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Abstract

Small nucleolar RNAs (snoRNAs) are one of the most abundant and evolutionary ancient group of functional non-coding RNAs. They were
originally described as guides of post-transcriptional rRNA modifications, but emerging evidence suggests that snoRNAs fulfil an impressive
variety of cellular functions. To reveal the true complexity of snoRNA-dependent functions, we need to catalogue first the complete repertoire
of snoRNAs in a given cellular context. While the systematic mapping and characterization of “snoRNAomes" for some species have been
described recently, this has not been done hitherto for the zebrafish (Danio rerio). Using size-fractionated RNA sequencing data from adult
zebrafish tissues, we created an interactive “snoRNAome"” database for this species. Our custom-designed analysis pipeline allowed us to
identify with high-confidence 67 previously unannotated snoRNAs in the zebrafish genome, resulting in the most complete set of snoRNAs
to date in this species. Reanalyzing multiple previously published datasets, we also provide evidence for the dynamic expression of some
snoRNAs during the early stages of zebrafish development and tissue-specific expression patterns for others in adults. To facilitate further
investigations into the functions of snoRNAs in zebrafish, we created a novel interactive database, snoDanio, which can be used to explore small

RNA expression from transcriptomic data.

Introduction

Small nucleolar RNAs (snoRNAs) form one of the most abun-
dant and ancient group of functional non-coding RNAs (ncR-
NAs). Their main role is to guide the chemical modification
of specific nucleosides in several RNA classes. Consequently,
they play critical roles in multiple cellular regulatory pro-
cesses, such as the maturation and nucleolytic processing of
ribosomal RNAs (rRNAs), the chromatin architecture and al-
ternative splicing [1-3].

Based on common sequence motifs and conserved struc-
tural features, snoRNAs are classified in two major families,
C/D box and H/ACA box snoRNAs (Fig. 1A and B), abbrevi-
ated as SNORDs and SNORAs, respectively [4, 5]. Members
of both families are associated with larger ribonucleoprotein
(RNP) complexes where they guide the function of partner en-
zymes to initiate the posttranscriptional modification of vari-
ous RNA species. These enzymes, the methyltransferase fibril-
larin (FBL) and the pseudouridine synthase dyskerin (DKC1),
respectively, will catalyze the formation of ribose 2'-O-methyl
(Nm) groups and the isomerization of uridine into pseudouri-
dine (W) [6-8].

The targets of SNORD-directed methylation by FBL can be
rRNAs, transfer RNAs (tRNAs), small nuclear RNAs (snR-
NAs), and messenger RNAs (mRNAs) [2, 9-13]. Similarly,
among the targets of DKC1 we can find snoRNAs, snRNAs,
rRNAs, and mRNAs as well [2, 14-16]. Both of the discussed
post-transcriptional modifications are installed cotranscrip-
tionally, furthermore, several snoRNAs seem to be essential
for nucleolytic processing during rRNA maturation and in
their absence ribosomal biogenesis is disrupted [2]. Defects of
DKCI1 function can lead to monogenic diseases like dysker-

atosis congenita [17, 18], Bowen-Conradi syndrome [19], or
severe nephrotic syndrome with cataract [20]. Defective pseu-
douridylation of specific rRNA sites can also lead to cancer
through the disruption of ribosomal function [15, 21-24]. Er-
roneous fibrillarin expression has also been linked to cancer
[25-27], and some SNORDs have been suggested to act either
as oncogenes or as tumor suppressors [28, 29].

Emerging experimental evidence also suggests non-
canonical functions for snoRNAs, linked to the genesis
of other ncRNAs, mRNA 3’ processing, protein trapping, and
exosome recruitment to target RNAs [4, 30-32].

Within vertebrate genomes, snoRNAs are most often lo-
cated in the intronic region of so called snoRNA host genes
(SNHGs) but occasionally can also be found in intergenic re-
gions. The expression of intragenic snoRNAs is usually de-
pendent on the expression and/or splicing of their SNHGs,
whereas intergenic snoRNAs possess their own RNA poly-
merase II dependent promoters [5, 33]. The assembly of
snoRNPs is intimately coupled to the splicing of SNHG pre-
mRNAs [34], and this can also regulate the relative amount
of alternative transcripts generated through mRNA matura-
tion [35]. Furthermore, recent results also suggest that some
SNHGs possess so called dual initiation promoters, where the
choice of promoter can influence whether the transcript will
be processed as a pre-mRNA or as a specialized RNA used to
splice out snoRNAs [36].

