT-
CAAAAAAAT) to the one observed in our case [62].

While TEs are often enriched on chromosome 4, the ancestral sex-
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chromosome of zebrafish with an abundance of transposable elements destabilization of ctnnb2 transcripts due to the insertion of a EnSpm-
[54,63,64], and the accumulation of CMC EnSpm transposons has been N49/N49B transposon sequence in exon 16 of the gene, containing the
also associated with the evolution of sex chromosomes in some other 3'UTR (Figs. 1 and 2), is a synthetic one, but it has been shown previ-
species [65], we do not see an enrichment of the three observed trans- ously to report accurately the effect of 3’'UTR sequences of transcript
posons on chromosome 4. stability [47].

Admittedly, the fluorescent reporter assay we use to demonstrate the The observed destabilizing effect of the transposon also highlights
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that despite years of rapid advances, our understanding of the processes
that regulate the stability and turnover of mRNAs is still incomplete.
Previous work has already highlighted that the presence of miR-430
binding sites [47,66], the codon composition of the CDS [67,68], the
presence of specific structural elements in the transcript 3’'UTRs [49,69]
as well as the length of the polyA tail [70] can all have essential roles in
regulating mRNA stability during MZT. As the transposon insertion does
not appear to introduce destabilizing structures into the 3°'UTR (Sup-
plementary Fig. 3), in the case of the ctnnb2”" allele some other mech-
anistic explanation is needed, and the piRNA-dependent degradation of
the TE-containing mRNA offers a plausible mechanism.

The Piwi-piRNA pathway provides a small RNA-based adaptive
defence against TEs in most eukaryotic genomes [71-73]. It has espe-
cially important roles in containing these biological mutagens during the
development of the gametes in most animals and zebrafish is no
exception [50-52]. Elevated activity of the Piwi-piRNA pathway during
oogenesis and could provide a possible mechanistic explanation for the
degradation of the ctnnb2’ transcripts, which contain a perfect trans-
poson target.

It is also worth highlighting the high stability of the wild-type
maternal ctnnb2 transcript. Even in the absence of a zygotic compo-
nent, there seem to be approximately three times as many ctnnb2 tran-
scripts as those of ctnnbl during early development (Fig. 2). This does
not appear to be caused by differential stability of 3'UTRs as based on
this sequence alone, and ctnnb1 transcripts should be at least as stable as
their ctnnb2 counterparts (Supplementary Fig. 3).

This makes it likely that an interaction with yet unknown RNA-
binding proteins (RBPs) is behind the observed stability levels. It is
noteworthy, however, that a screen of putative RNA binding sites [74]
did not highlight any obvious candidates that would account for the
differential stability of ctnnbl and ctnnb2 (not shown). Understanding
the causes for the high stability of ctnnb2 transcripts, therefore, could
provide important additional information about the mechanisms that
preserve transcripts during oogenesis and protect them from degrada-
tion during ZGA, when typically, we see the turnover of maternal
transcripts to zygotic ones.

In summary we have identified the insertion of an EnSpm transposon
in the 3’UTR of the ctnnb2 gene as the most likely proximate cause of
ctnnb2 transcript instability observed in the embryos of homozygous ich
mutant fish. We showed that the transposon-containing ctnnb2 3’UTR is
considerably less stable than the wild-type counterpart. We also describe
the genomic distribution of the transposon in multiple zebrafish ge-
nomes, providing evidence about the recent activity of this TE.

4. Materials and methods
4.1. Fish husbandry and maintenance

Adult wild-type (ekwill) and ich (ctnnb2p1 ) fish used for these ex-
periments were maintained and bred in the animal facility of the Biology
Institute of ELTE Eo6tvos Lorand University according to existing pro-
tocols [75,76]. Experiments were carried out in accordance with the
Hungarian Act of Animal Care and Experimentation (1998, XXVIII) and
with the directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals used for
scientific purposes. All animal husbandry protocols used for this study
were approved by the ELTE Animal Welfare Animal Committee and the
Hungarian National Food Chain Safety Office (PEI/001/1713-2/2015)
and by the Animal Experiment Committee of Kyoto University
(Inf—K25001).

