1. Han C, Sun L-Y, Luo X-Q et al. Chromatin-associated orphan snoRNA regulates DNA damage-mediated differentiation via a non-canonical complex. Cell Rep 2022;38:110421. https://doi.org/10.1016/j.celrep.2022.110421 2. Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA: Box C/D and H/ACA snoRNPs. Wiley Interdiscip Rev RNA 2012;3:397-414. https://doi.org/10.1002/wrna.117 3. Khosraviani N, Ostrowski LA, Mekhail K. Roles for non-coding RNAs in spatial genome organization. Front Cell Dev Biol 2019;7:336. https://doi.org/10.3389/fcell.2019.00336 ˇ ˇ 4. Bratkovic T, Božic J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020;48:1627-51. https://doi.org/10.1093/nar/gkz1140 5. Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023;20:715-36. https://doi.org/10.1080/15476286.2023.2254540 6. Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA 2021;27:1441-58. https://doi.org/10.1261/rna.078953.121 7. Shubina MY, Musinova YR, Sheval EV. Proliferation, cancer, and aging—novel functions of the nucleolar methyltransferase fibrillarin? Cell Biol Int 2018;42:1463-6. https://doi.org/10.1002/cbin.11044 8. Kiss DJ, Oláh J, Tóth G et al. The structure-derived mechanism of Box H/ACA pseudouridine synthase offers a plausible paradigm for programmable RNA editing. ACS Catal 2022;12:2756-69. https://doi.org/10.1021/acscatal.1c04870 9. Gumienny R, Jedlinski DJ, Schmidt A et al. High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq. Nucleic Acids Res 2017;45:2756-69. 10. Vitali P, Kiss T. Cooperative 2 -O-methylation of the wobble cytidine of human elongator tRNA Met (CAT) by a nucleolar Downloaded from https://academic.oup.com/nargab/article/7/1/lqaf013/8052394 by guest on 20 September 2025 https://doi.org/10.1038/nrm4040 15. McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. Wiley Interdiscip Rev RNA 2015;6:173-89. https://doi.org/10.1002/wrna.1266 16. Kiss T, Fayet-Lebaron E, Jády BE. Box H/ACA small ribonucleoproteins. Mol Cell 2010;37:597-606. https://doi.org/10.1016/j.molcel.2010.01.032 17. Savage SA, Alter BP. Dyskeratosis Congenita. Hematol Oncol Clin North Am 2009;23:215-31. https://doi.org/10.1016/j.hoc.2009.01.003 18. Ruggero D, Grisendi S, Piazza F et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003;299:259-62. https://doi.org/10.1126/science.1079447 19. Armistead J, Khatkar S, Meyer B et al. Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. Am Hum Genet 2009;84:728-39. https://doi.org/10.1016/j.ajhg.2009.04.017 20. Balogh E, Chandler JC, Varga M et al. Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci USA 2020;117:15137-47. https://doi.org/10.1073/pnas.2002328117 21. McMahon M, Contreras A, Holm M et al. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife 2019;8:e48847. https://doi.org/10.7554/eLife.48847 22. Liang J, Wen J, Huang Z et al. Small nucleolar RNAs: insight into their function in cancer. Front Oncol 2019;9:587. https://doi.org/10.3389/fonc.2019.00587 23. Huang H, Weng H, Deng X et al. RNA modifications in cancer: Functions, mechanisms, and therapeutic implications. Annu Rev Cancer Biology 2019;4:25. 24. Babaian A, Rothe K, Girodat D et al. Loss of m1acp3 ribosomal RNA modification is a major feature of cancer. Cell Rep 2020;31:107611. https://doi.org/10.1016/j.celrep.2020.107611 25. Marcel V, Ghayad SE, Belin S et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 2013;24:318-30. https://doi.org/10.1016/j.ccr.2013.08.013 26. Zhang J, Yang G, Li Q et al. Increased fibrillarin expression is associated with tumor progression and an unfavorable prognosis in hepatocellular carcinoma. Oncol Lett 2021;21:92. https://doi.org/10.3892/ol.2020.12353 27. Long FNV, Lardy-Cleaud A, Carène D et al. Low level of Fibrillarin, a ribosome biogenesis factor, is a new independent marker of poor outcome in breast cancer. BMC Cancer 2022;22:526. https://doi.org/10.1186/s12885- 022- 09552- x 28. Zhu W, Niu J, He M et al. SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating Notch1-c-Myc pathway. J Transl Med 2019;17:259. https://doi.org/10.1186/s12967- 019- 2005- 1 29. Chen L, Han L, Wei J et al. SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma. Sci Rep 2015;5:8588. https://doi.org/10.1038/srep08588 30. Huang C, Shi J, Guo Y et al. A snoRNA modulates mRNA 3 end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Res 2017;45:8647-60. https://doi.org/10.1093/nar/gkx651 31. Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 2013;35:46-54. https://doi.org/10.1002/bies.201200117 32. Bergeron D, Fafard-Couture É, Scott MS. Small nucleolar RNAs: continuing identification of novel members and increasing diversity of their molecular mechanisms of action. Biochem Soc Trans 2020;48:645-56. https://doi.org/10.1042/BST20191046 49. Dash SN, Patnaik L. Flight for fish in drug discovery: a review of zebrafish-based screening of molecules. Biol Lett 2023;19:20220541. https://doi.org/10.1098/rsbl.2022.0541 50. White RM, Patton EE. Adult zebrafish as advanced models of human disease. Dis Model Mech 2023;16:dmm050351. https://doi.org/10.1242/dmm.050351 51. Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 2021. 20 611-28. https://doi.org/10.1038/s41573- 021- 00210- 8 52. Higa-Nakamine S, Suzuki T, Uechi T et al. Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res 2012;40:391-8. https://doi.org/10.1093/nar/gkr700 53. The Galaxy Community. The Galaxy platform for accessible, 33. Kufel J, Grzechnik P. Small nucleolar RNAs tell a different tale. Trends Genet 2019;35:104-17. https://doi.org/10.1016/j.tig.2018.11.005 34. Kiss T, Fayet E, Jády BE et al. Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. Cold Spring Harb Symp Quant Biol 2006;71:407-17. https://doi.org/10.1101/sqb.2006.71.025 35. Bergeron D, Faucher-Giguère L, Emmerichs A-K et al. Intronic small nucleolar RNAs regulate host gene splicing through base pairing with their adjacent intronic sequences. Genome Biol 2023;24:160. https://doi.org/10.1186/s13059- 023- 03002- y 36. Nepal C, Hadzhiev Y, Balwierz P et al. Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nat Commun 2020;11:168. https://doi.org/10.1038/s41467- 019- 13687- 0 37. Canzler S, Stadler PF, Schor J. The fungal snoRNAome. RNA 2018;24:342-60. https://doi.org/10.1261/rna.062778.117 38. Jorjani H, Kehr S, Jedlinski DJ et al. An updated human snoRNAome. Nucleic Acids Res 2016;44:5068-82. https://doi.org/10.1093/nar/gkw386 39. Fafard-Couture É, Bergeron D, Couture S et al. Annotation of snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships. Genome Biol 2021;22:172. https://doi.org/10.1186/s13059- 021- 02391- 2 40. Varga M. The Doctor of Delayed Publications: The Remarkable Life of George Streisinger (1927-1984). Zebrafish 2018;15:314-9. https://doi.org/10.1089/zeb.2017.1531 41. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 2007;8:353-67. https://doi.org/10.1038/nrg2091 42. Kemmler CL, Moran HR, Murray BF et al. Next-generation plasmids for transgenesis in zebrafish and beyond. Development 2023;150:dev201531. https://doi.org/10.1242/dev.201531 43. Kwan KM, Fujimoto E, Grabher C et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 2007;236:3088-99. https://doi.org/10.1002/dvdy.21343 44. Kawakami K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 2007;Suppl 1:S7. https://doi.org/10.1186/gb2007- 8- s1- s7 45. Uribe-Salazar JM, Kaya G, Sekar A et al. Evaluation of CRISPR gene-editing tools in zebrafish. BMC Genomics 2022;23:12. https://doi.org/10.1186/s12864- 021- 08238- 1 46. Liu K, Petree C, Requena T et al. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Front Cell Dev Biol 2019;7:13. https://doi.org/10.3389/fcell.2019.00013 47. Varshney GK, Pei W, LaFave MC et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 2015;25:1030-42. https://doi.org/10.1101/gr.186379.114 48. Huang H, Lindgren A, Wu X et al. High-throughput screening for bioactive molecules using primary cell culture of transgenic zebrafish embryos. Cell Rep 2012;2:695-704. https://doi.org/10.1016/j.celrep.2012.08.015 Downloaded from https://academic.oup.com/nargab/article/7/1/lqaf013/8052394 by guest on 20 September 2025 reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res 2024;52:W83-94. https://doi.org/10.1093/nar/gkae410 54. Zhang B, Han D, Korostelev Y et al. Changes in snoRNA and snRNA Abundance in the human, chimpanzee, macaque, and mouse brain. Genome Biol Evol 2016;8:840-50. 