Due to this large body of evidence about the multitude
of crucial biological processes affected by snoRNAs, there
have been several concerted efforts to map the complete
snoRNA repertoire (so called snoRNAome) in several species
[37-39].
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Figure 1. Annotation of novel snoRNAs in the zebrafish genome. Different snoRNA types participate in different RNP complexes: whereas C/D box
snoRNAs can be found in complex with Fibrillarin, Nop56, and 15.5K (A), H/ACA box snoRNAs form complexes with Dyskerin, Nop10, Gar1, and Nhp2
(B). (C) The ratio of annotated snoRNAs in the zebrafish genome is relatively low compared with other species. (D) The computational pipeline used to
annotate novel snoRNAs from transcriptomic datasets (see the “Materials and methods"” section for details).
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Zebrafish rose to prominence as a developmental model
system in the 1990s thanks to its numerous advantages
[40, 41]. While external fertilization coupled with the fast de-
velopment, small size, and transparency of embryonic and lar-
val zebrafish accounted for its original popularity, the explo-
sive expansion of the transgenesis and genome editing tool-
boxes [42-46], and the development of high-throughput phe-
notyping assays both for larval and adult fish [47-51] have
also made this species a dominant model of biomedical re-
search focusing on disease modeling and drug development
studies. This versatility also makes it an ideal subject to study
the physiological roles of snoRNAs [52].

The relatively low number of known (annotated) zebrafish
snoRNA genes (Fig. 1C) suggests that the annotation of the
snoRNA pool in this species is not yet complete, and that
part of the zebrafish snoRNAome is still to be discovered.
By reanalyzing previously published transcriptomic datasets
and acquiring novel ones enriched in snoRNAs from multi-
ple adult tissues we were able to identify and annotate several
new snoRNAs, expanding the current annotation (GRCz11
— Ensembl v113) of 247 snoRNA genes to 309. The anal-
ysis of the most complete zebrafish snoRNAome to date
made it also possible to uncover the developmentally dy-
namic and/or tissue-specific expression of multiple snoRNAs
in this species. We also present snoDanio (https://renata-h.
shinyapps.io/98665a9405b44ede86eeb7179988104f/), an in-
teractive database for the analysis of different transcriptomic
datasets containing snoRNAs.

Materials and methods

Fish maintenance and RNA extraction

Adult wild-type fish used for these experiments were main-
tained in the animal facility of the Biology Institute of ELTE
Eo6tvos Lorand University. Tissues were isolated from adult ze-
brafish based on standard protocols. All protocols employed
in our study were approved by the Hungarian National Food
Chain Safety Office (Permit XIV-I-001/515-4/2012). Two
male and two female fish were sacrificed for isolation of total
RNA from multiple tissues to produce four biological repli-
cants. Extreme care was taken to avoid contamination and
obtain pure homogenous tissue samples. The tissues were re-
peatedly washed in PBS to remove contaminating debris and
TRI reagent (Zymo Research, Cat. No.: R2050) was used to
collect total RNA, according to the manufacturer’s protocol.

RNA library preparation and sequencing

All samples were subjected to size selection (~60-200 bp)
without ribodepletion before sequencing. Samples were se-
quenced by Novogene Ltd. on an Illumina NovaSeq 6000
PE150 platform. Twenty million reads per sample were ob-
tained through this strategy.

Re-detection of previously annotated snoRNAs

We validated snoRNA prediction algorithms using the an-
notated version of the GRCz11 zebrafish genome (Ensembl
v113). After downloading the annotated snoRNA sequences,
we applied three detection algorithms: cmsearch, snoReport,
and snoscan/snoGPS with default parameters. The results of
these searches were then combined to create a comprehensive
list of re-detected, already described snoRNAs. This validation
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process aimed to enhance the reliability of snoRNA detection
by cross-verifying predictions across multiple tools.