4.2. Genomic DNA isolation and long-read sequencing
Total genomic DNA was isolated from a homozygous ich female

specimen (weighing approximately 50 mg) stored in DNA/RNA Shield
Reagent (Zymo Research, cat # R1100) using a DNeasy Blood and Tissue
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Kit (Qiagen, cat # 69504) in accordance with the manufacturer’s pro-
tocol for Purification of Total DNA from Animal Tissues, with some
modifications. The fish was split in two halves, the first sample con-
taining the anterior part, the second the posterior part (mostly body
muscle and skin). A total of 360 pl of ATL buffer and 40 pl of proteinase K
were added to the samples, which were then vortexed rigorously. The
mixtures were then incubated at 56 °C for 3.5 h with 400 rpm mixing
and vortexing every 30 min. Thereafter, 400 pl of AL buffer and 400 pl of
ethanol were added to the lysates, which were then vortexed vigorously
and subsequent steps were then continued according to the manufac-
turer’s protocol. Two sequencing libraries were prepared with the
Ligation Sequencing Kit SQK-LSK110 (Oxford Nanopore Technologies,
Oxford, cat # SQK-LSK110) according to the manufacturer’s protocol for
genomic DNA by ligation, with 1.5 pg of input from both genomic DNAs
being added to each library preparation. The entire quantity of each
prepared library (1st library: 680 ng, 2nd library: 39.6 ng) was loaded in
75 pl volume onto two R9.4.1 flow cells (Oxford Nanopore Technolo-
gies, cat # FLO-MIN106) and run for 48 h until flow cell extinction.
Sequencing data were generated using the Oxford Nanopore GridION
platform and performing real-time super-accurate basecalling with
MinKNOW 23.04.5 and Guppy 6.5.7 (Oxford Nanopore Technologies,
Oxford, UK) to achieve the highest possible accuracy rate. The
sequencing runs generated a total of 28.19 Gb of raw genomic data in
two batches.

4.3. Genome assembly and analysis

Raw ONT data was uploaded into the https://usegalaxy.eu platform
[77]. For assembly of contigs we used the Fly assembler [78], and later
performed scaffolding based on the GRCz11 reference genome sequence
using RagTag [79]. This scaffolding step allowed us to select for those ich
contigs that contained genomic sequences specific for chromosome 19.
These sequences were aligned along the chromosome-to-chromosome
sequence of chromosome 19 using minimap2 [80]. The settings used
to run these programs are presented in Table 1. The contig containing
the genomic neighborhood (contig no. 3236) was annotated manually in
the Benchling online software suite [81].

4.4. Genomic DNA isolation for genotyping PCRs

PCR-ready genomic DNA isolation was performed as described
before [82]. Briefly, after anesthesia, each fish was fin-clipped and tissue
samples were transferred to a 200 pl PCR tube. After the addition of 100
pl of 50 mM NaOH solution the samples were heated at 95 °C for 15 min
with occasional flicking. Subsequently, the tubes were cooled down to
4 °C and lastly 10 pl of 1 M Tris-HCI (pH 8.0) was added for balancing
the pH to near-neutral.

4.5. Genotyping PCR of ich fish

Exon 16-specific genotyping PCRs were performed on six adult fish
and ten embryos, using with the following three primer pairs (Fig. S1A):
(1) the ctnnb2_ex16 primer pair, ctnnb2_ex16_L (5’-TCCGTGTTCCCA-
GAAGAAGC-3) and ctnnb2_ex16 R (5’-GAAAGTGCCTGATGAGTGCG-
39, (2) the ctnnb2_ex16_tp primer pair, ctnnb2 ex16_tp L (5'-

Table 1
Standard parameters used in the usegalaxy.eu pipeline.