55. Locati MD, Pagano JFB, Abdullah F et al. Identifying small RNAs derived from maternaland somatic-type rRNAs in zebrafish development. Genome 2018;61:371-8. https://doi.org/10.1139/gen2017- 0202 56. Qu G, Kruszka K, Plewka P et al. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics 2015;16:1009. https://doi.org/10.1186/s12864- 015- 2221- x 57. Bhatia PS, Iovleff S, Govaert G. Blockcluster: an R package for model-based co-clustering. J Stat Soft 2017;76:1-24. https://doi.org/10.18637/jss.v076.i09 58. Liu P, Si Y. Cluster analysis of RNA-sequencing data. In: Statistical analysis of next generation sequencing data. New York: Springer, 2014, 191-217. https://doi.org/10.1007/978- 3- 319- 07212- 8_10 59. Videm P, Rose D, Costa F et al. BlockClust: efficient clustering and classification of non-coding RNAs from short read RNA-seq profiles. Bioinformatics 2014;30:i274-82. https://doi.org/10.1093/bioinformatics/btu270 60. Lawrence M, Huber W, Pagès H et al. Software for computing and annotating genomic ranges. PLoS Comput Biol 2013;9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118 61. Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 2009;25:1841-2. https://doi.org/10.1093/bioinformatics/btp328 62. Wickham H, Averick M, Bryan J et al. Welcome to the Tidyverse. J Open Source Softw 2019;4:1686. https://doi.org/10.21105/joss.01686 63. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017;33:2938-40. https://doi.org/10.1093/bioinformatics/btx364 64. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag, 2016. https://ggplot2.tidyverse.org 65. Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.12. 2018. https://github.com/raivokolde/pheatmap 66. RStudio_Team. RStudio: Integrated Development for R RStudio. Boston, MA, USA: PBC, 2020. 67. Hamar R, Varga M. Curated RNA Sequencing Data for Zebrafish (Danio rerio) snoRNA Expression Analysis [Data set]. Zenodo 2024. https://doi.org/10.5281/zenodo.12822217 68. Chang W, Cheng J, Allaire J et al. Shiny: web application framework for R. R package version 1.10.0.9000. 2025. https://github.com/rstudio/shiny 69. Sievert C. Interactive web-based data visualization with R, plotly, and shiny. Chapman and Hall/CRC. 2020. https://doi.org/10.1201/9780429447273-38 70. Cui X, Lu Z, Wang S et al. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics 2016;32:i332-40. https://doi.org/10.1093/bioinformatics/btw271 71. Oliveira JV, de A, Costa F et al. SnoReport 2.0: new features and a refined Support Vector Machine to improve snoRNA identification. BMC Bioinf 2016;17:464. https://doi.org/10.1186/s12859- 016- 1345- 6 72. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005;33:W686-9. https://doi.org/10.1093/nar/gki366 73. Pundhir S, Poirazi P, Gorodkin J. Emerging applications of read profiles towards the functional annotation of the genome. Front 89. He J, Navarrete S, Jasinski M et al. Targeted disruption of Dkc1, the gene mutated in X-linked dyskeratosis congenita, causes embryonic lethality in mice. Oncogene 2002;21:7740-4. https://doi.org/10.1038/sj.onc.1205969 90. Ge J, Rudnick DA, He J et al. Dyskerin Ablation in Mouse Liver Inhibits rRNA Processing and Cell Division. Mol Cell Biol 2010;30:413-22. https://doi.org/10.1128/MCB.01128-09 91. Pereboom TC, Weele LJv, Bondt A et al. A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization. Blood 2011;118:5458-65. https://doi.org/10.1182/blood2011- 04- 351460 92. Zhang Y, Morimoto K, Danilova N et al. Zebrafish models for dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic defects through RNA processing. Genet 2015;6:188. https://doi.org/10.3389/fgene.2015.00188 74. Locati MD, Pagano JFB, Girard G et al. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA 2017;23:1188-99. https://doi.org/10.1261/rna.061515.117 75. Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. G3 (Bethesda) 2024;14:jkae050. https://doi.org/10.1093/g3journal/jkae050 76. Ojha S, Malla S, Lyons SM. snoRNPs: functions in ribosome biogenesis. Biomolecules 2020;10:783. https://doi.org/10.3390/biom10050783 77. Penzo M, Clima R, Trerè D et al. Separated Siamese twins: intronic small nucleolar RNAs and matched host genes may be altered in conjunction or separately in multiple cancer types. Cells 2020;9:387. https://doi.org/10.3390/cells9020387 78. Xiao H, Feng X, Liu M et al. SnoRNA and lncSNHG: advances of nucleolar small RNA host gene transcripts in anti-tumor immunity. Front Immunol 2023;14:1143980. https://doi.org/10.3389/fimmu.2023.1143980 79. Deogharia M, Majumder M. Guide snoRNAs: drivers or passengers in human disease? Biology 2018;8:1. https://doi.org/10.3390/biology8010001 80. Huang Z, Du Y, Wen J et al. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov 2022;8:259. https://doi.org/10.1038/s41420- 022- 01056- 8 81. Weinstein LB, Steitz JA. Guided tours: from precursor snoRNA to functional snoRNP. Curr Opin Cell Biol 1999;11:378-84. https://doi.org/10.1016/S0955- 0674(99)80053- 2 82. Kiss T. SnoRNP biogenesis meets pre-mRNA splicing. Mol Cell 2006;23:775-6. https://doi.org/10.1016/j.molcel.2006.08.023 83. Liang X, Liu Q, Fournier MJ. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 2009;15:1716-28. https://doi.org/10.1261/rna.1724409 84. Jack K, Bellodi C, Landry DM et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2011;44:660-6. https://doi.org/10.1016/j.molcel.2011.09.017 85. Sloan KE, Warda AS, Sharma S et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2017;14:1138-52. https://doi.org/10.1080/15476286.2016.1259781 86. Zhao Y, Rai J, Yu H et al. CryoEM structures of pseudouridine-free ribosome suggest impacts of chemical modifications on ribosome conformations. Structure 2022;30:983-92. https://doi.org/10.1016/j.str.2022.04.002 87. Dörner K, Ruggeri C, Zemp I et al. Ribosome biogenesis factors—from names to functions. EMBO J 2023;42:e112699. https://doi.org/10.15252/embj.2022112699 88. Zhao Y, Rai J, Li H. Regulation of translation by ribosomal RNA pseudouridylation. Sci Adv 2023;9:eadg8190. https://doi.org/10.1126/sciadv.adg8190 Downloaded from https://academic.oup.com/nargab/article/7/1/lqaf013/8052394 by guest on 20 September 2025 PLoS One 2012;7:e30188. https://doi.org/10.1371/journal.pone.0030188 93. Anchelin M, Alcaraz-Pérez F, Martínez CM et al. Premature aging in telomerase-deficient zebrafish. Dis Model Mech 2013;6:1101-12. 94. Bellodi C, McMahon M, Contreras A et al. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep 2013;3:1493-502. https://doi.org/10.1016/j.celrep.2013.04.030 95. Delhermite J, Tafforeau L, Sharma S et al. Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. PLoS Genet 2022;18:e1010012. https://doi.org/10.1371/journal.pgen.1010012 96. Breznak SM, Peng Y, Deng L et al. H/ACA snRNP-dependent ribosome biogenesis regulates translation of polyglutamine proteins. Sci Adv 2023;9:eade5492. https://doi.org/10.1126/sciadv.ade5492 97. Ni C, Buszczak M. Ribosome biogenesis and function in development and disease. Development 2023;150:dev201187. https://doi.org/10.1242/dev.201187 98. Bellodi C, Krasnykh O, Haynes N et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010;70:6026-35. https://doi.org/10.1158/0008- 5472.CAN09- 4730 99. Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019;38:e100278. https://doi.org/10.15252/embj.2018100278 100. Kampen KR, Sulima SO, Vereecke S et al. Hallmarks of ribosomopathies. Nucleic Acids Res 2020;48:1013-28. https://doi.org/10.1093/nar/gkz637 101. Kang J, Brajanovski N, Chan KT et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Sig Transduct Target Ther 2021;6:323. https://doi.org/10.1038/s41392- 021- 00728- 8 102. Barozzi C, Zacchini F, Corradini AG et al. Alterations of ribosomal RNA pseudouridylation in human breast cancer. NAR Cancer 2023;5:zcad026. https://doi.org/10.1093/narcan/zcad026 103. Dong X-Y, Rodriguez C, Guo P et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 2008;17:1031-42. https://doi.org/10.1093/hmg/ddm375 104. Zhou F, Liu Y, Rohde C et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol 2017;19:844-55. https://doi.org/10.1038/ncb3563 105. Zhang X, Wang C, Xia S et al. The emerging role of snoRNAs in human disease. Genes Dis 2023;10:2064-81. https://doi.org/10.1016/j.gendis.2022.11.018 106. Cheng Y, Wang S, Zhang H et al. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell 2024. 187:4770-89. https://doi.org/10.1016/j.cell.2024.06.019 107. Carlile TM, Rojas-Duran MF, Zinshteyn B et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 2014;515:143-6. https://doi.org/10.1038/nature13802 108. Schwartz S, Bernstein DA, Mumbach MR et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 2014;159:148-62. https://doi.org/10.1016/j.cell.2014.08.028 109. Li X, Zhu P, Ma S et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 2015;11:592-7. https://doi.org/10.1038/nchembio.1836 110. Martinez NM, Su A, Burns MC et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell 2022;82:645-59. https://doi.org/10.1016/j.molcel.2021.12.023 118. Chikne V, Doniger T, Rajan KS et al. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei. Sci Rep 2016;6:25296. https://doi.org/10.1038/srep25296 119. Hebras J, Krogh N, Marty V et al. Developmental changes of rRNA ribose methylations in the mouse. RNA Biol 2020;17:150-64. https://doi.org/10.1080/15476286.2019.1670598 120. Marchand V, Pichot F, Neybecker P et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res 2020;48:e110. https://doi.org/10.1093/nar/gkaa769 121. Rajan KS, Madmoni H, Bashan A et al. A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei. Nat Commun 111. Nir R, Hoernes TP, Muramatsu H et al. A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Res 2022;50:4900-16. https://doi.org/10.1093/nar/gkac347 112. Rodell R, Robalin N, Martinez NM. Why U matters: detection and functions of pseudouridine modifications in mRNAs. Trends Biochem Sci 2024;49:12-27. https://doi.org/10.1016/j.tibs.2023.10.008 113. Zhang M, Jiang Z, Ma Y et al. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat Chem Biol 2023;19:1185-95. https://doi.org/10.1038/s41589- 023- 01304- 7 114. Sun H, Li K, Liu C et al. Regulation and functions of non-m6A mRNA modifications. Nat Rev Mol Cell Biol 2023;24:714-31. https://doi.org/10.1038/s41580- 023- 00622- x 115. Hamar R, Varga M. The role of post-transcriptional modifications during development. Biol Futur 2023;74:45-59. https://doi.org/10.1007/s42977- 022- 00142- 3 116. Dai Q, Zhang L-S, Sun H-L et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol 2023;41:344-54. https://doi.org/10.1038/s41587- 022- 01505- w 117. Pederiva C, Trevisan DM, Peirasmaki D et al. Control of protein synthesis through mRNA pseudouridylation by dyskerin. Sci Adv 2023;9:344-54. https://doi.org/10.1126/sciadv.adg1805 Downloaded from https://academic.oup.com/nargab/article/7/1/lqaf013/8052394 by guest on 20 September 2025 2023;14:7462. https://doi.org/10.1038/s41467- 023- 43263- 6 122. Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012;13:355-69. https://doi.org/10.1038/nrm3359 123. Shi Z, Barna M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol 2014;31:31-54. 124. Badrock AP, Uggenti C, Wacheul L et al. Analysis of U8 snoRNA variants in zebrafish reveals how bi-allelic variants cause leukoencephalopathy with calcifications and cysts. Am Hum Genet 2020;106:694-706. https://doi.org/10.1016/j.ajhg.2020.04.003 125. Pagano JFB, Locati MD, Ensink WA et al. Maternaland somatic-type snoRNA expression and processing in zebrafish development. bioRxiv, https://doi.org/10.1101/858936, 6 February 2020, preprint: not peer reviewed. 126. Csabai L, Fazekas D, Kadlecsik T et al. SignaLink3: a multi-layered resource to uncover tissue-specific signaling networks. Nucleic Acids Res 2022;50:D701-9. https://doi.org/10.1093/nar/gkab909 127. Bradford YM, Slyke CEV, Ruzicka L et al. Zebrafish information network, the knowledgebase for Danio rerio research. Genetics 2022;220:iyac016. https://doi.org/10.1093/genetics/iyac016 Received: July 27, 2024. Revised: February 8, 2025. Editorial Decision: February 12, 2025. Accepted: February 14, 2025 © The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.