snoRNA annotation pipeline

We created a novel, easily accessible and cloud-based pipeline,
which greatly simplifies the identification of new snoRNA
candidate sequences (Fig. 1D). Our annotation pipeline is
available on the Galaxy web platform [53] via this link:
https://usegalaxy.eu/u/danio/w/annot-snos. Briefly, after ade-
quate quality check and trimming of the sequencing reads (Fig.
1Di), we used Bowtie2 to map reads in their continuum to
the indexed reference (Fig. 1Dii). We considered searching for
and filtering out further reads that map to rDNA sequences
[54], but since some snoRNAs could be potentially processed
from rRNAs [55], we decided against this approach. Bowtie2
mapped the reads to the genome in sensitive-local mode [56].
We merged these files with the blockcluster algorithm [57],
which also characterized the amount of reads (Fig. 1Diii).
We set the filtering threshold to a minimum depth of 100
read per cluster and set the distance between clusters to 50
bp, as suggested in a previous study [58]. In the consolidated
file, we defined blocks (Fig. 1Div—orange boxes) from these
reads and clusters from the blocks using BlockClust [59]. We
extracted the sections that overlapped with the annotations
downloaded from Ensembl v113. We used this approach for
both time series and tissue data. We merged the overlapping
clusters by their genomic coordinates (Fig. 1Div—red boxes).
For the ~60-200 long ones, we downloaded the genomic se-
quence and ran it through three known snoRNA scan appli-
cations to detect the corresponding sequences based on their
structure. This method is good at detecting false positives, but
it is worth analyzing the transcriptome-matched portion of
the sequencing to see if previously unknown snoRNA variants
of genes described as pre-miRNA or Inc-RNA exist. There-
fore, for these reads, we also need to look at the read profile
of each gene to determine whether processed snoRNAs are
present whose annotation is obscured by the parental non-
coding gene.

For detailed parameters of the scripts used in the pipeline
see Supplementary Table S2.

Analysis of newly detected snoRNAs

Genomic coordinates of previously predicted zebrafish snoR-
NAs [36] have been remapped from the Zv9 to the GRCz11
genome build for comparison.

To perform a cluster analysis of newly predicted snoRNAs,
we have defined snoRNA clusters within the zebrafish genome
(GRCz11) as regions where at least three snoRNA genes have
been mapped within 10 kb distance. New snoRNAs have been
included in the clusters if they mapped into the existing cluster
or within 2 kb upstream or downstream of it.

Data handling, analysis, and visualization were performed
using the GenomicRanges [60], rtracklayer [61], tidyverse
[62], UpSetR [63], ggplot2 [64], and pheatmap [65] packages
in RStudio [66].

RNA-seq data processing pipelines for snoDanio

Our database includes RNA sequencing data from mul-
tiple BioProjects uploaded to the NCBI database (https:
/lwww.ncbi.nlm.nih.gov/bioproject/). As these projects con-
tain raw RNA sequences obtained by different laboratories
through different sequencing strategies, we created standard-
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Table 1. Different Galaxy pipelines used for the processing of external RNA-seq datasets

Data type

Link to Galaxy pipeline

Small RNA
Single end reads
Paired end reads

https://usegalaxy.eu/published/workflow?id=443ea80b36d862f5
https://usegalaxy.eu/published/workflow?id=bbe2al615c8faaac
https://usegalaxy.eu/published/workflow?id=60a45de522b8b695

ized pipelines for their processing. For consistency, we per-
formed the alignment for each dataset starting from the raw
data and mapped it to the most recent version (GRCz11) of the
zebrafish genome using HISAT?2. In each case the newly anno-
tated snoRNAs were also added to the list of transcripts prior
the mapping process, and we created novel Galaxy pipelines
for the analysis of different RNA-seq experiment types
(Table 1).

To identify relevant BioProjects we downloaded the meta-
data for all zebrafish RNA sequencing experiments from the
NCBI sequence read archive (SRA) and searched for Bio-
Projects that contain snoRNA size-range sequences. We fil-
tered the results for the use of the HiSeq 2000 platform (as it
matches the sequencing parameters of our own dataset) and
excluded experimental designs that focus on polyA mRNA.
The workflows resulted in new expression data for each ex-
periment, in a columnar format. These datasets were collated
to create R Data Serialization (rds) objects that form the core
of our searchable snoDanio database [67].

The snoDanio user interface

The snoDanio database pools previously available datasets
with newly acquired sequencing data to create a compre-
hensive list of zebrafish snoRNAs, complemented with both
snoRNA and host genes expression profiles in the exam-
ined datasets. The resulting database is accessible through a
shiny web application [68] at https://renata-h.shinyapps.io/
98665a9405b44ede86eeb71799881041/.

The “Description of snoRNAs” section of our database al-
lows the user to retrieve detailed information about various
zebrafish snoRNA genes. For each gene the table showcases
its ENSEMBL ID, source of annotation, and genomic location.
By selecting a row in this table, one is able to see additional de-
tails about the chosen snoRNA in a dedicated sidebar panel.
These additional informations include the gene symbol, the
Rfam family, the parent gene information (when available), in-
cluding the name and the biotype. We also provide the option
to download the sequence of the selected snoRNA in FASTA
format.