Software Parameters used

package

Fly —nano-raw./input_0.fastq.gz -o out_dir -t -i 1

RagTag scaffold -u —aligner minimap2 —-mm2-params ‘-k19 -w19 -Al
—B19 —039,81 -E3,1 -s200 -z200 —min-occ-floor = 100’ -f 1000
-remove-small -q 10 -d 100,000 -i 0.2 -a 0.0 -s 0.0 -r -g ‘100’ -m
100000’ -0./ -t

minimap2 -x asm5 —q-occ-frac 0.01 -t
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CTAGGATCCGTTTGTCAAGCCCACACACC-3) and ctnnb2_ex16_tp_R
(5’-GATGAATTCCTCATGGTACTGACCCGAGC-3), and 3
ctnnb2_ex16_whole  primer pair, ctnnb2_ex16_whole .  (5-
GCGTGTGGTTAATCGTCTGC-3) and ctnnb2 ex16 wholeR (5’-
GAGTTCTGTCTGATCGGGCC-3). PCR reaction was performed with
Primestar HS DNA polymerase (Takara, cat # R10A) with the following
settings: one cycle of initial denaturation at 98 °C for 1 min, 30 cycles of
denaturation at 98 °C for 10 s, and extension at 68 °C for 3 mins. Gen-
otyping PCRs spanning intron 15 were performed on five additional ich
homozygous adults and one adult wild type (AB) fish. In these reactions
the following primer pairs were used: ctnnb2_ex15_F (5-TCCAAT-
CAGCTGGCCTGGTTCG-3") in combination with either ctnnb2_ex16_R
(5’-CGTCTGCCAGCTCTACTTCCCC-3) for the amplification of the wild
type allele, or ich DR R (5’-GGTAACTTAACTCGGTTACGTGG-3') for the
amplification of the ich allele. PCR reactions were done using Thermo
Scientific DreamTaq DNA Polymerase (cat # EP0711), using the
following settings: 1 cycle of initial denaturation on 95 °C for 3 min, 32
cycles of denaturation on 95 °C for 30 s, annealing on 66 °C for 30 s and
extension on 72 °C for 37 s, and 1 cycle of final extension on 72 °C for 7
min.

4.6. Synthesis and cloning of 3'UTRs

For RT-PCR, total RNA was isolated from 1 to 8 cell wild-type and ich
zebrafish embryos, using Zymo TRI Reagent (ZYMO Research, cat #
R2050-1-50) as briefly follows: 20 embryos were collected in a 1.5 ml
tube, and excess medium was removed. The samples were homogenized
in 0.5 mL TRI Reagent, incubated for 5 min, mixed with 100 pl chlo-
roform, and centrifuged at 10,000 xg for 15 min at 4 °C. The aqueous
phase was transferred to a new tube, mixed with 250 pl isopropanol, and
incubated for 10 min. After centrifugation, the RNA pellet was washed
with 70 % ethanol, air-dried for 5-10 min, and dissolved in nuclease-free
water.

Isolated total RNA was applied as template for cDNA synthesis, using
the SuperScript IV UniPrime One-Step RT-PCR System (Invitrogen, cat #
12597025) according to manufacturer’s protocol. Wild-type RNA tem-
plate was used for ccnal, ctnnb2 and tuba8l, ich RNA for ich-ctnnb2 with
primers in Table 1.

Wild-type 3’UTRs were then cloned into pCS2 + MT-AFP expression
vector, where a S65A/Y145F mutated, humanized form of GFP, with
improved fluorescent intensity is expressed from an SP6 promoter [83].
In the case of ccnal and tuba8l 3’UTRs, the DNA fragments were sticky-
end ligated into Xhol and Xbal sites with T4 DNA Ligase (Thermo Sci-
entific, cat # EL0014). Wild-type ctnnb2 3’UTR was blunt-end ligated
into Stul site in the same manner. All three ligations were then trans-
formed into E. coli DH5a competent cells and selected on ampicillin
containing LB plates. After inoculation and growth, miniprep was per-
formed with GeneJET Plasmid Miniprep Kit (Thermo Scientific, cat #
K0502). All plasmids were sent for sequencing for the verification of
proper cloning.

Probably due to the low quality of total RNA template, we were not
able to amplify the whole ctnnb2" 3°UTR in one piece and hence we did
the amplification in two steps as follows:

First, using ctnnb2 ex16-Xbal-R1 and ich-ctnnb2-F1 (Table 2)
primers, we amplified a 1410 bp long fragment and blunt-end cloned
into a EcoRV-linearized pBluescript KS(+) plasmid. ich-ctnnb2-F1 was
designed to be specific to a region on the ich locus where it can have an
ATC nucleotide triplet on its 5’ end. In this way, it is able to complete the
residue of EcoRV recognition site on the pBluescript KS(+) plasmid,
allowing us to perform another round of EcoRV digestion and blunt-end
cloning of the second half of ich-ctnnb2 3’UTR (a 2114 bp long fragment
amplified with ctnnb2_ex15-Xhol-F1 and ich-ctnnb2-R2 primers). After
the completion of cloning, ctnnb2" 3°'UTR containing pBluescript KS(+)
was double-digested with Xhol and Xbal, which was followed by the gel
isolation of cmnb2™" 3'UTR and sticky-end ligation into pCS2+MT-AFP
expression vector (as previously described).
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Table 2
Primers used for 3’UTR amplifications. For ccnal and tuba8l 3'UTR, the primers
were implemented from [47].

Primer name Sequence (5-3")

ccnal-3’UTR-F
ccnal-3'UTR-R
ctnnb2_ex15-F1
ctnnb2_ex16-R1
ctnnb2_ex15-Xhol-F1
ich-ctnnb2-R2
ich-ctnnb2-F1
ctnnb2_ex16-Xbal-R1
tuba8l-3'UTR-F
tuba8l-3'UTR-R

AAACTCGAGTCCCAGTTGGAACCTGTAGA
AAATCTAGACTTGTTTCATTTATAAAAAGGCAGT
TCCAATCAGCTGGCCTGGTTCG
CGTCTGCCAGCTCTACTTCCCC
ATATCTCGAGTCCAATCAGCTGGCCTGGTTCG
CGTCCAGGTACTATGCCTTTAGATGCC
ATCCACAGTCTCCTCAGCCAGATATGG
ATATTCTAGACGTCTGCCAGCTCTACTTCCCC
AAACTCGAGTGCTTCAAAAAGCTGATCTGAG
AAATCTAGACAATTTATTCTGAAACTGCATTGA

4.7. mRNA synthesis

3’'UTR containing pCS2+MT-AFP and unmodified pCS2+mCherry
expression vectors were linearized with Notl and transcribed with
mMESSAGE mMACHINE™ SP6 Transcription Kit (Invitrogen, cat #
AM1340) following the manufacturer’s protocol. mRNA samples were
purified with phenol:chloroform extraction and isopropanol precipita-
tion method (according to the manufacturer’s protocol).

4.8. Embryo injections and quantification of fluorescent signal

Wild type (ekwill) embryos were injected with 1 nl of the mixture of
AFP-3’UTR and mCherry mRNAs at one cell stage. The concentration of
AFP-3’UTR and mCherry mRNAs were 140 ng/pl and 100 ng/pl,
respectively. At ~24 hpf we documented AFP- and mCherry-expressing
fish using a Zeiss Lumar.v12 UV stereomicroscope. In average 20 em-
bryos were photographed for each injection. For the evaluation of
relative fluorescent protein brightness, we utilized Fiji [84].

4.9. Screening of multiple D. rerio genomes for TE insertion

Transposable element sequences were retrieved from FishTEDB [40].

Multiple D. rerio genomes (Table 3) were screened for the presence of
EnSpm-N49 DR, EnSpm-N49B DR, and the hybrid of the two, EnSpm-
N49/N49B DR. The screening was performed using the BLAST search
algorithm [85] with default settings.

Screening results were further processed using custom scripts. TE
hits were filtered downstream of the analysis for e-value of 1e 1. To
alleviate spurious hits, a further filtering step was introduced whereby
only hits where 80 % of the transposable element was mappable were
retained. All downstream analyses were performed on the hits retained
after the filtering steps outlined above. Genome-wide insertion events
were analyzed using Granges [86], and visualized using circlize [87].
Annotation of the insertion sites was performed using ChIPSeekR
[88,89].

4.10. Statistics and visualization
Statistical analysis and visualization were performed in R [90] using

the ggplot2 package [91]. All figures have been assembled in Affinity
Designer (Serif Europe).

Table 3
Genome assemblies screened for the presence of transposable elements.

NCBI RefSeq assembly Strain Abbreviation used
GCF_000002035.6 (reference) Tiibingen Tue
GCA_018400075.1 T5D T5D
GCA_020184715.1 AB AB
GCA_903798175.1 Nadia NA
GCA_903798165.1 Cooch Behar CB
GCA_033170195.2 Tiibingen T2T
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