The “Explorer” part of the database is designed to pro-
vide an interactive platform for exploring the expression data
of snoRNA genes across various BioProjects. Users can start
by selecting a sequenced size range and an experiment type
from the provided dropdown menus, which dynamically up-
date the available project choices based on these selections.
Upon choosing a project, the user can enter a specific snoRNA
gene ID to investigate its expression levels. The database loads
the rds object corresponding to the relevant BioProject and
extracts the expression data for visualization. For the visual-
ization of expression data the database generated plots using
ggplotr2 and plotly [64, 69]. If the parent gene of the selected
snoRNA is also available, a similar plot for the parent gene’s
expression is generated. Users can also view a table listing the
top five differentially expressed snoRNA genes for the selected
project, facilitating quick identification of key genes of inter-

est. This feature-rich interface enables comprehensive explo-
ration and analysis of gene expression data, making it a valu-
able tool for researchers.

Results

De novo annotation of zebrafish snoRNAs

The identification of snoRNAs is often difficult due to their
lack of overall sequence conservation, their relatively small
size (~60-200 bp) and the shortness of the sequence motifs
characteristic for this RNA class. It is not surprising, there-
fore, that multiple iz silico methods based on different ap-
proaches have been developed for snoRNA prediction over
the years. Some rely more heavily on purely structural features
(cmsearch) [70], while others focus more on sequence simi-
larities (snoReport) [71] and some mix the two approaches
(snoGPS and snoscan) [72].

To test the accuracy of these algorithms, we performed
the redetection of the previously annotated 247 snoRNAs
included in the Ensembl (v113) database. Our results show
that the three algorithms could detect previously annotated
snoRNAs with varying efficiency, and while cmsearch was
able to identify all downloaded sequences as snoRNAs, the
efficacy of snoGPS and snoReport was considerably lower
(Supplementary Fig. S1). We also noted that five snoRNA
genes included in the GRCz11 annotation (all labeled as Rfam
predictions) could not be detected by either of the algorithms,
and for consistency removed these from further analysis, re-
sulting a core set of 242 Ensembl-annotated snoRNA genes.

Our redetection experiment suggested that the concomi-
tant use of the three algorithms will result in reduced sensi-
tivity. Yet, as cmsearch and snoGPS seemed to give inflated
predictions (see below), and as the functional testing of snoR-
NAs was beyond the scope of this work, we still opted for
the most rigorous and conservative approach and considered
only those new sequences in our downstream analyses that
were identified by all three i silico tools as snoRNAs.

We also created a computational pipeline to identify novel
snoRNA genes (Fig. 1D and Supplementary Fig. S2). First, we
grouped the mapped reads into blockgroups, each blockgroup
representing a single ncRNA read profile, which might belong
to one of the known ncRNA classes. These ncRNA read pro-
files are often associated with function [73], and class-specific
discriminative models for C/D box or H/ACA box snoRNAs
can be defined. After clustering, if a read profile belonged
to one of these ncRNA classes, we considered it a cluster
(Fig. 1D) [59].

To map a more complete snoRNAome of zebrafish, besides
reanalyzing existing datasets, we also prepared and sequenced
brain, liver, and gut total RNA samples from two adult males
and two adult females, respectively. Our protocol uses small
RNA-seq data that are size-selected to capture only RNAs of
the required length. During the preparation of our sequenc-
ing libraries, we paid special attention to size selection and
sequenced only the ~60-200 bp range. As this size range also
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Figure 2. |dentification of novel zebrafish snoRNAs. (A) Sequencing the ~60-200 nt fractions of zebrafish brain, liver, and gut total RNA samples
revealed that these are enriched in snoRNAs. After removing known snoRNA sequences from our dataset, three different in silico prediction methods
were used to identify new C/D box (B) and H/ACA box (C) snoRNAs. Up-set plots display the overlap between the individual predictions. (Note: in our
analysis we used a conservative approach and accepted as candidates only snoRNAs predicted by all three methods.)

encompasses 5S and 5.8S rRNAs (~120 and ~160 bp, re-
spectively), we computationally removed reads that mapped
to rRNA genes from our sequencing datasets before further
analysis (Supplementary Table S1 and Supplementary Fig. S3).
After the elimination of rRNA-specific sequences, we mapped
the remaining reads of our small RNA-seq datasets to the
zebrafish genome (GRCz11). The post-mapping analysis of
RNA biotypes demonstrated that known snoRNAs were over-
represented amongst the detected RNA species in every tissue
type, confirming the validity of our approach (Fig. 2A).

We used our new, tissue-specific expression datasets and
combined them with publicly available time series data de-
rived from zebrafish embryos and larvae at different develop-
mental stages [74]. The presence of several snoRNAs that we
had previously repredicted using various snoRNA predictor
methods (see above) was also confirmed in these datasets. Of
note, the small range fraction of this reanalyzed dataset also
showed an enrichment in snoRNAs (Supplementary Table S1
and Supplementary Fig. S3).

Individual searches with the cmsearch and snoGPS algo-
rithms resulted in excess numbers of C/D box and H/ACA
box snoRNAs, respectively (Fig. 2B and C), with many of
these predictions mapping to chromosome 4 (Supplementary
Fig. S4A and B). Of note, this chromosome is the original sex
chromosome of the species, also containing the largest hete-
rochromatic block of the zebrafish genome, difficult to anno-
tate, with a high content of ncRNAs and repetitive elements
[75].

As currently available datasets do not allow for the further,
functional validation of computationally predicted snoRNA

genes, we decided to use a conservative approach of detec-
tion, only considering sequences that were predicted as snoR-
NAs by all three algorithms used. This way we were able to
identify 67 well-supported new snoRNA-like sequences miss-
ing from the current Ensembl database (v113) annotations. Of
these novel, putative snoRNAs 27 were C/D box and 39 were
H/ACA box, and one of them was predicted as belonging to
both classes (Fig. 2B and C; Supplementary Table S3).

Characterization of newly predicted zebrafish
snoRNAs

We compared all our predicted snoRNAs with ncRNAs
present in RNAcentral (release v17) to identify already an-
notated zebrafish snoRNAs. This analysis showed that 12 of
our novel hits were previously annotated as various kinds of
ncRNAs (Supplementary Table S3).

Next, we tested if any of the predicted snoRNA genes
belong to existing genomic snoRNA clusters. Our results
show that 18 of the 67 predicted snoRNAs (26.87%) in-
deed belong to existing clusters (Supplementary Table S3 and
Supplementary Fig. S4C).

Finally, we extended our analysis to include a recently pub-
lished dataset containing further predicted zebrafish snoRNA
genes [36]. Of the 106 novel C/D box and 64 novel H/ACA
box snoRNAs predicted by this work, 17 and 16, respectively,
also appeared in our newly predicted dataset (Supplementary
Fig. SS).

For our further analysis we have included all the previ-
ously annotated (and redetected) snoRNA genes in GRCz11
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(Ensembl v113) and our newly predicted ones, resulting a set
of 309 snoRNAs.

Characterization of the zebrafish snoRNAome

While most snoRNAs are located in the introns of SNHGs,
occasionally they can be also found in intergenic genomic re-
gions. Most of the previously identified snoRNAs in the ze-
brafish genome are associated with SNHGs, of which protein-
coding genes are in excess (Fig. 3A). Of the predicted zebrafish
snoRNAs that do not appear in the genome annotation 43 are
located within various SNHGs (protein-coding genes, lincR-
NAs, and other processed transcripts) and 24 appear in in-
tergenic positions (Fig. 3B). We note that the distribution of
known and newly identified genes is similar (Fig. 3A and B).

To categorize the snoRNAs of the updated zebrafish snoR-
NAome by their abundance profile we also calculated the co-
efficient of variation (CV) of their expression [39]. In general,
a low computed result for CV corresponds to a more uniform
expression across different developmental stages and tissues,
typical for housekeeping RNAs, such as tRNAs and snRNAs.
In contrast, a high CV corresponds to a more enriched ex-
pression in either one or a few stages/tissue types, typical for
protein-coding mRNAs and long non-coding RNAs (IncR-
NAs). Previous analysis of the human snoRNAome already
suggested that snoRNA abundance profiles are an intermedi-
ate between these two forms, with most snoRNAs showing
a uniform expression and a small but significant proportion
displaying stage- and/or tissue-specific expression [39].

Reanalyzing existing datasets [74], our results suggests that
a quasi-bimodal CV distribution, similar to the one observed
in the case of human genome can be observed in zebrafish,
too (Fig. 3C). The derivative of the CV function also gave
us a threshold that we could use to separate uniformly ex-
pressed (UE) snoRNAs from those that are stage-enriched (SE)
(Fig. 3C). Our analysis showed that these two abundance pro-
files had distinct characteristics. The SE snoRNAs are mostly
encoded in the intergenic region, whereas UE snoRNAs are
mostly encoded in protein-coding SNHGs (Fig. 3D).

We have also tested the stage- and tissue-specific expression
profile of intergenic snoRNAs with intronic ones, and single-
ton snoRNAs with those situated in clusters (Supplementary
Fig. S6). This analysis suggests that intergenic snoRNAs dom-
inantly show non-uniform expression profiles, whereas in-
tronic snoRNAs are UE Supplementary Fig. S6A and B). Given
that most clustered snoRNAs are also intergenic, it is not sur-
prising that this difference also exists when comparing clus-
tered and singleton snoRNAs, albeit it is not as pronounced
(Supplementary Fig. S6C and D).

As the expression of intron-encoded snoRNAs is dependent
on the transcription and splicing of the SNHG, it would be fair
to think that the expression level of snoRNA is always corre-
lated positively with that of the host. As it has been shown for
human snoRNAs, however, this is not always the case [39].
In our analysis of the zebrafish snoRNAome, using published
datasets that contain adequate expression data for both snoR-
NAs and their host genes (Supplementary Table S4), we cal-
culated the Pearson correlation coefficient (r) between the in-
tronic zebrafish snoRNAs and their SNHGs, and we could
also observe that some snoRNAs have no correlation or even
a negative correlation with their SNHG’s expression (Fig. 3E).
The regulation of SNHG splicing through snoRNAs might

be the basis of this phenomenon. Some snoRNAs have been
shown to control their SNHGs by promoting non-sense me-
diated mRNA decay (NMD) [76] and computational analy-
sis shows that several snoRNAs interact with host transcripts,
influencing alternative splicing by concealing branch points
and shifting the transcript ratio away from NMD [35]. Re-
cent studies provide further insights into the complex relation-
ship between snoRNAs and their SNHGs [77]. Of note, in our
study, snoRNAs showing no or negative correlation with their
SNHGs are almost exclusively found in protein-coding RNAs
(Fig. 3F). In addition, the expression of long non-coding RNA
SNHGs (IncSNHGs) is usually positively correlated with the
expression of corresponding snoRNAs (Fig. 3F), as reported
earlier for IncSNHGs expressed in various immune cells [78].
We also performed Gene Ontology analysis, which demon-
strated that intragenic snoRNAs that are positively correlated
with the expression of their SNHGs show a clear enrichment
for processes such as RNA metabolism, ribosome biogenesis
or ribosomal protein functions (Supplementary Fig. S7).
Previous research has highlighted that zebrafish SNHGs of-
ten possess special, dual-initiation promoters that can be tran-
scribed either canonically by an initiating pyrimidine/purine
(YR) dinucleotide or non-canonically by a terminal oligo-
polypyrimidine (YC) [36]. We tested if SNHGs in our dataset
with different promoter types (dual initiation, YR-only and
YC-only) show different correlations. Interestingly, our results
show that while dual initiation SNHGs can show both posi-
tive and negative correlation with the expression of the hosted
snoRNAs, YR-only and YC-only SNHGs, while few in num-
ber, show only positive correlation (Supplementary Fig. S8).

Analysis of snoRNA expression patterns during
development and in adult tissues

The analysis of the expression dynamics of snoRNAs included
in our extended zebrafish snoRNAome demonstrated that
some snoRNAs have a dynamic expression during develop-
ment (Fig. 4A), whereas others can have tissue-specific ex-
pression patterns in adults (Fig. 4B). For example, the expres-
sion of some of the newly identified snoRNA genes (snoRNA-
pred7139, snoRNA-pred1884, and snoRNA-pred7137) dif-
fers significantly between different early developmental stages
(Fig. 4A) [74]. These dynamic expression patterns suggest that
some snoRNAs might have differential functions during early
stages of development.

Other six newly annotated snoRNAs (s7oRNA-pred1020,
snoRNA-pred749, snoRNA-pred130, snoRNA-pred131,
snoRNA-pred132, and snoRNA-pred1754) show strong
expression differences in different organs (Fig. 4B). Their ex-
pression in endodermal tissues, such as the liver and the gut,
is more similar to each other and differs markedly from that
observed in the neuroectoderm. As most of these snoRNAs
are not expressed developmentally, their function might be
restricted to adult stages.

snoDanio: The zebrafish snoRNAome database

Using our extended information of the zebrafish snoRNAome,
we created an interactive database, snoDanio (https://renata-
h.shinyapps.i0/9866529405b44ede86eeb7179988104{/), an
openly licensed resource that facilitates integrative and inter-
active display and analysis of various zebrafish snoRNAs by
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Figure 3. Distribution of novel zebrafish snoRNAs and the characterization of the zebrafish snoRNAome. (A, B) Distribution of known and newly
identified snoRNAs shows a similar profile: they are generally associated with host genes (SNHGs), most of which are protein-coding genes. (C) The
abundance of zebrafish snoRNAs based on coefficient of variance (CV) values shows a characteristic bimodal distribution. Based on the CV values, we
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vertical line on the X axis. (D) The genomic position of UE and SE snoRNAs shows differential distribution: the former are enriched in protein-coding
genes, while the latter in intergenic regions. (E) Correlation between the abundance of snoRNAs and their SNHGs shows that while most often a
positive correlation can be detected between the two, for specific snoRNA-SNHG pairs no correlation or outright negative correlation is also possible. (F)
SnoRNAs that are positively correlated with their SNHGs can be found in either non-coding or protein-coding SNHGs, whereas lack of correlation or
negative correlation is typical for protein coding SNHGs.

GzZ0z Jaqwadag oz uo 1sanb Aq #6£2508/S L 0sebI/L/2/a1014e/qebieu/wod dnoolwapede//:sdjiy woly papeojumoq



8 Hamar and Varga

snoRNA-pred7139
ENSDARG00000101659
SNORD99_ENSDARG00000081580
snoRNA-pred1884
U3_ENSDARG00000113745
snoZ30_ENSDARG00000081799
U3_ENSDARG00000109939
U3_ENSDARG00000113149
SNORA16_ENSDARG00000081931
SNORA16_ENSDARG00000081082
Us_ENSDARG00000080633

U8_ENSDARGO00000115663

Normalized
expression
values

2
5 I
]

-1
-2

SNORAS50_ENSDARG00000080685
ENSDARGO00000084991
Us_ENSDARG00000082850

snoRNA-pred7137

snoU85_ENSDARG00000083325
URS00006B946E_7955
URS0000A88D14_7955
SNORD24_ENSDARG00000116248
SNORA7_ENSDARG00000082419
SNORA74_ENSDARGO00000082930
snoRNA-pred749
snoRNA-pred131
snoRNA-pred130
snoRNA-pred132
SNORD10_ENSDARG00000081103
ENSDARGO00000111557
SNORA73_ENSDARG00000082242
ENSDARGO00000113885
snoRNA-pred1754
ENSDARGO00000081895
SNORD12_ENSDARG00000083266

SNORAS57_ENSDARG00000083389

Figure 4. Stage- and organ-specific differential expression of snoRNAs. (A) Some snoRNAs display characteristic stage-specific developmental
expression patterns. (B) Adult datasets show differential expression of particular snoRNAs in different organs. Of note, organs with linked (endodermal)
developmental origin, such as the gut and the liver, often show more similar snoRNA expression patterns. (Heatmaps show normalized expression
values of the relevant genes across the observed datasets.)
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mining multiple high-throughput sequencing data from tissue
and developmental stages of zebrafish (Fig. 5).

Users can access basic, descriptive information of individ-
ual snoRNAs, including their classification, genomic position,
and SNHG information (Fig. 5A), but can also assay the ex-
pression of particular snoRNAs in the preprocessed datasets
already included in the database (Fig. 5B). These prepro-
cessed datasets are categorized on the basis of the size range
of RNAs included in the sequencing (mid, polyA, polyA-
depleted, small, total, and total or polyA) and on the nature
of the experiment design (assessing tissue-specific, sex-specific,
developmental/time-related, or treatment-related changes), as
determined from the metadata of the uploaded datasets. De-
pending on the type of the original experiment, multiple
groupings for visualizations are also possible. The expression
results and the sequence of snoRNAs can be downloaded on
demand in image and FASTA formats, respectively, for further
use.

Discussion

The expanding repertoire of putative and documented
snoRNA functions [15, 22, 32, 79, 80] suggests that the sig-
nificance of this ncRNA class has been hitherto underappre-
ciated, and new insights into the regulation of gene expres-
sion will be gained by the in-depth study of these molecules.
It is important, therefore, to compile comprehensive lists of
snoRNAs and to document their dynamic and tissue-variable
expression in all model organisms.

In the current study, we set out to define a well-supported
list of snoRNAs expressed in zebrafish during development
and in adults and create an interactive database to analyze
the data. Using size-fractionated (~60-200 bp) sequencing
datasets, rigorous filtering pipelines, and relying on predic-
tions by multiple annotation algorithms (snoReport, snoGPS,
snoscan, and cmsearch), we achieved identification of 67 novel
snoRNA genes, not included in the current annotation of the

GzZ0z Jaqwadag oz uo 1sanb Aq #6£2508/S L 0sebI/L/2/a1014e/qebieu/wod dnoolwapede//:sdjiy woly papeojumoq



10 Hamar and Varga

zebrafish genome with high confidence (Fig. 2B and C). Some
of these genes are situated in intergenic regions, but the major-
ity of them are encoded within the introns of protein-coding
and IncRNA host genes, a common feature for vertebrate
snoRNAs [81, 82].

With our newly discovered snoRNAs, the annotated and
analyzed zebrafish snoRNAome stands at 309 genes. We note
that this figure is likely a conservative estimate as we only
considered genes that passed our stringent filtering pipeline
(Fig. 1D), and individual predictions of the detecting algo-
rithm detected further candidates (Supplementary Table S3).
Therefore, by sequencing further tissues, employing better an-
notation tools, and performing functional validation studies,
such as individual-nucleotide crosslinking and immunopre-
cipitation or enhanced CLIP experiments with fibrillarin or
dyskerin in various tissues and/or at various developmen-
tal stages, the identification of further zebrafish snoRNAs is
likely. As some in silico prediction tools highlighted chromo-
some 4 as a potential locus for novel snoRNAs, it will be es-
pecially interesting to see how many bona fide snoRNAs can
be located to the fast-evolving chromosome 4 of the genome
(Supplementary Fig. S4A and B), which contains a high inci-
dence of ncRNA genes, and incidentally the maternal rDNA
cluster as well [74, 75].

Our new dataset allowed us to compare the composition
and expression dynamics of the human and zebrafish snoR-
NAomes. We observed that while most of the snoRNAs are
UE in both species, a subset of them shows tissue-specific ex-
pression.

To date, multiple mechanisms have been identified that ex-
plain the effect of snoRNAs on gene expression. The most
abundant target of snoRNA modification is rRNA and the
role of snoRNA-guided modifications in ribosomogenesis and
translational fidelity is well documented [2, 76, 83-88]. Defec-
tive ribosomal pseudouridylation and 2'-O-methylation can
lead to developmental defects [18,89-97] and various dis-
eases, including cancer [15, 20, 98-102]. Multiple studies
have also demonstrated that snoRNAs themselves can be
effectively used as biomarkers for numerous malignancies
[21,79, 80, 103-105], and recently they have been also linked
to cellular senescence [106].

Accumulating evidence suggests that pseudouridylation of
mRNAs is also abundant and can affect the efficiency of gene
expression [107-115]. As different studies identified differ-
ent roles for pseudouridines in mRNA [116, 117], the exact
role for this modification (which is most likely to be context-
dependent) remains to be confirmed.

Furthermore, cell-type specific presence of particular post-
transcriptional modifications in rRNA has been also described
and linked to ribosomal heterogeneity in a variety of organ-
isms [118-121]. It has been proposed that differential epitran-
scriptomic modification of particular rRNA nucleotides could
result in specialized ribosomes that are more adept in translat-
ing the messages in the given tissue-type(s) [85, 97, 122, 123].
Of note, it has been already demonstrated that knock-down
of the U26,U78, and U44 C/D-box snoRNAs (driving methy-
lation in 28S and 18S rRNAs, respectively), or depletion of U8
(which is required for removal of the 3’ external transcribed
spacer or ETS sequence) can yield in divergent developmental
phenotypes in zebrafish embryos [52, 124].

Our update of the zebrafish snoRNAome has also identi-
fied multiple snoRNAs with sex-, stage-, and tissue-specific ex-
pression, suggesting a hitherto underappreciated dimension of

gene regulation. Understanding how this diversity in snoRNA
expression can contribute to the developmental process and
modulate the function of other genes should be the focus
of later studies. Indeed, bisulfite-induced deletion sequenc-
ing analysis of different mouse tissues has already uncovered
a high level of differential pseudouridylation in the transcrip-
tome of different organs in mice [116], and differential ma-
ternal and zygotic transcription of certain zebrafish snoRNAs
has been also described before [125].

The epitranscriptomic methodological revolution brought
into focus the importance of several post-transcriptional mod-
ifications in gene expression regulation and also made it abun-
dantly clear that these modifications can greatly vary between
tissues, developmental stages, and physiological conditions
[115]. The snoRNA-guided function of the fibrillarin- and
dyskerin-containing RNPs makes them ideally suited to have
central roles in the dynamic regulation of the epitranscriptome
and through their effect on ribosome biogenesis, on the trans-
lational process as well. Understanding, therefore, how the
function of these two essential enzymatic complexes can be
regulated by the presence or absence of particular snoRNA
guides will be a central question in this field in the coming
years.

Our novel database, which compiles multiple lines of ev-
idence to provide a comprehensive expression atlas for the
snoRNAome of one of the most versatile genetic model organ-
isms will aid this work by helping to generate novel hypothe-
ses and to identify essential snoRNAs for particular biological
processes. We plan to regularly update the snoDanio database
by performing the reanalysis of newly available datasets. This
approach will give us a chance to discover and character-
ize further snoRNAs. Moreover, if robust target prediction
and validation pipelines can be developed, our data could be
also integrated into more specific signaling network databases,
such as SignaLink (which already handles zebrafish data)
[126] or the Zebrafish Information Network (ZFIN) [127] as
well.
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